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The phase and energy methods for computing binocular disparity maps
from stereograms are motivated differently, have different physiologi-
cal relevances, and involve different computational steps. Nevertheless,
we demonstrate that at the �nal stages where disparity values are made
explicit, the simplest versions of the two methods are exactly equiv-
alent. The equivalence also holds when the quadrature-pair construc-
tion in the energy method is replaced with a more physiologically plau-
sible phase-averaging step. The equivalence fails, however, when the
phase-difference receptive �eld model is replaced by the position-shift
model. Additionally, intermediate results from the two methods are al-
ways quite distinct. In particular, the energy method generates a dis-
tributed disparity representation similar to that found in the visual cor-
tex, while the phase method does not. Finally, more elaborate versions
of the two methods are in general not equivalent. We also brie�y com-
pare these two methods with some other stereo models in the
literature.

1 Introduction

Binocular disparity is de�ned as the positional difference between the two
retinal projections of a given point in space. It is well known that the hor-
izontal component of disparity provides the sensory cue for stereoscopic
depth perception. Many computational models for disparity estimation
have been proposed. Here we compare two computational models that ap-
pear to have the strongest biological relevance: the phase method and the
energy method.

The phase method (Sanger, 1988; Fleet, Jepson and Jenkin, 1991) for dis-
parity computation is based on the mathematical result that the displace-
ment of a function generates a proportional phaseshift in its complex Fourier
transform. The binocular disparity at each location is therefore proportional
to the difference of the Fourier phases of the corresponding left and right
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image patches. Sanger (1988) used sine and cosine Gabor �lters to estimate
the local Fourier phases of both left and right images, and then calculated
the Fourier phase difference at each location to �nd disparity. The algo-
rithm has been tested on both random dot stereograms and natural images
(Sanger, 1988).

The energy method for disparity computation (Qian, 1994, 1997; Zhu
& Qian, 1996; Qian & Zhu, 1997; Qian & Andersen, 1997; Fleet, Wagner,
& Heeger, 1996) was derived from the energy model of binocular cell re-
sponses in the cat’s primary visual cortex (Ohzawa, DeAngelis, & Freeman,
1990, 1996, 1997; Freeman & Ohzawa, 1990; DeAngelis, Ohzawa, & Free-
man, 1991). Through quantitative physiological experiments, Freeman and
coworkers found that a typical binocular simple cell can be described by two
Gabor functions—one for its left and the other for its right receptive �elds.
There is a relative phase difference (or positional shift, or both) between the
two receptive �elds that generates disparity sensitivity.The activities of such
simple cells were determined by �rst convolving the left and right images
with the left and right receptive �elds, respectively, and then summing the
two contributions. Freeman et al. further found that responses of binocular
complex cells in cat’s primary visual cortex can be well modeled by sum-
ming the squared outputs of a quadrature pair of simple cells. We analyzed
this so-called energy model for binocular complex cells and found that a
population of such complex cells can be used to extract stimulus disparity
(see Qian, 1997, for a review). The resulting energy method for disparity
computation has been tested on random dot stereograms (Qian, 1994; Qian
& Zhu, 1997).

These two methods are different in several ways. First, although both
methods use Gabor �lters at the front end, the phase method applies two
monocular Gabor �lters separately and delays binocular comparison until
the last step, when the Fourier phases of the left and right image patches
are subtracted, while the energy method uses a set of binocular �lters that
combines contributions from the two eyes at the �rst step. In addition,
the phase method explicitly computes and represents the complex Fourier
phases of the left and right image patches, while the energy method uses
the quadrature-pair construction (or the equivalent phase averaging; see
section 2) at the complex cell stage to remove the simple cells’ dependence
on image Fourier phases. Furthermore, complex cell responses in the energy
method form a distributed representation of disparity; such a representation
is absent in the phase method. Despite these differences, we show that the
simplest versions of the two methods are exactly equivalent at the �nal steps
where disparity values are made explicit. The intermediate steps, however,
differ in the two methods and have different physiological implications. In
addition, the two methods can be elaborated in different ways, resulting in
nonequivalent algorithms.
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2 Results

Before we start, a few potential confusions in terminology should be clar-
i�ed. First, the phase method should not be confused with the phase-
difference (also called phase-parameter orphase-shift) receptive �eld model.
The former speci�es a method for disparity estimation from stereograms,
while the latter is a model for describing receptive �eld pro�les of binocular
simple cells often used in the energy method. Second, the phase parame-
ters in the phase-difference receptive �eld model (w l and wr in equations 2.1
and 2.2) should not be confused with the image Fourier phases. The former
determine the positions of the excitatory-inhibitory bands relative to the
receptive �eld center, while the latter are the phases of the complex Fourier
transforms of retinal images. Finally, mathematically complex quantities,
with real and imaginary components, should not be confused with com-
plex cell properties.

