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Disparity tuning of visual cells in the brain depends on the structure
of their binocular receptive fields (RFs). Freeman and coworkers have
found that binocular RFs of a typical simple cell can be quantitatively
described by two Gabor functions with the same gaussian envelope
but different phase parameters in the sinusoidal modulations (Free-
man and Ohzawa 1990). This phase-parameter-based RF description
has recently been questioned by Wagner and Frost (1993) based on
their identification of a so-called characteristic disparity (CD) in some
cells’ disparity tuning curves. They concluded that their data favor
the traditional binocular RF model, which assumes an overall posi-
tional shift between a cell’s left and right RFs. Here we set to re-
solve this issue by studying the dependence of cells’ disparity tuning
on their underlying RF structures through mathematical analyses and
computer simulations. We model the disparity tuning curves in Wag-
ner and Frost’s experiments and demonstrate that the mere existence
of approximate CDs in real cells cannot be used to distinguish the
phase-parameter-based RF description from the traditional position-
shift-based RF description. Specifically, we found that model simple
cells with either type of RF description do not have a CD. Model com-
plex cells with the position-shift-based RF description have a precise
CD, and those with the phase-parameter-based RF description have an
approximate CD. We also suggest methods for correctly distinguishing
the two types of RF descriptions. A hybrid of the two RF models may
be required to fit the behavior of some real cells, and we show how to
determine the relative contributions of the two RF models.

1 Introduction

Binocular disparity provides the sensory cue for stereoscopic depth per-
ception. It is now well established- that many cells in the visual cortex
are tuned to binocular disparity and could thus form the neural sub-
strate of stereo vision (Bishop and Pettigrew 1986; Poggio and Poggic
1984). However, the exact receptive field (RF) organization responsible
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for the observed disparity tuning of these cells remains controversial.
Early physiological studies suggested that disparity tuning was created
by a retinal positional shift between the left and right RFs of a binocular
cell (Bishop et al. 1971; Maske et al. 1984). The shapes of the two RF pro-
files of a given cell were usually assumed to be identical. Although such
a position-shift-based RF description has an intuitive appeal, the main
limitation of these early studies is that cells” RFs were usually mapped
manually, and the results were therefore only qualitative.

Quantitative mapping of binocular RFs was performed relatively re-
cently by Freeman and collaborators (Ohzawa et al. 1990; DeAngelis et
al. 1991) using the automated reverse correlation technique (Jones and
Palmer 1987). These studies indicate that binocular RFs of a simple cell
in the cat primary visual cortex can be well described by two Gabor
functions—one for each eye. (A Gabor function is simply a product of a
gaussian envelope and a sinusoid.) It was found that the left and right
RFs of a cell often have somewhat different shapes and that this shape
difference can be easily accounted for by letting the two Gabor func-
tions have the same gaussian envelopes (on the corresponding left and
right retinal locations) but different phase parameters in the sinusoids.
The phase parameter difference creates a shift between the two sinu-
soids within their registered gaussian windows, and this shift generates
disparity sensitivity for the cell.

The phase-parameter-based RF description of Freeman et al. has re-
cently been questioned by Wagner and Frost (1993) based on their dis-
covery of a so-called characteristic disparity (CD) in some cells recorded
from the visual Wulst of the barn owl (see also Pettigrew 1993). For
a given cell, Wagner and Frost first obtained its disparity tuning curve
using spatial noise stimuli. There is usually a main peak in the tuning
curve flanked by smaller side peaks. They then recorded from the same
cell with sinusoidal gratings of various spatial frequencies and obtained
a family of disparity tuning curves, one for each grating frequency. Each
of these grating tuning curves is periodic, with a period equal to that of
the stimuli. The interesting finding is that for some cells, one set of peaks
of the grating tuning curves and the main peak of the noise tuning curve
tend to align approximately at a certain disparity. They called this dis-
parity the characteristic disparity of the cell (cf. Fig. 8). They concluded
that their data are consistent with the traditional position-shift type of RF
organization (termed CD model in their paper) but not with the phase-
parameter type of RF model proposed by Freeman and coworkers.

To resolve this controversy, it is important to note that one cannot
predict a cell’s disparity tuning curves to a given set of stimuli with
only the knowledge of the cell’s RF profiles. The other crucial piece of
information is a procedure that determines a cell’s response as a function
of its RF profiles and the visual pattern falling on the RFs. We will call
this procedure the response model of a cell. Obviously a given RF model
can be combined with different response models to produce different
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disparity tuning curves. (For example, one response model might add
the contributions from the two RFs of a binocular cell, while another
might multiply the two RF contributions.) Unfortunately, Wagner and
Frost did not specify a response model when stating their conclusion. In
addition, they did not model the shapes of the disparity tuning curves
they recorded.

We therefore decided to investigate how a cell’s disparity tuning to a
stimulus depends on its underlying RF model and response model and to
reexamine the implications of Wagner and Frost’s CD data. We will show
that with a physiologically determined response model for simple cells,
neither the position-shift-based RF description nor the phase-parameter-
based RF description has a CD. CDs can be defined only at the level of
complex cells. We will suggest methods for correctly distinguishing the
two types of RF models. We will also consider the possibility of a hybrid
model and demonstrate how to determine the relative contributions of
position shifts and phase parameters to the disparity tuning of real cells.

Some preliminary results have been reported previously in abstract form
(Qian 1994b).

2 Analyses and Simulations

Since we are concerned only with horizontal disparity, we will use one-
dimensional RF profiles in our analyses and simulations. Freeman and
coworkers found that binocular spatial RFs of a typical simple cell can be
described by two Gabor functions with the same gaussian envelopes but
different sinusoidal modulations. Mathematically, the left and right RFs
of a simple cell centered at x = 0 are given by the following equations:

2

filx) = exp (—%) cos(wox + ¢y) 1
2

fr(x) = exp (—%) cos(wox + ¢y) 2.2

where ¢ and wy are the gaussian width and the preferred (angular) spatia
frequency of the RFs and ¢; and ¢, are the left and right phase parame:
ters. Intuitively, the gaussian terms in the Gabor functions determine the
overall sizes and locations of the RFs, and the sinusoidal terms determine
the excitatory and inhibitory subregions within the RFs. The difference
between the two phase parameters generates a relative displacement be
tween the sinusoidal modulations as well as a shape difference betweer
the two RF profiles (see Fig. 1). We will show that this displacement wil
be related to the preferred disparity at the level of complex cells.

In contrast, the traditional position-shift type of spatial RF model as
sumes an overall displacement (for both the envelopes and the modula
tions) between the left and right RF profiles. Under this model, the twt
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(a) Phase-parameter based RF model

Left RF Right RF

(b) Position-shift based RF model

Left RF Right RF

Figure 1: Profiles of the two types of binocular RF models considered in this
paper. Only the horizontal dimension is considered. The dot over the ver-
tical axis marks the peak position of the gaussian envelopes. (a) The phase-
parameter-based RF model proposed by Freeman et al. (Freeman and Ohzawa
1990; Ohzawa et al. 1990; DeAngelis et al. 1991). The left and right RF pro-
files (solid lines) of a binocular simple cell are assumed to be described by two
Gabor functions, one for each eye, with the same gaussian envelopes (dotted
lines) but two different phase parameters in their sinusoidal modulations. The
mathematical descriptions of these RFs are given by equations 2.1 and 2.2. The
difference between the left and right phase parameters (A¢ = ¢; — ¢,) generates
a relative shift between the left and right sinusoidal modulations within their
registered gaussian envelopes. It also creates a shape difference between the
two RF profiles. (b) The traditional position-shift-based RF model favored by
Wagner and Frost (1993). The left and right RFs have identical shapes but an
overall horizontal shift d between them (i.e., the same amount of shift applies
to both gaussian envelope and sinusoidal modulation). The mathematical de-
scriptions of these RFs are given by equations 2.3 and 2.4. Simple and complex
cells can be built with either type of RF models (see Section 2).
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RF profiles of a binocular simple cell can be written as:

filx) = exp (—%;) cos(wox + @) (2.3)
_(eap
) = fitx =) = exp (-1 costenta— )+ 0 24

where o and wy are again the gaussian width and the preferred spatial
frequency of the RFs. ¢ is a common phase parameter included for
generality; it is always the same for the left and right RFs and therefore
not related to disparity sensitivity. The two RF profiles have identical
shapes but are shifted relative to each other by the distance d. These two
different types of RF models are depicted in Figure 1.

