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A B S T R A C T   

Sensory encoding (how stimuli evoke sensory responses) is known to progress from low- to high-level features. 
Decoding (how responses lead to perception) is less understood but is often assumed to follow the same hier-
archy. Accordingly, orientation decoding must occur in low-level areas such as V1, without cross-fixation in-
teractions. However, a study, Ding, Cueva, Tsodyks, and Qian (2017), provided evidence against the assumption 
and proposed that visual decoding may often follow a high-to-low-level hierarchy in working memory, where 
higher-to-lower-level constraints introduce interactions among lower-level features. If two orientations on 
opposite sides of the fixation are both task relevant and enter working memory, then they should interact with 
each other. We indeed found the predicted cross-fixation interactions (repulsion and correlation) between ori-
entations. Control experiments and analyses ruled out alternative explanations such as reporting bias and 
adaptation across trials on the same side of the fixation. Moreover, we explained the data using a retrospective 
high-to-low-level Bayesian decoding framework.   

1. Introduction 

Sensory processing can be framed as involving encoding and 
decoding (Seriès, Stocker, & Simoncelli, 2009; Zhaoping, 2014). 
Encoding reflects how stimuli evoke responses in sensory neurons 
whereas decoding specifies how the responses eventually lead to 
perceptual judgments of the stimuli. A large body of research has 
established beyond doubt that visual encoding progresses from low to 
high levels, with neurons in later stages of a pathway responding to 
higher-level features (Felleman & Van, 1991; DiCarlo, Zoccolan, & Rust, 
2012; Yamins & DiCarlo, 2016; Yamins et al., 2014; Riesenhuber and 
Poggio, 1999; Serre, Oliva, & Poggio, 2007; Cichy, Khosla, Pantazis, 
Torralba, & Oliva, 2016). Decoding, however, is less understood because 
one has to rely on a decoding model to relate sensory responses to 
subjective perception. Many decoding models assume, sometimes 
implicitly, that decoding follows the same low-to-high-level hierarchy of 
encoding (exceptions discussed below). For example, to discriminate 
between two line orientations, one first decodes the absolute orientation 
of each line (a lower-level feature) and then compare the two absolute 
orientations to determine their relationship (a higher-level feature) 
(Green & Swets, 1966; Paradiso, 1988; Seung and Sompolinsky, 1993; 

Graf, Kohn, Jazayeri, & Anthony, 2011; Teich & Qian, 2003). These 
models essentially assume that sensory responses generate perception 
(decoding) at about the same time the responses are evoked by stimuli 
(encoding) so that the decoding and encoding hierarchies are identical 
(Fig. 1a). 

However, Ding, Cueva, Tsodyks, and Qian (2017) argued that 
perceptual decoding may often occur after initial sensory responses have 
entered working memory. This is likely whenever there is a delay be-
tween stimulus disappearance and perceptual judgment. Even under 
natural viewing conditions, because of our small fovea and frequent 
saccades, visual decoding may happen in working memory where 
patches of a scene from previous fixations are stored. Although the 
initial sensory responses to stimulus features (encoding) follow the low- 
to-high-level hierarchy, once all the relevant features are stored in 
working memory, their decoding, in principle, could be in any order. By 
considering invariance, noise tolerance, and behavioral relevance of 
high- vs. low-level features, Ding et al. (2017) proposed that sensory 
decoding in working memory should follow a high-to-low-level hierar-
chy, with the higher-level features producing a prior to constrain the 
decoding of lower-level features (retrospective Bayesian decoding, 
Fig. 1b). In particular, higher-level features are more categorical and 
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thus can be stored in noise-resistant point attractors of working memory 
(Hopfield, 1984). In contrast, lower-level features are more continuous 
and have to be stored in continuous attractors which are more prone to 
noise corruption over time (Compte, Brunel, Goldman-Rakic, & Wang, 
2000; Itskov, Hansel, & Tsodyks, 2011). It is therefore advantageous to 
decode more reliable higher-level features first and use them to 
constrain the decoding of less reliable lower-level features in noisy 
working memory. 

To test these ideas, Ding et al. (2017) conducted an experiment in 
which two lines were flashed successively and then subjects reported the 
absolute orientations of both lines and (implicitly) their ordinal rela-
tionship (whether the second line is clockwise or counter-clockwise from 
the first). They found that the two lines interacted perceptually in 
various ways that can be explained by the high-to-low-level decoding 
but not by the low-to-high-level decoding. For example, the second line 
repelled the first line (backward aftereffect) as much as the first line 
repelled the second line (forward aftereffect). The low-to-high-level 
decoding cannot explain the backward aftereffect because when the 
first line was decoded directly from its initial sensory response, the 
second line had not yet appeared. In contrast, the high-to-low-level 
decoding is assumed to occur after the encoding of both lines and 
their relationship have entered working memory where the higher-level 
ordinal relationship is decoded first, and then constrains the decoding of 
the lower-level absolute orientations to produce the observed mutual 
repulsion. The same mechanism accounts for another interaction: the 
correlation between two reported absolute orientations in a trial. 

A surprising prediction of the high-to-low-level decoding scheme is 
that two stimuli traditionally considered as independent may interact 
with each other if they are both task relevant and represented in working 

memory. A specific example is two orientation stimuli, or two 
translation-motion stimuli, on opposite sides of the fixation. Orientation 
or translation-motion interactions (such as adaptation aftereffects and 
simultaneous contrasts) typically require that the stimuli occupy the 
same or nearby regions on retina (Gibson & Radner, 1937; Meng, 
Mazzoni, & Qian, 2006; Hong, Dayan, Lipkin, & Qian, 2008). The 
standard explanation is that these simple features are first decoded in 
low-level areas such as V1 whose small receptive fields do not include 
both hemifields to support cross-fixation interactions. However, in such 
studies, usually only one stimulus, but not the other, is task relevant and 
stored in working memory. For example, in a standard adaptation 
paradigm, subjects only report the test stimulus, but not the adaptor. 
Similarly, the rod-and-frame illusion is usually demonstrated with the 
frame around the rod, instead of with the frame and rod on opposite 
sides of fixation, and subjects only report the rod, not the frame (Beh, 
Wenderoth, & Purcell, 1971). We thus tested whether two lines could 
interact cross fixation when both lines were task relevant, and indeed 
found the predicted interactions. Moreover, we found the interactions 
regardless of whether subjects reported the two lines’ orientations one 
after another continuously or with an interruption between the reports. 
Finally, we demonstrated that Ding et al. (2017)’s high-to-low-level 
decoding framework explained the data from both reporting methods. 

