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I. Introduction

Many vertebrate and invertebrate neurons receive synaptic inputs on spines (Coss
and Perkel, 1985). In hippocampal pyramidal cells, almost all synapses found
on spines are excitatory (Harris and Stevens, 1989), but in the cat primary visual
cortex, 7% of synapses on spines are inhibitory (Beaulieu and Colonnier, 1985),
which comprise almost one-third of the total number of inhibitory synapses on
a pyramidal cell. It has been suggested that shunting inhibition on a spine could
perform a selective AND-NOT-like operation (Koch and Poggio, 1983b). The
lonlinear effects would be localized to the spine, making it an effective com-
Putational module. In this chapter, we compare the predictions made by the
cable model with those made by the electro-diffusion model for this problem.
The conduction of action potentials in axons can be accurately modeled by
‘ the Hodgkin-Huxley equation, which is based on the cable equation (Hodgkin
and Huxley, 1952). The integration of postsynaptic signals in dendrites has also
been studied with analytic solutions to passive cables (Rall, 1977), and recently,
Several investigators have used the cable model to examine the possibility of
Tflore complex signal processing in dendrites with complex morphologies, mul-
Uple synaptic inputs, and passive or excitable membranes (Shepherd et al., 1985;
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118 Part I Computation in Dendrites and Spines

Koch and Poggio, 1983; Koch et al., 1983; Rall and Segev, 1985; Perkel and
Perkel, 1985; Wathey et al., 1989). A central assumption of the cable model] ig
that ionic concentrations do not change appreciably, so that the driving forces
can be approximated by fixed batteries. However, if the intracellular volume is
relatively small, as in dendritic spines, then ionic concentrations can change
rapidly following a transient change in ionic conductances. Moreover, a sudden
change in concentration at one location can lead to gradients of ionic concen-
tration within a thin process, such as the neck of a spine, which violates another
fundamental assumption of the cable model. Under these circumstances, it is
necessary to consider the fundamental laws governing the movements of ions,
as given by the Nernst—Planck equations for electro-diffusion (Jack et al., 1975).

In this chapter, we summarize the results of applying an electro-diffusion
model based on the Nernst—Planck equation to dendritic spines (Qian and Sejnowski,
1989, 1990). The electro-diffusion model gives more accurate predictions than
the cable model, especially for small structures. The electro-diffusion model
provides a unified framework for the computation of both the membrane poten-
tials and the intracellular ionic concentrations during synaptic activation. We
have also developed a modified cable model that is a better approximation to
the electro-diffusion model than the standard cable model and is less demanding
computationally.

II. Cable Model Predictions

Consider first the case where the excitatory and inhibitory synapses are very
close to each other. According to the cable model, the excitatory and the inhib-
itory synaptic currents are, respectively, given by:

I(1) = G(1)(V(t) — E.) U]

I(1) = G(OIV(@) — E] ~ G(DIV() — Viea, @

where E, and E; are the reversal potentials of the excitatory and the inhibitory
synapses, G, and G; are the transient synaptic conductances, V is membrane
potential at the synapse, and V., is the resting membrane potential (Rall, 1977).

We have assumed in Eq. (1) that the reversal potential for shunting inhibition £
is very close to the resting membrane potential. In contrast, the excitatory inputs §
usually cause conductance increases to ions like Na* or Ca* * that have a reversal
potential, E,, well above resting membrane potential. The inhibition will b¢
effective if |I| is comparable to |I,|. This requires, first, that G; be larger than
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G,. Second, V should be well above the resting membrane potential so that the
driving force for the inhibition (V — V) is comparable to the driving force
for the excitation (V — E,). This in turn requires that G, be large and/or that
the synapses are on small structures, such as spines or thin dendrites, where
input resistances are large and small synaptic conductance change can cause a
large depolarization. (Large inhibitory driving forces can also be achieved when
the cell is firing an action potential.) In summary, for shunting inhibition to be
effective when excitation and inhibition are located close to each other, the cable
model requires that the synapses should be on small structures and G; > G, > Gieg,
where G is resting conductance of the membrane at the synapse.

° In their analysis and simulations of shunting inhibition, Koch et al., (1983)

% mainly considered large synaptic conductances on spines and distal (thin) den-
% drites that satisfy the inequalities discussed in the preceding. Their G, was as
% large as 10 nS and G; was 100 nS, but more recent physiological data suggest
¢ that G, should be about 1 nS (Higashima et al., 1986; Brown ez al., 1988).
% They also found that, for large excitatory conductances, inhibition on the direct
§ path to the cell body was also effective, and that the most effective location for
% the inhibition moves toward the soma as the excitatory conductance increases
+  (Koch er al., 1982). Two opposing factors explain the phenomenon: When the

inhibition is on the direct path from excitation to the soma, /; is smaller because,
at the site of inhibition, the membrane is less depolarized; but I, is also smaller
because, at the site of inhibition, the membrane is less depolarized; but /, is also
smaller because, at the site of excitation, the membrane is more depolarized.
They also found that when the inhibition was more distal than the excitatory
Synapse, the inhibition was no longer effective. In this case, the resistance from
the excitatory synapse to the cell body is much less than the resistance to the
inhibitory synapse at the distal tip, so less current is shunted. Finally, Koch et
al., (1983) mentioned that increasing the value of the cytoplasmic resistivity and
the membrane resistance increased the effectiveness of inhibition. This occurred
because the membrane depolarization was larger, which made the driving force

for the inhibitory current larger and the driving force of the excitatory current
smaller,

