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PART I DEPTH PROCESSING AND STEREOPSIS
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Physiologically based models of
binocular depth perception

ning qian and yongjie li

2.1 Introduction

We perceive the world as three-dimensional. The inputs to our visual

system, however, are only a pair of two-dimensional projections on the two reti-

nal surfaces. As emphasized by Marr and Poggio (1976), it is generally impossible

to uniquely determine the three-dimensional world from its two-dimensional

retinal projections. How, then, do we usually perceive a well-defined three-

dimensional environment? It has long been recognized that since the world

we live in is not random, the visual system has evolved and developed to take

advantage of the world’s statistical regularities, which are reflected in the retinal

images. Some of these image regularities, termed depth cues, are interpreted

by the visual system as depth. Numerous depth cues have been discovered.

Many of them, such as perspective, shading, texture, motion, and occlusion, are

present in the retina of a single eye, and are thus called monocular depth cues.

Other cues are called binocular, as they result from comparing the two retinal

projections. In the following, we will review our physiologically based mod-

els for three binocular depth cues: horizontal disparity (Qian, 1994; Chen and

Qian, 2004), vertical disparity (Matthews et al., 2003), and interocular time delay

(Qian and Andersen, 1994; Qian and Freeman, 2009). We have also constructed

a model for depth perception from monocularly occluded regions (Assee and

Qian, 2007), another binocular depth cue, but have omitted it here owing to

space limitations.
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2.2 Horizontal disparity and the energy model

The strongest binocular depth cue is the horizontal component of the

binocular disparity, defined as the positional difference between the two retinal

projections of a given point in space (Figure 2.1). It has long been recognized that

the brain uses the horizontal disparity to estimate the relative depths of objects

in the world with respect to the fixation point, a process known as stereovision

or stereopsis (Howard, 2002). With retinal positions expressed as visual angles,
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Figure 2.1 The geometry of binocular projection (a) and the definition of

binocular disparity (b). For simplicity, we consider only the plane of regard defined

by the instantaneous fixation point (F) and the optical centers (ol and or) of the two

eyes (i.e., the points in the eyes’ optical system through which the light rays can be

assumed to pass in straight lines). The two foveas (fl and fr) are considered as

corresponding to each other and thus have zero disparity. To make clear the

positional relationship between other locations on the two retinas, one can

imagine superimposing the two retinas with the foveas aligned (bottom). The

fixation point F in space projects approximately to the two corresponding foveas

(fl and fr), with a near-zero disparity. The disparity of any other point in space can

then be defined as φ1 −φ2, which is equal to ψ2 −ψ1. It then follows that all

zero-disparity points in the plane fall on the so-called Vieth–Müller circle passing

through the fixation point and the two optical centers, since all circumference

angles corresponding to the same arc (olor) are equal. Other points in the plane do

not project to corresponding locations on the two retinas, and thus have nonzero

disparities. Each circle passing through the two optical centers defines a set of

isodisparity points. When the fixation distance is much larger than the interocular

separation and the gaze direction is not very eccentric, the constant-disparity

surfaces can be approximated by frontoparallel planes.
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the horizontal disparity H for an arbitrary point P in Figure 2.1a is defined as

φ1 −φ2, which is equal to ψ2 −ψ1 based on geometry. From further geometrical

considerations, it can be shown that if the eyes are fixating at a point F at a

distance Z at a given instant, then the horizontal disparity H of a nearby point

P at a distance Z +�Z is approximately given by

H ≈ a
�Z
Z2 (2.1)

where a is the interocular separation, and H is measured in radians of visual

angle.1 The approximation is good provided that the spatial separation between

the two points is small compared with Z. The inverse square relationship in

Eq. (2.1) can be easily understood. φ1 and φ2 are the visual angles spanned by the

separation PF at the two eyes, and are thus inversely proportional to the fixation

distance Z plus higher-order terms. Since H = φ1 − φ2, the 1/Z term is can-

celed by the subtraction and the next most important term is thus proportional

to 1/Z2.

Because simple geometry provides relative depth given retinal disparity, one

of the main problems of stereovision is how the brain measures disparity from

the two retinal images in the first place. Many algorithms for disparity com-

putation have been proposed. Most of them, however, have emphasized the

ecological, mathematical, or engineering aspects of the problem, while often

ignoring relevant neural mechanisms. For example, a whole class of models

are based on Marr and Poggio (1976)’s approach of starting with all possible

matches between the features (such as dots or edges) in the two half images of

a stereogram and then introducing constraints to eliminate the false matches

and compute the disparity map. These models literally assume that there are

cells that respond to only a specific match and nothing else. In reality, even

the most sharply tuned binocular cells respond to a range of disparities (Nikara

et al., 1968; Maske et al., 1984; Bishop and Pettigrew, 1986; Poggio and Fischer,

1977; Poggio and Poggio, 1984). If these models are revised to use realistic, dis-

tributed disparity representation, then it is not known how to implement the

constraints needed for disparity computation (Assee and Qian, 2007). The style

of disparity computation in the brain seems to be fundamentally different from

these models (Qian, 1997).

In an effort to address this shortcoming, we have constructed physiologically

based algorithms for disparity computation according to the quantitative prop-

erties of binocular cells in the visual cortex reported by Ohzawa and coworkers

1 The disparity of the fixation point itself is usually very small (McKee and Levi, 1987;

Howard, 2002) and can be assumed to be zero when it is not the subject of study.
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(Ohzawa et al., 1996; Freeman and Ohzawa, 1990; DeAngelis et al., 1991; Ohzawa

et al., 1990, 1997). These investigators mapped binocular receptive fields (RFs) of

primary visual cortical cells in detail and proposed a model for describing their

responses.

Let us first consider simple cells. Two different models for describing binoc-

ular simple-cell RFs have been proposed. Early physiological studies suggested

that there is an overall positional shift between the left and right RFs of binocu-

lar simple cells (Bishop and Pettigrew, 1986). The shapes of the two RF profiles of

a given cell were assumed to be identical (Figure 2.2a). In contrast, later quantita-

tive studies by Ohzawa et al. (1990) have found that the left and right RF profiles

of a simple cell often possess different shapes. These authors accounted for this

finding by assuming that the RF shift is between ON/OFF subregions within
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Figure 2.2 Schematic drawings illustrating the shift between the left and right

receptive fields (RFs) of binocular simple cells. The “+” and “−” signs represent the

ON and OFF subregions, respectively, within the RFs. Two different models for

achieving the shift have been suggested by physiological experiments. (a)

Position-shift model. According to this model, the left and right RFs of a simple cell

have identical shapes but have an overall horizontal shift between them (Bishop

and Pettigrew, 1986). (b) Phase-shift model. This model assumes that the shift is

between ON/OFF subregions within the left and right RF envelopes that spatially

align (Ohzawa et al., 1990, 1996; DeAngelis et al., 1991). The fovea locations on the

left and right retinas are drawn as a reference point for vertically aligning the left

and right RFs of a simple cell. Modified from Figure 2 of Qian (1997).
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identical RF envelopes that spatially align (Figure 2.2b). This new RF model is

often referred to as the phase shift, phase difference, or phase parameter model.