We note that a wealth of psychophysical results can be re-interpreted 
as high-to-low-level decoding in working memory although the studies’ 
original interpretations of formally similar models may be different (Luu 
& Stocker, 2018; Stocker & Simoncelli, 2008; Qiu, Luu, & Stocker, 2020; 
Fritsche & de Lange, 2019; Jazayeri & Movshon, 2007; Zamboni et al., 
2016; Bronfman et al., 2015; Talluri, Urai, Tsetsos, Usher, & Donner, 
2018; Bae & Luck, 2017; Li, Meso, Logothetis, & Keliris, 2019) (see Ding 

Fig. 1. Opposite decoding hierarchies. In both panels, 
the red arrows indicate the well-established encoding 
hierarchy from low-to high-level features. (a) Low- 
to-high-level decoding of sensory responses (blue 
arrows). If encoding and decoding occur in sensory 
neurons at about the same time, then they must 
follow the same low-to-high-level hierarchy along 
sensory pathways. (b) High-to-low-level decoding in 
working memory (green arrows). If decoding hap-
pens after relevant features enter working memory, 
then it should progress from high to low levels, with 
higher-level features constraining lower-level fea-
tures, because higher-level features are more 
invariant, reliable, and behaviorally relevant (Ding 
et al., 2017).   
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et al. (2017) for detailed discussions). Another set of studies emphasize 
high-to-low-level processing (Navon, 1977; Chen, 1982; Ahissar & 
Hochstein, 2004; Oliva & Torralba, 2006) but they do not separate 
encoding and decoding hierarchies, or consider noisy working memory, 
or model how higher-level decoding affects lower-level decoding. There 
are also theories proposing bi-directional interactions along processing 
pathways (Atkinson & Shiffrin, 1968; Carpenter & Grossberg, 1987; 
Ullman, 1995; Lee & Mumford, 2003). While these theories address 
other important issues (such as the stability-plasticity dilemma), they 
are not concerned with how noise in working memory may shape the 
decoding hierarchy (Ding et al., 2017). To our knowledge, previous 
studies never predicted nor tested cross-fixation interactions of 
remembered orientations. We therefore believe that by distinguishing 
between the encoding and decoding hierarchies and specifying the 
decoding mechanisms as high-to-low-level constraints in working 
memory, the retrospective Bayesian scheme (Ding et al., 2017) may 
provide a coherent framework for understanding a range of perceptual 
phenomena. Preliminary results were published in abstract form (Luu, 
Zhang, Tsodyks, & Qian, 2020). 

2. Methods 

2.1. Experimental procedure 

Fifteen subjects with normal or corrected-to-normal vision (10 
males, 5 females; all naïve) participated in the experiments. All subjects 
provided informed consent. The experiments were approved by the 
Institutional Review Board of Columbia University. 

General procedure: During the experiments, subjects sat in a darkened 
room and viewed the stimuli on a large-screen monitor (Samsung 
QN55Q6F, 55 in., refresh rate: 120 Hz, and resolution: 3840 × 2160 
pixels) at a distance of 56 cm. We enforced the viewing distance and 
head stabilization with a chin rest and head band. All experiments were 
run in Matlab (Mathworks, Inc.) in combination with Psychophysics 
Toolbox (Brainard, 1997). A Dell computer (Intel core i7-8700, 16 GB 
RAM, and NVidia GTX 1060 graphics card) controlled the stimulus 
presentation, and another Dell computer (i5-8400, 8 GB RAM) 
controlled an infrared video-based eye tracker developed in Mingsha 
Zhang’s lab (1000 Hz sampling rate). Subjects’ gaze was always moni-
tored during the experiment. There were three experimental conditions 
run in separate blocks. Before each condition, we gave subjects detailed 
instruction on the task and let them practice until they were comfortable 
with their performance. Each stimulus line was 6

◦

by 0.1
◦

. 
1-line condition: At the beginning of a trial, subjects had to maintain 

fixation on a white dot (diameter: 0.27
◦

) at the center of the screen. The 
trial only started when subjects successfully maintained fixation within 
a circular window (radius: 3

◦

) around the fixation dot for 1 s. A line then 
appeared on either the left or right side (counter-balanced and ran-
domized) of the fixation dot, centered at the eccentricity of 8

◦

. The line 
color was magenta and green for the left and right side, respectively. The 
line’s orientation was either 49

◦

or 54
◦

from the horizontal in two 
separate blocks. During the presentation, if subjects’ gaze broke the 
fixation window, a tone (200 Hz, 0.5 s) was played, and the trial was 
aborted and repeated. After a 1-second duration, the stimulus line dis-
appeared and a beep (400 Hz, 0.2 s) was played to prompt subjects to 
report the orientation of the stimulus line. To report the line’s orienta-
tion, subjects first moved the mouse along the perceived orientation. 
After the mouse motion started, a marker line appeared at the fixation 
with an orientation along the mouse’s moving direction. The marker line 
had the same color and length as the stimulus line. Subjects then rotated 
the marker line with the mouse to fine-tune their estimate of the stim-
ulus orientation, and left-clicked to report. They were instructed to take 
time to be as accurate as possible. 

2-line condition: Similar to the 1-line condition, subjects had to suc-
cessfully maintain fixation for 1 sec before the stimulus presentation. 
Then, two colored lines were presented on the opposite sides of the 

fixation dot, each centered at the eccentricity of 8
◦

. Consistent with the 
1-line condition, the left line was magenta and the right line was green. 
The lines’ orientations were 49

◦

and 54
◦

that were counter-balanced and 
randomized across trials. As for the 1-line condition, a trial was aborted 
and repeated whenever subjects broke the fixation window during the 
stimulus presentation. This ensured that the two stimulus lines always 
occupied well-separated retinal locations on opposite sides of the fixa-
tion. After 1 s, the stimulus lines disappeared and a tone prompted 
subjects to first report the orientation of the left line by drawing and 
adjusting a magenta marker line. After subjects clicked to confirm the 
estimate of the left line orientation, the marker line changed color from 
magenta to green and subjects rotated it to the estimate of the right line 
orientation and clicked again. Note that subjects always reported the left 
line first and then the right line, to avoid any potential confusion. 

2-line-interrupt condition: The experimental procedure was identical 
to that for the 2-line condition except that after subjects clicked to 
confirm the report of the left line, the magenta marker line disappeared, 
and subjects had to move the mouse again to draw the green marker line 
and used it to report the right line’s orientation. 

2.2. Data analysis 

Computation and statistical test of repulsion and correlation: To compute 
the repulsion and correlation of subjects’ reports of the two lines, we 
first flipped (mirrored) all the incorrect trials with respect to the diag-
onal line in the joint space (see Results for explanations). We then 
computed the mean difference and Pearson correlation between the two 
reports in a trial. The repulsion was computed by subtracting the mean 
difference between the lines of the baseline, 1-line condition from that of 
the 2-line or 2-line-interrupt conditions. To test the significance of the 
observed effects at the group level, we first obtained the mean values of 
repulsion and correlation for each individual subject. Then we applied 
Wilcoxon sign rank test on these values. For the statistical test of indi-
vidual subjects, we used bootstrapping (n = 10,000) to obtain the 95% 
confidence interval of the mean difference and correlation for each 
subject. Then we plotted the results of the 2-line or 2-line-interrupt 
conditions versus the 1-line condition. If the confidence interval did 
not touch the diagonal line, the effect was statistically significant at 0.05 
level. 