In addition to a spatial RF model, we also need a response model
in order to calculate a cell’s disparity tuning to a stimulus. The most
quantitative response models to date for binocular cells also come from
physiological studies by Freeman et al. (Freeman Ohzawa 1990; Ohzawa
et al. 1990; DeAngelis et al. 1991; see also Ferster 1981 for an earlier study
with quantitative modeling). They showed that to a good approximation,
a binocular simple cell’s response can be determined by first comput-
ing the correlation between the spatial RF profile and the visual pattern
falling on it for each eye, and then adding the two correlations from the
two eyes. They further showed that a binocular complex cell’s response
can be modeled by summing the squared responses of a quadrature pair
of binocular simple cells. We will use these response models in our cal-
culations.

2.1 Disparity Tuning of Simple Cells. We first consider simple cell
disparity tuning curves. According to the physiological studies by Free-
man et al., the response of a simple cell is given by:

7= / Ax[fi(x)[(x) + (X)L (x)] @9

where fi(x) and f,(x) are the left and right RF profiles, and I;(x) and I,(x)
are the left and right retinal images of the stimulus. (For a layer of sim-
ple cells with identical properties but different RF locations, equation 2.5
should be written as a convolution.) Note that such a linear response
model does not take into account the effect of contrast saturation. How-
ever, the model is good enough for our purpose since we are mainly
interested in the peak locations of disparity tuning curves (see Section 3).
Also note that the temporal dimension of the RFs and stimulus is not
included because we have shown elsewhere that it does not affect the
disparity tuning of a cell unless an interocular time delay is introduced
(Qian and Andersen 1996).
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With equation 2.5, the responses of simple cells can be calculated for
any given RF profiles and stimuli, either numerically or analytically. The
details of our mathematical analysis are given in the Appendix. The main
conclusion is that simple cells with either the phase-parameter-based RF
description or the position-shift-based RF description cannot have a CD
because their disparity tuning to any stimuli strongly depends on the
Fourier phases (i.e., the phases of the Fourier transforms) of the stim-
uli. Two independently generated spatial noise patterns have different
Fourier phases even when they contain the same disparity and have
identical overall textural appearance. Consequently, the disparity tuning
curves obtained with two sets of independently generated spatial noise
patterns will have different peak locations. This result was confirmed
previously through computer simulations for simple cells with the phase-
parameter-based RF model (Qian 1994a). Similar simulation results for a
simple cell with the position-shift-based RF model are shown in Figure 2.
Here the disparity tuning curves of a simple cell to two sets of indepen-
dently generated random dot patterns are plotted. It is clear from the
figure that the peak locations of the two tuning curves from the same
simple cell are very different. Similarly the disparity tuning curves of
a simple cell to two sets of sinusoidal gratings of the same frequency
but positioned differently with respect to the cell’s RFs will also have
different peak locations (results not shown). Simple cells therefore do
not have well-defined disparity tuning curves (Ohzawa ef al. 1990; Qian
1994a). Since CD is defined according to the peak locations of the noise
and grating disparity tuning curves, we conclude that simple cells do not
have a CD.

The dependence of simple cell responses to stimulus Fourier phases
can be understood intuitively by considering the disparity tuning of a
simple cell to a vertical line. The Fourier phase of the line is simply
proportional to the position of the line. For a given disparity of the
line, the response of the simple cell is not fixed; it also depends on the
position (or equivalently, the Fourier phase) of the line in the RFs since
the cell has separate excitatory and inhibitory subregions within its RFs.
A given disparity of the line may evoke strong response at one line
position because it happens to fall on the excitatory subregions of both
RFs but may evoke a much weaker response at a different line position
because it may now happen to stimulate some inhibitory part(s) of the
RFs. Therefore, disparity tuning curves of simple cells to line stimuli are
Fourier-phase-dependent. Similar arguments can be made for the cases
with spatial noise patterns and sinusoidal gratings.

2.2 Disparity Tuning of Complex Cells. We now turn to complex
cell responses. Freeman and coworkers also proposed a response model
for complex cells based on their quantitative physiological experiments.
They found that the response of a binocular complex cell can be simulated
by summing up the squared responses of a quadrature pair of simple
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Figure 2: Normalized disparity tuning curves of a simple cell with the position-
shift-based RF model to two sets of independently generated random dot pat-
terns. The peak locations of the two tuning curves from the same simple cell
are very different. The main peaks of both curves do not correspond to the
cell’s shift parameter d (marked by the vertical line). Similar results were
obtained from simple cells with the phase-parameter-based RF models (Qian
1994a). Therefore, simple cells with either type of RF model do not have well-
defined disparity tuning curves and cannot have a CD. The parameters used
in the simulations are o = 2 degrees, wy/2m = 0.25 cycles per degree, and the
relative shift between the left and the right RFs d = 1 degree. One degree was
represented by 4 pixels in the simulations. Both sets of random dot patterns
had a dot density of 50% and dot size of 1 pixel. Each set was created by hor-

izontally shifting two identical patterns with respect to each other by different
distances.

cells (Freeman and Ohzawa 1990; Ohzawa et al. 1990). This quadrature
pair method is a binocular generalization of that used previously in mo-
tion energy models (Adelson and Bergen 1985; Watson and Ahumada
1985) and has also been derived based on theoretical considerations by
Qian (1994a). Specifically, two binocular simple cells are said to form a
quadrature pair if the sinusoidal modulations of their left and right RFs
both have a 90-degree phase difference while all the other parameters of
the two cells are identical. Therefore, for the phase-parameter-based RF
description, two cells form a quadrature pair if their left and right phase
parameters in equations 2.1 and 2.2 are related by:

b2 = ¢ +m/2, (2.6)
G2 = Qra+7/2 2.7,
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where the subscripts 1 and 2 label the parameters of the two cells in the
pair. For the position-shift type of RF description described by equa-
tions 2.3 and 2.4, there is a common phase parameter for both the left
and right RFs, and this parameter is related by:

$r =1+ 7/2 (2.8)

for a quadrature pair of simple cells. The response of a complex cell

constructed from a single quadrature pair is then calculated according
to:

ro = (r1)? + (re2)? 2.9)

where 7;; and r,, are the responses of the two simple cells in the pair.
Note that one can also replace the plus signs in equations 2.6 to 2.8
by the minus signs without changing the response of a quadrature pair
since such a transformation merely reverses the sign of the simple cell
responses (see equations 2.1 to 2.5).