We now demonstrate the exact equivalence of the simplest versions of
the phase and the energy methods. Elaborations of the methods such as
frequency pooling (for both methods), con�dence measure (for the phase
method), and spatial pooling (for the energy method) are ignored in this
section (but see section 3). We start by reformulating the energy method
(Qian, 1994) and convert it into a form identical to that for the phase method
(Sanger, 1988).

Consider a binocular simple cell centered at x = 0, with the left and right
receptive �elds given by the following Gabor functions (Marcelja, 1980;
Daugman, 1985; McLean & Palmer, 1989; Ohzawa et al., 1990):

fl(x) = g(x) cos(vx C w l) (2.1)

fr(x) = g(x) cos(vx C wr) (2.2)

with

g(x) =
1

p
2p s

exp
¡

¡ x2

2s2

¢
, (2.3)

where v is the preferred (angular) horizontal spatial frequency of the cell,
s is the gaussian width determining the receptive �eld size, and wl and wr
are the left and right phase parameters. Its response to a stereo image pair
Il(x) and Ir(x) is given by:

rs =
Z 1

¡1

£
fl(x)Il(x) C fr(x)Ir(x)

¤
dx. (2.4)

(For a layer of topographically arranged cells of the same type, the convolu-
tion operation between images and receptive �elds should be used instead.)
The simple cell with a quadrature phase relationship to the above cell has
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receptive �elds of the same form but with the cosine functions replaced
by sines (Pollen, 1981; Adelson & Bergen, 1985; Watson & Ahumada, 1985;
Ohzawa et al., 1990; Qian, 1994). It is easy to see that the responses of these
two simple cells are the real and imaginary parts of

RC ´
Z 1

¡1
g(x)eivx £

eiw l Il(x) C eiwr Ir(x)
¤

dx. (2.5)

According to the quadrature-pair construction, the complex cell response
is given by the sum of the squared responses of these two simple cells, (or
equivalently, four half-wave recti�ed simple cells (Ohzawa et al., 1990)),
and can thus be written as

rq = |RC|2 =

­­­­
Z 1

¡1
g(x)eivx £

Il(x) C eiw¡ Ir(x)
¤

dx
­­­­
2

, (2.6)

where

w¡ ´ wr ¡ w l (2.7)

is the phase parameter difference. Therefore, complex cell responses depend
on only w¡ instead of on wr and wl individually. For a given binocular stimu-
lus, complex cells with different w¡ will give different responses. These cells
at a given spatial location form a distributed representation of the stimulus
disparity at that location. According to the energy method (Qian, 1994), the
stimulus disparity can be explicitly estimated from the distribution as:

D =
Ow¡
v

, (2.8)

where Ow¡ is the phase difference w¡ that maximizes the complex cell re-
sponse rq. Let

Z 1

¡1
g(x)Il(x)eivxdx ´ Âl(v), (2.9)

Z 1

¡1
g(x)Ir(x)eivxdx ´ Âr(v), (2.10)

so that Âl(v) and Âr(v) are the Fourier transforms of the left and right image
patches under the gaussian envelope g(x), respectively. Equation 2.6 then
becomes:

rq =
­­Âl(v) C eiw¡ Âr(v)

­­2 . (2.11)

To �nd Ow¡, note that the maximum of rq is attained when the two terms
inside the norm of the above expression are along the same direction in the
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complex plane, that is,

Ow¡ = arg(Âl) ¡ arg(Âr) (2.12)

= arctan

" R 1
¡1 dx Il(x)g(x) sin vx

R 1
¡1 dx Il(x)g(x) cos vx

#

¡ arctan

" R 1
¡1 dx Ir(x)g(x) sin vx

R 1
¡1 dx Ir(x)g(x) cos vx

#
. (2.13)

Equation 2.13 combined with equation 2.8 is precisely the expression for the
phase method proposed by Sanger (1988). The two terms in equation 2.13
are the local complex Fourier phases of the left and right image patches,
respectively, estimated through the sine and cosine Gabor �lters. This es-
tablishes the equivalence between the two methods.