Analysis of cross-trial adaptation at the same site: We quantified how 
much traditional adaptation across trials on the same site contributed to 
the observed repulsion effect in the 2-line condition. In the separate-n- 
back analysis, we split the trials into the “same” and “different” sets 
according to whether stimulus orientations of a given trial and the n- 
back trial were the same or different. In the cumulative-n-back analysis, 
we split the trials into the “same” and “different” sets according to 
whether stimulus orientations of a given trial and all the n previous trials 
were the same or different. This required the n previous trials all had the 
same orientation, thus halving the number of available data points with 
each increment of n. For each set, we computed the repulsion by sub-
tracting the mean difference in the 1-line condition from the mean dif-
ference in the 2-line condition. To measure how much the traditional 
adaptation contributed to the observed repulsion, we used the adapta-
tion index: (Rd − Rs)/(Rd + Rs), where Rd and Rs are the repulsion of the 
“different” and “same” sets, respectively. 

3. Decoding models 

3.1. Model descriptions 

The 1-line condition: We assume that the two orientations are repre-
sented independently, each with Gaussian sensory and memory noises, 
and decoded independently. When stimulus orientation θi (i = 1,2) is 
presented in a trial, a sensory sample si is drawn according to the 
Gaussian probability density p(Si|θi) = N(θi,σs). Then at the report time, 
a memory sample mi is drawn according to the Gaussian probability 
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density p(Mi|si) = N(si,σm). A Bayesian decoder with a uniform prior 
generates an estimate of the stimulus orientation at the center-of-mass of 
the likelihood function, which in this case equals the memory sample mi. 

The 2-line condition with low-to-high-level decoding: According to the 
low-to-high-level decoding scheme, the two (lower-level) absolute ori-
entations in a 2-line trial are first decoded independently (as in the 1-line 
case), and the results are then compared to decode the (higher-level) 
relationship between the orientations. Thus, according to this scheme, 
the 1-line data predicts the 2-line data. Specifically, for the low-to-high- 
level decoding, we sampled from the measured 1-line distributions of 
the two orientations to generate the predicted 2-line joint distribution 
and its derived properties (difference distribution, correlation, and 
repulsion). Note that the low-to-high-level decoding model does not 
involve working memory (Fig. 1a) but the 1-line data must contain both 
sensory and memory noise. However, there is no need to separate the 
noise sources since this model predicts the 2-line data poorly regardless 
of the noise level: the model cannot explain the cross-fixation in-
teractions (correlation and repulsion) in the 2-line data because it treats 
the two absolute orientations separately. 

The 2-line condition with high-to-low decoding: The model makes the 
same assumptions about the sensory and memory noise as for the 1-line 
case to produce a likelihood function for the absolute orientations: p(m1, 
m2|θ1,θ2) = p(m1|θ1)p(m2|θ2) except that we used a different σm for the 
memory noise because subjects had to memorize two lines instead of 
one. The decoding procedure (Ding et al., 2017), however, follows the 
opposite hierarchy of the low-to-high-level scheme above. First, the 
model uses the sensory sample s1 and s2 of the left and right orientations 
in a trial to decode their ordinal relationship Ô, namely whether the left 
orientation is larger or smaller than the right orientation. Formally, Ô is 
the option that maximizes the posterior for the ordinal choice O given 
the sensory samples, p(O|s1,s2). Since a priori the two options were 
equally probable in our experiments, we determine Ô according to 
whether s1 is larger or smaller than s2. 

Since the discrete choice Ô can be stored in a noise-resistant, point 
attractor of the memory system, we assume it is immune to the memory 
noise (Ding et al. (2017)). In contrast, the sensory sample s1 and s2 for 
the continuous, absolute orientations have to be stored in continuous, 
ring attractors which are prone to memory noise, and at the report time, 
they become memory samples m1 and m2 in a trial. If the ordinal 
decoding Ô is usually correct, then using it to constrain the likelihood 
function of m1 and m2 can improve the accuracy of the absolute 
decoding. Specifically, Ô produces a prior, p(θ1,θ2|Ô), which is a step 
function along the diagonal line in the joint space of the two orienta-
tions. The opposite choices of Ô produce the corresponding, opposite 
step functions. Multiplying this prior to the likelihood function produces 
the posterior of the absolute orientations: 

p
(

θ1, θ2

⃒
⃒
⃒m1,m2, Ô

)
∝p

(
m1,m2

⃒
⃒
⃒θ1, θ2

)
p
(

θ1, θ2

⃒
⃒
⃒Ô

)
(1) 

The prior erases the part of the likelihood function either above or 
below the diagonal line that is inconsistent with the ordinal judgment Ô. 
Then the stimulus absolute orientations are decoded as the mean of their 
posterior: 

θ̂ i =

∫∫

θip(θ1, θ2|m1,m2, Ô)dθ1dθ2 (2) 

for i = 1,2. 
The 2-line-interrupt condition with high-to-low decoding: The model is 

identical to the high-to-low decoding model for the 2-line condition up 
to the posterior p(θ1,θ2|m1,m2,Ô). However, only the left orientation 
decoded from the posterior is reported before the interruption (the 
disappearance of the marker line). After the interruption, we assume 
that the process of redrawing the marker line again for the second report 
means that a new memory sample (m′

1, m′

2) is drawn to form a new 

posterior, p(θ1,θ2|m’1,m’2,Ô), in the same way as we did for p(θ1,θ2|m1, 
m2,Ô). This time only the right orientation decoded from the new pos-
terior is reported. We considered two ways for drawing the new memory 
sample, producing two versions of the model. The first version is to draw 
m′

i from the Gaussian density N(mi,σm); this means that the new memory 
sample is the old memory sample further corrupted by memory noise. 
The second version is to draw m′

i from the Gaussian density N(θ̂ i, σm)

where θ̂ i are the estimate of the first decoding. This means that the new 
memory sample is the first decoded orientations further corrupted by 
memory noise. In both versions, we assume that the new noise has the 
same σm as the memory noise for the first decoding. We believe this is a 
good approximation because the reaction times of the first and second 
reports are similar in the 2-line-interrupt condition (see Supplementary 
Fig. S4b). 