Rl

UL Limitations of the Cable Model
In the caple model, the membrane potential, V(z, t), at distance z and time ¢
along a cable obeys the equation (Jack ez al., 1975):

d &V )%
—— =Cuy + Iy, ©)
4R,‘ 0z at
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where d is the diameter of the cable. R; ({dcm) is the total intracellular cytoplasmic
resistivity, C, (wF/cm?) is the membrane capacitance per unit area, and I,
(mA/cm?) represents the total non-capacitative membrane current density, which
is the summation of all non-capacitative membrane current densities for each
ionic species, I, . If we assume that the movement of ionic species k across
the membrane can be described by a membrane resistance of unit area R, ,
(Qcm?) in series with a battery whose electromotive force E; is equal to the
ionic equilibrium potential, then

_V‘—Ek

I = 4
& R 4)

&)

where the resting membrane potential V., and the total membrane resistance
R,, are given by:

Vrest = Rm E(Ek/Rm,k), (6)
k

1

R

> (VR ). Q)
k

Through these definitions, the electrical circuit can be reduced to a simpler
equivalent circuit that has a single battery in series with a leak resistance. The
standard equation for the cable model is obtained by substituting Eq. (5) into
Eq. (3), assuming that V is measured from the resting potential V., (Rall, 1977):

@®

where the space and time constants are defined as

N = (d R./4R)", (€)

Tm = Ry Ch. (10)

The electromotive forces of the membrane batteries (equilibrium potentials)
in the cable model are usually obtained from the Nernst equation and are con-
sidered constants. This is a good approximation in the squid giant axon or other
large neurons, but may introduce errors if the concentrations of some ions change
significantly. This applies to Ca* * in many situations and to synaptic events in
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small structures such as dendritic spines (Rall, 1978; Koch and Poggio, 1983a;
Zador et al., 1990).

A second limitation of the cable model is in the treatment of longitudinal
spread of current within neurons. In the cable model, the gradient of the electrical
potential in the cytoplasm is the driving force for the ionic current, but there is
no provision for the driving forces due to concentration gradients. This is usually
a good assumption, but it may not be valid for small structures like dendritic
spines where the spatial concentration gradients can be very large.

Finally, different ions may have different concentration-dependent cytoplasmic
resistivities, but the cable model only incorporates the total cytoplasmic resis-
tivity. This may not be a valid approximation when the concentration of ions
are changing differentially. In summary, one expects that the cable model may
not be appropriate when spatial and/or temporal ionic concentration changes are
large and, especially when ionic concentration changes need to be determined.

B e SR s

IV. Electro-Diffusion Model Predictions

The cable model fails for small structure and large conductance changes, precisely
the conditions required for effective shunting inhibition by the cable model (Qian
and Sejnowski, 1988, 1989). the electro-diffusion model predicts that the shunt-
ing inhibition cannot be effective on small structures for the following reasons.
Consider first the case when the conductance changes are large. If the inhibitory
Current is carried by CI” ions, then during a large conductance change the CI-
Concentration in a small structure such as a spine or a thin dendrite will very
Tapidly increase. The Nernst potential for CI” becomes more positive and the
inhibition is ineffective. Changes in the CI~ Nernst potential have been reported
(Griffith ¢ al., 1986; Huguenard and Alger, 1986). If the conductance changes
are small, then the concentration changes for CI” are small and the electro-
diffusion model will reduce to the cable model. Thus, shunting inhibition will
ot be effective because the membrane depolarization is small and the driving
force for the inhibitory current is much smaller than that for the excitatory current,
3 discussed in section I1. As a consequence, the electro-diffusion model predicts
that the shunting inhibition can never be very effective in small structures.

K fﬂ Similar analysis can be applied for hyperpolarizing inhibition carried by
- When both the excitatory and the inhibitory synaptic conductances are large
‘é“\a Small structure, K+ hyperpolarizing inhibition is just as ineffective as the
I Sbunting inhibition because of large ionic concentration changes. However,
© Situation for small synaptic conductances is different. The reversal potential
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for K* is sufficiently below the resting potential that the driving force for the
inhibition can be large even at the resting potential. In addition, the intracellular
K™ concentration is much higher than CI” and, therefore, the percentage change
is usually smaller. These statements will be made quantitatively precise in the
model and the numerical simulations presented next.