For ease of description, the shift, expressed in terms of the visual angle, in both

of these alternatives will be referred to as the “RF shift” (Figure 2.2) when it

is not essential to distinguish between them. Later, we will discuss important

differences between these two RF models. Figure 2.2 only shows the ON and OFF

subregions of the RFs schematically. As is well known, the details of the RF pro-

files of simple cells can be described by the Gabor function, which is a Gaussian

envelope multiplied by a sinusoidal modulation (Marcělja, 1980; Daugman,

1985; McLean and Palmer, 1989; Ohzawa et al., 1990; DeAngelis, Ohzawa

and Freeman, 1991; Ohzawa et al., 1996; Anzai et al., 1999b). The Gaussian

envelope determines the overall dimensions and location of the RF, while

the sinusoidal modulation determines the ON and OFF subregions within the

envelope.

Since disparity itself is a shift between the two retinal projections (Figure 2.1),

one might expect that a binocular simple cell would give the best response when

the stimulus disparity happens to match the cell’s left–right RF shift. In other

words, a simple cell might prefer a disparity equal to its RF shift. A popula-

tion of such cells with different shifts would then prefer different disparities,

and the unknown disparity of any stimulus could be computed by identify-

ing which cell gives the strongest response to the stimulus. The reason that

no stereo algorithm has come out of these considerations is because the very

first assumption – that a binocular simple cell has a preferred disparity equal

to its RF shift – is not always valid; it is only true for simple patterns (such

as bars or gratings) undergoing coherent motion, and not for any static pat-

terns, nor for moving or dynamic stereograms with complex spatial profiles

(such as random-dot patterns) (Qian, 1994; Chen et al., 2001). Simple cells can-

not generally have a well-defined preferred disparity, because their responses

depend not only on the disparity but also on the detailed spatial structure of

the stimulus (Ohzawa et al., 1990; Qian, 1994; Zhu and Qian, 1996; Qian and

Zhu, 1997). Although one can measure a disparity tuning curve from a simple

cell, the location of the peak of the curve (i.e., the preferred disparity) changes

with some simple manipulations (such as a lateral displacement) of the stim-

uli. This property is formally known as Fourier phase dependence, because the

spatial structure of an image is reflected in the phase of its Fourier transform.

Because of the phase dependence, simple-cell responses cannot explain the fact

that we can detect disparities in static stereograms and in complex dynamic

stereograms.

The phase dependence of simple-cell responses can be understood intuitively

by considering the disparity tuning of a simple cell to a static vertical line. The
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Fourier phase of the line is directly related to the lateral position of the line,

which will affect where its projection falls in the left and right RFs of the simple

cell. A line with a given disparity may evoke a strong response at one lateral

position because it happens to project onto the excitatory subregions of both

the left and the right RFs, but may evoke a much weaker response at a dif-

ferent lateral position because it now stimulates some inhibitory portions of

the RFs. Therefore, the response of the simple cell to a fixed disparity changes

with changes in the Fourier phases of the stimulus and, consequently, it cannot

have a well-defined preferred disparity. There is direct experimental evidence

supporting this conclusion. For example, Ohzawa et al., (1990) found that the

disparity tuning curves of simple cells measured with bright bars and dark bars

(whose Fourier phases differ by π ) were very different. The Fourier phase depen-

dence of simple-cell responses can also explain an observation by Poggio et al.

(1985), who reported that simple cells show no disparity tuning to dynamic

random-dot stereograms. Each of the stereograms in their experiment main-

tained a constant disparity over time, but its Fourier phase was varied from

frame to frame by constantly rearranging the dots. Simple cells lost their dis-

parity tuning as a result of averaging over many different (phase-dependent)

tuning curves (Qian, 1994; Chen et al., 2001).

While simple cells are not generally suited for disparity computation, owing

to their phase dependence, the responses of complex cells do have the desired

phase independence, as expected from their lack of separate ON and OFF subre-

gions within their RFs (Skottun et al., 1991). To build a working stereo algorithm,

however, one needs to specify how this phase independence is achieved and

how an unknown stimulus disparity can be recovered from these responses. For-

tunately, a model for describing the responses of binocular complex cells has

been proposed by Ohzawa and coworkers based on their quantitative physio-

logical studies (Ohzawa et al., 1990, 1997; Anzai et al., and Freeman, 1999c). The

model is known as the disparity energy model, since it is a binocular extension

of the well-known motion energy model (Adelson and Bergen, 1985; Watson

and Ahumada, 1985). Ohzawa et al., (1990) found that a binocular complex cell

in the cat primary visual cortex can be simulated by summing the squared

responses of a quadrature pair of simple cells, and the simple-cell responses, in

turn, can be simulated by adding the visual inputs from their left and right RFs

(see Figure 2.3). (Two binocular simple cells are said to form a quadrature pair

if there is a quarter-cycle shift between the ON/OFF subregions of their left and

right RFs (Ohzawa et al., 1990; Qian, 1994).)

The remaining questions are whether the model complex cells constructed

in this way are indeed independent of the Fourier phases of the stimulus and, if

so, how their preferred disparities are related to their RF parameters. We have
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Figure 2.3 The model proposed by Ohzawa et al., (1990) for describing the

response of binocular complex cells. The complex cell (labeled C in the figure) sums

the squared outputs of a quadrature pair of simple cells (labeled S1 and S2). Each

simple cell, in turn, sums the contributions from its two RFs on the left and right

retinas. The left RF of S2 differs from the left RF of S1 by a quarter-cycle shift.

Likewise, the two right RFs also differ by a quarter-cycle shift. Several

mathematically equivalent variations of model are discussed in the text.

Reproduced from Figure 5 of Qian (1997).

investigated these issues through mathematical analyses and computer simula-

tions (Qian, 1994; Zhu and Qian, 1996; Qian and Zhu, 1997). The complex-cell

model was found to be independent of the Fourier phases of the stimulus for

simple stimuli, including the bars used in the physiological experiments of

Ohzawa et al., (1990), and its preferred disparity was approximately equal to the

left–right RF shift within the constituent simple cells. For more complicated

stimuli such as random-dot stereograms, however, a complex cell constructed

from a single quadrature pair of simple cells is still phase-sensitive, albeit less

so than simple cells. This problem can be easily solved by considering the addi-

tional physiological fact that complex cells have somewhat larger RFs than those
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of simple cells (Hubel and Wiesel, 1962). We incorporated this fact into the

model by spatially pooling several quadrature pairs of simple cells with nearby

and overlapping RFs to construct a model complex cell (Zhu and Qian, 1996;

Qian and Zhu, 1997). The resulting complex cell was largely phase-independent

for any stimulus, and its preferred disparity was still approximately equal to

the RF shift within the constituent simple cells.

With the above method for constructing reliable complex-cell responses, and

the relationship derived by that method between the preferred disparity and the

RF parameters, we were finally ready to develop, for the first time, a stereo algo-

rithm for solving stereograms using physiological properties of binocular cells

(Qian, 1994; Zhu and Qian, 1996; Qian and Zhu, 1997). By using a population

of complex cells tuned to the same preferred spatial frequency and with their

preferred disparities covering the range of interest, the disparity of an input

stimulus could be determined by identifying the cell in the population with the

strongest response (or by calculating the population-averaged preferred dispar-

ity of all cells weighted by their responses). An example of the application of

this algorithm to a random-dot stereogram is shown in Figure 2.4.

A mathematical analysis of these model complex cells reveals that their com-

putation is formally equivalent to summing two related cross-products of the

band-pass-filtered left and right image patches (Qian and Zhu, 1997). This oper-

ation is essentially an efficient version of cross-correlation (Qian and Zhu, 1997;

Qian and Mikaelian, 2000). Since the disparity is a shift between two retinal

projections, it is certainly reasonable to use a cross-correlation-like operation

to compute it. Qian and Mikaelian (2000) also compared this energy-based algo-

rithm with the so-called phase algorithm in computer vision (Sanger, 1988; Fleet

et al., 1991) (which should not be confused with the phase-shift RF model).