3.2. Model fitting procedures 

To fit the models to subjects’ data, we first obtain the distribution of 
the decoded orientations given the actual orientations, p(θ̂1, θ̂2|θ1, θ2), 
by marginalizing (integrating over) the latent memory variables and the 
ordinal judgment variable: 

p(θ̂1, θ̂2|θ1, θ2) =
∑

Ô

p(Ô|θ1, θ2)

∫∫

p(θ̂1, θ̂2|m1,m2, Ô)p(m1,m2|θ1, θ2)dm1dm2

(3) 

For Gaussian noises, this can also be done with Ding et al. (2017)’s 
analytical formula (their Eqs. (1) and (2)) for θ̂1 and θ̂2 by sampling m1, 
m2, and Ô for given θ1 and θ2. (Note that mi was called ri, and 
σ2

s +σ2
m = σ2

i in Eqs. 1 and 2 of Ding et al. (2017) who combined the 
sensory and memory noise, and the two opposite choices of Ô corre-
spond to swapping θ̂1 and θ̂2 in their Eqs. (1) and (2)). 

We then use p(θ̂1, θ̂2|θ1, θ2) to obtain the difference distribution 
p(θ̂1 − θ̂2|θ1, θ2). We jointly fit the model to the 1-line and 2-line data 
pooled over all subjects by maximizing the likelihood of the data with 
respect to the model parameters using Nelder-Mead algorithm. The 
model has 3 parameters: the sensory noise σs and the separate memory 
noises σm for the 1-line and the 2-line conditions. For the 2-line data, we 
fit the difference distribution instead of the joint distribution because 
the joint distribution is 2D and we do not have a large amount of data to 
fit it robustly. Moreover, fitting the difference distribution can already 
capture the characteristic bimodal pattern of the joint distribution. 

3.3. Model prediction for the 2-line-interrupt condition 

Given the fit parameters for the 1-line and 2-line conditions, we 
predict the 2 line-interrupt condition without new free parameters using 
the two high-to-low-level decoding steps described above. 

4. Results 

4.1. Cross-fixation interactions of orientations in working memory 

The first experiment was similar to that of Ding et al. (2017) but 
instead of presenting two lines sequentially at the fixation, we presented 
them simultaneously on opposite sides of the fixation point (Fig. 2b), for 
1 sec. The lines were 6

◦

by 0.1
◦

, and oriented 49
◦

and 54
◦

from hori-
zontal, respectively. The two orientations were counter-balanced and 
randomized for the two sides over 50 trials of a block. The center-to- 
center distance between the lines was 16

◦

. An infrared eye tracker (see 
Methods) was employed to monitor eye position online, and each trial 
started after subjects acquired fixation for 1 sec. The fixation window 
was a circle of 3

◦

radius, and trials with broken fixation during stimulus 
presentation were aborted and repeated. After the lines disappeared, 
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subjects first reported the left line’s orientation by drawing a marker line 
with a mouse according to the perceived orientation, adjusting it to 
match the perceived orientation as closely as possible, and clicking a 
button. They then continued to rotate the marker line to match the right 
line’s orientation as closely as possible and clicked to report. As in Ding 
et al. (2017), the continuation from the first to the second report let 
subjects implicitly indicate the lines’ ordinal relationship (the second 
experiment below interrupted this continuation). After an inter-trial- 
interval of 300–600 ms, the next trial started. To minimize potential 
mix-up of the two stimulus lines, we always colored the left and right 
lines magenta and green, respectively, and changed the marker line 
color from magenta to green after the first click (Fig. 2b). 

In addition to the above 2-line condition, we also ran the corre-
sponding baseline, 1-line condition, in which only one line (either 49

◦

or 
54

◦

in separate 50-trial blocks) was presented either on the left or on the 
right of the fixation (counter-balanced and randomized) and subjects 
reported its orientation as they did for the first line in the 2-line con-
dition (Fig. 2a). 

We collected data from 15 subjects (all naive). We first describe the 
distributions of the reported absolute orientations of the individual 
lines. In the 1-line condition, the absolute distributions (Fig. 2c) are 
roughly centered at the lines’ actual orientations (49

◦

and 54
◦

). The 
difference between the means of the two distributions is 5.3

◦

, close to the 
actual 5

◦

difference. In the 2-line condition, the absolute distributions 
(Fig. 2d) for the two lines are further apart compared with those of the 1- 
line condition, with an 8.6

◦

difference between the means, indicating a 
perceptual repulsion between the lines. The repulsion is statistically 
significant (p = 0.00006, Wilcoxon sign rank test). 

There was considerable variability of the reported absolute orienta-
tions. Because the stimulus lines were flashed on the periphery and 

subjects reported well after the stimuli disappeared, the variability must 
reflect both sensory and memory noises. The variance of absolute dis-
tributions in the 2-line condition was also greater than that of the 1-line 
condition (p = 0.00006, Wilcoxon sign rank test, see Fig. S1). Since the 
stimulus orientations and duration were exactly the same for the two 
conditions, the greater variance in the 2-line condition was likely due to 
increased memory noise because subjects had to hold two lines in 
working memory instead of one line. 

We next examined the joint distribution of the two reported orien-
tations in a trial of the 2-line condition. Fig. 2f plots the report for the 54

◦

line against that for the 49
◦

line. The distribution was elongated along 
the diagonal, indicating a positive correlation between the two reports 
in a trial (p = 0.00006, Wilcoxon sign rank test). The data points above 
and below the diagonal line were from the trials with correct and 
incorrect ordinal judgments, respectively. There was a gap between 
these two sets of trials as they shifted away from the diagonal (the de-
cision boundary for the ordinal judgments), rendering the joint distri-
bution bimodal. By subtracting the 49

◦

report from the 54
◦

report in a 
trial, we obtained the difference distribution (Fig. 2h), which was also 
bimodal. The difference distribution is equivalent to projecting the joint 
distribution along the negative diagonal axis, and the correct and 
incorrect trials are on the left and right sides of 0, respectively. 

These results were quite similar to those of Ding et al. (2017). 
Importantly, Ding et al. presented the two lines successively at the same 
spatial location whereas here we presented them simultaneously on 
opposite sides of the fixation. This suggests that the two lines interacted 
similarly in working memory regardless of whether they were presented 
at the same or very different locations. Also similar to Ding et al.’s 
findings, the results of the 2-line condition cannot be explained by the 
low-to-high-level decoding scheme, which assumes that V1 cells in 

Fig. 2. The 1-line and 2-line conditions with data pooled from all 15 naive subjects. (a) Trial sequence for the 1-line condition. (b) Trial sequence for the 2-line condition. 
For both conditions, during the blank after the stimulus disappearance, subjects drew a marker line for reporting. See text and Methods for details. (c, d) Reported 
distributions of the stimulus lines’ absolute orientations for the 1-line and 2-line conditions, respectively. For each condition, the distributions for the 49

◦

and 54
◦

lines are in blue and orange, respectively. The dashed vertical lines indicate the means of the distributions. The difference between the means was greater in the 2-line 
condition than that in the 1-line condition, indicating repulsion. (e) Simulated joint distribution of the 2-line condition predicted from the 1-line data according to the 
low-to-high-level decoding scheme. (f) The measured joint distribution of the 2-line condition. The red dot indicates the true stimulus orientations, and the cyan dot 
indicates the means of the reports. The measured distribution showed a correlation between the two reports in a trial and a bimodal pattern with shifts away from the 
diagonal line whereas the joint distribution predicted by the low-to-high-level decoding did not. (g, h) The difference distributions (the 54

