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Solving da Vinci stereopsis with depth-edge-selective V2 cells
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Abstract

We propose a new model for da Vinci stereopsis based on a coarse-to-fine disparity energy computation in V1 and disparity-bound-
ary-selective units in V2. Unlike previous work, our model contains only binocular cells, relies on distributed representations of disparity,
and has a simple V1-to-V2 feedforward structure. We demonstrate with random-dot stereograms that the V2 stage of our model is able
to determine the location and the eye-of-origin of monocularly occluded regions, and improve disparity map computation. We also
examine a few related issues. First, we argue that since monocular regions are binocularly defined, they cannot generally be detected
by monocular cells. Second, we show that our coarse-to-fine V1 model for conventional stereopsis explains double matching in Panum’s
limiting case. This provides computational support to the notion that the perceived depth of a monocular bar next to a binocular rect-
angle may not be da Vinci stereopsis per se [Gillam, B., Cook, M., & Blackburn, S. (2003). Monocular discs in the occlusion zones of
binocular surfaces do not have quantitative depth—a comparison with Panum’s limiting case. Perception 32, 1009–1019.]. Third, we dem-
onstrate that some stimuli previously deemed invalid have simple, valid geometric interpretations. Our work suggests that studies of da
Vinci stereopsis should focus on stimuli more general than the bar-and-rectangle type and that disparity-boundary-selective V2 cells may
provide a simple physiological mechanism for da Vinci stereopsis.
Published by Elsevier Ltd.
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1. Introduction

When we view a scene with opaque objects at various
depths, the lateral separation of our eyes creates not only
binocular disparity but also monocularly occluded regions.
These are the regions seen by one eye but not the other, and
they arise frequently under normal viewing conditions since
near surfaces often occlude far surfaces to different extents
in the two eyes. Fig. 1a shows a well-known example. The
left-eye-only monocular region, right-eye-only monocular
region, and binocular region are represented by black,
white, and gray squares, respectively. Lines drawn from
each eye indicate the extent of occlusion by the near surface
of the far background. Assuming that the near surface is
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doi:10.1016/j.visres.2007.07.003

* Corresponding authors.
E-mail addresses: ada2007@columbia.edu (A. Assee), nq6@columbia.

edu (N. Qian).
the fixation plane with zero disparity, Fig. 1b shows the
alignment of the regions visible to the two eyes. Correspon-
dence between the binocular regions is indicated by dotted
lines linking the two eyes’ views. In contrast, the monocu-
lar regions have no correspondence.

While it is well-known that disparity between binocular
regions is responsible for conventional stereopsis, many
experiments also show that monocular occlusion contrib-
utes significantly to depth perception, among other things
(Gillam & Nakayama, 1999; Liu, Stevenson, & Schor,
1997; Nakayama & Shimojo, 1990; Shimojo & Nakayama,
1990, 1994). The perceptual effects of monocular regions
like those in Fig. 1 have been termed da Vinci stereopsis
by Nakayama and Shimojo (1990). Based on the occlusion
geometry of opaque objects as in Fig. 1, Nakayama and
Shimojo (1990) classified monocular regions into valid
and invalid types. Valid monocular regions are (1) a left-
eye-only region to the left of a near surface (Fig. 2a), or
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Fig. 1. Occlusion geometry and the role of monocular vs. binocular cells in solving da Vinci stereopsis. (a) Schematic diagram of a scene where a near
surface occludes a background. The dotted lines indicate the extent to which the near surface occludes the far surface from each eye. (b) Images seen by the
left and right eyes for the scene in (a) when fixation is at the near surface. (c) A special case of (b) when the binocular background is assumed to be
featureless. For all panels, gray squares indicate binocular regions, and black and white squares represent left- and right-eye-only monocular regions,
respectively. In (b and c), the dotted lines indicate correspondence between two eyes’ images. Ovals indicate the RFs of monocular cells, with dashed and
solid lines representing left- and right-eye-only RFs, respectively. The vertical dimension of RFs is not shown to scale. Only for the special case in (c) can
the relative responses of the left- and right-eye-only monocular cells determine the monocular regions.
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Fig. 2. Stimuli used by Nakayama and Shimojo (1990). Each stimulus is
composed of a binocular rectangle and monocular bar. Nakayama and
Shimojo (1990) classified the four possible configurations into two valid (a
and b) and two invalid (c and d) cases. Redrawn from Nakayama and
Shimojo (1990).
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(2) a right-eye-only region to the right of a near surface
(Fig. 2b). The two remaining cases (Fig. 2c and d) are
called invalid.

Models for conventional stereopsis, including the phys-
iologically based disparity energy model (Ohzawa, DeAn-
gelis, & Freeman, 1990; Qian, 1994), measure disparities of
binocular regions. Consequently, these models are not
directly applicable to da Vinci stereopsis which relies on
monocular regions whose disparity is not defined. Numer-
ous models for da Vinci stereopsis have also been pro-
posed (Cao & Grossberg, 2005; Hayashi, Maeda,
Shimojo, & Tachi, 2004; Watanabe & Fukushima, 1999;
Zitnick & Kanade, 2000). Most of them (e.g., Watanabe
& Fukushima, 1999; Zitnick & Kanade, 2000) are based
on the Marr and Poggio model (1976) that assigns one unit
for each potential match between a specific feature (such as
a dot or an edge) in the left image and a specific feature in
the right image. To deal with da Vinci stereopsis, addi-
tional units responding to monocular features are then
added. Finally, geometric constraints are introduced as
excitatory and inhibitory connections among the units to
do the main computation. Although these and related
models are important for machine vision applications, they
are non-physiological because they do not use anything
like receptive fields (RFs) of visual cells. Instead, they rely
on binary units, each responding to nothing but one spe-
cific binocular match or monocular feature. As we argued
previously (Qian, 1997), such a binary representation is
inconsistent with physiology. Real visual cells are tuned
to a range of disparities or monocular features (distributed
representation) based on the cells’ RF structures. Even the
most sharply tuned V1 cells have a disparity-tuning width
of around 0.2�, and the majority of cells have much
broader tuning (Ohzawa et al., 1990; Poggio, Gonzalez,
& Krause, 1988) (see Qian, 1997, for a more detailed
discussion).

One might think that these non-physiological models
could be readily made physiological by adding realistic
RFs at the front end to generate a distributed representa-
tion. This appears to be what Hayashi et al. (2004)
attempted to do to Watanabe and Fukushima’s da Vinci
stereopsis model (Watanabe & Fukushima, 1999). How-
ever, although their work provides important new insights
into binocular rivalry, Hayashi et al. did not really make
the model physiological. After applying RFs to stimuli,
they immediately converted the resulting distributed repre-
sentation into a binary representation. The main computa-
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tion was done with the non-physiological binary units just
as in Watanabe and Fukushima’s original model. Our own
experience (Qian & Sejnowski, 1989) with the Marr–Poggio
1976 model suggests that the difficulty with making this
class of models physiological is that once the binary repre-
sentation is replaced by a realistic distributed representa-
tion of disparity, there is no known method for
implementing the required constraints on the model units.
For example, most of these models use either a strong or
weak form of the uniqueness constraint, namely that only
one depth is allowed along each line of sight. With the bin-
ary representation, this constraint can be readily imple-
mented as inhibitory connections among the units
representing different depths along each line of sight. How-
ever, with a distributed representation, a given unit will
respond to many depths. This will generate widespread,
unintended inhibition and jeopardize the computation.
Thus, the style of computation in the brain must be funda-
mentally different from that in these models.