It has been demonstrated experimentally that complex cells receive monosy-

naptic inputs from simple cells but not vice versa (Alonso and Martinez, 1998),

as required by the model. On the other hand, there is, as yet, no direct anatomi-

cal evidence supporting the quadrature pair method for constructing binocular

complex cells from simple cells. However, based on the quantitative physiolog-

ical work of Ohzawa and coworkers (DeAngelis et al., 1991; Ohzawa et al., 1990,

1996, 1997), the method is at least valid as a phenomenological description of a

subset of real complex-cell responses. In addition, our analyses indicate that the

same phase-independent complex-cell responses can be obtained by combining

the outputs of many simple cells to average out their phase sensitivity, without

requiring the specific quadrature relationship (Qian, 1994; Qian and Andersen,

1997; Qian and Mikaelian, 2000). Two other variations of the model also lead to

the same complex-cell responses. The first considers the fact that cells cannot

fire negatively. Therefore, each simple cell in Figure 2.3 should be split into
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Figure 2.4 A random-dot stereogram (a) and the computed disparity map (b). The

stereogram has 110 × 110 pixels with a dot density of 50%. The central 50 × 50 area

and the surrounding area have disparities of 2 and −2 pixels, respectively. When

fused with uncrossed eyes, the central square appears further away than the

surround. The disparity map of the stereogram was computed with eight complex

cells (with the same spatial scale but different preferred disparities) at each

location. The distance between two adjacent sampling lines represents a distance

of two pixel spacings in the stereogram. Negative and positive values indicate near

and far disparities, respectively. The disparity map can be improved by combining

information across different scales (Chen and Qian, 2004). Modified from Figures 4

and 8 of Qian and Zhu (1997).

a push–pull pair with inverted RF profiles, so that they can carry the positive

and negative portions of the original responses without using negative firing

rates (Ohzawa et al., 1990). In the second variation, the squaring operation in

Figure 2.3 is considered to occur at the stage of simple-cell responses and the
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complex cell simply sums the simple-cell responses (Heeger, 1992; Anzai et al.,

1999b,c; Chen et al., 2001).

Although the disparity energy model was originally proposed based on data

from cats (Ohzawa et al., 1990), later studies indicate that the same approach can

be used to describe the responses of monkey binocular cells as well (Livingstone

and Tsao, 1999; Cumming and DeAngelis, 2001). One difference, though, is that

monkeys have a much smaller fraction of simple cells than cats do; most mon-

key V1 cells appear to be complex. The energy model, however, requires that

there be more simple cells than complex cells. This difficulty could be allevi-

ated by assuming that for many complex cells in monkeys, a stage similar to

the simple-cell responses happens in the dendritic compartments of complex

cells. In other words, simple-cell-like properties could be constructed directly

from inputs from the lateral geniculate nucleus to a dendritic region of a com-

plex cell. The simple-cell-like responses from different regions of the dendritic

tree are then pooled in the cell body to give rise to complex-cell response prop-

erties. This scheme is also consistent with the observation that some complex

cells seem to receive direct inputs from the lateral geniculate nucleus (Alonso

and Martinez, 1998).

2.3 Disparity attraction and repulsion

After demonstrating that our physiologically based method could effec-

tively extract binocular-disparity maps from stereograms, we then applied the

model to account for some interesting perceptual properties of stereopsis. For

example, the model can explain the observation that we can still perceive depth

when the contrasts of the two images in a stereogram are different, so long as

they have the same sign, and the reliability of depth perception decreases with

the contrast difference (Qian, 1994; Smallman and McKee, 1995; Qian and Zhu,

1997; Qian and Mikaelian, 2000). We also applied the model to a psychophys-

ically observed depth illusion reported by Westheimer (1986) and Westheimer

and Levi (1987). These authors found that when a few isolated features with

different disparities are viewed foveally, the perceived disparity between them

is smaller (attraction) or larger (repulsion) than the actual value, depending on

whether their lateral separation is smaller or larger than several minutes of

arc. If the separation is very large, there is no interaction between the features.

We showed that these effects are a natural consequence of our disparity model

(Mikaelian and Qian, 2000). The interaction between the features in the model

originates from their simultaneous presence in the cells’ RFs, and by pooling

across cells tuned to different frequencies and orientations, the psychophysical
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results can be explained without introducing any ad hoc assumptions about the

connectivity of the cells (Lehky and Sejnowski, 1990).

2.4 Vertical disparity and the induced effect

We have focused so far on the computation of horizontal disparity –

the primary cue for stereoscopic depth perception. It has been known since

the time of Helmholtz that vertical disparities between the two retinal images

can also generate depth perception (Howard, 2002). The mechanism involved,

however, is more controversial.

The best-known example of depth perception from vertical disparity is per-

haps the so-called induced effect (Ogle, 1950): a stereogram made from two

identical images but with one of them slightly magnified vertically (Figure 2.5a)

is perceived as a slanted surface rotated about a vertical axis (Figure 2.5b). The

surface appears further away on the side with the smaller image, and the appar-

ent axis of rotation is the vertical meridian through the point of fixation (Ogle,

1950; Westheimer and Pettet, 1992). To better appreciate this phenomenon, we

indicate in Figure 2.6a the signs of the depth and disparity in the four quadrants

around the point of fixation for the specific case of a left-image magnification.

The features in the left image (filled dots) are then outside the correspond-

ing features in the right image (open dots), as shown. The perceived slant is

such that the first and fourth quadrants appear far and the second and third

quadrants appear near with respect to the fixation point. It then follows that

IMAGE

L R

(a) (b)

IMAGE

Observer

Actual

Perceived

Figure 2.5 (a) A schematic stereogram for the induced effect (Ogle, 1950). The left

eye’s view (L) is magnified vertically with respect to the right eye’s view (R). (b)

With a stereogram like that in (a), a slanted surface is perceived, shown

schematically in the top view, as if the right image had been magnified

horizontally (Ogle, 1950). Reproduced from Figure 1 of Matthews et al. (2003).
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Figure 2.6 The signs of the disparity and depth for (a) the induced effect (vertical

disparity) and (b) the geometric effect (horizontal disparity). For clarity, the features

in the left and right images are represented schematically by filled and open dots,

respectively. In each panel, the fixation point is at the center of the cross, which

divides the space into four quadrants. The arrows indicate the signs of the disparity

in the four quadrants caused by (a) a vertical magnification in the left eye and (b) a

horizontal magnification in the right eye. The sign of the perceived depth (near or

far) in each quadrant is also indicated. Note that the depth sign of the vertical

disparity is quadrant-dependent (Westheimer and Pettet, 1992), while that of the

horizontal disparity is not. Reproduced from Figure 2 of Matthews et al. (2003).

the opposite vertical-disparity signs in the first and fourth quadrants gener-

ate the same depth sign (far), and that the same vertical-disparity signs in the

first and second quadrants generate opposite depth signs (far and near, respec-

tively). In other words, the depth sign of a given vertical disparity depends

on the quadrants around the fixation point (Westheimer and Pettet, 1992).

To generate the same kind of surface slant with horizontal disparity (termed

the “geometric effect” by Ogle (1950)), one would have to magnify the right

image horizontally. Unlike the case for the vertical disparity, however, the

depth sign of the horizontal disparity is fixed and independent of the quadrant

(Figure 2.6b).