◦

line minus the 49
◦

line), 
obtained from the simulated and measured joint distributions in panels e and f, respectively. They are equivalent to projecting the joint distributions along the 
negative diagonal axis. 
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opposite hemispheres first decode the two lines’ absolute orientations 
separately, which are then compared to determine their relationship. 
Obviously this decoding scheme cannot reproduce the observed in-
teractions between the lines. We simulated this scheme’s predicted joint 
distribution in Fig. 2e by randomly sampling pairs of orientations from 
the 49

◦

and 54
◦

distributions of the 1-line condition. This joint distri-
bution is unimodal, and centered on, and evenly distributed around, the 
physical stimulus orientations, without the correlation, gap, and repul-
sion in the 2-line data. The predicted difference distribution is also 
unimodal, symmetrically centered on the actual difference between the 
two lines’ orientations (5

◦

), again unlike the measured difference dis-
tribution of the 2-line condition. 

Although we pooled all subjects’ data above, the interactions be-
tween the lines in the 2-line condition (repulsion and correlation) were 
consistently observed across all subjects (see Supplementary Fig. S2 for 
the joint distributions of all individual subjects). We computed each 
subject’s repulsion and correlation in the 2-line condition, and 
compared with those predicted from the low-to-high-level decoding 
scheme applied to the 1-line data. Since the repulsion and correlation 
occurred separately for the correct and incorrect trials (trials above and 
below the diagonal line in Fig. 2f), we flipped (mirrored) the incorrect 
trials with respect to the diagonal line before the computation, and 
applied the same procedure to the simulated joint distributions from the 
1-line data. (Without the flipping, we would underestimate the repulsion 
and correlation, particularly for subjects with a large number of incor-
rect trials, because the repulsion values in the two opposite directions 
away from the diagonal would cancel each other, and the separation, 
along the negative diagonal, of the two positive-diagonal elongations 
would reduce the actual correlation.) Fig. 3a shows that all 15 subjects 
reported greater orientation difference in the 2-line condition than in the 
1-line condition. We computed the 95% confidence interval using 
bootstrapping for each subject, and found that for 12 out of the 15 
subjects, the 95% confidence interval did not touch the diagonal line in 
Fig. 3a. Therefore, the repulsion in the 2-line condition is significant for 
the majority of subjects individually. Fig. 3b shows that the correlation 
in the 2-line condition was greater than that in the 1-line condition. 
Again, the 95% confidence interval for each subject calculated with 
bootstrapping indicates that 12 out of the 15 subjects showed significant 
correlation individually. 

Finally, Fig. 3c shows that the ordinal discrimination performance in 
the 2-line condition was better than that predicted by the 1-line data 
according to the low-to-high-level decoding (mean accuracy: 90% vs. 
77%). The difference is significant at the group level (p = 0.025, Wil-
coxon sign rank test). This can also be seen in the joint and difference 
distributions in Fig. 2 which show a larger portion of correct trials in the 
2-line condition compared to the 1-line condition. At the individual 

level, 11 out of the 15 subjects showed the same trend (Fig. 3c) although 
only 5 subjects reached significance based on the bootstrapping test. 

The above results suggest that when stimulus orientations are 
decoded in working memory, they interact with each other even when 
presented on opposite sides of the fixation. However, there are two 
potential confounds and we address them below. 

4.2. Orientation interactions under a different report method 

The first potential confound is that in the 2-line condition above, 
subjects rotated the marker line continuously from the first report to the 
second report, and this continuity might introduce interactions artifi-
cially. For example, subjects might over-rotate to ensure that the two 
reports were different even though the instructions emphasized accu-
racy. This, however, was unlikely because the actual 5

◦

orientation 
difference was well above the orientation discrimination threshold of 
around 1

◦

at fovea where the marker line was placed. To directly address 
any potential problems of the continuous report method above, we did a 
control experiment by running the same group of subjects on the 2-line 
condition with an interruption between the two reports (2-line-interrupt 
condition). It was identical to the above 2-line condition except that 
after subjects clicked to report the left orientation, the marker line 
immediately disappeared and subjects had to move the mouse to redraw 
the marker line according to their perceived right orientation, adjusted 
it to match the perception as closely as possible, and then clicked 
(Fig. 4a). This method was very similar to that used by Bae and Luck 
(2017) but they presented stimuli at fovea and did not measure cross- 
fixation interactions. We planned both reporting methods before the 
data collection and randomized the order of the 2-line and 2-line-inter-
rupt conditions across subjects. 

The results pooled across all subjects are shown in Fig. 4. The dis-
tributions of the reported absolute orientations (Fig. 4b) showed a sig-
nificant repulsion compared with the 1-line condition (p = 0.0003, 
Wilcoxon sign rank test). In fact, the repulsion in the 2-line-interrupt 
condition (mean orientation difference 10.1

◦

) was even larger than 
that in the 2-line condition (mean orientation difference 8.6

◦

). However, 
the interrupt report method changed the joint distribution of the two 
reports in a trial (Fig. 4c). Although the joint distribution shifted away 
from the diagonal, there was no clear gap between the correct and 
incorrect trials along the diagonal, and the difference distribution was 
unimodal (Fig. 4d). The correlation between the two reports in a trial 
was much reduced though still significant (p = 0.035, Wilcoxon sign 
rank test). 

We also analyzed the 2-line-interrupt data for each subject individ-
ually, as we did for the 2-line condition. We found that 14 out of 15 
subjects showed a significant repulsion (Fig. 5a), and the repulsion 

Fig. 3. Comparison of the 1-line and 2-line conditions for individual subjects. Each color represents one subject. (a) The mean absolute difference between the reports for 
the 49

◦

and 54
◦

lines. (b) The correlation coefficient between the two reports in a trial. The correlation for the 1-line condition was based on the prediction of the low- 
to-high-level decoding. (c) The percentage correct of ordinal discrimination between the two lines. The percentage correct for the 1-line condition was based on the 
prediction of the low-to-high-level decoding. All error bars were 95% confidence intervals obtained by bootstrapping 10,000 times. 
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magnitudes were generally greater than those for the 2-line condition 
(cf. Fig. 3a). The correlations were weaker than those for the 2-line 
condition (cf. Fig. 5b and 3b). This can also be seen from shapes of in-
dividual subjects’ joint distributions of the 2-line-interrupt condition in 
Supplementary Fig. S3. Although some subjects showed similar joint 
distributions for the two report methods, others showed little elongation 
along the diagonal under the interrupted report method. Finally, Fig. 5c 
shows the subjects’ ordinal discrimination performances; unlike the 
original 2-line condition, the mean was not significantly better than that 
predicted by the 1-line data (p = 0.23). This is perhaps not surprising 
because the interruption must make it difficult (and unnecessary) for the 
subjects to indicate the ordinal relationship through the two absolute 
reports. In other words, the ordinal discrimination performances 
calculated from the 2-line-interrupt data did not reflect the subjects’ 
actual ordinal discrimination performances. In sum, interrupting the 
continuity of the two reports in a trial did not eliminate the cross- 
fixation interactions of orientations. Both the repulsion and correla-
tion remained significant at the group level. Although the correlation 
was much weaker, the repulsion appeared stronger. We will explain 
these data and their differences in a modeling section later. 