It is interesting to note that w¡ simply compensates for the different
Fourier phases of the right and left image patches in equation 2.11. Scaling
the relative contrast of the image pair while preserving the contrast polarity
will not affect the disparity estimates because only the relative amplitudes
(but not phases) of Âl and Âr will be changed by this manipulation (Qian,
1994). When the contrast polarity of one image in the pair is reversed, how-
ever, w¡ has to be shifted by p to compensate, resulting in an inverted com-
plex cell turning curve. This prediction is also contained in equation 2.13
of Qian (1994) and has been veri�ed experimentally (Ohzawa et al., 1990;
Cumming & Parker, 1997; Masson, Busettini, & Miles, 1997).

We have previously discussed the similarities and differences between
the energy method and the cross-correlator (Qian & Zhu, 1997). With the
current formulation, it is easy to see that �nding Ow¡, which maximizes the
quadrature-pair response, is equivalent to determining the Fourier phase
of the cross-correlation between the left and right image patches under the
gaussian envelope g(x). This is because the Fourier transform of the cross-
correlation,

Clr(x) =
Z 1

¡1
g(x0)Il(x

0) g(x C x0)Ir(x C x0) dx0 , (2.14)

is simply Âl(v)Â¤
r (v) where ¤ denotes complex conjugation. Therefore, the

phase of this cross-correlator,or its normalized version, is just the expression
for Ow¡ in equation 2.12. Correlation methods usually use the peak location
of Clr(x) to estimate disparity. If Clr(x) is sharply peaked at xo, its Fourier
phase is approximately vxo. It is in deviations from this approximation that
the cross-correlator and the energy method can yield different estimates.

We used the quadrature-pair construction for obtaining complex cell re-
sponses above. As we pointed out previously (Qian & Zhu, 1997), a less
demanding and physiologically more plausible alternative is to integrate
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squared responses of many simple cells all with the same w¡ but with

wC ´ wr C w l (2.15)

uniformly distributed in the entire 2p range (see equation 2.19). The energy
method with this uniform phase averaging approach is still equivalent to the
phase method because the phase averaging gives exactly the same complex
cell expression as the quadrature-pair construction. To demonstrate, de�ne:

R¡ ´ R¤
C =

Z 1

¡1
g(x)e¡ivx[e¡iw l Il(x) C e¡iwr Ir(x)]dx, (2.16)

and rewrite the simple cell response as:

rs =
1
2

(RC C R¡). (2.17)

Since rs is real, we have:

r2
s = |rs|

2 =
1
4

³
|RC|2 C |R¡|2 C 2ReRCR¤

¡

´
=

1
2

³
|RC|2 C ReR2

C

´
. (2.18)

According to the phase averaging approach, the complex cell response is
given by the integration:

ra =
1

2p

Z 2p

0
r2
s dwC =

1
2p

Z 2p

0

1
2

³
|RC|2 C ReR2

C

´
dwC, (2.19)

while w¡ is kept constant. Since |RC|2 is not a function of wC (see equa-
tion 2.6), the averaging leaves the �rst term unchanged. The second term
integrates to zero because:

ReR2
C = Re

"¡Z 1

¡1
dxg(x)eivx

h
e¡iw¡/ 2Il(x) C eiw¡/ 2Ir(x)

i¢ 2

eiwC

#
(2.20)

and
Z 2p

0
eiwCdwC = 0. (2.21)

Therefore, the phase averaging approach generates a complex cell response
proportional to that of the quadrature pair in equation 2.6,

ra =
1
2

|RC|2 =
1
2

rq, (2.22)

where the proportionality constant is immaterial for disparity computation.
Intuitively, one can imagine dividing the 2p range for wC into many small
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intervals in equation 2.19. Then each pair of intervals differing by p / 2 can
be considered a quadrature pair. Therefore, the above phase averaging can
be viewed as averaging together a continuum of quadrature-pair responses,
all with the same w¡.