An earlier model that also starts with binocular RFs has
been proposed by Grossberg et al. (Cao & Grossberg, 2005;
McLoughlin & Grossberg, 1998). This model makes a large
number of assumptions and explains an impressive list of
phenomena, including da Vinci stereopsis. The work is par-
ticularly interesting in suggesting potential functions for
different cell groups and cortical areas. However, like the
studies discussed above, Grossberg et al. used a binary
depth representation to do the core computation; they con-
verted the distributed representation from the RFs into a
binary representation by sampling responses at five depth
planes that are far apart from each other, and ignoring
responses between the planes. Consequently, each unit only
responds to a single depth.

Another problem with many existing models for da
Vinci stereopsis is that they use monocular cells to detect
monocular regions. This may sound reasonable, superfi-
cially, as one could argue that if at a given location, the
left-eye-only monocular cells respond well while the right-
eye-only monocular cells do not, then the location must
belong to a left-eye-only monocular region. Unfortunately,
this is only true for the special case shown in Fig. 1c where
the monocular region is defined by a textured area in one
eye (black squares) and a corresponding featureless area
in the other eye. (The dashed and solid ovals represent
the RFs of the left-eye-only monocular cells and RFs of
the right-eye-only monocular cells, respectively.) This spe-
cial case happens only if the far surface is completely fea-
tureless except for a narrow region whose relationship to
the near surface is just right to be monocularly occluded.
A more general situation is shown in Fig. 1b where both
the near and far surfaces are textured. The monocular zone
in one image does not align with a blank region in the other
image; instead, it aligns with a binocular region which is
also textured (gray squares). Monocular cells cannot detect
this monocular region because the relative response levels
of the left-eye-only and right-eye-only monocular cells
depend on the textures and contrasts of the surface patches
in the RFs, and will have little to do with whether the
region is monocular.

It has been suggested that information indicating
through which eye the monocular region is seen, known
as eye-of-origin or ocularity, is crucial for solving da Vinci
stereopsis (Shimojo & Nakayama, 1990). However, this
does not necessarily imply that monocular cells have to
be used to preserve the eye-of-origin information. In a
sense, the eye-of-origin information is also needed in con-
ventional, disparity-based stereopsis, for otherwise we
would not be able to tell positive and negative disparities
apart. As many stereo algorithms have shown (see, e.g.,
Qian, 1994) disparity sign, and thus the eye-of-origin infor-
mation, in conventional stereopsis can be readily extracted
by a proper set of binocular cells. Since monocular regions
are a binocularly defined property—they are the regions
seen by one eye AND not by the other eye—binocular cells
may provide a better and more general mechanism to
detect them.

In addition to finding the location and ocularity of mon-
ocular regions, a related issue in da Vinci stereopsis is what
rule determines the depth (or the equivalent disparity) of a
monocular region. In the general case where a binocular
background is not featureless (Fig. 1b), the answer is
straightforward: psychophysical observations suggest that
a monocular region simply takes the disparity of the adja-
cent background surface (Julesz, 1971; Shimojo & Nakay-
ama, 1990). However, in the special case of a featureless
binocular background (Fig. 1c), the disparity of the back-
ground cannot be measured, so the simple rule above does
not apply. Nakayama and Shimojo (1990) used stimuli
belonging to this special case (Fig. 2) and demonstrated
that perceived depth of a valid monocular bar depends
on the distance of the bar from the edge of a binocular rect-
angle. The finding appears to suggest the rules for assigning
depth to monocular regions in the general case and in the
special case are different. However, subsequent studies sug-
gest that double matching, as in Panum’s limiting case, can
explain the distance dependence (Gillam, Cook, & Black-
burn, 2003). This raises the possibility that the special case
of a featureless binocular background may be treated as
conventional stereopsis instead of da Vinci stereopsis,
and that models for da Vinci stereopsis should focus on
the general case where the depth assignment rule is simple.

In this paper, we first show that the disparity energy
model for conventional stereopsis can indeed explain dou-
ble matching, and thus the distance dependence in the spe-
cial configuration of Nakayama and Shimojo (1990). We
also demonstrate that the distinction between valid and
invalid monocular regions based on the geometry of pro-
jection is harder to make than previously thought, particu-
larly for the special case with featureless binocular
background. Therefore, models for da Vinci stereopsis
should focus on the general case. We then propose a phys-
iologically plausible model for da Vinci stereopsis by
extending the V1 disparity energy model to include dispar-
ity-edge-selective cells, as found in V2 (von der Heydt,
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Zhou, & Friedman, 2000). We constructed the V2 cells by
selectively combining V1 cells via feedforward connections.
No binary disparity representation or monocular cells are
required in our model. We demonstrate that at the V2
stage, our model not only determines the location and ocu-
larity of monocular regions but also improves the accuracy
of disparity maps computed in V1. Preliminary results have
been reported in abstract form (Assee & Qian, 2006).

2. Methods

Our model consists of a V1 stage and a V2 stage. At the V1 stage, we
used the disparity energy model (Ohzawa et al., 1990; Qian, 1994) with a
coarse-to-fine process incorporated (Chen & Qian, 2004; Menz & Free-
man, 2003). The importance of the coarse-to-fine process in the current
study will be explained in Section 3. As we have shown previously (Chen
& Qian, 2004; Qian, 1994; Qian & Zhu, 1997), the V1 stage can effectively
compute disparities of binocular regions of stereograms. At the V2 stage,
we combined responses from V1 cells via feedforward connections to form
disparity-edge-detectors. We then used V2 population responses to deter-
mine the location, ocularity, and equivalent disparity of monocular
regions in a stereogram, and to refine disparity map estimation.

2.1. V1 stage

The V1 disparity energy model uses the standard quadrature pair
method to simulate complex cell responses from simple cell responses;
the simple cell responses, in turn, are determined by filtering the stimulus
through binocular RFs (Ohzawa et al., 1990; Qian, 1994). The details of
our analysis and implementation of the model, the inclusion of a coarse-
to-fine process, and discussions on biological relevance, have been pub-
lished elsewhere (Chen & Qian, 2004; Qian, 1994; Qian & Zhu, 1997). Here
we present a brief summary and some implementation specifics. Coarse-to-
fine computation refers to the procedure by which an image is first pro-
cessed at a coarse scale, i.e., by relatively large RFs, and the result is then
used to guide more refined processing at a finer scale. To see the rationale,
note that cells with large RFs can cover a large range of stimulus disparity,
but the estimated disparity and its spatial location are inaccurate. Con-
versely, small RFs can give accurate results but only cover a narrow range
of disparity. This dilemma can be alleviated by a coarse-to-fine procedure:
first use large RFs to estimate disparity crudely and then apply the esti-
mate to offset stimulus disparity so that the residual disparity after the off-
set is small and can be determined precisely by small RFs (Marr & Poggio,
1979). Recent single-unit recordings in V1 by Menz and Freeman (2003)
provide physiological evidence for coarse-to-fine processing in stereovi-
sion. Their data suggest that a significant portion of V1 cells reduce their
spatial scales over time. For ease of implementation, we used separate sets
of cells for different scales.

Our coarse-to-fine algorithm combines the two well-known RF models
for V1 binocular cells: the position-shift and phase-shift models (see Qian,
1997, for a review). At each scale, disparity is always estimated by the
phase-shift RF mechanism to take advantage of its higher reliability,
and a position-shift component equal to the estimated disparity in the pre-
vious, coarser scale is used to offset the stimulus disparity (Chen & Qian,
2004). At the coarsest scale where computation begins, the position-shift
component is set to 0. In our original implementation, we used two-dimen-
sional gabor RFs for simple cells, and pooled across orientation and a
local spatial area at each scale before disparity estimation (Chen & Qian,
2004). In the current study, we used one-dimensional gabor RFs to speed
up simulations, and thus did not pool across orientation.