4.3. The repulsion cannot be explained by adaptation across trials at the 
same site 

Another potential confound of the 2-line condition is that the 

observed repulsion might be explained by traditional adaptation after-
effects across trials on the same side of the fixation. Specifically, at a 
given site, if the stimulus orientation in the current trial was different 
from that in a previous trial, subjects’ perceived orientation in the cur-
rent trial could be repelled away from the orientation of the previous 
trial (Fig. 6a). However, if the stimulus orientations for the two trials 
were identical, then there would be no adaptation-induced repulsion 
(Gibson & Radner, 1937). We first note that such cross-trial adaptation 
aftereffects must be small because of the long intervals between stimuli 
of successive trials (around 8 sec for the 2-line condition) compared to 
the stimulus duration (1 sec). It might be further reduced by the 
attractive, serial effect (Fischer & Whitney, 2014). Nevertheless, we 
analyzed this possibility in great detail. First, we split each subject’s 2- 
line data into the “same” and “different” sets according to whether the 
stimulus orientation in a trial and that n trials back were identical or not, 
for n = 1, 2, 3, and 4 separately. We quantified the n-back cross-trial 
adaptation effect by calculating the index (Rd − Rs)/(Rd + Rs), where 
Rd and Rs are the repulsion of the “different” and “same” sets, respec-
tively. If the repulsion all came from the n-back cross trial adaptation, 
instead of from cross-fixation interactions, then Rs would be 0, and the 
index would be 1. Conversely, if the repulsion all came from cross- 
fixation interactions, then Rd and Rs would be identical, and the index 
would be 0. The results are shown in Fig. 6b. We found that as expected, 
the contribution of the cross-trial adaptation to the repulsion was small 
even for n = 1 and disappeared for n = 4. The sum of the indices across n 

Fig. 4. The 2-line-interrupt condition with data pooled from all 15 naive subjects. The plot format is identical to that of Fig. 2. (a) Trial sequence for the 2-line-interrupt 
condition. During each blank, subjects drew a marker line for reporting. The second blank interrupted the continuity of the two reports. See text and Methods for 
details. (b) Reported distributions of the stimulus lines’ absolute orientations, showing even larger repulsion between the 49

◦

and 54
◦

lines than that for the 2-line 
condition (Fig. 2d). (c) The joint distribution, showing much reduced correlation and bimodality compared with the 2-line condition (Fig. 2f). (d) The distribution of 
the difference between the two reported orientations, again showing a much reduced bimodality compared with the 2-line condition (Fig. 2h). 

Fig. 5. Comparison of the 1-line and 2-line-interrupt conditions for individual subjects. The plot format is identical to that of Fig. 3. (a) The mean absolute difference 
between the reports for the 49

◦

and 54
◦

lines. (b) The correlation coefficient between the two reports in a trial. The correlation for the 1-line condition is based on the 
prediction of the low-to-high-level decoding in Fig. 2e. (c) The percentage correct of ordinal discrimination between the two lines. Note that the subjects did not 
explicitly perform the ordinal discrimination task so the percent correct was inferred from their reported absolute orientations of the stimuli. All error bars were 95% 
confidence intervals obtained by bootstrapping 10,000 times. 
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is around 0.2, well below 1, and thus cannot account for the observed 
repulsion. Second, we investigated the possibility that different n-back 
adaptation effects might sum superlinearly to explain the repulsion. We 
therefore determined the cumulative n-back adaptation effect directly, 
instead of summing the separate n-back effects. To this end, we defined 
the “same” and “different” sets according to whether the stimulus 
orientation of a trial was identical to, or different from, those of all n 
previous trials (which had to have the same orientation). The results in 
Fig. 6c show that the n-back cumulative effect had the index saturated 
around 0.25 for n = 3, again well below 1. The error bar grew with n 
because when n increased by 1, the available data was halved. We 
conclude that traditional adaptation aftereffects across trials at the same 
site cannot explain the repulsion in the 2-line condition. 

4.4. The first and second reports in a trial showed similar repulsion 

Ding et al. (2017) presented two lines in a trial sequentially (and 
subjects reported them sequentially); this allowed them to measure both 
the forward aftereffect (how much the first line repelled the second line) 
and the backward aftereffect (how much the second line repelled the 
first line). They found that the two aftereffects were similar for a given 

subject. As they noted, this result contradicts standard adaptation the-
ories whose sequential considerations of sensory responses predict only 
the forward aftereffect, and prompted them to propose high-to-low-level 
decoding in working memory. In the current study, we presented two 
lines in a trial simultaneously so the forward and backward aftereffects 
were not defined. Nevertheless, subjects had to report the two lines 
sequentially, and we analyzed whether the first and second reports of a 
line were similar or not. For both the 2-line and 2-line-interrupt condi-
tions, we calculated the means of the first and second reports for the 49

◦

line separately, and did the same for the 54
◦

line. Using the means of the 
49

◦

and 54
◦

lines of the 1-line condition as the baselines, we determined 
the repulsion values for each line when it was reported first and second. 
The results (Fig. 7) indicate that the first and second reports showed 
similar repulsion, analogous to the similar backward and forward af-
tereffects in Ding et al. (2017). Note that here we calculatred the 
repulsion values for the 49◦ and 54◦ lines separately for better com-
parison with the aftereffects. 

Fig. 6. Cross-trial adaptation at the same site cannot explain the observed repulsion. (a) The orientations of the current (blue) and a previous (yellow) trial can be either 
the same (top) or different (bottom). The “different” case could produce cross-trial adaptation aftereffect whereas the “same” case could not. (b) n-back cross-trial 
adaptation index for the 2-line condition, with n = 1, 2, 3 and 4 separately. The index values of 0 and 1 indicate that cross-trial adaptation explains none and all of the 
measured repulsion, respectively. (c) Cumulative n-back cross-trial adaptation index for the 2-line condition, with n = 1, 2, 3 and 4. All error bars represent ± 1 SEM. 
They grow with n in panel c because the number of available data points is halved for each increment of cumulative n. 