Based on both physiological and computational grounds, we add one
final step to the above response model for complex cells: Instead of using
a single quadrature pair of simple cells to compute the response of a
complex cell, we perform a weighted average of several quadrature pairs
with nearby and overlapping RFs. All other parameters are identical
among these quadrature pairs. Mathematically, the complex cell response
is given by:

o=, % W, (2.10)

where 7, is the response of a single quadrature pair given by equation 2.9,
w is a spatial weighting function, and * denotes the convolution opera-
tion. This procedure can be viewed as the implementation of the physi-
ological fact that average complex cells have somewhat larger RFs than
those of simple cells (Hubel and Wiesel 1962; Schiller et al. 1976). (With-
out this pooling step, a complex cell constructed from a single quadrature
pair would have the same RF size as that of the constituent simple cells.)
Computationally, this averaging step makes the disparity tuning of the
resulting complex cells much more reliable (see the Appendix; Qian and
Zhu 1995). In our simulations, the weighting function w was chosen to be
a symmetric two-dimensional (2D) gaussian. We found that the disparity
tuning curves of the complex cells are not very sensitive to the width o,
of the gaussian so long as it is larger than 1 pixel. (The sampling artifacts
associated with a very narrow gaussian are not important here because
any reasonable weighting function can be used for the pooling step.)
Equations 2.6 to 2.10 specify a complete response model for complex
cells. We can now calculate the disparity tuning curves of complex cells
constructed from simple cells with either the phase-parameter-based or
the position-shift-based RF description. As we show in the Appendix,
some general analyses can be made without explicit knowledge of the
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Figure 3: Normalized disparity tuning curves of a complex cell with the
position-shift-based RF model to two sets of independently generated random
dot patterns. Unlike the simple cell shown in Figure 2, the two tuning curves of
the complex cell have very similar shapes and nearly identical peak locations
Similar results (not shown) were obtained with the phase-parameter-based RT
models. Therefore, complex cells with either type of RF models have well
defined disparity tuning curves. The complex cell was constructed from simple
cells with the same parameters as the simple cell in Figure 2. The spatial weight
ing function w (see equation 2.10) was chosen to be a 2D gaussian with a oy
equal to 2 pixels. The random dot patterns were generated in the same way at
those used in Figure 2.

input stimuli. The analytical results indicate that, unlike simple cells
the responses of complex cells depend only on the Fourier amplitudes o
the input stimuli, not on their Fourier phases. This is true for both th
phase-parameter- and the position-shift-based RF descriptions. There
fore, complex cells with either type of RF description do not suffer fron
the Fourier phase problem, and they have well-defined disparity tunin;
curves. We have performed computer simulations to confirm this con
clusion. An example for a complex cell with the position-shift-based R
model is shown in Figure 3. The figure shows the disparity tuning curve
of the complex cell to two sets of independently generated spatial nois
patterns. Unlike the simple cell shown in Figure 2, the two tuning curve
of the complex cell have very similar shapes and nearly identical pea
locations. Similar results (not shown) have been obtained for comple
cells with the phase-parameter-based RF model.
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The existence of reliable disparity tuning curves is a necessary but not
sufficient condition for the existence of CD. We next examine whether
model complex cells can have CDs similar to those found in real cells
recorded by Wagner and Frost (1993) and how the results depend on the
types of RF models.

2.3 Complex Cells with Position-Shift-Based RF Model. We first
consider complex cells constructed from simple cells with the position-
shift-based RF model. Since CDs are defined according to the peak lo-
cations of the noise and grating disparity tuning curves, we calculate
complex cell responses to these stimuli. It can be shown that the re-
sponse of a complex cell to a spatial noise pattern with disparity D is
given by (see the Appendix):

2
Pl oise = 167707 exp [— (D402d) } cos’ [%(D - d)] : (2.11)
where p denotes the Fourier amplitude of the stimulus (a frequency-
independent constant for noise patterns). o, wp, and d are the intrinsic
parameters of the simple cells used to construct the complex cell. They
are, respectively, the gaussian width, the preferred spatial frequency, and
the shift between the left and right RFs of the simple cells. The dis-
parity tuning curve of the complex cell to spatial noise patterns can be
obtained by plotting equation 2.11 as a function of stimulus disparity D
while keeping all other parameters constant. One such plot is shown in
Figure 4a.

According to equation 2.11, a complex cell with the position-shift-
based RF profiles responds optimally when the disparity D of the spatial
noise stimulus is equal to the relative displacement d between the two
RFs. Therefore, the disparity tuning curve has a main peak at D =
d. It also has side peaks at D = d + 27n/wy where n = 1,2,---. The
distance between any two adjacent peaks in the tuning curve is equal
to the preferred spatial period of the cell (27 /wp). The side peaks decay
away with increasing difference between the disparity D and the cell’s
shift parameter d according to the gaussian term in equation 2.11.

The response of the complex cell to a sine wave grating with spatial
frequency (2 is given by (see the Appendix):

v
e = cexp [—&;}O)—g} cos? [%(D — d)} , (2.12)

where c is a constant independent of disparity D. A plot of equation 2.12
is shown in Figure 4b. The gaussian term in equation 2.12 determines
the spatial frequency tuning of the cell; only those gratings with frequen-
cies (£2) near the cell’s preferred frequency (wp) can elicit good responses
from the cell. Note that unlike equation 2.11, the gaussian term in equa-
tion 2.12 is not a function of stimulus disparity D. It therefore contributes
only a global scaling factor to the disparity tuning curve. The shape of
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Analytical Tuning Curves (Position-shift Model)
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Figure 4: Normalized disparity tuning curves of a complex cell with the
position-shift-based RF model plotted according to the analytical results in equa-
tions 2.11 and 2.12. (a) Tuning curve to spatial noise patterns. (b) Tuning curves
to sinusoidal gratings with spatial frequencies (£2/27) equal to 0.154 (solid line),
0.25 (dotted line), and 0.4 (dashed line) cycles per degree, respectively. The cell
parameters are o0 = 2°, wy/2m = 0.25 cycles per degree, and the relative shift
between the left and the right receptive fields d = 1 degree. These curves show
a CD (marked by the vertical line) at D =1 degree.

the disparity tuning curve is determined by the periodic cosine term in
equation 2.12. (The periodicity of the grating tuning curve is expected
because as the disparity between the left and right gratings reaches one
full cycle, the two gratings become identical, and the disparity falls back
to zero.) For a given frequency ) of the grating, the tuning curve has
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many evenly spaced peaks of the same height, with the distance between
any two adjacent peaks equal to the spatial period of the grating (27 /().
Tuning curves obtained under different grating frequencies have differ-
ent spacings between their peaks and, in general, different peak locations.
However, according to equation 2.12 there is always a response peak at
D = d for all grating frequencies (Q?). This is also the location of the main
peak in the noise tuning curve of the same cell (see equation 2.11). We
therefore conclude that a complex cell with the position-shift-based RF
description has a CD equal to the shift parameter d.

To see the above conclusion graphically, we have plotted the normal-
ized disparity tuning curves to spatial noise patterns and to sinusoidal
gratings of three different frequencies using the analytical expressions in
equations 2.11 and 2.12. The results are shown in Figure 4. The gaussian
width ¢ and the preferred spatial frequency (wo/27) of the constituent
simple cells” binocular RFs are 2 degrees and 0.25 cycles per degree, re-
spectively, and the shift parameter d is 1 degree. As expected, the cell
has a CD of 1 degree, which is marked by the vertical line in the figure.

The above set of parameters was chosen for illustrative purposes.
Other sets of parameters work equally well. For example, to model a
parafoveal cell with small RFs, we could scale down the above set of
parameters by a factor of, say, 10. The resulting complex cell would
have RFs with a ¢ equal to 0.2 degree and a CD equal to 0.1 degree. This
comment applies to all the analytical and simulated results throughout
the paper.

Reasonable approximations were used in deriving the analytical re-
sults above (see the Appendix). To check the accuracy of our analyses,
we have also performed numerical simulations. An example is shown
in Figure 5, where normalized noise and grating disparity tuning curves
of a complex cell with the position-shift-based RFs are plotted. For the
purpose of comparison, we have chosen the parameters in the simula-
tions to be identical to those for plotting the analytical results in Figure 4.
For cells with RF gaussian width (o) equal to 2 degrees, 4 pixels were
used in our simulations to represent 1 degree of visual angle, and 65
pixels were used to describe each RF profile. Input stimuli with different
disparities were generated by shifting a pair of fixed patterns relative to
each other by different horizontal distances. The complex cell responses
were computed by averaging over adjacent quadrature pairs through a
2D gaussian weighting function with ¢, equal to 2 pixels. This means
that the RF dimension of the complex cell is 25% larger than that of the
constituent simple cells. The simulation results shown in Figure 5 are in
good agreement with our analytical derivations plotted in Figure 4; both
indicate that the cell has a CD at 1 degree.