These and other considerations have led to the widely accepted notion that

the role of vertical disparity is fundamentally different from that of horizontal

disparity. In particular, since the vertical disparity is large at large retinal or

gaze eccentricity and does not have a consistent local depth sign, and since the

effect of vertical disparity can be best demonstrated with large stimuli (Rogers

and Bradshaw, 1993; Howard and Kaneko, 1994) and appears to be averaged

over greater areas than that of horizontal disparity (Kaneko and Howard, 1997),

it is believed that the effect of vertical disparity is global, while the effect of

horizontal disparity is local. Numerous theories of vertical disparity have been

proposed (Ogle, 1950; Koenderink and van Doorn, 1976; Arditi et al., 1981;

Mayhew and Longuet-Higgins, 1982; Gillam and Lawergren, 1983; Rogers and
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Bradshaw, 1993; Howard and Kaneko, 1994; Liu et al., 1994; Gårding et al., 1995;

Banks and Backus, 1998; Backus et al., 1999); many of them employ some form

of global assumption to explain the induced effect. For example, Mayhew and

Longuet-Higgins (Mayhew, 1982; Mayhew and Longuet-Higgins, 1982) proposed

that the unequal vertical image sizes in the two eyes are used to estimate two

key parameters of the viewing system: the absolute fixation distance and the

gaze angle. Since the horizontal disparity is dependent on these parameters,

the estimated parameters will modify the interpretation of horizontal dispar-

ity globally, and hence the global depth effect of vertical disparity. There are,

however, several challenges to this theory. First, the predicted depth-scaling

effect of vertical disparity cannot be observed with display sizes ranging from

11◦ (Cumming et al., 1991) to 30◦ (Sobel and Collett, 1991). The common argu-

ment that these displays are simply not large enough is unsatisfactory because

the induced effect can be perceived with these display sizes. Furthermore, even

with stimuli as large as 75◦, the observed scaling effect is much weaker than

the prediction (Rogers and Bradshaw, 1993). Second, the predicted gaze-angle

shift caused by vertical magnification is never perceived, and additional assump-

tions are needed to explain this problem (Bishop, 1996). Third, to account for

the results under certain stimulus conditions, the theory has to assume that

multiple sets of viewing-system parameters are used by the visual system at the

same time, an unlikely event (Rogers and Koenderink, 1986).

A general problem applicable to all purely global interpretations of vertical

disparity, including the theory of Mayhew and Longuet-Higgins, is that vertical

disparity can generate reliable (albeit relatively weak) local depths even in small

displays that are viewed foveally (Westheimer, 1984; Westheimer and Pettet,

1992; Matthews et al., 2003). One might argue that functionally, the depth effect

of vertical disparity in small displays is not as important as the induced effect in

the case of large stimuli because the vertical disparity is usually negligible near

the fovea, while full-field vertical size differences between the eyes can occur

naturally with eccentric gaze. However, as pointed out by Farell (1998), the ver-

tical disparity can be quite large even near the fovea when oriented contours in

depth are viewed through narrow vertical apertures. This situation is illustrated

in Figure 2.7a. When the apertures are narrow enough, the horizontal disparity

is largely eliminated and subjects have to rely on vertical disparity to make local

depth judgments.

We have proposed a new theory for depth perception from vertical disparity

(Matthews et al., 2003) based on the oriented binocular RFs of visual cortical cells

(Ohzawa et al., 1990, 1996, 1997; DeAngelis et al., 1991; Anzai et al., 1999b,c) and

on the radial bias of the preferred-orientation distribution in the cortex (Bauer

et al., 1983; Leventhal, 1983; Bauer and Dow, 1989; Vidyasagar and Henry, 1990).
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(a) Vertical disparity from
occluded orientation

(b) Interocular time delay
from occluded motion

tL tRR

Figure 2.7 (a) An illustration of how vertical disparity can arise from horizontal

disparity carried by oriented contours (Farell, 1998). The vertical occluders have

zero disparity, while the diagonal line has a far horizontal disparity between its left

(L) and right (R) images. The visible segments between the occluders have

disparities mainly in the vertical dimension. (b) An analogous illustration of how

interocular time delay can arise from horizontal disparity carried by moving

targets (i.e., oriented contours in the spatiotemporal space) (Burr and Ross, 1979).

The moving dot in the figure has a far horizontal disparity, but when viewed

through the apertures between the occluders, it appears at the same spatial

locations (i.e., the locations of the apertures) but at different times. If the y axis in

(a) represents time, then (a) is the spatiotemporal representation of (b). Reproduced

from Figure 4 of Matthews et al. (2003).

It can be shown within the framework of the disparity energy method that cells

with preferred horizontal and vertical spatial frequencies ω0
x and ω0

y (and thus

the same preferred orientation θ ) may treat a vertical disparity V in the stimulus

as an equivalent horizontal disparity given by (Matthews et al., 2003)

Hequiv =
(
ω0

y

ω0
x

)
V = − V

tanθ
. (2.2)

The second equality holds because tan θ = −ω0
y /ω

0
x when θ is measured counter-

clockwise from the positive horizontal axis.2

Figure 2.8 provides an intuitive explanation of why oriented cells may treat

a vertical disparity as an equivalent horizontal disparity. An orientation-tuned

cell with a vertical offset between its left and right RFs can be approximately

2 The negative sign is needed because when tanθ is positive as in Figure 2.8, ω0
x and ω0

y

have opposite signs according to the formal conventions of the Fourier transform.
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Figure 2.8 A geometric explanation of Eq. (2.2). (a) Parallel lines are drawn

through the boundaries of the ON and OFF subregions of an RF profile. The

horizontal and vertical distances between these lines are approximately equal to

half of the preferred horizontal spatial period and half of the preferred vertical

spatial period, respectively, of the cell. (b) If the left and right RFs have a vertical

shift V , an equivalent horizontal shift of Hequiv is introduced.

viewed as having an equivalent horizontal offset instead. Therefore, the cell may

treat a vertical disparity in the stimulus as an equivalent horizontal disparity

because, most of the time, horizontal disparity is more significant than verti-

cal disparity owing to the horizontal separation of the eyes. To determine the

equivalent horizontal disparity, note that the horizontal and vertical distances

between the two adjacent parallel lines marking the ON and OFF subregions of

the RFs are approximately equal to half of the preferred horizontal spatial period

λx and half of the preferred vertical spatial period λy respectively, of the cell

(Figure 2.8). Now suppose there is a vertical shift of V between the left and right

RFs (Figure 2.8b). It is obvious that the equivalent horizontal shift is given by

Hequiv =
(
λx

λy

)
V =

(
ω0

y

ω0
x

)
V = − V

tanθ
,

which is the same as Eq. (2.2). The second equality holds because spatial periods

are inversely related to the corresponding spatial frequencies. The negative sign

in Eq. (2.2) is a consequence of the fact that we define both positive horizon-

tal and positive vertical disparities in the same way (for example, as the right

image position minus the left image position). For the oriented RFs shown in

Figure 2.8, a positive V must lead to a negative Hequiv.