Two types of receptive �eld models for binocular simple cells have been
proposed: the position-shift model (Bishop, Henry, & Smith, 1971) and the
phase-differences model (Ohzawa et al., 1990; DeAngelis et al., 1991). The
latter was used in the above derivations. Real cortical cells may use a combi-
nation of both mechanisms for coding disparity (Jacobson, Gaska, & Pollen,
1993; Zhu & Qian, 1996; Fleet et al., 1996; Anzai, Ohzawa, & Freeman, 1997).
We showed previously that although there are important differences be-
tween them, under reasonable assumptions, both models (or their hybrid)
can be used with the energy method for computing disparity maps from
stereograms (Zhu & Qian, 1996; Qian & Zhu, 1997). However, the exact
equivalence between the phase and the energy methods does not hold when
the position-shift receptive �eld model is used in the energy method. To see
this, note that according to the position-shift receptive �eld model, equa-
tion 2.2 should be replaced by

fr(x) = fl(x C d) = g(x C d) cos[v(x C d) C wl], (2.23)

where d represents the amount of positional shift between the left and right
receptive �eld centers. The complex cell responses in equation 2.6 should
then be written as:

rq =

­­­­
Z 1

¡1
eivx

h
g(x)Il(x) C eivdg(x C d)Ir(x)

i
dx

­­­­
2

, (2.24)

and the stimulus disparity is given by (Zhu & Qian, 1996):

D = Od, (2.25)

where Od is the positional shift that maximizes complex cell response. Equa-
tion 2.24 can be rewritten as

rq =
­­­Âl C eivdÂr(d)

­­­
2

, (2.26)

with the de�nitions:
Z 1

¡1
g(x)Il(x)eivxdx ´ Âl , (2.27)

Z 1

¡1
g(x C d)Ir(x)eivxdx ´ Âr(d) . (2.28)

It is obvious that a closed-form expression similar to equation 2.13 cannot
be obtained for Od because Âr is also a function of d, and the maximum of
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rq as a function of d may not occur when the two terms inside the norm of
equation 2.26 have the same direction on the complex plane. Therefore, the
energy method with the position-shift receptive �eld model is not equiva-
lent to the phase method. However, under the oft-invoked assumption that
the disparity is small compared to the receptive �eld size, the d-dependence
of Âr in equation 2.28 is negligible and vd in equation 2.26 plays the same
role as w¡ in equation 2.11. Clearly, in this approximation the energy method
with the positional-shift model correspondsto the phase method in the same
way as the energy method with the phase-difference model does.

3 Discussion

We have demonstrated that the simplest versions of the energy and the
phase methods for disparity computation are exactly equivalent at the �nal
stages where the disparity values are made explicit. The equivalence still
holds when the quadrature-pair construction in the energy method is re-
placed by a less demanding phase-averaging procedure. However, when the
position-shift type of simple cell receptive �eld model is used to replace the
phase-difference type in the energy method, the two methods are no longer
exactly equivalent. This result is consistent with the fact that both the phase
method and the energy method combined with the phase-difference recep-
tive �eld model predict a relationship between the spatial scale v and the
computed disparity range (the so-called size-disparity correlation), while
the methods with the position-shift receptive �eld model do not make such
a prediction (Sanger, 1988; Smallman & MacLeod, 1994; Qian, 1994; Zhu &
Qian, 1996; Fleet et al., 1996).

Regardless of the receptive �eld models used, the intermediate results in
the two methods are always very different. Indeed, the energy method con-
tains simple and complex cell stages that simulate binocular interactions
observed in simple and complex cortical cells, while none of the steps in
the phase method resembles actual binocular cells. More importantly, the
complex cells in the energy method form a distributed representation of
binocular disparity at each location; such a representation is absent in the
phase method. The distributed representation is useful because it could di-
rectly guide motor behavior such as vergence eye movement (Masson et
al., 1997) without �rst generating an explicit disparity map. In fact, the �nal
explicit disparity extraction in both methods does not seem to happen in
the brain since “grandmother cells” for disparity coding have never been
recorded from the visual cortex. While an explicit, grandmother-cell type
of representation is more convenient for us to comprehend, the brain ap-
pears to rely more on implicit, distributed representations for perception
and control.