The calculated tuning curves in Figure 5 are very similar to those
of the example cell shown in Figure 2 of Wagner and Frost (1993). A
difference, however, is that in Figure 5, one set of the peaks in the grating
tuning curves coincides exactly at the CD location, while for the real cell
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Simulated Tuning Curves (Position-shift Model)
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Figure 5: Normalized disparity tuning curves of a complex cell with th
position-shift-based RF model obtained through numerical simulations. (a) Tun
ing curve to spatial noise patterns. They were random dot patterns with a dc
density of 50% and a dot size of 1 pixel. Different image disparities were ger
erated by shifting two identical patterns with respect to each other by differer
distances. (b) Tuning curves to sinusoidal gratings with spatial frequencie
(£2/27) equal to 0.154 (solid line), 0.25 (dotted line), and 0.4 (dashed line) cycle
per degree, respectively. The cell parameters are identical to those used in Fig
ure 4. The simulated results are in good agreement with the analytical resulf
in Figure 4; both indicate a CD of 1 degree.
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(Figure 2 in Wagner and Frost 1993), the peak of the curve with the lowest
of the three spatial frequencies is significantly shifted rightward. We will
return to this point.

2.4 Complex Cells with Phase-Parameter-Based RF Model. Simi-
larly, we can calculate the disparity tuning curves for complex cells with
the phase-parameter-based RFs described by equations 2.1 and 2.2. The
details of our mathematical analyses are presented in the Appendix. The
response of a complex cell to a spatial noise pattern with disparity D is
found to be:

phs 2 2 DZ 2 | Wo Ad)
— - — - —1]. 2.
rC.HOlbL’ 167r [) exp [ 40_2 jl COS [ 2 (D wo ( 13)
where
A = ¢y — ¢y (2.14)

Here p is again the constant Fourier amplitude of the noise stimulus.
o, wy, and A¢ are the intrinsic parameters of the simple cells used to
construct the complex cell. They are, respectively, the gaussian width, the
preferred spatial frequency, and the left-right phase parameter difference
of the simple cells. A plot of this equation is shown in Figure 6a.

The cosine term in equation 2.13 is similar to that of equation 2.11;
it has peaks located periodically at D = A¢/wy £+ 271/wy where n =
0,1,2,---. The ratio A¢/wy here is equivalent to the shift d of the position-
shift model. Unlike equation 2.11, however, the gaussian term in equa-
tion 2.13 is always centered at D = 0. Consequently, the main peak of
equation 2.13 is the peak of the cosine term that is closest to D = 0. Since
the cosine term has peaks occurring periodically with a period equal to
the preferred spatial period of the cell (27 /wy), the main peak has to fall
in the range [~ /wy, 7 /wy]. We conclude that for a complex cell with the
phase-parameter-based RF model, the main peak of its noise disparity
tuning curve is always larger than the negative half preferred spatial pe-
riod and smaller than the positive half preferred spatial period of the
same cell. This relation is shown schematically in Figure 7. Such a con-
straint does not exist for complex cells with the position-shift-based RF
model. Note that a constraint similar to that shown in Figure 7 has been
proposed previously by Marr and Poggio (1979). However, we derived
the constraint by analyzing a physiologically determined complex cell
model while they reached the conclusion through the nonphysiological
procedure of explicitly matching the zero crossings in the left and right
images (see Qian 1994a).

Since equation 2.13 is invariant when A¢ is replaced by A¢+ 27w, with-
out loss of generality we can restrict A¢ to be within the range [—, ).
Under this convention, the main peak of equation 2.13 will always be at
D = A¢/wy, and the side peaks at D = A¢/wo+27n/wy wheren = 1,2, - - -,
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Analytical Tuning Curves (Phase-parameter Model)
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Figure 6: Normalized disparity tuning curves of a complex cell with the phase-
parameter-based RF model plotted according to the analytical results in equa-
tions 2.13 and 2.15. (a) Tuning curve to spatial noise patterns. (b) Tuning curves
to sinusoidal gratings with spatial frequencies (€/27) equal to 0.154 (solid line),
0.25 (dotted line), and 0.4 (dashed line) cycles per degree, respectively. The set
of cell parameters was chosen to match closely those used in Figures 4 and 5
for the position-shift case, with o = 2°, wg/2m = 0.25 cycles per degree, and
A¢ = /2. These curves show an approximate CD (marked by the vertical line)
at D = 1 degree. Note that the peak locations of the grating tuning curves
show a systematic deviation around the CD similar to the real cell in Figure 2
of Wagner and Frost (1993).
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Figure 7: Constraint on the main peak locations (CDs) of complex cells’ noise
disparity tuning curves under the phase-parameter-based RF model. Accord-
ing to equation 2.13, the main peak of the noise disparity tuning curve of a
cell should be larger than the negative half of its preferred spatial period and
smaller than the positive half of its preferred spatial period. This constraint is
represented by the two dashed lines in the figure. Each filled dot in the fig-
ure represents a hypothetical data point from a complex cell that satisfies this

constraint. This constraint does not apply to complex cells with the position-
shift-based RF model.

We will adopt this convention for the rest of the paper. The side peaks
decay away with increasing disparity D according to the gaussian term
in equation 2.11.

The response of the phase-parameter-based complex cell to a sinu-
soidal grating with spatial frequency € is given by (see the Appendix):

phs 2 (- wo)*o? 2 |© _A¢
Tesin = C€XPp [ > cos” | o D a |l (2.15)

A plot of equation 2.15 is shown in Figure 6b. According to this equation,
for gratings with frequency €2, one peak of the disparity tuning curve oc-
curs at D = A¢/Q. Unlike complex cells with the position-shift-based RFs
(see equation 2.12), this peak location is not completely determined by the
intrinsic parameters of the cell but depends on the grating frequency (.
Consequently, the peaks of tuning curves from gratings of different fre-
quencies will not coincide. Therefore, strictly speaking one cannot define
a CD for complex cells with the phase-parameter-based RF descriptions.
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However, equation 2.15 has a gaussian term that determines the spatial
frequency tuning of the cell; only those gratings with frequencies (£2)
around the preferred frequency (wp) of the cell can elicit good responses
from the cell. If one probes the cell only with €’s around wp in order to
get good responses, then one set of peaks of the grating tuning curves
will be distributed closely around the disparity A¢/w,. Since this is also
the location of the main peak of the disparity tuning curve to noise pat-
terns, for practical purposes we can define an approximate CD equal to
A¢/wy for complex cells with the phase-parameter-based RFs. Note that
the above argument relies on the fact that real V1 cells are usually very
well tuned to their preferred spatial frequencies. For complex cells with
broader frequency tuning, the CD will become less well defined under
the phase-parameter model.

To see the above argument more clearly, we have plotted the normal-
ized disparity tuning curves to spatial noise patterns and to sinusoidal
gratings of three different frequencies using the analytical expressions in
equations 2.13 and 2.15 (see Figure 6). The set of cell parameters was
chosen to match closely those used in Figures 4 and 5 for the position-
shift case. Specifically, the gaussian width () and the preferred spatial
frequency (wo/2r) are the same as those used in Figures 4 and 5. The
left-right phase parameter difference A¢ is /2 so that the expected CD
(Ad/wg) of the complex cell is 1 degree, the same as the CD value in
Figures 4 and 5. As can be seen from Figure 6, the cell indeed has an
approximate CD of 1 degree.

The tuning curves in Figure 6 capture the main features of the ex-
ample cell in Wagner and Frost (1993). We therefore conclude that the
mere existence of an approximate CD in real cells should not be taken
as evidence against the phase-parameter-based RF description. Note that
there is a systematic deviation of the peak locations around the CD for the
grating disparity tuning curves: The peak location shifts rightward with
decreasing spatial frequency of the grating. (For negative CDs, the peak
locations will shift leftward with decreasing spatial frequency.) A simi-
lar deviation is also present in the example cell reported by Wagner and
Frost (1993). This systematic deviation is not predicted by complex cells
with the position-shift-based RF description. In the expanded version of
their paper, Wagner and Frost (1994) showed in their Figure 9b that the
peaks of the sinusoidal tuning curves shift with the grating frequency for
the majority of the cells.