How can Eq. (2.2) account for the perceived depth in stereograms containing

vertical disparities? According to Eq. (2.2), cells with a preferred orienta-

tion θ would treat a vertical disparity V as an equivalent horizontal disparity
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(−V/ tanθ). For stimuli without a dominant orientation, such as random tex-

tures, cells tuned to all orientations, with both positive and negative signs of

tanθ , will be activated. These cells will report equivalent horizontal dispari-

ties of different signs and magnitudes, and the average result across all cells

should be near zero. The only possibility of seeing depth from vertical disparity

in stimuli without a dominant orientation arises when certain orientations are

overrepresented by the cells in the visual cortex and, consequently, their equiv-

alent horizontal disparities are not completely averaged out after pooling across

cells tuned to all orientations. On the other hand, if the stimuli do have a strong

orientation θs, the cells with preferred orientation θ = θs will be maximally

activated and the equivalent horizontal disparity they report should survive

orientation pooling. Therefore, depth perception from vertical disparity should

be most effective for stimuli with a strong orientation, but will usually be less

effective than horizontal disparity (Westheimer, 1984), since most stimuli will

activate cells tuned to different orientations, and pooling across orientations

will make the equivalent horizontal disparities weaker. A near-vertical orien-

tation of the stimulus, however, will not easily allow cortical cells to convert

a vertical disparity into an equivalent horizontal disparity, because vertically

tuned cells have ω0
y = 0 in Eq. (2.2). Similarly, a near-horizontal orientation will

not be effective either, since the equivalent horizontal disparity will be too large

(owing to the vanishing of ω0
x ) to be detected (unless V approaches zero). There-

fore, the theory predicts that the best orientation of a stimulus for perceiving

depth from vertical disparity should be around a diagonal axis.

A critical test of our theory is whether it can explain the well-known induced

effect (Ogle, 1950): a stereogram made from two identical images but with one

of them slightly magnified vertically is perceived as a surface rotated about the

vertical axis going through the point of fixation (Figure 2.9a). First note that

the induced effect can be observed in stimuli having no dominant orientation,

such as random textures (Ogle, 1950). Therefore, according to the above discus-

sion, a reliable equivalent horizontal disparity could be generated only by an

overrepresentation of certain orientations in the brain. Remarkably, physiolog-

ical experiments have established well a radial bias of preferred orientations

around the fixation point in the cat primary visual cortex (Leventhal, 1983;

Vidyasagar and Henry, 1990) and in the supragranular layers of the monkey

area V1 (Bauer et al., 1983; Bauer and Dow, 1989). (The supragranular layers are

known to project to higher visual cortical areas (Felleman and Van Essen, 1991),

and are thus more likely to be relevant than the other layers for perception.)

That is, although the full range of orientations is represented for every spa-

tial location, the orientation connecting each location and the fixation point is

over-represented at that location (Figure 2.9b). This is precisely what is needed
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Figure 2.9 Our explanation for the induced effect and the related quadrant

dependence of vertical disparity. (a) The signs of the point disparity and depth in

the four quadrants around the fixation point caused by a magnification of the left

image (as in Figure 2.6a). Features in the left and right images are represented by

filled and open dots, respectively. The signs of the vertical disparities are indicated

by arrows, and the depth signs are marked as “near” or “far”. (b) The radial bias

(dashed lines) of the preferred orientations around the fixation point (central cross)

found in the visual cortex. For example, the 45◦ orientation and the vertical

orientation are overrepresented for spatial locations 1 and 2, respectively. (c)

Conversion of vertical disparity into equivalent horizontal disparity by the

overrepresented cortical cells in the four quadrants. The four vertical-disparity

arrows are copied from (a), and the four horizontal arrows indicate the signs of the

equivalent horizontal disparities according to the overrepresented orientations

(dashed lines) and Eq. (2.2). Reproduced from Figure 6 of Matthews et al. (2003).

for explaining the induced effect and the related quadrant dependence of the

vertical disparity for stimuli without a dominant orientation (Figure 2.9c).

To be more quantitative, let the fixation point be the origin and assume that

the left image is magnified vertically by a factor of k (> 1). Then, the vertical

disparity at the stimulus location (x,y) is V(x,y)= (k −1)y. The radial bias means

that the cortically over-represented orientation for the location (x,y) is given by

tanθ = y/x. Then, according to Eq. (2.2), the corresponding equivalent horizontal

disparity should be

Hequiv(x,y)= − (k − 1)y
tanθ

= −(k − 1)x. (2.3)

Therefore, although the vertical magnification of the left image by a factor of k

creates a vertical disparity of (k −1)y at the location (x,y), the over-represented

equivalent horizontal disparity is −(k − 1)x, and could be mimicked by mag-

nifying the right image horizontally by a factor of k. The perceived surface

should thus be rotated around the vertical axis going through the fixation

point, which is consistent with psychophysical observations (Ogle, 1950). Note

that the radial bias does not affect the depth perceived from real horizontal
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disparity, since unlike vertical disparity, horizontal disparity is not subject to

an orientation-dependent conversion.

We mentioned that the quadrant dependence of the vertical disparity means

that the vertical disparity does not have a consistent local depth sign, and this

may seem to imply that the induced effect can be explained only by global con-

siderations. However, we have shown above that our local theory can account

for the phenomenon very well through an orientation-dependent conversion of

vertical disparity into an equivalent horizontal disparity. Our theory is consis-

tent with the finding that vertical disparity is more effective at larger display

sizes (Rogers and Bradshaw, 1993; Howard and Kaneko, 1994) and with the

related observation that vertical disparity appears to operate at a more global

scale than horizontal disparity (Kaneko and Howard, 1997). This is because the

radial bias of cells’ preferred orientations is stronger at higher eccentricities

(Leventhal, 1983), although the bias is also present for foveal cells in monkey

area V1 (Bauer et al., 1983; Bauer and Dow, 1989). Larger displays cover more

eccentric locations, and are therefore more effective.

For small displays, the effect of vertical disparity is harder to observe because

of the weaker radial orientation bias in the brain; however, our theory pre-

dicts that the effect can be made stronger by using a near-diagonal orientation

of the stimulus. Our theory predicts further that when there is both horizon-

tal and vertical disparity, the total horizontal disparity should be equal to the

actual horizontal disparity plus the equivalent horizontal disparity generated

by the vertical disparity. Therefore, these two types of disparity should locally

enhance or cancel each other depending on their depth signs. We have tested

and confirmed these predictions using diagonally oriented stimuli (Matthews

et al., 2003).

Our theory also makes specific physiological predictions. First, there should

be a population of V1 cells that shows both disparity tuning and orientation

bias, and the bias should be stronger at greater eccentricity. Second, V1 cells’

responses to a given vertical disparity should depend on their preferred orienta-

tion. These predictions have been confirmed in a subsequent physiological study

by Durand et al., (2006) who concluded that “our results directly demonstrate

both assumptions of this model.”

2.5 Relative versus absolute disparity

The disparity defined in Figure 2.1 – the positional difference between

the left and right retinal projections of a point in space – is more precisely called

the absolute disparity. The difference between the absolute disparities of two

points is termed the relative disparity between those points. Since the fixation
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point disparity is usually very small and stable (McKee and Levi, 1987; Howard

and Rogers, 1995), the absolute disparity of a point is approximately equal to

the relative disparity between that point and the fixation point. It is therefore

difficult to distinguish between the two types of disparity under most normal

viewing conditions, where many points with different disparities are present

and one of the points is the fixation point at any given instant. One might hope

to create a situation without relative disparity and with only absolute disparity

by presenting a stimulus with a single disparity. However, under this condition,

the stimulus will trigger a vergence eye movement, which quickly reduces the

absolute disparity to near zero.