The simplest versions of the phase and the energy methods can also be
elaborated in many ways. For example, both methods can be extended to
combine results from different spatial scales (i.e., �lters with different vs).
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Obviously, if the same extension is made after the �nal stages in both meth-
ods, they remain equivalent. Any elaborations at intermediate steps or those
that can only be applied to one method, however, will in general render the
two methods nonequivalent. One example is the spatial pooling procedure
in the energy method, which greatly improves the algorithm by making
complex cell responses more independent of image Fourier phases (Zhu &
Qian, 1996; Qian & Zhu, 1997). This procedure cannot be easily incorporated
into the phase method because image Fourier phases are precisely the useful
information in the phase method. Similarly, the con�dence measure in the
phase method for appropriately weighting different spatial scales (Sanger,
1988) cannot be readily extended to the energy method since the measure
is derived from the Fourier amplitudes of the left and right image patches;
these monocular amplitudes are not computed in the energy method that
starts with binocular �lters. Of course, a different spatial pooling step could
be incorporated into the phase method. For example, one could average
the Fourier phases estimated from several nearby spatial locations. Simi-
larly, a different con�dence measure could be added to the energy method.
One possibility would be using the normalized range of the complex cell
responses,

rq( Ow¡) ¡ rq( Ow¡ Cp )

rq( Ow¡) C rq( Ow¡ Cp )
=

2 Re(e¡i Ow¡ ÂlÂ
¤
r )

|Âl|
2 C |Âr|

2 =
2|Âi| |ÂOr |

|Âl|
2 C |Âr|

2 , (3.1)

as the con�dence measure because a larger modulation would allow a more
reliable estimation of Ow¡.

In conclusion, the equivalence between the simplest versions of the phase
and energy methods demonstrated in this article indicates that the two
methods can be viewed as different implementations of the same under-
lying mathematical principle. The differences in implementation, however,
allow the methods to be elaborated, interpreted, and used in different ways
by subsequent processes. Our results are reminiscent of the relationship be-
tween various motion models that have been documented in the literature
(Adelson & Bergen, 1985; van Santen & Sperling, 1985; Borst & Egelhaaf,
1989; Simoncelli & Adelson, 1991; Heeger & Simoncelli, 1992).

3.1 Other Methods. One of the reviewers pointed out that disparity can
also be computed by calculating the magnitude of the bandpass-�ltered
sum of the left and right image patches. This magnitude is equivalent to
setting w¡ to zero in equation 2.6 (or setting d to zero in equation 2.24) and
dropping the immaterial squaring outside the norm. For a �lter well-tuned
to horizontal frequency v and for left and right image patches given by
Il = I(x) and Ir = I(x CD), this magnitude is approximately proportional to
| cos(vD/ 2)| | QI(v)| . If the image spectrum | QI(v)| does not vary much with v,
the disparity D can be estimated by using two or more �lters with different
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v. We will refer to this algorithm as the frequency method because it applies
identical �lters to the left and right images and consequently has to rely on
more than one frequency band for disparity computation. In essence, the
frequency method �xes w¡ (or d) to zero and varies v, while the energy
method �xes v and varies w¡ (or d). Obviously the frequency method is
not equivalent to the energy (or the phase) method because the former can-
not compute disparity within a single frequency band, while the latter can.
Existing psychophysical evidence is against the frequency method in its
pure form: human subjects do perceive stereoscopic depth in band-limited
stereograms (Julesz, 1971). Psychophysical observations also indicate that
different frequency channels interact with each other in human stereo vision
(Wilson, Blake, & Halpern, 1991; Rohaly & Wilson, 1993, 1994; Smallman,
1995; Mallot, Gillner, & Arndt, 1996). It is thus possible that the brain may
combine the frequency and the energy methods by using cells with different
v and different w¡ (or d) simultanously in disparity computation. Alterna-
tively, the brain could �rst apply the energy method to obtain one disparity
estimate from each frequency channel and then pool the estimates across
channels at a later stage (Sanger, 1988; Qian & Zhu, 1997). Further studies
are needed for differentiating these two possibilities.