The peak deviations of the grating disparity tuning curves can be
easily understood based on the above discussions of equation 2.15. Note
that the CD is defined at the peak location of the noise disparity tuning
curve A¢/wy, while the peaks of the grating disparity tuning curves actu-
ally occur at A¢/Q2. Therefore, for the grating tuning curve with a spatial
frequency 2 smaller (larger) than the preferred frequency wo of the cell,
its peak location around the CD will be further away from (nearer to)
D = 0 than the CD. For the grating tuning curve with a frequency (2
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equal to the preferred frequency wy of the cell, it has a peak precisely at
the CD. Again, we performed numerical simulations in order to check
the accuracy of our analyses. The simulation results (not shown) are in
good agreement with our theoretical analyses.

2.5 How to Distinguish the Two Types of RF Models. We concluded
above that the existence of an approximate CD in real cells should not be
taken as evidence for rejecting the phase-parameter-based RF description.
Our results also suggest methods for correctly distinguishing the two
RF models. One method is to examine whether the peaks of grating
tuning curves align precisely at the CD, as shown in Figures 4 and 5,
or whether the alignment is only an approximate one with a systematic
deviation, as shown in Figure 6. If the systematic deviation exists in a
real complex cell, this is clear evidence that the cell cannot be described
by a purely position-shift-based RF model since such a model always
predicts a precise alignment. A potential problem with this method is that
errors in the experimental measurements may render such a comparison
impossible. This problem can be alleviated by recording from cells with
high firing rates and by using high-contrast gratings with frequencies as
different from the preferred frequency of the cell as possible.

The second method is to examine the relation between the CD and
the preferred spatial period (27/wp) of the same complex cell. As we
discussed in relation to equation 2.13, with the phase-parameter-based
RF description, the main peak (and therefore the CD) of a complex cell’s
noise tuning curve is always in the range [—7 /wo, 7 /wo] (see Fig. 7). Such a
constraint between the CD and the preferred spatial period does not exist
for the position-shift-based RF description. If a cell’s CD and preferred
spatial frequency violates this constraint, this is a clear indication that
the cell’s RF cannot be described by a purely phase-parameter type of
RF model. On the other hand, if the constraint is obeyed by the real cell,
the situation is less conclusive; one can always argue that although the
position-shift type of RF does not impose such a relationship, it could
happen by chance, or it could be due to some other reasons. However, if
the CDs of a large population of real cells all satisfy the constraint, this
would be strong evidence for the phase-parameter-based RF model.

The third method for distinguishing the two RF models is by com-
paring the heights of the two side peaks surrounding the main peak in
the noise tuning curve. The position-shift model predicts an equal decay
of amplitude on either side of the main peak (see equation 2.11 and Fig-
ure 4) while the phase-parameter model predicts that the side peak closer
to zero disparity should be higher than the one further away because the
gaussian decay term is centered at zero disparity (see equation 2.13 and
Fig. 6). Furthermore, the phase-parameter model predicts that the height
difference between the two side peaks should increase with the value of
CD, decrease with the receptive size, and decrease with the preferred spa-
tial frequency. Although the stochastic nature of the spatial noise pattern




Binocular Receptive Field Models and Disparity Tuning 1629

may by itself introduce some small variations in the heights of the side
peaks (see the simulated noise tuning curve in Fig. 5), it should still be
possible to apply the test to a large number of real cells and to examine
if there is a significant trend over the population. In this connection, it
is interesting to note that when this test is applied to the three reported
noise tuning curves with clear side peaks (Fig. 2 of Wagner and Frost
1993 and Figs. 7 and 8a of Wagner and Frost 1994), in all three cases the
side peaks closer to zero disparity are higher than the one further away,
suggesting that the phase-parameter model is favorable.

The results from the above tests could be contradictory, with some
test(s) favoring one RF model and the remaining test(s) favoring the other
model. If this happens, a hybrid RF model should then be considered.

2.6 A Hybrid RF Model with Position Shift and Phase Parameters.
The experiments by Freeman et al. were performed on anesthetized cats.
Consequently, the absolute spatial correspondence between the left and
right RF profiles of a cell cannot be accurately determined, although the
shape of each RF profile can be measured with high precision. It is only
an assumption that the two gaussian envelopes are aligned exactly at the
corresponding retinal positions. It is therefore possible that real complex
cells may use a combination of the phase-parameter- and position-shift-
based binocular RFs to encode disparity. It can be shown that for a
complex cell constructed from such a hybrid RF model, the disparity
tuning functions to noise patterns and sine wave gratings can be obtained
by replacing D in equations 2.13 and 2.15 by (D — d):

; D —d)? A
s = 167307 exp [— g} cos? [% (D - ﬁ)} )

40 wp

mix 2 7(97"‘)0)20—2 2 g N % ‘l )
rlin=¢ exp{ > cos” |5 D—d Q)| (217,

Thus, if one probes the cell with grating frequencies (§2) around the cell’s
preferred frequency (wy), the cell will appear to have an approximate
CD equal to the sum of the contributions from the positional shift and
the phase parameters: CD ~ d + A¢/w,. There will still be a systematic
deviation of the peak locations around the CD for the grating disparity
tuning curves, but the relative deviation with respect to the magnitude o
CD will be smaller than that in a purely phase-parameter-based approact
because now the phase parameters contribute only part of the total CD
For a fixed d, the value of the CD will now fall in the range of [d -
m/wy. d + m/wyl; the constraint shown in Figure 7 should be displacec
along the vertical axis by d.

For real complex cells, it is also easy to estimate the relative contri
butions of the position shifts and phase parameters to their disparity
tuning. Assume a cell’s disparity tuning is generated by a position shif
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d and a phase parameter difference A¢ between its left and right RFs. By
measuring the peak location (D;) of its disparity tuning curve to spatial
noise patterns, we have the relation
A
Dy =d+ a¢ (2.18)
wo
according to equation 2.16. Next, we measure the peak location (D) of

one grating tuning curve (with grating frequency ) near the CD and
have another equation:

D,—d+ % (2.19)

according to equation 2.17. The preferred spatial frequency wy of the
cell can be measured separately from the cell’s spatial frequency tuning
curve, or it can be estimated from the spacing between the peaks in
the noise disparity tuning curve (which is equal to 27 /wy according to
equation 2.16). We can therefore solve for d and A¢ from equations 2.18
and 2.19.

It is interesting to note that the example cell in Wagner and Frost
(1993) can be best modeled by a mixed RF description. That cell showed
a deviation in the peak locations around the CD in its grating tuning
curves. It therefore cannot be explained by a pure position-shift-based
RF model. In addition, its CD was larger than half of its preferred spatial
period (the preferred spatial period of the cell was not stated by the au-
thors, but it should be approximately equal to the period of its noise tun-
ing curve according to equation 2.16) and therefore cannot be explained
by a purely phase-parameter-based RF model. Only a hybrid model can
account for both aspects. We have performed computer simulations to
model the tuning curves of this cell with the mixed RF descriptions. The
left-right phase difference A¢ is chosen to be 7/2, and the position-shift
parameter d is 1.5 degrees. These parameters were determined according
to the method described in the previous paragraph (D, was measured
from the grating tuning curve with the lowest spatial frequency). The
gaussian width ¢ is set to be 1 degree, and the preferred spatial frequency
(wo/27) is 0.5 cycle per degree. The results are shown in Figure 8. The cell
has an approximate CD of 2 degrees, as expected based on our analyses.
The tuning curves compare well with those of the real cell in Figure 2 of
Wagner and Frost (1993). Although this demonstrates the requirement
of a hybrid model for describing the RF profiles of this particular cell, a
general conclusion can be drawn only after examining a large number of
real cells.