In the laboratory, it is possible to use a feedback loop to maintain a constant

absolute disparity (Rashbass and Westheimer, 1961). With such a procedure, it

has been shown that V1 cells encode absolute disparity (Cumming and Parker,

1999, 2000). Since binocular depth perception is known to rely mainly on rela-

tive disparity (Westheimer, 1979; Howard and Rogers, 1995), it is thus possible

that a higher visual cortical area converts absolute disparity into relative dis-

parity through simple subtraction (Cumming and DeAngelis, 2001; Neri et al.,

2004; Umeda et al., 2007). Although we have constructed our models based on

V1 RF properties, we do not infer that binocular depth perception necessar-

ily happens in V1; later stages may have similar RF properties, or may simply

inherit and refine V1 responses to generate perception. On the other hand,

it is neither economical nor necessary for the brain to encode relative dispar-

ity across the entire binocular visual field. Assume that the brain has computed

absolute disparities at N points in a scene. Since there are N(N −1) ordered pairs

of the N points, a much greater amount of resources would be required for the

brain to convert and store all the N(N − 1) relative-disparity values. An alter-

native possibility is that the brain might simply use absolute disparity across

the whole field as an implicit representation of the relative disparity, and com-

pute the relative disparity explicitly only for the pair of points under attentional

comparison at any given time. The fact that depth perception from a single abso-

lute disparity is poor may be a simple reflection of poor depth judgment from

vergence.

One might argue that a relative-disparity map is more economical because,

unlike absolute disparity, it does not change with vergence and thus does not

have to be recomputed with each vergence eye movement. However, since sac-

cades and head/body movements are frequent, and the world is usually not

static, the brain has to recompute the disparity map frequently anyway. Also,

the fact that V1 encodes absolute disparity suggests that it might be too diffi-

cult to compute relative disparity directly without computing absolute disparity

first.
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2.6 Phase-shift and position-shift RF models and a coarse-to-fine
stereo algorithm

We mentioned earlier that two different models for binocular simple-

cell RFs have been proposed: the position-shift and phase-shift models

(Figure 2.2). Much of what we have discussed above applies to both RF mod-

els. However, there are also important differences between them (Zhu and

Qian, 1996; Qian and Mikaelian, 2000; Chen and Qian, 2004). For example,

we have analyzed disparity tuning to sinusoidal gratings and broadband noise

(such as random-dot stereograms) for the position- and phase-shift models (see

Eqs. (2.11)–(2.15) in Zhu and Qian (1996) and related work in Fleet et al., (1996)).

For a complex cell with a phase shift �φ between the left and right RFs and a

preferred spatial frequencyω0, its peak response to noise occurs at the preferred

disparity

Dphs
noise = �φ

ω0
. (2.4)

Around this disparity, one peak in the periodic response to a sinusoidal grating

with spatial frequency 	 occurs at

Dphs
sin = �φ

	
= Dphs

noise
ω0

	
. (2.5)

In contrast, for a cell with a positional shift d, these peaks are all aligned at d,

the cell’s preferred disparity:

Dpos = d. (2.6)

Therefore, near a cell’s preferred disparity for noise stimuli, the preferred

disparity for sinusoidal gratings depends on the spatial frequency 	 of the grat-

ing for phase-shift RFs but not for position-shift RFs (Zhu and Qian, 1996). Such a

dependence has been observed in the visual Wulst of the barn owl (Wagner and

Frost, 1993), supporting the phase-shift model originally proposed for the cat V1

(Ohzawa et al., 1990). On the other hand, the preferred disparity of phase-shift

cells is limited to plus or minus half of the preferred spatial period of the cells

(Blake and Wilson, 1991; Freeman and Ohzawa, 1990; Qian, 1994; Smallman

and MacLeod, 1994), and some real cells in the barn owl do not follow this con-

straint strictly (Zhu and Qian, 1996). It thus appears that both the phase- and

the position-shift RF mechanisms are used to code disparity. Later physiological

experiments on cats and monkeys have confirmed that a mixture of the two

RF models is the best description of the binocular cells in these species (Anzai

et al., 1997, 1999a; Cumming and DeAngelis, 2001).
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The above discussion of the two RF models prompted Chen and Qian (2004)

to ask “what are the relative strengths and weaknesses of the phase- and the

position-shift mechanisms in disparity computation, and what is the advan-

tage, if any, of having both mechanisms?” With appropriate parameters, either

type of RF model (or a hybrid of them) can be used as a front-end filter in

the energy method for disparity computation described earlier (Qian and Zhu,

1997). However, our analysis and our simulations over a much wider range

of parameters reveal some interesting differences between the two RF models

in terms of disparity computation (Chen and Qian, 2004). The main finding is

that the phase-shift RF model is, in general, more reliable (i.e., less variable)

than the position-shift RF model for disparity computation. The accuracy of

the computed disparity is very good for both RF models at small disparity, but

it deteriorates at large disparity. In particular, the phase-shift model tends to

underestimate the magnitude of the disparity owing to a zero-disparity bias

(Qian and Zhu, 1997). Additionally, both RF models are only capable of dealing

well with disparity within plus or minus half of the preferred spatial period of

the cells. This was known earlier for the phase-shift model (see above). It turns

out that the position-shift model has a similar limitation: although position-shift

cells can have large preferred disparities, the responses of a population of them

for disparity computation often has false peaks at large preferred disparities

(Chen and Qian, 2004).

These results and the physiological data of Menz and Freeman (2003) suggest

a coarse-to-fine stereo algorithm that takes advantage of both the phase-shift

and the position-shift mechanisms (Chen and Qian, 2004). In this algorithm, dis-

parity computation is always performed by the phase-shift mechanism because

of its higher reliability over the entire disparity range. Since the phase-shift

model is accurate only when the disparity is small, the algorithm iteratively

reduces the magnitude of the disparity through a set of spatial scales by intro-

ducing a constant position-shift component for all cells to offset the stimulus

disparity. Specifically, for a given stereogram, a rough disparity map is first

computed with the phase-shift model at a coarse scale using the energy method

(Qian, 1994). The computed disparity at each spatial position is then used as a

constant position-shift component for all cells at the next, finer scale. At the

next scale, different cells all have the same position-shift component but dif-

ferent phase-shift components so that the disparity computation is still done

by the reliable phase-shift mechanism. The amount of disparity that the phase-

shift component has to deal with, however, has been reduced by the common

position-shift component of all cells, and the new disparity estimated from the

phase-shift component will thus be more accurate. The process can be repeated

across several scales. We have implemented such a coarse-to-fine algorithm and
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found that it can indeed greatly improve the quality of computed disparity maps

(Chen and Qian, 2004). This coarse-to-fine algorithm is similar in spirit to the

one originally proposed by Marr and Poggio (1979), but with two major differ-

ences. First, we have used the position-shift component of the RFs to reduce the

magnitude of the disparity at each location, while Marr and Poggio (1979) used

vergence eye movement, which changes the disparity globally. Second, at each

scale we have used the energy method for disparity computation, while Marr

and Poggio (1979) used a nonphysiological, feature-matching procedure.

2.7 Are cells with phase-shift receptive fields lie detectors?

Recently, Read and Cumming (2007) asked the same question of why

there are both phase- and position-shift RF mechanisms in the brain, but reached

a different conclusion. They argued that cells with position-shift RFs code real,

physical disparities while those with phase-shift RFs code impossible, nonphys-

ical disparities and are thus “lie detectors.” In particular, they believe that cells

with phase-shift RFs “respond optimally to [impossible] stimuli in which the

left and right eye’s images are related by a constant shift in Fourier phase.” It

is not clear how they reached this conclusion. The phase-shift model assumes

that the sinusoids of the Gabor functions for the left and right RFs have a phase

shift; mathematically, however, this is not equivalent to a constant phase shift

of the RFs’ Fourier components.