Mathematically, the simple cell response is given by:

Rs ¼
Z 1

�1
fLðxÞILðxÞ þ fRðxÞIRðxÞ½ �dx ð1Þ

where
fLðxÞ ¼ exp
�ðx� x0 þ d=2Þ2

2r2

 !
cos xðx� x0 þ d=2Þ þ uLð Þ ð2aÞ

fRðxÞ ¼ exp
�ðx� x0 � d=2Þ2

2r2

 !
cos xðx� x0 � d=2Þ þ uRð Þ ð2bÞ

represent the gabor RF for the left and right eyes, respectively, and IL(x)
and IR(x) are the left and right images of a stereo pair. For Eqs. (2a) and
(2b), r and x are the guassian width and spatial frequency of the gabor
RF, x0 is the RF center location, uL and uR are the phase parameters
for the left and right RFs, respectively, and d is the position-shift compo-
nent of the RFs divided equally between the left and right RFs. Note that
the position-shift component was never used to estimate disparity; instead,
it is used to offset disparity computed by the phase-shift component (Chen
& Qian, 2004). The set of scales we used followed the geometric sequence
r = 8, 4

p
2, 4, 2

p
2, and 2 pixels, and we set x = p/r at each scale so that

the bandwidth was constant across scales. The phase difference between
the left and right RFs, represented by Du = uR � uL, was sampled uni-
formly from [�p,p) with p/4 increments. A fourth-order polynomial was
used to interpolate across sampled responses.

The complex cell response equals the squared sum of a quadrature pair
of simple cells:

Rc ¼ R2
s1 þ R2

s2 ð3Þ

where Rs1 and Rs2 represent each simple cell’s response with r, x, and Du
the same for the pair. The quadrature relationship requires (uL + uR)/2
between the two simple cells to have a phase difference of p/2. According
to our previous analysis of the disparity energy model (Qian, 1994), at
each scale, we can estimate the stimulus disparity at each location by using
an appropriate set of complex cells centered at that location. The cells all
have the same parameters except that their left–right RF phase difference
(Du) covers the full 2p range. For broad-band stimuli such as lines and
dots, the stimulus disparity at a given location can be estimated according
to (Qian, 1994):

D � Du�=x ð4Þ

where Du* is the phase difference of the most responsive cell in the
population.

2.2. Double matching in panum’s limiting case

Before presenting our V2 model for da Vinci stereopsis, we describe
how we applied the V1 disparity energy model to explain double matching
in Panum’s limiting case and thus the perceived depth in the bar-and-rect-
angle stimuli used by Nakayama and Shimojo (1990). We considered a
stimulus configuration with two lines in the left eye and one line in the
right eye. Mathematically, the left and right eye’s images can be repre-
sented by delta functions as follows:

ILðxÞ ¼ dðx� x1Þ þ dðx� x2Þ ð5aÞ
IRðxÞ ¼ dðx� x1Þ ð5bÞ

where x1 and x2 are the positions of the two lines. Line 1 is binocular with
0 disparity and line 2 is seen by the left eye only. This stimulus is identical
to the one used by Gillam et al. (2003) to demonstrate double matching in
Panum’s limiting case. It also captures the essence of the stimulus used by
Nakayama and Shimojo (1990) (Fig. 2). The right edge of the large rect-
angle in the right eye of Fig. 2a is unlikely to double match with the mon-
ocular bar in the left eye because of the large lateral separation. The top
and bottom edges are also unlikely to double match with the monocular
bar because of the orthogonal orientations. Therefore, only the left edge
in the right eye could potentially double match with the monocular bar
of the left eye.

We applied both the original disparity energy algorithm with a single
scale (Qian, 1994) and the multi-scale, coarse-to-fine energy algorithm
(Chen & Qian, 2004) to this problem. We obtained results with the sin-
gle-scale algorithm analytically. We considered binocular simple cells
whose left and right RFs are described by Gabor functions as in Eqs.



a

b V2 Cell

V1 Cells

Right Subregion

Overlapping Subregion

Left Subregion

V2 Cell (Da V inci disparity = 2)

Spatial Position

V1Cell Layer

far

near

Pr
ef

er
re

d 
D

is
pa

rit
y

4
3
2
1
0
-1
-2
-3
-4

Fig. 3. Schematic representation of the V1–V2 circuitry in our model. (a)
An example V2 cell that receives inputs from two V1 cells with a preferred
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of 0 pixels to the right. The farther of the two preferred disparities, 2 pixels
in this example, is termed the cell’s da Vinci disparity. (b) The tripartite
receptive field of the model V2 cell in (a).
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(2a) and (2b) (with position-shift d = 0 as there is no other scale present to
determine the value of d.). Using Eqs. (1) and (3), and the properties of the
delta function, we can derive the simple cell response as:

Rs ¼ exp �ðx1 � x0Þ2=2r2
� �

cos xðx1 � x0Þ þ uLð Þ

þ exp �ðx2 � x0Þ2=2r2
� �

cos xðx2 � x0Þ þ uLð Þ

þ exp �ðx1 � x0Þ2=2r2
� �

cos xðx1 � x0Þ þ uRð Þ ð6Þ

and the complex cell response as:

Rc ¼ exp �ðx2 � x0Þ2=r2
� �

þ 2 exp �ðx1 � x0Þ2
.

r2
� �

þ 2 exp �ðx1 � x0Þ2 � ðx2 � x0Þ2
� �.

2r2
� �

cos xðx1 � x2Þð Þ½

þ cos xðx1 � x2Þ þ Duð Þ�

þ 2 exp �ðx1 � x0Þ2
.

r2
� �

cosðDuÞ: ð7Þ

Eq. (7) determines the population response for each stimulus location x0.
We then found the phase difference (Du*) of the most responsive cell at
each location by setting

oRc/oDu = 0, and estimated the stimulus disparity according to Eq.
(4). The solution is given by:

Du� ¼ arctanðA=BÞ ð8Þ

where

A ¼ exp �ðx2 � x0Þ2
� �

=2r2
� �

sin xðx2 � x1Þð Þ;

and

B ¼ exp �ðx2 � x0Þ2
� �

=2r2
� �

cos x x2 � x1ð Þð Þ þ exp �ðx1 � x0Þ2=2r2
� �

:

In psychophysical experiments, subjects usually report the perceived
depth of line 2 with respect to line 1. We therefore determined disparities
for line 1 and line 2 separately by setting x0 equal to x1 and x2 separately,
and the difference between the two disparities are considered as the per-
ceived disparity of line 2. By repeating this procedure across a range of lat-
eral separations between the lines (x2 � x1), we obtained plots in Fig. 5a
for comparison with psychophysics (see Section 3). We let r equal to 2,
4, 6, and 16 min separately, and set x = p/r to keep the frequency band-
width of RFs constant.

For applying our multi-scale, coarse-to-fine algorithm to this problem,
we similarly computed disparities of line 1 and line 2 separately, and plot-
ted the difference as a function of (x2 � x1) in Fig. 5b for comparison with
psychophysics.