In the expanded version of their paper, Wagner and Frost (1994) re-
ported recordings from a few more cells. Unfortunately, none of the
recordings contained a complete set of tuning curves to allow a similar
analysis as we have done above. For example, their Figure 6 does not
contain the cell’s noise tuning curve, which is needed in order to de-
termine the CD location and the preferred spatial frequency of the cell.
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Simulated Tuning Curves (Mixed Model)
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Figure 8: Simulation of the disparity tuning curves of the real cell in Figure 2 o:
Wagner and Frost (1993). A complex cell with a mixed RF model was used, anc
the computed tuning curves were presented in a format similar to that for the
real cell. (a) Normalized tuning curve to spatial noise patterns. The pattern:
were generated in the same way as those in Figure 5. (b) Normalized disparity
tuning curves to sinusoidal gratings with spatial frequencies equal to 0.25 (solic
line), 0.4 (dotted line), and 0.667 (dashed line) cycles per degree, respectively
These frequencies correspond to the effective grating periods (4, 2.5, and 1.
degrees) used for the real cell. The tuning curves were deliberately truncatec

for better comparison with the real data. The peak locations of these curve
agree well with those of the real cell.
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Their Figure 10 showed a cell’s noise tuning curve but only one grat-
ing tuning curve. If the spatial frequency of the grating was the cell’s
preferred frequency, then the phase-parameter model would also predict
that the main peak of the noise tuning curve should line up with one of
the peaks in the grating tuning curve.

2.7 An Examination of Wagner and Frost’s Data Analysis. In addi-
tion to our suggestions of possible experiments for distinguishing the two
RF models, our theoretical results can also be used to examine the data
analysis method presented in Figure 3 of Wagner and Frost (1993). The
authors first fitted each experimentally measured grating tuning curve
with a cosine function of the form

cos[$;D + @) (2.20)

where Q; and ®; are the frequency and phase of the ith grating tuning
curve. §; should be equal to the spatial frequency of the gratings used
to obtain the ith grating tuning curve. They then calculated a mean
disparity value (called MD in their paper) by using the main peak location
of the noise tuning curve and the peaks of the grating tuning curves near
the main peak. After that, they estimated the phase (called MP in their
paper) predicted by the phase-parameter and the position-shift models
according to

Mpplmse = MD * wo (221)
MPpositiun = MD x Qi (222)

where wy is the preferred spatial frequency of the cell. Finally, for the
cells they recorded, they calculated the squared deviations between the
measured phases ®; and the predicted phases (MP) for each RF model.
Since the deviation for the phase-parameter model is larger than that for
the position-shift model, they concluded that the position-shift model is
preferable (see Fig. 3b of Wagner and Frost 1993).

We now examine their analysis in the light of our theoretical results.
First, under the assumption of the position-shift RF model, the mean dis-
parity MD should be simply the relative shift d between the left and right
RFs. The predicted phase MPion is therefore equal to €4d. This is the
correct phase of the grating tuning curve according to our equation 2.12.
On the other hand, if we assume the phase-parameter model is correct,
MD can be expressed as (see equations 2.13 and 2.15)

A A
;,?*‘Zfil??
N+1

MD = (2.23)

where N is the number of grating tuning curves used in the calculation.
Therefore, MP,,,;. does not yield the correct predicted phase of the grating
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tuning curve, which should be A¢ according to our equation 2.15, unless
1 N 1

Wty ~ 1 ) (2.24)
N+1 wWo

Unfortunately, this relation is not generally satisfied. Assuming that in

the actual experiments, (2;’s were chosen symmetrically around the pre-

ferred frequency wy, one can then show that MPps gives an overestima-

tion of the phase in the grating tuning curves because

wlo_!"zzl'\]:l()% > WQ+25\L19,' 71_ 1
N+1 N+1

(The inequality can be proved for any positive wy and (2 that are not
all identical to each other.) Since the squared deviation (Wagner and
Frost 1993) of the phase-parameter model is already quite small (although
larger than that of the position-shift model), even a small bias in the
estimation of the model prediction could have significant consequences.
Obviously, the correct calculation of the predicted phase under the phase-
parameter model should use only the main peak location of the noise
tuning curve.

There is a potentially more fundamental problem with the data anal-
ysis in Figure 3 of Wagner and Frost (1993): The authors did not first
classify cells into simple and complex and then exclude simple cells from
their CD analysis. As we have shown, although one can measure dispar-
ity tuning curves from simple cells, their CDs are undefined no matter
which RF model one chooses. In addition, in the expanded version of
Wagner and Frost (1993) the authors mentioned that during their experi-
ments, “single units were difficult to isolate” and that the majority of the
recordings were multiunit (Wagner and Frost 1994). Consequently, many
of their measured tuning curves were the average from several different
cells. It is inappropriate to apply CD analysis to multiunit recordings
unless the cells in a given recording were all complex and all had identi-
cal disparity tuning. We conclude that the existing physiological data by
Wagner and Frost do not allow a clear distinction of the two RF models.

(2.25)

UJO.

3 Discussion

In this paper, we have thoroughly analyzed the disparity tuning behavior
of binocular simple and complex cells with both the position-shift-based
and the phase-parameter-based RF descriptions. Besides the general in-
terest of relating disparity tuning behavior of a cell to its RF structures,
our work also addresses the specific question of which cell type and
RF structure are most consistent with the CD data by Wagner and Frost
(1993). We have derived analytical expressions for the disparity tuning
curves for both simple and complex cells with either type of RF model.
We have also confirmed our analyses through computer simulations. Our
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results indicate that simple cells with either type of RF model cannot have
a CD because these cells do not even have well-defined disparity tun-
ing curves due to their dependence on stimulus Fourier phases. Model
complex cells, on the other hand, do not suffer from this phase problem
and have reliable disparity tuning curves. Furthermore, model complex
cells with the position-shift-based RF description have a precise CD, and
those with the phase-parameter-based RF description have an approxi-
mate CD. A testable prediction is that real cells found to have CDs should
all be complex cells. We concluded based on these results that the mere
existence of (approximate) CDs in real cells cannot be used to distinguish
the phase-parameter-based RF description from the traditional position-
shift-based RF description.

It should be clarified that when we say that simple cells do not have
well-defined disparity tuning curves, we do not mean that they do not
have measurable disparity tuning; real simple cells do have disparity
tuning (Bishop et al. 1971; Poggio and Fischer 1977). Rather, we mean that
their disparity tuning curves change dramatically when the same type of
stimuli with different Fourier phases are used in the measurements (see
Fig. 2). There is experimental evidence suggesting that this is indeed the
case. For example, Ohzawa et al. (1990) showed that disparity tuning
curves of a simple cell measured with bright bars and dark bars are
different (see also the Discussion in Qian 1994a).

The simple cell model used in our analyses and simulations is iden-
tical to those proposed by Freeman et al. (Freeman and Ohzawa 1990;
Ohzawa et al. 1990). The complex cell model we used, on the other hand,
differs slightly from theirs. One difference is only superficial: They sep-
arated the positive and negative responses of simple cells and therefore
had four simple-type subunits in a quadrature pair, while we did not do
the separation explicitly and had two simple cells in a quadrature pair.
Mathematically, the two approaches are exactly equivalent. The real (and
only) difference between our complex cell model and theirs is that we
added a final spatial pooling step (see equation 2.10). The response of our
model complex cell is therefore a weighted average of several quadrature
pairs with nearby and overlapping RFs. Our analytical and simulation
results (not shown) indicate that for the disparity tuning curves of bar
stimuli measured and modeled by Freeman et al., adding or not adding
the spatial pooling step does not make any difference (Qian and Zhu
1995). For spatial noise patterns, however, the disparity tuning curves
computed with the pooling step added are much more reliable and inde-
pendent of stimulus Fourier phases than without the pooling step (see the
Appendix). Therefore, by experimentally testing the reliability of dispar-
ity tuning to noise patterns, one could potentially determine whether the
spatial pooling operation is indeed employed by real complex cells. Also
note that spatial pooling is just one of the pooling methods widely used
in the computer vision literature. One could also pool responses across
different spatial frequency scales (Marr and Poggio 1979; Grzywacz and
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Yuille 1990; Fleet et al. 1995). However, we think spatial pooling is a nat-
ural choice for modeling complex cells because it accounts for the larger
RF sizes of real complex cells and at the same time preserves complex
cells” frequency tuning properties. In contrast, pooling across different
spatial frequency scales would render complex cells much less sensitive
(i.e., more broadly tuned) to spatial frequency than simple cells, con-
tradictory to experimental data (Shapley and Lennie 1985). Frequency
pooling is therefore most likely to occur at a stage beyond complex cells,
perhaps at the level of the middle temporal area (Grzywacz and Yuille
1990).