Read and Cumming (2007) defined an impossible stimulus as a visual input

that “never occurs naturally, ... even though it can be simulated in the labo-

ratory.” They considered a cell as coding impossible stimuli, and thus as a lie

detector, if the cell responds better or shows greater response modulation to

impossible stimuli than to naturally occurring stimuli (see also Haefner and

Cumming, 2008). Unfortunately, this definition is problematic because, accord-

ing to it, nearly all visual cells should be classified as lie detectors coding

impossible stimuli. To begin with, most visual cells have retinally based RFs.

To stimulate these cells optimally, the stimulus has to match the retinal loca-

tion and size of the RFs. This means that the stimulus has to move with the

eyes, have the right size, and be placed at the right location and distance from

the eyes. Such stimuli never happen naturally. We therefore conclude that the

notion of dividing cells into those coding physical and those coding impossi-

ble stimuli is not compelling. Visual cells generally respond better to artificial

stimuli tailored to match their RF properties than to naturally occurring stimuli.

That does not mean that they are designed to code impossible stimuli.

Read and Cumming (2007) also disputed Chen and Qian (2004)’s conclusion

that phase-shift cells are more reliable than position-shift cells for disparity
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computation. They correctly pointed out that the distribution of the computed

disparity depends on whether the stimulus disparity is introduced symmetri-

cally or asymmetrically between the two eyes. However, our recent simulations

(Yongjie Li, Yuzhi Chen, and Ning Qian, unpublished observations) show

that regardless of the symmetry, the disparity distribution computed with

position-shift cells always has more outliers, and consequently a much larger

standard deviation, than has the distribution computed using the phase-shift RF

model. We thus maintain our conclusion that phase-shift cells are more reliable

than position-shift cells for disparity computation. Read and Cumming (2007)

emphasized that the population response curve for the position-shift model is

symmetric when the stimulus disparity is introduced symmetrically. However,

this is only true for stimuli containing a single, uniform disparity and is thus

not useful for general disparity computation.

Finally, Read and Cumming (2007) proposed a new algorithm for disparity

computation. A close examination reveals that this algorithm and the earlier

algorithm of Chen and Qian (2004) search for the same goal in a space covered

by cells with various combinations of phase shifts and position shifts, but with

different search strategies. The common goal is a set of cells all having the same

position-shift component, equal to the stimulus disparity, and whose phase-shift

component encodes zero disparity. When multiple scales are considered, Chen

and Qian (2004)’s coarse-to-fine algorithm is more efficient as it involves only

a single disparity computation with phase-shift cells at each scale, while Read

and Cumming (2007)’s algorithm involves multiple disparity computations, also

with phase-shift cells, at each scale. Interestingly, Read and Cumming (2007)’s

algorithm employs far more phase-shift-based computation than position-shift-

based computation and thus also takes advantage of the better reliability of the

phase-shift RF mechanism.

2.8 Motion–stereo integration

There is increasing psychophysical and physiological evidence indicat-

ing that motion detection and stereoscopic depth perception are processed

together in the brain (Regan and Beverley, 1973; Nawrot and Blake, 1989; Qian

et al., 1994a; Maunsell and Van Essen, 1983; Bradley et al., 1995; Ohzawa et al.,

1996). We have demonstrated that under physiologically plausible assumptions

about the spatiotemporal properties of binocular cells, the stereo energy model

reviewed above can be naturally combined with the motion energy model

(Adelson and Bergen, 1985; Watson and Ahumada, 1985) to achieve motion–

stereo integration (Qian and Andersen, 1997). The cells in the model are tuned

to both motion and disparity just like physiologically observed cells, and a
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population of complex cells covering a range of motion and a range of disparity

combinatorially could simultaneously compute the motion and disparity of a

stimulus.

Interestingly, the complex cells in the integrated model are much more

sensitive to motion along constant-disparity planes than to motion in depth

towards or away from the observer because the left and right RFs of a cell

have the same spatiotemporal orientation (Qian, 1994; Ohzawa et al., 1996,

1997; Qian and Andersen, 1997; Chen et al., 2001). This property is consis-

tent with the physiological finding that few cells in the visual cortex are truly

tuned to motion in depth (Maunsell and Van Essen, 1983; Ohzawa, et al., 1996,

1997) and with the psychophysical observation that human subjects are poor

at detecting motion in depth based on disparity cues alone (Westheimer, 1990;

Cumming and Parker, 1994; Harris et al., 1998). Because of this property, motion

information could help reduce the number of possible stereoscopic matches in

an ambiguous stereogram by making stereo matches in frontoparallel planes

more perceptually prominent than matches of motion in depth. The integrated

model has also been used to explain the additional psychophysical observa-

tion that adding binocular-disparity cues to a stimulus can help improve the

perception of multiple and overlapping motion fields in the stimulus (i.e.,

motion transparency) (Qian et al., 1994b). In this explanation, it is assumed that

transparent motion is usually harder to perceive than unidirectional motion

because in area MT, motion signals from different directions suppress each other

(Snowden et al., 1991; Qian and Andersen, 1994). The facilitation of transparent-

motion perception by disparity can then be accounted for by assuming that

the suppression in area MT is relieved when the motion signals from different

directions are in different disparity planes (Qian et al., 1994a,b). This prediction

of disparity-gated motion suppression in area MT has subsequently been veri-

fied physiologically (Bradley et al., 1995). Finally, the integrated motion–stereo

model has allowed us to explain many temporal aspects of disparity tuning

(Chen et al., 2001).

2.9 Interocular time delay and Pulfrich effects

Another interesting application of the integrated motion–stereo model

is a unified explanation for a family of Pulfrich-like depth illusions. The clas-

sical Pulfrich effect refers to the observation that a pendulum oscillating back

and forth in a frontoparallel plane appears to move along an elliptical path in

depth when a neutral density filter is placed in front of one eye (Figure 2.10).

The direction of apparent rotation is such that the pendulum appears to move
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Figure 2.10 A schematic drawing of the classical Pulfrich effect (top view).

A pendulum is oscillating in the frontoparallel plane indicated by the solid line.

When a neutral density filter is placed in front of the right eye, the pendulum

appears to move along an elliptical path in depth, as indicated by the dashed line.

The direction of rotation is such that the pendulum appears to move away from the

covered eye and towards the uncovered eye. Reproduced from Figure 1 of Qian and

Andersen (1997).

away from the covered eye and towards the uncovered eye. It is known that by

reducing the amount of light reaching the covered retina, the filter introduces

a temporal delay in the transmission of visual information from that retina to

the cortex (Mansfield and Daugman, 1978; Carney et al., 1989). The traditional

explanation of this illusion is that since the pendulum is moving, when the

uncovered eye sees the pendulum at one position, the eye with the filter sees

the pendulum at a different position back in time. In other words, the coherent

motion of the pendulum converts the interocular time delay into a horizontal

disparity at the level of stimuli. However, the Pulfrich depth effect is present

even with dynamic noise patterns (Tyler, 1974; Falk, 1980), which lack the

coherent motion required for this conversion. Furthermore, the effect is still

present when a stroboscopic dot undergoing apparent motion is used such that

the two eyes see the dot at exactly the same set of spatial locations but slightly

different times (Morgan and Thompson, 1975; Burr and Ross, 1979). Under this

condition, the traditional explanation of the Pulfrich effect fails because no

conventionally defined spatial disparity exists. It has been suggested that more
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than one mechanism may be responsible for these phenomena (Burr and Ross,

1979; Poggio and Poggio, 1984).