2.3. V2 stage

von der Heydt et al. (2000) found that approximately 20% of recorded
cells in V2 responded preferentially to only one edge of a figure occluding
a background. For example, for the scene depicted in Fig. 1a, some of
these disparity-boundary-selective cells only respond to the depth discon-
tinuity at the left edge of the front surface, while others respond only to
the depth discontinuity at the right edge. These cells have been used to
model stereo segmentation (Zhaoping, 2002) but not da Vinci stereopsis.
Since monocular regions are always associated with depth discontinuity,
we modeled the V2 disparity-boundary-selective cells via feedforward con-
nections from V1, and examined whether V2 population responses could
determine the location and ocularity of monocular regions. A V2 cell
receives inputs from multiple (4 in our simulations except when noted
otherwise) V1 binocular complex cells whose RFs are centered at different
but nearby horizontal locations (Fig. 3a). Therefore, the RFs of V2 cells
are larger than those of corresponding V1 cells (Burkhalter & Van Essen,
1986; Gattass, Gross, & Sandell, 1981; Smith, Singh, Williams, & Green-
lee, 2001; Zeki, 1978). To generate disparity-boundary-selectivity observed
in V2, we let the left and right halves of the V1 input cells have various
combinations of preferred disparities. (Note that here ‘‘left’’ and ‘‘right’’
do not refer to eyes, but to V1 RF centers relative to the V2 RF center.)
Fig. 3a shows an example of a V2 cell that receives inputs from two V1
cells tuned to a 2-pixel disparity on the left and from two other V1 cells
tuned to 0 disparity on the right. The response of a V2 cell is determined
by summing the normalized responses of all its V1 input cells. The normal-
ization is done separately for each set of V1 cells with the same RF loca-
tion; it ensures that contributions from different locations to a V2 cell are
equally weighted. We also normalized each V2 cell’s response by the num-
ber of V1 cells from which it receives inputs, which is four for our simu-
lations except when noted otherwise. Although this V1-to-V2
connectivity could be applied to each scale used in our V1 model, we only
implemented it for the finest V1 scale as the estimated disparity at the fin-
est scale is the most accurate. Due to the location and extent of the V1
RFs, each V2 cell has a tripartite RF structure (Fig. 3b). For example,
the V2 cell in Fig. 3a has a preferred disparity of 2 pixels on the left side
of its RF, 0 on the right side, and a combined preference in the center.

By generating a set of V2 cells at each image location where all com-
binations of preferred disparities between the left side and right side V1
inputs are represented, including equal preferred disparities, we can then
use the V2 population response to determine whether there is a depth
boundary, and thus a monocular region, at that location. For our simula-
tions, the preferred disparities for each side of V2 RFs ranged from �8 to
8 pixels by 1 pixel increments and were used to produce a V2 population
which represents 81 disparity combinations. To examine the V2 popula-
tion response, we used a two-dimensional plot with the left and right pre-
ferred disparities along the abscissa and ordinate, respectively (Fig. 4). We
interpolated the responses with a two-dimensional surface using Matlab
function interp2. By locating the maximally responding cell relative to
the diagonal line in the plot, we can categorize the underlying image loca-
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tion into one of three groups. (1) If the maximally responding cell appears
below the diagonal (Fig. 4a), the stimulus on the right side of the V2 cells’
RFs must have a nearer depth than the left side. Based on the geometry of
Fig. 1a, the image location should belong to a left-eye-only monocular
region. (2) If the maximally responding cell appears on the diagonal
(Fig. 4b), two sides of the V2 RFs must have the same depth and there
is no occlusion. The image location must belong to a binocular region.
(3) If the maximally responding cell appears above the diagonal
(Fig. 4c), the near occluding surface must be on the left side of the V2 cells’
RFs, and the image location should belong to a right-eye-only monocular
region.

The above discussion suggests a simple method for determining the
ocularity of an image location by finding the most responsive cell from
the V2 population centered at that location. The method is to compute
the difference between the two preferred disparities (DL and DR) of the
most responsive cell according to:
Ddiff ¼ DR � DL ð9Þ
The deviation of Ddiff from zero indicates how likely the image location is
monocular, while the sign of Ddiff indicates whether the location is left-eye
only or eight-eye only. Alternatively, one could compute the perpendicular
distance from the peak of the population response to the diagonal line,
with the sign of the distance determined by whether the peak is above
or below the diagonal line. Since the signed distance differs from Ddiff by
a constant factor of

ffiffiffi
2
p

, the two methods are mathematically equivalent.
After determining the location and ocularity of monocular regions, we

can assign an equivalent disparity to the monocular regions according to
the rule where monocular regions take the depth of the far surface (Julesz,
1971; Shimojo & Nakayama, 1990). This is particularly easy to implement
in our model because we only need to assume that each V2 cell always sig-
nals the farther of the two preferred disparities within its RF. By doing so,
we can generate a more accurate depth map in V2 since the depth across
the monocular regions can now be computed. We call the farther of the
two preferred disparities of a V2 cell its da Vinci disparity (Fig. 3a).

Unless indicated otherwise, we present representative simulation
results using random-dot stereograms of the size 100 (width) · 20 (height)
pixels, and dot density 50%. The middle one third of the stereograms has
either a near disparity of �4 pixels, or a far disparity of 4 pixels, across the
full height of the image. The remaining two thirds of the stereogram have
0 disparity.

To verify that our model’s performance was not constrained to the
above parameters, we varied the number of V1 input cells to a V2 cell from
2 to 12 (Fig. 10). In addition, we computed disparity from random-dot ste-
reograms with a 33%, 50%, or 66% dot density each with disparities rang-
ing from �6 to 6 pixels taken at 2 pixel increments (results not shown). We
found that our model performs reliably across a broad range of
parameters.
3. Results

Before presenting results from our V2 model for da
Vinci stereopsis, we will first consider double matching in
Panum’s limiting case and the distance dependence of per-
ceived depth in the special stimulus configuration used by
Nakayama and Shimojo (1990) with featureless binocular
background (Fig. 2), and evaluate the proposed distinction
between valid and invalid monocular regions. This investi-
gation is important because it addresses the issue of
whether the results in Nakayama and Shimojo (1990) is
da Vinci stereopsis or conventional disparity-based stere-
opsis, and allows us to focus our da Vinci stereopsis model
on the general case of monocular occlusion.
3.1. Double matching in panum’s limiting case explained by

the V1 disparity energy model

As we mentioned in Section 1, Nakayama and Shimojo
(1990) used a stimulus configuration where the far, back-
ground surface is featureless except for a bar which is mon-
ocularly occluded by a near rectangle (Fig. 2). They found
that the perceived depth of the bar increases with the lateral
distance between the bar and the rectangle. Although the
finding was initially considered as evidence for da Vinci ste-
reopsis, Gillam et al. (2003) later suggested that the results
may be explained by double matching as in Panum’s limit-
ing case. In other words, the left edge of the right eye’s rect-
angle in Fig. 2a could be matched to the left edge of the
monocular bar as well as to the corresponding edge of
the rectangle in the left eye.

Can the distance dependence be explained by double
matching in a model for conventional stereopsis without
evoking mechanisms of da Vinci stereopsis? We used the
V1 disparity energy model to examine this issue since it is
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the most physiologically plausible model for conventional
stereopsis. We considered a stimulus configuration with
two lines in the left eye and one line in the right eye (Eq.
(5) in Section 2). One line in the left eye is located at the
same position as the line in the right eye and thus has 0 dis-
parity. The other line in the left eye is monocular but if it
double matches with the line in the right eye, it will have
a disparity equal to the lateral separation between the lines.
This stimulus is identical to the one used by Gillam et al.
(2003) to demonstrate double matching in Panum’s limit-
ing case.

We applied both the original disparity energy algorithm
with a single scale (Qian, 1994) and the multi-scale, coarse-
to-fine energy algorithm (Chen & Qian, 2004) to this prob-
lem as detailed in Section 2. The results from the two algo-
rithms, in the form of the relative disparity between the
lines as a function of the lateral separation between the
lines, are shown in panels b and c of Fig. 5, respectively.
For comparison, the psychophysical data of one subject
taken from Gillam et al. (2003) is shown in panel a.