Fig. 7. First and second reports showed similar repulsion. The left and right panels are for the 2-line and 2-line-interrupt conditions, respectively. In each panel, the 
second-report repulsion is plotted against the first-report repulsion across subjects. Each subject had two data points, one for the 49

◦

line (round dot) and the other for 
the 54

◦

line (diamond). 
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4.5. High-to-low-level Bayesian decoding explains the data from both 
report methods 

The cross-fixation interactions of orientations established above, in 
the form of repulsion and correlation, cannot be explained by the low-to- 
high-level decoding scheme (Figs. 2-5). We thus adopted Ding et al. 
(2017)’s high-to-low-level decoding scheme to account for the data. The 
main hypothesis is that in a 2-line trial, subjects (implicitly) judged the 
lines’ ordinal relationship and used this higher-level information to 
constrain the decoding of the lower-level, absolute orientations of the 
lines (Ding et al. (2017)). To explain the differences between the two 
report methods, we applied the scheme twice to take into account the 
interruption in the second report method, as detailed below. 

We started with the 1-line condition; we simply assumed that sub-
jects made a noisy sensory measurement of the stimulus line’s orienta-
tion in a trial. Then the sensory sample was corrupted by memory noise 
to produce a memory sample. We assumed both the sensory and memory 
noises are Gaussian. With a uniform prior on orientation, the posterior 
was the same as the likelihood function which was a Gaussian around 
the memory sample. Consequently, the decoded estimate was identical 
to the memory sample. These estimates were used in the above simu-
lations of the low-to-high-level decoder that used the 1-line data to 

predict the 2-line data. As noted above, the low-to-high-level predictions 
did not match the data. 

In the high-to-low-level decoding model for the 2-line condition 
(Fig. 8a), we also started with drawing sensory and memory samples 
(black and light blue dots, respectively) for a trial according to the 
sensory and memory noise distributions (black and light blue circles, 
respectively). The key difference was that the prior was not uniform but 
determined by subjects’ ordinal judgment based on the sensory mea-
surements. For instance, if the ordinal judgment was that the 54

◦

orientation was greater than the 49
◦

orientation, then the prior was non- 
zero only above the diagonal line in the joint space (the shaded region in 
the last panel of Fig. 8a). As a result, combining the likelihood function 
(green circle) and this step-function prior led to a posterior distribution 
(solid green arc) whose center of mass (green dot), the decoded estimate, 
was shifted away from the diagonal. Note that here we modeled sensory 
and memory noises separately instead of grouping them together as in 
(Ding et al. (2017)). The reason was that here the stimulus lines were 
presented simultaneously so that subjects could make ordinal judgments 
based solely on the sensory evidence. As explained in Ding et al. (2017), 
the binary, ordinal judgments were assumed to be resistant to memory 
noise. In contrast, the continuous, absolute orientations of the lines were 
degraded by the memory noise. 

Fig. 8. High-to-low-level Bayesian decoding scheme. (a) Model for the 2-line condition. First panel: a sensory sample (black dot) is drawn from the sensory distribution 
of the two lines (black circle) centered on the stimulus orientations (red dot). Second panel: a memory sample (blue dot) is drawn from the memory distribution (blue 
circle) centered on the sensory sample (black dot). Third panel: The posterior distribution (solid green arc above diagonal) is obtained by multiplying the likelihood 
function (green circle) centered on the memory sample (blue dot) and a Bayesian prior (shaded step function along the diagonal) from the ordinal judgment. The 
posterior mean is the decoded estimate of the two orientations (green dot). (b) Model for the 2-line-interrupt condition. It is similar to the 2-line model above except 
that the memory decoding process is repeated, one before and the other after the interruption, and each process reports only one of the two estimated orientations. 
The second decoding process is represented by the darker blue and green colors. The distribution (dark blue circle) for the second memory sample (dark blue dot) can 
be centered either on the first memory sample (top row) or on the first estimate (bottom row), resulting in two versions of the model. 
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For the 2-line-interrupt condition, we used the same high-to-low- 
level decoding scheme as for the 2-line condition but we assumed that 
there were two decoding processes (Fig. 8b), one before, and the other 
after the interruption (the disappearance of the marker line). Specif-
ically, the first decoding process was identical to that for the 2-line 
condition. However, although both absolute orientations were deco-
ded, only the left orientation was reported before the interruption. With 
the redrawing of the marker line after the interruption, we assumed a 
repeat of the decoding process but this time only the right orientation 
was reported. The second memory sample could be based on the first 
memory sample but further corrupted by the memory noise (Fig. 8b, first 
row). Alternatively, it could be based on the first estimate, also further 
corrupted by the memory noise (Fig. 8b, second row). We considered 
both versions of the model. We let the additional memory noise for the 
second decoding be the same as that for the first decoding because the 
reaction times of the two reports were similar in the 2-line-interrupt 
condition (see Supplementary Fig. S4). 

The free parameters were the standard deviations for the sensory and 
memory noises (see Methods). We first jointly fit the parameters by 
maximizing the likelihood of the data of the 1-line and 2-line conditions. 
The resulting model matched the data well (Fig. 9, the first two col-
umns). Notably, the model reproduced the characteristic repulsion, 
correlation, and the bimodel pattern in the 2-line joint distribution 
(Fig. 9, second column). We then used the fit parameters to generate 
parameter-free predictions for the 2-line-interrupt condition. Both 
model versions for the 2-line-interrupt conditions (Fig. 9, last column) fit 
the data similarly well. We also compared the measured and the 
modeled difference distributions in Fig. 10, again showing good 
agreements. 

5. Discussion 

In this study, we tested a prediction of Ding et al. (2017)’s theory 
positing that visual decoding often occurs in working memory where it 
progresses from high- to low-level features, with higher-level features, 

which are more invariant, reliable, and behaviorally relevant, con-
straining the decoding of lower-level features. Since the high-to-low- 
level constraints introduce interactions between lower-level features, 
the theory predicts that low-level features that are traditionally 
considered as independent may interact with each other when they are 
decoded in working memory. 

In our experiment, the lower- and higher-level features were the 
absolute orientations of two lines (on opposite sides of the fixation) and 
their ordinal relationship, respectively. Their encoding likely follows the 
standard low-to-high-level hierarchy of sensory responses (Hubel & 
Wiesel, 1968; Riesenhuber & Poggio, 1999; Anzai, Peng, & Van Essen, 
2007). The traditional view is that their decoding follows the same hi-
erarchy, and the absolute orientations are decoded in an early visual 
area with small receptive fields and thus should be mutually indepen-
dent. In contrast, according to Ding et al. (2017), the encoded absolute 
orientations and their ordinal relationship enter working memory after 
the disappearance of the stimuli. During the delay before the reports, the 
stored binary ordinal relationship is noise resistant whereas the 
continuous absolute orientations are corrupted by noise over time. By 
the report time, the brain decodes the reliable ordinal relationship first, 
and uses it to constrain the decoding of the unreliable absolute orien-
tations, producing interactions between the absolute orientations. Using 
an eye-tracker to ensure fixation, we indeed found the predicted cross- 
fixation interactions of the orientations in the form of repulsion and 
correlation. Control experiments and analyses ruled out alternative ex-
planations such as reporting-method bias and cross-trial adaptation af-
tereffects on the same side of the fixation. Finally, we showed that Ding 
et al. (2017)’s retrospective Bayesian decoding model well fit the 2-line 
data, and without new free parameters, predicted the 2-line-interrupt 
data. Unlike many Bayesian models that adjust priors to fit the data, 
in our simulations, the prior is a step function fully determined by the 
ordinal judgment and only the likelihood function has free parameters. 