The stroboscopic version of the Pulfrich effect can occur in the real world

when a target moves behind a set of small apertures (Morgan and Thompson,

1975; Burr and Ross, 1979) (Figure 2.7b). Without the occluders, the moving

target has a horizontal disparity with respect to the fixation point. With the

occluders, the target appears to the two eyes to be at the same aperture locations

but at slightly different times. For example, in Figure 2.7b, the target appears at

the location of the central aperture at times tL and tR. In this type of situation,

the brain has to rely on interocular time delay to infer the depth of the target.

Our mathematical analyses and computer simulations indicate that all three

Pulfrich–like phenomena can be explained in a unified way by the integrated

motion–stereo model (Qian and Andersen, 1997). Central to the explanation

is a mathematical demonstration that a model complex cell with physiologi-

cally observed spatiotemporal properties cannot distinguish an interocular time

delay �t from an equivalent horizontal disparity given by

Hequiv = ω0
t

ω0
x
�t, (2.7)

where ω0
t and ω0

x are the preferred temporal and horizontal spatial frequencies

of the cell. This relation is analogous to Eq. (2.2), where a vertical disparity is

treated as an equivalent horizontal disparity by binocular cells. It holds for any

arbitrary spatiotemporal pattern (including a coherently moving pendulum,

dynamic noise, and stroboscopic stimuli) that can significantly activate the cell.

By considering the population responses of a family of cells with a wide range

of disparity and motion parameters, all major observations regarding Pulfrich’s

pendulum and its generalizations to dynamic noise patterns and stroboscopic

stimuli can be explained (Qian and Andersen, 1997). An example of a simulation

for a stroboscopic pendulum is shown in Figure 2.11.

Two testable predictions were made based on the analysis (Qian and

Andersen, 1997). First, the responses of a binocular complex cell to interoc-

ular time delay and binocular disparity should be related according to Eq. (2.7).

This prediction was confirmed by later physiological recordings by Anzai et al.,

(2001), who concluded that “our data provide direct physiological evidence that

supports the [Qian and Andersen] model.” The second prediction is also based

on Eq. (2.7). The equation predicts that cells with different preferred spatial-to-

temporal frequency ratios will individually “report” different apparent Pulfrich

depths for a given temporal delay. If we assume that the perceived depth corre-

sponds to the disparities reported by the most responsive cells in a population

(or by the population average of all cells weighted by their responses), then
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Figure 2.11 (a) A spatiotemporal representation of a stroboscopic pendulum for

one full cycle of oscillation. The two dots in each pair are for the left and the right

eye respectively; they are presented at exactly the same spatial location (i.e., the

same x) but slightly different times. The time gap between the two sets of dots and

the duration of each dot (i.e., the size of a dot along the time axis) are exaggerated

in this drawing for the purpose of illustration. (b) The computed equivalent

disparity as a function of horizontal position and time. The data points from the

simulation are shown as small solid circles. Lines are drawn from the data points to

the x–t plane in order to indicate the spatiotemporal location of each data point.

The pendulum has negative equivalent disparity (and therefore is seen as

closer to the observer) when it is moving to the right, and has positive equivalent

disparity (it is seen as further away from the observer) when it is moving to the left.

The projection of the 3D plot onto the d–x plane forms a closed path similar to the

ellipse in Figure 2.10. The units are arbitrary, measured by the pixel sizes along the

space and time dimensions used in the simulation. Reproduced from Figure 4 of

Qian and Andersen (1997).

the perceived Pulfrich depth should vary according to Eq. (2.7) as we selec-

tively excite different populations of cells by using stimuli with different spatial-

and temporal-frequency contents. Psychophysical data are consistent with this

prediction (Wist et al., 1977; Morgan and Fahle, 2000).

Our Pulfrich model (Qian and Andersen, 1997) has since been known as

the joint motion–disparity coding model. Despite its success, the model was
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questioned by Read and Cumming (2005a,b), who argued that all Pulfrich

effects can be explained by a model that codes motion and disparity separately.

Read and Cumming focused on the S-shaped curves of perceived disparity as a

function of interocular time delay in the stroboscopic Pulfrich effect (Morgan,

1979). However, we have recently demonstrated fundamental problems with

Read and Cumming’s work in terms of causality, physiological plausibility,

and definitions of joint and separate coding, and we have compared the

two coding schemes under physiologically plausible assumptions (Qian and

Freeman, 2009). We showed that joint coding of disparity and either unidi-

rectional or bidirectional motion selectivity can account for the S curves, but

unidirectional selectivity is required to explain direction–depth contingency in

Pulfrich effects. In contrast, separate coding can explain neither the S curves

nor the direction–depth contingency. We conclude that Pulfrich phenomena

can be logically accounted for by joint encoding of unidirectional motion and

disparity.

2.10 Concluding remarks

Above, we have reviewed some of our work on physiologically based

models of binocular depth perception. Our work was aimed at addressing the

limitations of the current experimental and computational methods. Although

experimental studies are fundamental to our understanding of visual infor-

mation processing, these studies do not directly provide algorithms for how

a population of cells with known properties may be used to solve a difficult

perceptual problem. For example, knowing that there are tuned near- and far-

disparity-selective cells in the visual cortex does not tell us how to compute

disparity maps from arbitrary stereograms with these cells. Without quanti-

tative modeling, our intuition may often be incomplete or even wrong, and

it has only limited power in relating and comprehending a large amount of

experimental data.

On the other hand, most computational studies of visual perception have

typically been concerned with the ecological or engineering aspects of a task,

while giving little or at best secondary consideration to existing physiological

data. This tradition appears to stem from David Marr’s overemphasis on separat-

ing computational analyses from physiological implementations (Marr, 1982).

Although purely computational approaches are highly interesting in their own

right, the problem is that without paying close attention to physiology, one

often comes up with theories that work in some sense but have little to do with

the mechanisms used by the brain. In fact, most computer vision algorithms

contain nonphysiological procedures.
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In this chapter, we have used examples from binocular depth perception

to illustrate that given an appropriate set of experimental data, a physiolog-

ically plausible approach to the modeling of neural systems is both feasible

and fruitful. The experimental and theoretical studies reviewed here suggest

that although the disparity sensitivity in the visual cortex originates from

left–right RF shifts in simple cells, it is at the level of complex cells that

stimulus disparity is reliably coded in a distributed fashion. These studies

suggest further that depth perception from vertical disparity and interocular

time delay can be understood through vertical disparity and interocular time

delay being treated as equivalent horizontal disparities by visual cortical cells.

The models help increase our understanding of visual perception by provid-

ing unified accounts for some seemingly different physiological and perceptual

observations and suggesting new experiments for further tests of these mod-

els. Indeed, without modeling, it would be difficult to infer that random-dot

stereograms could be effectively solved by a population of binocular complex

cells without resorting to explicit matching, that the psychophysically observed

disparity attraction/repulsion phenomenon under different stimulus configura-

tions could be a direct consequence of the underlying binocular RF structure,

or that different variations of the Pulfrich depth illusion could all be uni-

formly explained by the spatiotemporal response properties of binocular cells.

Physiology-based computational models have the potential to synthesize a large

body of existing experimental data into a coherent framework. They can also

make specific, testable predictions and, indeed, several of our key predictions

have been confirmed by later experiments, as we have discussed above. There-

fore, a close interplay between the experimental and computational approaches

holds the best promise for resolving outstanding issues in stereovison (Qian,

1997; Chen et al., 2001), and for achieving a deeper understanding of neural

information processing in general.
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