For the single-scale model, we derived the result analyt-
ically (see Section 2). In Fig. 5b, we plot the analytical
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from Pion Limited, London. The perceived disparity of the monocular line is pl
lines. (b) Analytical results for the single-scale disparity energy model plotted f
multi-scale, coarse-to-fine disparity energy model.
result for four scales with RF Gaussian width r = 2, 4, 8,
and 16 arcmin separately. For clarity, we only show a por-
tion of each curve well within the disparity range covered
by the scale; with further extension, the curve will jump
in the opposite direction due to disparity wrap around in
the energy model (Qian, 1994). The main finding is that
the single-scale model shows qualitatively the same trend
as the data, but the magnitude of the computed disparity
is much smaller than the observation. This can be under-
stood analytically by doing a Taylor expansion of Eq. (8)
for small line separation. It can be shown that when rela-
tively disparity between the lines is computed, the first-
order term of expansion cancels, and since there is no sec-
ond-order term, the main contribution comes from a very
small third-order term.

In contrast, results from our coarse-to-fine model in
Fig. 5c agree with experimental data quantitatively. The
computed relative disparity between the lines roughly
equals the lateral line separation as observed (Gillam
et al., 2003). At the largest line separation in Fig. 5c, the
computed relative disparity starts to turn toward zero. This
is also consistent with experimental data (see Fig. 7 in Gil-
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lam et al., 2003). We therefore conclude that double match-
ing in Panum’s limiting case can be explained by our
coarse-to-fine energy algorithm for conventional stereopsis.

3.2. Valid and invalid monocular regions

The results above lend support, from a modeling per-
spective, to the suggestion that the distance-dependent
depth of the monocular bar in the experiments of Nakay-
ama and Shimojo (1990) is not da Vinci stereopsis but
instead is double matching in conventional stereopsis (Gil-
lam et al., 2003). However, Nakayama and Shimojo (1990)
distingushed between valid and invalid monocular occlu-
sions (Fig. 2), and they reported that only valid monocular
bars show the distance dependence. The double matching
interpretation does not distinguish between valid and inva-
lid cases. Interestingly, Hakkinen and Nyman (1996) used a
stimulus configuration similar to that of Nakayama and
Shimojo (1990), and found no difference between valid
and invalid cases; both show the same distance depen-
dence. We attempted to understand this apparent conflict
of data by examining whether there are multiple valid geo-
metic interpretations for what has been called the ‘‘invalid’’
configuration. For completeness, let us first consider the
geometric configuration for what Nakayama and Shimojo
(1990) call the ‘‘valid’’ cases in Fig. 2. Fig. 6a depicts the
three-dimensional scene. The opaque, featureless regions
on background are indicated by the rectangles delineated
by dashed lines. When an observer is fixating the near, cen-
tral surface, the half-images in Fig. 6b are generated, which
represent the two valid cases of Fig. 2. Now, when the
depth order of the near surface and the featureless regions
of the background is reversed, as shown in Fig. 6c, the
resulting half-images (Fig. 6d) represent the two ‘‘invalid’’
cases of Fig. 2, assuming that an observer is now fixating
the far, central surface. Therefore, there is a valid geomet-
a

Left Eye Right Eye

Left Eye

Right Eye

Left Eye

b

c

Fig. 6. Valid geometric interpretations for both valid and ‘‘invalid’’ stimuli in F
half-images of the scene in (a). (c) Scene that generates the two ‘‘invalid’’ cases i
(e) The retinal half-images of the scenes in (c and d). Rectangles delineated by
figure conventions are the same as in Fig. 1.
ric interpretation of the ‘‘invalid’’ cases. Note that Fig. 6c
still follows Nakayama and Shimojo’s original rule that a
right(left)-eye-only region is to the right(left) of a near sur-
face. However, when the near surface is featureless, the
resulting stimuli (Fig. 6e) are identical to what they classi-
fied as the ‘‘invalid’’ stimuli (Fig. 2). Featureless occluders
are also used to create stimuli with perceived phantom sur-
faces (Anderson, 1994; Gillam & Nakayama, 1999; Liu
et al., 1997).

Nakayama and Shimojo (1990) also considered a valid
interpretation for their ‘‘invalid’’ case called ‘‘silhouette
camouflage geometry.’’ However, the configuration is rela-
tively complex involving transparent surfaces, and one
could argue that it is less likely to happen in the real world
and thus less likely to be used by the brain (Nakayama &
Shimojo, 1990; but see Cook & Gillam, 2004; Ehrenstein
& Gillam, 1998). Here we show that there is a simple valid
interpretation for the ‘‘invalid’’ cases using only opaque
surfaces. Indeed, the configuration in Fig. 6c is probably
more likely to occur in the real world than that in
Fig. 6a. Fig. 6c occurs whenever the occluding surface is
featureless while Fig. 6a occurs when the far surface is fea-
tureless except at the locations which happened to be mon-
ocularly occluded by a near surface.

Based on the above considerations, we suggest that the
lack of depth in Nakayama and Shimojo’s (1990) ‘‘invalid’’
configuration is not because it is invalid but because there
is a valid, flat interpretation with no depth between the
monocular region and the central binocular region
(Fig. 6c). Fig. 6d shows another valid interpretation of
the same ‘‘invalid’’ case. Here, a depth exists between the
monocular region and the central binocular region. This
configuration does not contradict double matching or the
psychophysical results of Hakkinen and Nyman (1996)
who found the same distance dependence for both valid
and ‘‘invalid’’ cases. We therefore suggest that Hakkinen
Right Eye

Left Eye

Right Eye

d

Left Eye Right Eye

e

ig. 2. (a) Scene that generates the two valid cases in Fig. 2. (b) The retinal
n Fig. 2. (d) Another scene that generates the two ‘‘invalid’’ cases in Fig. 2.
dotted lines in (a), (c), and (d) represent featureless opaque surfaces. Other
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and Nyman’s subjects and Nakayama and Shimojo’s sub-
jects perhaps used different interpretations and thus
reported different results. We further speculate that when
subjects use an interpretation shown in Fig. 6c, the double
matching is overruled by this interpretation so that there is
little perceived depth between the monocular and the cen-
tral binocular regions.

In the above, we considered a special case involving fea-
tureless surfaces as used by Nakayama and Shimojo (1990).
In the general case where the surfaces are textured, can the
‘‘invalid’’ configuration really be invalid? Although we do
not know the general answer that covers every possibility,
we examined a stimulus used by Shimojo and Nakayama
(1990) in a later study. The authors generated a random-
dot stereogram with a central near surface and a surround
far surface. Both surfaces are textured with dots and the
stereogram has two valid monocular regions as in Fig. 1a
and b. These valid regions are labeled as L1 and R2 in
Fig. 7b. They then created an ‘‘invalid’’ monocular region
in the left eye’s image by copying the monocular region on
the left side of the front surface (L1 in Fig. 7b) and pasting
it to the right side (L3 in Fig. 7b). They found that the
‘‘invalid’’ monocular region L3 generates binocular rivalry
instead of depth. Is the rivalry due to the invalid nature of
the stimulus? Fig. 7a shows that there is actually a valid
interpretation of the stimulus. Note that in the alignment
of the two eyes’ images in Fig. 7b, the fixation depth is
a

Left Eye Right Eye

Left Eye

Right Eye

L1 L3

R2 R3

b

R1

L1

L3

R1

R2

R3

Fig. 7. A valid geometric interpretation for an ‘‘invalid’’ random-dot
stimulus in Shimojo and Nakayama (1990). The scene depicted in (a)
generates the half-images in (b) used in Shimojo and Nakayama (1990).
Figure conventions are the same as in Fig. 1.
assumed to be at the background plane because in the
experiment, subjects were asked to judge the depth of
image patches on the background. Also note that when
the ‘‘invalid’’ monocular region L3 is created in the left
eye, it simultaneously creates a monocular region in the
right eye (R3 in Fig. 7b) next to the valid monocular region
R2 in the right eye. This happens because L3 overrides the
original dot pattern corresponding to R3, thus rendering
R3 monocular with no binocular correspondence
(Fig. 7b). Therefore, L3 and R3 are at the same spatial
location but their dot patterns are unrelated (Fig. 7b).
Fig. 7a shows that this situation can arise from looking
through a small aperture on the background. In fact, How-
ard (1995) and Tsai and Victor (2000; Tsai and Victor,
2005) have studied similar configurations and found that
in addition to rivalry, they also generate a weak sense of
depth perception, termed the sieve effect.