We used a continuous and an interrupt report method for the 2-line 
and 2-line-interrupt conditions, respectively. The continuous report 
method was nearly identical that of Ding et al. (2017), and the 2-line 

Fig. 9. Model fit of the 1-line and 2-line data, and prediction of the 2-line-interrupt data. The first row shows the data (pooled over all subjects) and the second row shows 
the model fit or prediction. The first column shows the absolute distributions of the 1-line condition. The second column shows the joint distribution of the 2-line 
condition. The third column shows the joint distribution of the 2-line-interrupt condition, with two different model versions. 
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data here resembled those of Ding et al. (2017) showing repulsion and 
correlation between the two reported orientations in a trial. The inter-
rupt report method was nearly identical to that of Bae and Luck (2017), 
and our 2-line-interrupt data were similar to those of Bae and Luck 
(2017), showing repulsion but reduced correlation. Importantly, how-
ever, we placed the two orientations on opposite sides of the fixation 
whereas both Ding et al., 2017 and Bae and Luck (2017) placed them 
(successively) at the fixation. Therefore, the current study demonstrated 
cross-fixation interactions of orientations whereas the two previous 
studies were not designed to do so. On the other hand, the three studies 
collectively indicate that when two orientations are both task relevant 
and decoded in working memory, they interact with each other 
regardless of whether they appear on the same or different retinal lo-
cations. In addition to retinal locations, these studies also differ in 
stimulus shape, size, eccentricity, and duration, the magnitude of 
orientation difference, and simultaneous vs. sequential presentations. 
The fact that they still produced similar results suggests that stimulus 
interactions in working memory are a robust phenomenon. 

Both frontal/parietal areas and various sensory cortices have been 
implicated in working memory (Pasternak & Greenlee, 2005). Since 
working memory does not necessarily require sustained neuronal firing 
after stimulus disappearance (Mongillo, Barak, & Tsodyks, 2008), it 
could in principle reside even in low-level sensory areas. However, the 
working memory area for orientation decoding in our experiments is 
likely a high-level area that does not maintain fine retinotopy but 
instead, let relevant features from different locations affect each other. A 
related finding is the transfer of perceptual learning between well- 
separated retinal locations under certain training procedures (Xiao 
et al., 2008). For example, contrast training at one location transferred 
to another location that only received orientation training. Although 
there are key differences between short-term working memory and long- 
term perceptual learning, these studies, and that of Ding et al., 2017, 
suggest that perceptual decoding of low-level features could occur in 
high-level brain areas where the binding or integration of the features 
may produce various interactions among them across space and time. 
Alternatively, low-level features might be stored retinotopically in low- 
level sensory areas which are modulated by high-level feedback con-
nections to produce perceptual interactions (Pasternak & Greenlee, 
2005). In either case, high-level processing must be involved in the 
decoding of low-level features. 

Sensory processing and working memory are often treated as sepa-
rate topics in the literature. Our theory, however, explicitly integrates 
them by proposing that decoding of perceptual judgments may happen 
in working memory. It is this integration that provides a key reason that 
decoding should proceed from high- to low-level features (Ding et al., 
2017), which then leads to our prediction of cross-fixation interactions 

of orientations (see Introduction). Since sensory processing includes 
both encoding and decoding, we consider decoding in working memory 
as part of sensory processing. Alternatively, one may argue that working 
memory should not be included in sensory processing. Accordingly, our 
framework becomes the following: sensory processing proceeds from 
low- to high-level features, and high-to-low-level decoding of perceptual 
judgments in working memory should just be viewed as a memory 
process, not part of the sensory process. We note that this is mostly an 
issue of definition that does not change our reasoning on why decoding 
in working memory should proceed from high- to low-level features or 
how higher-level features should constrain the decoding of lower-level 
features. 

Binary ordinal judgments could also be viewed as perceptual de-
cisions. So an equivalent interpretation of our model is that the 
perceptual decision on the ordinal relationship provides a prior to 
constrain the decoding of the absolute orientations. What is important, 
however, is not the different choices of terminology, but the common 
theme that the higher-level ordinal relationship between two lines af-
fects the decoding of the lower-level absolute orientations of the indi-
vidual lines. Therefore, the decision interpretation is consistent with our 
high-to-low-level decoding hierarchy. On the other hand, without the 
consideration of different noise tolerance of low- vs. high-level features 
in working memory, the decision interpretation alone misses a key 
reason of why the high-to-low-level decoding scheme is desirable (Ding 
et al., 2017). Also note that the binary, ordinal decision was not a 
separate task imposed on the subjects. For the 2-line-interrupt condition, 
the ordinal decision was not even implicitly required. Our study is 
therefore different from typical task-dependence studies where the tasks 
in question are usually required. Additionally, unlike our theory, task 
dependence alone does not provide a reason on why decoding should 
proceed from high- to low-level features in working memory or how 
higher-level features should constrain the decoding of lower-level 
features. 

As noted above, according to Ding et al., 2017, interactions between 
lower-level features in working memory stems from higher-level con-
straints on lower-level decoding. In our experiments, the lower-level 
features were the individual, absolute orientations of the two lines, 
and the higher- level feature was their ordinal relationship. For the 
continuous report method (2-line condition), subjects implicitly indi-
cated their ordinal choice when rotating the marker line continuously 
from the first report to the second report of the absolute orientations. In 
contrast, for the interrupt report method (2-line-interrupt condition), 
because the marker line disappeared after the first report, subjects could 
not use the continuous rotation to indicate their ordinal choice. The fact 
the 2-line-interrupt data can be explained by the same high-to-low-level 
decoding scheme (applied twice but without new free parameters) 

Fig. 10. Model fit and prediction of the difference distributions. The first panel shows the fit (red curve) to the 2-line difference distribution (blue histogram). The last 
two panels show the two model versions’ predictions (red curves) of the 2-line-interrupt data (blue histogram). 
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suggests that the ordinal relationship was still decoded first, which then 
constrained the absolute decoding, even when its reporting was not 
required. The reason, we believe, is that the ordinal relationship is more 
invariant against viewing conditions, more reliable against memory 
noise, and more behaviorally useful, than the absolute orientations so 
that the brain may automatically prioritize its decoding. When the 
ordinal relationship is decoded correctly, it can then help improve the 
decoding of less reliable, absolute orientations through the high-to-low- 
level constraint (Ding et al., 2017). High-to-low-level decoding in noisy 
working memory could be a general principle for understanding 
perception. 
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