We have previously developed a physiologically realistic algorithm for
disparity computation using the phase-parameter-based RF description
(Qian 1994a). The algorithm relies on the same simple and complex cell
response models as described in this paper and uses a population of
complex cells to encode stimulus disparity. In fact, equation 2.13 in this
paper is a more accurate derivation of the complex cell response than
equation 2.8 in Qian (1994a). The only difference between the complex
cell model presented here and the one used in Qian (1994a) is that we
have added a spatial pooling step in this paper (see equation 2.10). The
quality of the computed disparity maps from random dot stereograms
with the pooling step added is significantly better than those without the
pooling step, especially at disparity boundaries (Qian and Zhu 1995).

Our algorithm for disparity computation also works with the position-
shift-based RF description since equation 2.11 indicates that a population
of complex cells with the position-shift-based RF models can also form
a distributed representation of stimulus disparity. We have performed
computer simulations using the algorithm with both types of RF models.
The computed disparity maps from random dot stereograms (Qian 1994a)
using the two different RF models are very similar to each other, and both
agree well with the actual disparity map (results not shown). However,
under certain conditions, the computed disparity maps using different
RF models may be somewhat different. This is the case for sinusoidal
grating stimuli. Our analyses indicate that for sinusoidal gratings of any
frequencies, the position-shift-based algorithm should always give the
actual disparity value of the stimuli (within one spatial period of the
gratings). For the algorithm based on the phase parameters, on the other
hand, the disparity of those gratings with high spatial frequencies will be
underestimated, while those with low frequencies will be overestimated.
This result provides an opportunity for distinguishing the two types of
RF models via visual psychophysical experiments.

One major limitation with the simple and complex cell models we
used is that their responses are quadratic functions of stimulus contrast,
and therefore they do not account for the contrast saturation behavior
of real cells. This problem, however, can be readily fixed with a nor-
malization procedure (Albrecht and Geisler 1991; Heeger 1992). Indeed,
normalization methods have already been used by Fleet et al. (1995) to
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account for experimental data on binocular contrast effects. The intro-
duction of normalization will not affect the conclusions of this paper,
however, because the normalization factor is a function of contrast but
not a function of disparity (because it is obtained by summing over cells
with all preferred disparities) and therefore will not change the peak loca-
tions of disparity tuning curves. Similarly, the normalization procedure
will not affect our recent algorithm (Qian 1994a) for disparity compu-
tation either because the algorithm relies only on the location of peak
disparity responses.

We have also suggested new methods for distinguishing the phase-
parameter-based and the position-shift-based RF models. One method re-
lies on the fact that the CD of the complex cells with the phase-parameter-
based RF models can be defined only approximately. The peaks of the
sinusoidal tuning curves spread around the main peak of the noise tun-
ing curve in a systematic way. This type of systematic deviation is not
predicted by the position-shift-based RF model. The second method ob-
serves that for the phase-parameter-based RF model the CD of a complex
cell has to occur in a range restricted by the preferred spatial period of
the cell while this restriction does not apply to the position-shift-based
RF model. The third method compares the side peak heights in the
noise tuning curve. We suggest that by applying these methods to a
large number of real cells, a better understanding of the binocular RF
structure could be obtained. If conflicting results are obtained with these
methods, one should then consider the hybrid RF model containing both
a position-shift and a phase-parameter difference between the left and
right RFs. We showed how to determine the relative contributions of the
position-shift and the phase-parameter difference for real complex cells.

In conclusion, our work provides a thorough characterization of the
disparity tuning of simple and complex cells under the two different
types of RF descriptions (and their hybrid) suggested by previous phys-
iological experiments. These results not only provide an explanation of
many aspects of the recent physiological data of Wagner and Frost (1993)
but also generate specific predictions that may help guide future experi-
mental determination of the neural mechanisms of disparity selectivity.

Appendix

We outline our derivation of the simple and complex cell response func-
tions for the phase-parameter- and the position-shift-based RF models in
this Appendix. For an arbitrary stimulus with a disparity D, its left and
right retinal images can be written as:

Ii(x) = I(x),
I(x+ D). (A1)

=
=
Il
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According to the Fourier theorem, a function I(x) and its Fourier trans-
form I(w) = F(I(x)) are related by:

+o0
I(x) = / Fdwl(w)e ™, (A2)

In general, [(w) takes a complex value and can be expressed by an am-
plitude p(w) and a phase 0(w),

[(w) = p(w)e®™. (A3)
In addition, the Fourier transform of I(x + D) is:
F(I(x + D)) = I(w)eP. (A.4)

based on the definition of Fourier transform. Substituting the above
relations into the simple cell response model of equation 2.5, we have:

+oo +o0
e = /dw / dxp(w)e T fi(x) + e“Pf(x)]. (A.5)

It should be pointed out that we do not assume that the cortical cells per-
form Fourier transformations. The technique is used in our calculations
merely as a mathematical tool to analyze cells’ responses.

When the RF profiles, fi(x) and f,(x), are specified, the spatial depen-
dence of the integrand in equation A.5 is completely known. This allows
us to carry out the integration over the variable x. For the position-
shift-based RF model, the RF profiles are given by equations 2.3 and 2.4.
Substituting them into equation A.5, we found that with the position-
shift-based RF model, the simple cell response to an arbitrary stimulus
of disparity D is given by:

400
P = 2V2ro? / dwp(w)e™ @ 0’72 cog EW(D—d)} X

cos [d) - O(w) — %w(D - d)} . (A.6)
We have used the following identity in deriving the above equation:
/ dxe 27 ™ = \2rg2e "2 (A7)

Similarly, the simple cell response under the phase-parameter-based RF
model can be derived as

+oo
, 1
s = 22702 / dwp(w)e(“’“’")z”z/zcos[
—0oC

zwD—Aw}

cos B(qﬁz + ¢y — wD) — G(w)} . (A.8)
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Note that both equations A.6 and A.8 are dependent on the Fourier
phase §(w) of the external stimulus. This means that with a fixed dis-
parity D, any change to the external stimulus that results in variation of
its Fourier phase will effectively alter the response of simple cells. We
therefore conclude that simple cells do not have reliable disparity tuning.
An approximate version of equation A.8 was derived in Qian (1994a).

Using the definition of a quadrature pair in equations 2.6 to 2.9 and
the above simple cell response expressions, we found that the output of
a quadrature pair of simple cells with the position-shift-based RF model
is given by

e = [P + (g + m/2)

+oc
— 87r02//dwdw'p(w)p(w’)e_(w,'“’“)z”z/ze_(“’_“’“)2”2/2

« cos {Q(w/) ; O(w) N (w=— w’)Z(D — d)}
X COS E(D - d)} cos [%(D - d)} , (A.9)

where we have converted the squares of integration into double integra-
tions. Similarly, the output of a quadrature pair of simple cells with the
phase-parameter-based RF model is given by

= [ o)+ [+ /2.0 + 7 /2))

+oo
— 8no? / /dwdw/p(w)p(w/)E~(w—w0)202/287@’*%)202/2
0(w) —0w) (w—-w)D
X COS { 5 + >
1 1 ,
X COS [E(Aqﬁ - wD)} cos [E(Ad) —w D)} . (A.10)

According to these expressions, the responses of a quadrature pair differ
from that of the simple cells in that they depend on the difference of the
Fourier phases of the input stimulus measured at two different frequen-
cies (f(w') — 6(w)). Both integrands contain two gaussian factors that are
significantly large only when both w and ' are approximately equal to
wo. This effectively makes w’ — w very small. It also makes §(w') — f(w)
close to zero for the stimuli whose Fourier phases are smooth functions of
frequency (such as lines, bars, or gratings). We can therefore neglect the
6 dependence in the above two equations for these stimuli by assuming

o [9@)’) . o) | (- w')2(D —d)

cos {G(w/) —6w) , (w-w)D

} = const, (A.11)

=~ . A.
5 > } const (A.12)
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However, f(w) is not a smooth function of w for stimuli like the spatial
noise patterns, and this is when the final pooling step for computing com-
plex cell responses (see equation 2.10) becomes important. In this pooling
step the responses of many quadrature pairs with nearby RFs (and with
otherwise identical parameters) are averaged. The response expressions
(equation A.9 or A.10) for the different quadrature pairs are identical
except for the f(w) functions, which are different for different pairs be-
cause they are centered on somewhat different parts of the noise stimuli.
Therefore, the pooling step simply averages over the ¢ dependent cosine
terms in equation A.9 or A.10, and makes them approximately constant
(as long as the stimulus patches covered by the pooled quadrature pairs
contain many independent §’s). The approximations in equations A.11
and A.12 are thus also valid for the noise stimuli after the pooling.