Therefore, we conclude that rivalry in Shimojo and
Nakayama (1990) random-dot stimulus is not due to the
invalid nature of the stimulus as there is a valid interpreta-
tion. Instead, it is probably due the fact that the left and
right image patches at the same spatial location are unre-
lated. Rivalry does not happen for what Shimojo and
Nakayama (1990) call the valid monocular regions, such
as L1 in Fig. 7b, presumably because the aligned region
in the other eye, R1, is correlated with a patch to the right
of L1.

3.3. Solving da Vinci stereopsis with V2 disparity-boundary-

selective cells

The above considerations indicate that at least some of
the configurations thought to be invalid actually have sim-
ple, valid interpretations, and that the special case of mon-
ocular occlusion with featureless surface areas used by
Nakayama and Shimojo (1990) can be explained by double
matching in our coarse-to-fine disparity energy model for
conventional stereopsis, and thus may not qualify as da
Vinci stereopsis. We therefore focused our da Vinci stere-
opsis model on the general case of monocular occlusion
with textured surfaces. As we mentioned in Section 1
(Fig. 1b), monocular cells are generally not suited for find-
ing the monocular regions which are binocularly defined
and are characterized by the lack of correlated regions in
the other eye. We showed previously that V1 disparity
energy units compute binocular correlation (Qian & Zhu,
1997) and that the computation is much enhanced via a
coarse-to-fine algorithm (Chen & Qian, 2004). We there-
fore first examined whether our coarse-to-fine algorithm
could be adopted to locate the monocular regions as areas
of weak binocular correlation. We found that the method
works to some degree but the results (not shown) are not
robust. Since monocular regions always occur at depth dis-
continuities, it is natural to use V2 disparity-boundary-
selective cells to improve V1 computation. We constructed
these V2 cells from V1 cells via feedforward connections so
that V2 cells have various combinations of preferred
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disparities on the left and right portions of their RFs, and
we used V2 population responses to determine both the
location and ocularity of monocular regions (see Section 2).

An example of our simulations on a random-dot
stereogram is shown in Fig. 8a. The middle third of the
stereogram has a near disparity of �4 pixels, and the
remaining two thirds have 0 disparity. The top row of
Fig. 8a shows the ideal ocularity map; the black and white
colors represent the left-eye-only and right-eye-only mon-
ocular regions, respectively, and gray color represents bin-
ocular regions. The width of the monocular regions equals
the disparity magnitude of the near surface. The bottom
row is a representation of the computed ocularity map.
As we explained in Section 2, ocularity of each image
location can be determined by finding the most responsive
cell of the two-dimensional V2 population response plot
for that location (Fig. 4) and calculating the difference
between the two preferred disparities of the cell according
to Eq. (9). A zero difference means the location is binocu-
lar, whereas positive and negative values indicate a right-
eye-only and left-eye-only monocular location, respec-
tively. In the bottom row of Fig. 8a, we used a gray scale
to represent the disparity difference of the most responsive
V2 cell, normalized by the largest difference in the map.
The gray color represents 0 difference for binocular loca-
tions. A progressively more white (black) color represents
a larger positive (negative) difference, indicating that the
location is more likely to be left-eye-only (right-eye-only).



Table 1
Accuracy of ocularity map computation with different thresholds

Threshold Fraction of incorrect pixels
for near stimulus

Fraction of incorrect pixels
for far stimulus

0 0.0745 0.0745
0.05 0.0525 0.0525
0.1 0.048 0.048
0.4 0.0455 0.0455
0.75 0.054 0.054
0.9 0.0745 0.0745
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Visually, the ideal and computed ocularity maps are in
good agreement. To make the comparison more quantita-
tive, we used a threshold for the disparity difference to
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both horizontal and vertical image positions.
commit continuous values in the computed map to the dis-
crete ocularity representation used in the ideal map. If the
absolute value of the disparity difference was below the
threshold, the point was considered as binocular; other-
wise, it is monocular with ocularity determined by the sign
of the difference. The second column of Table 1 shows the
fractions of misclassified pixels under various threshold
values in the first column. For a threshold value between
0.05 and 0.4, only 5% of the points are incorrectly classi-
fied. The error rate remains low for an even wider range
of threshold values.

Fig. 8b shows another example of our simulations with
the same format. The random-dot stereogram used is iden-
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tical to that used for Fig. 8a except that the middle third of
the stereogram has a far disparity of +4 pixels. The frac-
tions of misclassified points under various thresholds are
shown in the third column of Table 1.

In addition to ocularity maps, we also computed dispar-
ity maps at both V1 and V2 levels. The results for the two
stereograms used in Fig. 8 are shown in Fig. 9. Fig. 9a is for
the stereogram with a near, �4 pixel disparity. The top and
bottom rows show the disparity maps extracted from V1
and V2 responses, respectively. In each row, the left panel
shows disparity as a function of the horizontal position of
the stereogram. The solid curve represents the ideal dispar-
ity map where the disparity of the monocular regions
(delineated by dotted lines) takes the value of the far back-
ground surface. The gray curves represented the computed
disparities, with one curve for each vertical position of the
stereogram. The right panel of each row of Fig. 9a is a gray
scale representation of the same computed disparity map;
near and far disparities are represented by black and white
colors, respectively.

It can be seen from Fig. 9a that the disparity map com-
puted from the V1 level is already quite good. The errors
mainly occur at the two monocular regions. The V2 level
reduces these errors by shifting the disparity in the monoc-
ular regions toward the 0 disparity of the background, thus
making the computed map in better agreement with the
ideal map. This happens because we assume that each V2
cell signals the farther of its two preferred disparities (da
Vinci disparity) to later stages (see Section 2). To quantify
the improvement, we computed the mean absolute errors
between the ideal and computed V1 and V2 maps. The
errors were 0.27 and 0.14 pixels for V1 and V2, respec-
tively. Even at the V2 level, the computed map still differs
from the ideal map as the image points in the monocular
regions do not all take the far disparity exactly. Interest-
ingly, Shimojo and Nakayama (1994) measured human
subjects’ perceived depth of a probe dot in the monocular
region, and Fig. 3 in their paper shows that the agreement
between the perceived depth and the ideal map is also not
precise.

Fig. 9b shows results for the stereogram with a far dis-
parity of +4 pixels in the middle portion of the stereogram.
The format of presentation is the same as that for Fig. 9a.
The ideal map follows the same rule as stated above that
the monocular regions take the disparity of the far surface.
Note, however, that in Fig. 9a, the far disparity is 0 pixel
on the left and right portions of the stereogram, whereas
in Fig. 9b, the far disparity is 4 pixel in the middle portion
of the stereogram. This explains why the ideal map in
Fig. 9b has a wider central surface than that in Fig. 9a.
The errors of computed disparity maps were 0.11 and
0.08 pixels for V1 and V2, respectively. The improvement
by the V2 level is not as large as that in Fig. 9a mainly
because the V1 map here is in better agreement with the
ideal map.