In addition to the phase and the energy methods, many other stereo mod-
els have been proposed over the years. Similar to the phase method that �rst
estimates Fourier phases of the left and right image patches separately, most
of the other models also start with a monocular detection of some match-
ing primitives. For example, several studies (Marr & Poggio, 1976; Pollard,
Mayhew, & Frisby, 1985; Prazdny, 1985; Qian & Sejnowski, 1989; Marshall,
Kalarickal, & Graves, 1996) let individual dots in random-dot stereograms
be the matching primitives. Marr and Poggio (1979) later used zero cross-
ings at different spatial scales as the primitives. For convenience, we classify
these methods as initially monocular. In contrast, the energy method is ini-
tially binocular because it starts with binocular �ltering without performing
any monocular feature detection. In this aspect it is similar to the cepstral
method (Yeshurun & Schwartz, 1989) and the frequency method discussed
above. The cepstral and the energy methods are very different in other
aspects, however. For instance, the former contains a complex logrithmic
operation and complex Fourier transforms, while the latter does not. (Note
that the Fourier transform used in this article and elsewhere in connection
with the energy method is only for mathematically analyzing the method;
it is not a step in the method.) In addition, the cepstral method does not use
binocular receptive �elds from the physiological experiments.

The initially monocular algorithms generally contain a subsequent step
that matches the monocular primitives to solve the correspondence prob-
lem. Most methods (Marr & Poggio, 1976, 1979; Pollard et al., 1985; Prazdny,
1985; Qian & Sejnowski, 1989; Marshall et al., 1996) do so by introducing
explicit constraints or rules that determine correct matches between the left
and right primitives among all possible matches within a certain disparity



Phase and Energy Methods for Disparity Computation 289

range. These methods will be referred to as the explicit methods. In contrast,
the phase method is implicit (Sanger, 1988) because it �nds disparity by
simply subtracting the two monocular phases without performing any ex-
plicit matching. (If the monocular Fourier amplitudes are used to calculate
a con�dence weighting factor [Sanger, 1988], then the matching is slightly
more explicit). The initially binocular algorithms de�ned above are neces-
sarily implicit since there are no monocular primitives for explicit matching
in the �rst place. An advantage of the implicit methods is that they can
have subpixel disparity resolution without the burden of sorting through
a huge number of potential matches (Sanger, 1988; Qian & Zhu, 1997). As
we discussed elsewhere (Qian, 1997), the implicit methods are also more
physiologically plausible.

To summarize, most stereo models are initially monocular for feature ex-
traction and are then explicit in binocular matching. The cepstral, the energy,
and the frequency methods, on the other hand, are initially binocular and
implicit. The phase method is somewhere in between: it is initially monoc-
ular and is implicit. Obviously, there are many other ways of classifying
stereo models. For example, some models measure and rely on disparity
gradients, while others do not; some implement the uniqueness constraint
through inhibitory interactions, while others emphasize facilitation and al-
low multiple matches of monocular primitives.

The current formulation of the energy method assumes that the dispar-
ity is constant over the small image patches covered by the receptive �elds
(Qian, 1994; Qian & Zhu, 1997). Because of this assumption, the perfor-
mance tends to degrade when there are large disparity gradients in the
images such as across disparity boundaries. However, the energy method
can be extended to encompass disparity gradients. Speci�cally, it can be
shown that a disparity gradient of D0(= dD(x)/ dx) can be best measured
by binocular cells whose left and right preferred spatial frequencies (vl and
vr) are related by vr = (1 C D0)vl. Therefore, the maximum measurable
disparity gradient depends on the differences between vl and vr among
real binocular cells. If vl and vr are equal, then the cells’ frequency tuning
widths have to be at least (1 C D0)vl in order to detect D0 (Sanger, 1988).
This extension of the energy method can be viewed as an implicit counter-
part of the gradient limit rule employed explicitly by Pollard et al. (1985).
It is also worth pointing out that the energy method in its current form
(Qian, 1994; Qian & Zhu, 1997) already contains an implicit implementa-
tion of the uniqueness constraint (used by many explicit models in various
forms). Because of the approximately cosine tuning behavior, there is only
one maximum of the complex cell response as a function of w¡ within the
[¡p , p ) range even when there are two overlapping stimulus disparities.
The stereo transparency problem could still be solved by an interdigitating
representation of the two disparities by cells tuned to different spatial lo-
cations, similar to a previous motion-transparency model (Qian, Andersen,
& Adelson, 1994). This approach is also related to those explicit methods
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that use the uniqueness constraint to model stereo transparency (Qian &
Sejnowski, 1989; Pollard & Frisby, 1990). It thus appears that despite the
major differences between the explicit and implicit methods, they could
share certain conceptual similarities.
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