Using equations A.11 and A.12, we can now reduce equations A.9
and A.10 to:

+oo
TS 8%02//dwdw’p(w),o(w')e’(“’_“‘))2"2/26‘(‘“'_“’“)2”2/2

X COS [%(D - d)} cos [LLZ}(D - d)} , (A.13)
and
+oo
rf"s ~ 871'(72 / /dwdw,p(w)p(w/)e_(w_“’“)2"2/26_(“’/'w(’)zaz/z
1 1 ,
X COS {E(Aqb - wD)} cos {E(Agb —w D)} . (A.14)

Equations A.13 and A.14 are the complex cell responses to a stimulus
with disparity D, for the position-shift- and the phase-parameter-based
RF models, respectively. Unlike simple cell response functions in equa-
tions A.6 and A.8, both of these complex cell response functions are in-
dependent of the stimulus Fourier phase. Complex cells should therefore
have reliable disparity tuning curves. This conclusion is true for both the
position-shift- and the phase-parameter-based RF models.

To investigate CDs of complex cells, we need to derive their disparity
tuning curves for spatial noise patterns and sine wave gratings. A noise
pattern has a broad Fourier spectrum, and its Fourier amplitude p(w) is
a constant p independent of w. On the other hand, the Fourier transform
of a sine wave grating contains only two frequency components. For a
grating with frequency (2, its transform is given by

F(sin(Qx)) = %(5(9 W) - 6(Q - w)) (A.15)

where 6() is the Dirac §-function and is nonzero only when its argument is
zero. Using these properties in conjunction with equations A.13 and A.14,
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it is easy to derive equations 2.11 and 2.12 for the position-shift-based RF
model and equations 2.13 and 2.15 for the phase-parameter-based RF
model. It should be pointed out that our analyses include approxima-
tions of equations A.11 and A.12. Their validity has been confirmed by
our computer simulations. Actually, these two approximations are not
necessary for deriving tuning curves to sinusoidal gratings. The special
property of these stimuli, shown in equation A.15, makes it possible to
derive their tuning curves (equations 2.12 and 2.15) exactly. This explains
why the grating disparity tuning curves predicted by our analyses are
almost indistinguishable from our simulation results.

Acknowledgments

We thank Terry Sejnowski and Alex Pouget for helpful discussions. We
are also grateful to the anonymous reviewers for their comments. The
work is supported by a research grant from the McDonnell-Pew Program
in Cognitive Neuroscience and NIH grant MH54125, both to N.Q.

References

Adelson, E. H, and Bergen, J. R. 1985. Spatiotemporal energy models for the
perception of motion. |. Opt. Soc. Am. A2(2), 284-299.

Albrecht, D. G., and Geisler, W. S. 1991. Motion sensitivity and the contrast-
response function of simple cells in the visual cortex. Visual Neurosci. 7,
531-546.

Bishop, P. O., Henry, G. H., and Smith, C. J. 1971. Binocular interaction fields
of single units in the cat striate cortex. J. Phsiol. 216, 39-68.

Bishop, P. O., and Pettigrew, J. D. 1986. Neural mechanisms of binocular vision.
Vision Res. 26, 1587-1600.

DeAngelis, G. C., Ohzawa, L., and Freeman, R. D. 1991. Depth is encoded in the
visual cortex by a specialized receptive field structure. Nature 352, 156-159.

Ferster, D. 1981. A comparison of binocular depth mechanisms in areas 17 and
18 of the cat visual cortex. . Phsiol. 311, 623-655.

Fleet, D., Heeger, D., and Wagner, H. 1995. Computational model of binocular
disparity. Invest. Opthalmol. and Vis. Sci. Suppl. (ARVO) 36(4), 365.

Freeman, R. D., and Ohzawa, 1. 1990. On the neurophysiological organization
of binocular vision. Vision Res. 30, 1661-1676.

Grzywacz, N. M., and Yuille, A. L. 1990. A model for the estimate of local image
velocity by cells in the visual cortex. Proc. R. Soc. Lond. A239, 129-161.

Heeger, D. J. 1992. Normalization of cell responses in cat striate cortex. Visual
Neurosci. 9, 181-197.

Hubel, D. H., and Wiesel, T. 1962. Receptive fields, binocular interaction, and
functional architecture in the cat’s visual cortex. J. Phsiol. 160, 106-154.
Jones, J. P, and Palmer, L. A. 1987. The two-dimensional spatial structure of

simple receptive fields in the cat striate cortex. J. Neurophysiol. 58, 1187-1211.




Binocular Receptive Field Models and Disparity Tuning 1641

Marr, D., and Poggio, T. 1979. A computational theory of human stereo vision.
Proc. R. Soc. Lond. B204, 301-328.

Maske, R., Yamane, S., and Bishop, P. O. 1984. Binocular simple cells for local
stereopsis: Comparison of receptive field organizations for the two eyes.
Vision Res. 24, 1921-1929.

Ohzawa, 1., DeAngelis, G. C., and Freeman, R. D. 1990. Stereoscopic depth
discrimination in the visual cortex: Neurons ideally suited as disparity de-
tectors. Science 249, 1037-1041.

Pettigrew, J. D. 1993. Two ears and two eyes. Nature 364, 756-757.

Poggio, G. F, and Fischer, B. 1977. Binocular interaction and depth sensitivity
in striate and prestriate cortex of behaving rhesus monkey. |. Neurophysiol.
40, 1392-1405.

Poggio, G. F,, and Poggio, T. 1984. The analysis of stereopsis. Ann. Rev. Neurosci.
7, 379-412.

Qian, N. 1994a. Computing stereo disparity and motion with known binocular
cell properties. Neural Comp. 6, 390-404.

Qian, N. 1994b. Stereo model based on phase parameters can explain charac-
teristic disparity. Soc. Neurosci. Abs. 20, 624.

Qian, N., and Andersen, R. A. 1996. A physiological model for motion-stereo
integration and a unified explanation of the Pulfrich-like phenomena. Vision
Res. (In Press).

Qian, N., and Zhu, Y. 1995. Physiological computation of binocular disparity.
Soc. Neurosci. Abs. 21, 1507.

Schiller, P. H., Finlay, B. L., and Volman, S. F. 1976. Quantitative studies of
single-cell properties in monkey striate cortex: 1. Spatiotemporal organiza-
tion of receptive fields. |. Neurophysiol. 39, 1288-1319.

Shapley, R., and Lennie, P. 1985. Spatial frequency analysis in the visual system.
Ann. Rev. Neurosci. 8, 547-583.

Wagner, H., and Frost, B. 1993. Disparity-sensitive cells in the owl have a
characteristic disparity. Nature 364, 796-798.

Wagner, H., and Frost, B. 1994. Binocular responses of neurons in the barn owl’s
visual Wulst. J. Comp. Physiol. A174, 661-670.

Watson, A. B., and Ahumada, A. J. 1985. Model of human visual-motion sens-
ing. J. Opt. Soc. Am. A2, 322-342.

Received December 14, 1995; accepted March 27, 1996.