A major parameter in our model is the number of V1
cells connected to a V2 cell (Fig. 3), and was set to 4 in
the above simulations. To explore the dependence on this
parameter, we varied the number from 2 to 12 by an incre-
ment of 2 cells. The results for the stereograms with �4
(near) or 4 (far) pixels of disparity are summarized in
Fig. 10. The percent error improvement is the difference
between the V1 error (in disparity map computation) and
the V2 error divided by the V1 error, averaged over 10 ste-
reograms for each disparity. There is substantial improve-
ment at the V2 stage when the number of V1 cells
connected to a V2 cell is not larger than 8. Note that there
is greater improvement for the near disparity than for the
far disparity. This asymmetry results from a bias in the
da Vinci disparity rule which always assigns the further
of the two depths to a monocular region. The rule makes
the V1 stage perform better for the far disparity case, which
leaves less room for the V2 stage to improve. We also gen-
erated similar plots for disparity magnitudes of 2 and 6 pix-
els (results not shown) and found that the V2 stage
improves disparity computation for all cases when the
number of V1 input cells to a V2 cell is not larger than 6.
3.4. Comparison with V2 physiolgy

Finally, we attempted to reproduce some key electro-
physiological properties of depth-edge-selective V2 cells
described by von der Heydt et al. (2000). Fig. 11a shows
the responses of two recorded V2 cells to a random-dot ste-
reogram with a near central square region against a back-
ground. The responses were plotted as a function of the
relative horizontal position between the RFs and the ste-
reogram. Each cell responded well only when its RF was
aligned with one of the two vertical edges of the central
square in the stereogram. To simulate these results, we con-
sidered two of the V2 cells in our model. The first V2 cell
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stereograms. Each cell is tuned to a specific disparity edge in the
stereograms. (b) Disparity-boundary-selectivity for two of our model V2
cells. (c) A half-maximum threshold is applied to (b) to eliminate the
intermediate responses.
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receives inputs from V1 cells with a preferred disparity of
�2 pixels on the left of its RF and 2 pixels on the right
of its RF. The second V2 cell prefers the opposite depth
order, with a preferred disparity of 2 pixels on the left
and �2 pixels on the right. We then stimulated the cells
with a random-dot stereogram with a central disparity of
2 pixels and a background disparity of �2 pixels. The
responses of the model V2 cells as a function of the relative
position between the cells’ RFs and the stereogram are
shown in Fig. 11b. As expected from how the cells are con-
structed, each cell responds maximally to only one of the
two depth edges in the stereogram, similar to the real
edge-selective V2 recorded by von der Heydt et al. (2000).
However, the model cells also have an intermediate
response at binocular regions of the stimulus. This is
because each model V2 cell has two preferred disparities
(Fig. 3), and its response is half-maximum when its RF
‘‘sees’’ only one of the two preferred disparities. For exam-
ple, consider the V2 cell preferring �2 and 2 pixels of dis-
parities on the left and right sides of its RF, respectively. If
this cell covers a disparity edge with �2 pixels on the left
side and 2 pixels on the right side, both of its preferred dis-
parities match the stimulus disparities and it fires maxi-
mally. On the other hand, if the depth order of the edge
is reversed, neither side of the cell’s RF matches the pre-
ferred disparity and it fires minimally. Finally, if the cell
covers a uniform disparity of either �2 or 2 pixels, one
of its preferred disparities matches the stimulus disparity
and it fires at an intermediate, half-maximum level. This
intermediate response can be eliminated with a threshold.
The results, shown in Fig. 11c, are in better agreement with
the data in Fig. 11a.

von der Heydt et al. (2000) also measured two-dimen-
sional disparity-tuning plots of V2 edge-selective cells by
using random-dot stereograms with different combinations
of surround and figure disparities, all presented at a fixed
position with the depth edges aligned with the cells’ RF
centers. Plots for two example cells are shown in
Fig. 12a, where the horizontal and vertical axes represent
surround and figure disparities, respectively, and the area
of each filled dot represents the magnitude of the response.
To replicate these results, we considered two model V2 cells
with preferred disparity combinations of 2 and 0 pixels,
and 0 and 2 pixels for the left and right subregions of the
RFs. We positioned the centers of our model V2 RFs to
within 0.5 pixels of the disparity edges of the stimuli. The
two-dimensional disparity-tuning plots for these model
cells are shown in Fig. 12b, and they resemble those of real
cells recorded by von der Heydt et al. (2000). Note that the
tuning plots of our model cells may not be as sharp or as
precise as one would predict from the population response
plots (Fig. 4) or from the preferred disparities of the cells.
This is due to the fact that for the disparity energy model,
there is always a larger variability in disparity-tuning plots
than in population response plots for random-dot stereo-
grams (Chen & Qian, 2004). For the same reason as in
the response curves of Fig. 11b, an intermediate response
was prevalent and can be removed by the same half-maxi-
mal threshold used above. The thresholded results shown
in Fig. 12c are in better agreement with the physiological
data.

Since we found it helpful to use a response threshold
equal to that of the half-maximal responses of our model
V2 cells in order to better reproduce the observed responses
by von der Heydt et al. (2000), we repeated our computa-
tions of ocularity and disparity maps using thresholded
model V2 cells. Fig. 13 shows the results on the same ste-
reogram used in Figs. 8a and 9a with a near central region.
The results are comparable to those obtained without the
response threshold. With a normalized disparity difference
threshold value of 0.5, we observe that 6% of the points are
classified incorrectly. Moreover, the V2 stage continues to
outperform the V1 stage at disparity computation
(Fig. 13b, where conventions are the same as in Fig. 9) as
it assigns a more appropriate disparity to the monocular
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Fig. 12. Simulations of two-dimensional disparity tuning of disparity-boundary-selective V2 cells. (a) Recordings of two real disparity-boundary-selective
V2 cells reprinted from von der Heydt et al. (2000) with permission from Elsevier. The RF of each cell was always aligned with a disparity boundary in a
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the foreground and background disparities. (b) Disparity tuning for two of our model V2 cells. (c) A half-maximum threshold is applied to (b) to eliminate
the intermediate responses.

2598 A. Assee, N. Qian / Vision Research 47 (2007) 2585–2602
regions. The mean absolute error was 0.16 pixels for the V2
stage with the half-maximum threshold, compared with an
error of 0.14 pixels without the threshold in Fig. 9a, and an
error of 0.27 pixels at the V1 stage.

3.5. Discussion

In this study, we investigated a few related issues of da
Vinci stereopsis. The first concerns the perceived depth of
a monocular bar in the special stimulus configuration used
by Nakayama and Shimojo (1990), where the binocular
background regions are completely featureless (see
Fig. 2). The perceived depth was found to be dependent
on the lateral separation between the bar and the rectangle.
Although the observation was initially interpreted as evi-
dence for da Vinci stereopsis, Gillam et al. (2003) later sug-
gested that it may be explained by double matching as in
Panum’s limiting case. We applied the disparity energy
model for conventional, disparity-based stereopsis to this
problem, and found that the coarse-to-fine version of the
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model explains double matching and the distance depen-
dence of the perceived depth. Our work thus lends compu-
tational support to Gillam et al.’s interpretation. Gillam
et al. (2003) also confirmed an obvious prediction of their
interpretation: when the bar is replaced by a disc to avoid
double matching, the distance-dependent depth is not
observed.

The second issue is about the distinction between valid
and invalid monocular regions as classified by Nakayama
and Shimojo (1990) and shown in Fig. 2. Nakayama and
Shimojo observed the distance-dependent depth of the
monocular bar only for the valid cases. This appears to
contradict the double matching interpretation which does
not distinguish between the valid and invalid cases. How-
ever, Hakkinen and Nyman (1996) used stimuli similar to
those of Nakayama and Shimojo, and found distance-
dependent depth for both valid and invalid cases. The main
difference between stimuli used in the two psychophysical
studies is that Hakkinen and Nyman introduced a binocu-
lar rectangle above the one in Fig. 2 and shortened the
monocular bar. Since this new rectangle does not change
the occlusion relationship between the original binocular
rectangle and the monocular bar, it should not change
the validity of the monocular bar. Thus, the two psycho-
physical studies appear to contradict each other. To help
resolve this problem, we showed in this paper that there
is actually more than one valid interpretation for the ‘‘inva-
lid’’ cases. A subject’s perception may depend on his/her
individual preferences to a particular interpretation and
on how that interpretation interacts with double matching
computation.

The final issue we examined is how to solve da Vinci ste-
reopsis with a simple and physiologically plausible mecha-
nism. We demonstrated that a feedforward model based
upon the V1 binocular energy model (Ohzawa et al.,
1990; Qian, 1994), extended with a coarse-to-fine algorithm
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(Chen & Qian, 2004), and enhanced with the addition of a
layer of disparity-edge-selective V2 cells is able to deter-
mine both the location and eye-of-origin of the monocular
regions. This information could be used by later stages of
the visual processing pathway to infer occlusion geometry.
For the simple task of assigning a monocular region the
depth of the binocular background, we assumed that when
a V2 cell fires, it signals evidence for the further one of its
two preferred disparities to the next stage. The assumption
is motivated by the psychophysical observation that mon-
ocular regions appear to have the depth of the far back-
ground, and currently there is no physiological evidence
for or against it. The disparity map so computed at the
V2 stage is more accurate than that at the V1 stage.

The main advantages of our model are: (1) it uses a
distributed disparity representation without converting it
into a binary representation at any stage, and is thus
more physiologically plausible than previous da Vinci ste-
reopsis models, and (2) our model is much simpler than
previous models which often rely on implementing com-
plicated constraints. Another key feature of our model
is the absence of monocular cells; only binocular cells
are needed to compute ocularity maps, as well as dispar-
ity maps. As we mentioned in Section 1, monocular
regions for da Vinci stereopsis are binocularly defined.
They are generally characterized by the absence of corre-
lated regions in the other eye (Fig. 1b) and should thus
be detected by binocular cells that can sense binocular
correlation (or the lack of it). In our model, multi-scale
binocular energy responses in V1 provide an initial mea-
sure of binocular correlation (Qian & Zhu, 1997). This is
then made much more robust by V2 disparity boundary
cells. In the real V1, different binocular cells have differ-
ent degrees of balance between the two eyes and they
may all contribute to da Vinci stereopsis. However, more
balanced cells are better binocular correlators and may
play a more dominant role. Strictly monocular cells can-
not sense binocular correlation at all and thus cannot
contribute to monocular region detection in the general
case where the binocular background surfaces are tex-
tured (Fig. 1b). Monocular cells are not found beyond
V1. Even in V1, they are probably much rarer than com-
monly believed since many cells not responding to one
eye nevertheless show non-linear binocular interactions
when both eyes are stimulated together (Ohzawa & Free-
man, 1986a, 1986b; Poggio & Fischer, 1977). Thus, our
suggestion and demonstration of using binocular cells
to solve da Vinci stereopsis remove a major restriction
on possible physiological mechanisms. The non-linear
binocular cells mentioned above, though not included in
our current model, may also contribute to da Vinci stere-
opsis. On the other hand, monocular cells may be impor-
tant for the related phenomena of phantom surface
perception from monocular gaps (Gillam & Nakayama,
1999) since the monocular gaps are featureless and could
be located by comparing monocular activities (cf.
Fig. 1c).
We used excitatory feedforward connections to con-
struct V2 cells from V1 cells. This is perhaps the simplest
way to create the required disparity-boundary-selectivity,
and we certainly do not mean to exclude potential roles
of feedback/recurrent connections or inhibitory inputs via
interneurons in shaping V2 responses or stereo computa-
tion. It may well be that our feedforward model only pro-
vides a first-order approximation to V2 disparity boundary
tuning in the manner that Hubel-Wiesel’s feedforward
model approximates orientation mechanism in V1 (Teich
& Qian, 2006). Feedback/recurrent connections and inhib-
itory inputs may enhance V2 disparity boundary tuning in
the manner that such connections in V1 can make orienta-
tion tuning sharper and contrast invariant. For example,
Mexican-hat type of recurrent excitation and inhibition
could be introduced among V2 cells tuned to different dis-
parity steps so that a given V2 cell’s response to the non-
preferred disparity steps would be suppressed and hence
its selectivity enhanced. Such interactions could also pro-
vide a contrast-invariant implementation of the half-maxi-
mal threshold for removing the intermediate responses in
Fig. 11. The half-maximal threshold has to be adjusted
according to the stimulus contrast since the intermediate
responses grow with the contrast. If the threshold is imple-
mented by V2 inhibitory cells, then the adjustment is auto-
matic because the inhibitory activities also grow with the
contrast. Alternatively, in Fig. 3a, other V1 cells in the
same columns as the four connected to the V2 cell could
send feedforward inhibitory inputs to the same V2 cell to
enhance its disparity-edge-selectivity and achieve contrast
invariance of the selectivity.

A couple of testable predications can be made from our
model. The first is the specific connectivity pattern from V1
to V2 suggested by our model. The connectivity suggests
that each V2 disparity-boundary-selective cell should have
two preferred disparities in its RF (Fig. 3b). Secondly, our
model V2 cells fail to respond reliably when the monocular
gap introduced between the binocular regions of an image
is larger than the maximum disparity the system can com-
pute. Thus, the model predicts that subjects’ perception of
conventional stereopsis from disparity and da Vinci stere-
opsis from monocular regions should degrade at roughly
the same stimulus disparity between figure and ground.

Gillam and Borsting (1988) reported that monocular
regions having the same dot density as the rest of a ran-
dom-dot stereogram facilitate stereopsis. These findings
were extended by Grove and Ono (1999) who additionally
demonstrated that depth is perceived more quickly when
the texture of a monocular region matches the texture of
a far background, rather than that of a near surface in ran-
dom-dot stereograms. Our model does not contain a com-
ponent for perceptual latencies and thus cannot be applied
to explain these findings directly. Nevertheless, we found
that our model is able to compute both ocularity and dis-
parity maps even when monocular regions have dot densi-
ties (including zero dot density or blank regions) different
from the rest of a random-dot stereogram (results not



A. Assee, N. Qian / Vision Research 47 (2007) 2585–2602 2601
shown), as has been demonstrated with human subjects.
Perhaps the latency effects could be accounted for by a
grouping process in higher visual areas not currently imple-
mented in our model.

In summary, we have designed a model for da Vinci ste-
reopsis that determines the location and eye-of-origin of
monocular regions and improves disparity map computa-
tion by using edge-selective V2 cells. The model is simple
and physiologically plausible, and does not use any monoc-
ular cells. Our analysis also casts doubts on the distinction
between valid and invalid monocular regions, and suggests
that da Vinci stereopsis studies should focus on the general
stimuli whose binocular background regions are not
featureless.
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