A. Electro-Diffusion Model

The movement of ions in neurons is governed by the Nernst-Planck equation
(Jack et al., 1975):

'71( = _Dk(vnk + (nk/ak)-v.v)’ (11)

where V is the potential, J, is the flux of ionic species k (number of particles
per unit area), D, is the diffusion constant, n, is the concentration, and the
constant o is defined as

_RT

o = ’
FZk

(12)
where z; is the valence of ionic species k, R is the gas constant, F is the Faraday
constant, and T is the absolute temperature. The ionic concentrations and ionic
currents must additionally satisfy the continuity equation:
= = ank
V-l + —=0. 13
et (13)
Consider a cylinder of diameter d and assume that the longitudinal current
and ionic concentrations are uniform across the transverse cross section of the
cylinder. Assume also that transverse currents occur only at the surface of the
cylinder and are independent of angle around the axis of the cylinder. These
assumptions reduce the problem of electro-diffusion to a one-dimensional prob-
lem along the axis of the cylinder. The equations can be written in cylindrical
coordinates and reduced to a single equation for the concentration as a function
of the distance along the z axis of a cylinder:
on n D, d 1% 4
— = k—‘zk —*— e — ) — _Jm,kv (14)
ot 0z Ok 0z 0z d
where J,,  is the membrane flux of ionic species k, positive for outgoing flux.
Equation (14) must be supplemented by an additional constraint between the
membrane potential and the ionic concentrations. We adopt the same capacitative
model of the membrane used in the cable model; that is, we assume that the
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potential change in a short segment of a process is equal to the change of the
total charge in the segment divided by its membrane capacitance:

V(z, 1) = View + (Fd/ACy) 3 [nulz, 1) — Mg pestlis (15)
k

where V. is the initial potential and n, .. is the initial ionic concentration of
species k.

Neuronal processes often branch and change their diameters. If branches are
allowed, then these equations must be solved on a tree rather than a line. Con-
tinuous diameter changes can be approximated by segments having piecewise
constant diameters. At points where the diameter jumps and/or branches occur,
the solutions can be matched using the continuity of flux at that point. The
continuity constraint at a branch point can be derived from Eq. (11). The con-
tinuity constraint at a branch point where three processes join is given by:

0z oy 0z

1

, (16
0z o 0z (16)

3

+ d3 <% + ﬂ)
2 0z o 0z
where d; is the diameter of the ith branch.

The square of the diameter enters into this equation because the flux through
the areas of each branch must be matched. There is an analytic solution of the
cable model for branching dendrites having passive membranes if Rall’s 3/2
power law (Rall, 1977) is satisfied. This law for an equivalent cylinder does not
hold for our electro-diffusion model except in the limit when the concentration
gradients go to zero and Eq. (4) is used to compute the membrane currents. A
mepanment approximation for the solution of Eq. (14) is inaccurate for large
1onic fluxes if the continuity constraint in Eq. (16) is not used to match solutions
on the two sides of a diameter jump or at a branch point.

B. Simulations of Postsynaptic Potentials in a Dendritic Spine

FOT simplicity, only three types of ions, K*, Na* and CI", will be considered
Inthis chapter. Excitation was modeled by a combination of transient conductance
changes to Na* and K*, with the K* conductance equal to one-tenth of Na™*
¢onductance (Hille, 1984). The synaptic reversal potential under this combination
18 apout 50 mV. We also made simulations with the reversal potential of the
eXcltatory synapse equal to 0 mV and similar conclusions were obtained. Silent
$hunting inhibition and hyperpolarizing inhibition were modeled by transient CI-
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FIGURE 1.  (a) Geometry of the dendrite and spine for the simulations showing excitation
and inhibition on the spine head (top) and inhibition on the dendritic shaft at the base of
the spine (bottom). The spine was located in the center of a dendrite with total length
300 wm and diameter 1 pm; the spine neck was 1 pm long and 0.1 pm in diameter; the
spine head was 0.69 pm long and 0.3 pm in diameter. In the simulations of the electro-
diffusion model, sample points in the dendrite were 10 wm apart and the integration time
step was 107 sec; in the spine head and neck, the spacing was 0.173 wm and 0.167 pum,
respectively, and the time steps were 2 X 107 sec. The model had a total of 41 sample
points: 31 in the dendrite, six in the spine neck, and four in the spine head. In the
conventional cable model, only 33 lumped compartments were used (one for head, one
for neck, and 31 for dendrite) due to the large spatial constant. The time step for spine
head and neck was 10~ sec and that for the dendrite was 107 sec. (b) Excitatory and
inhibitory synaptic conductance changes were modeled by G(f) = G (€t/fpea) e ™ peak,
where f,..c Was the time to reach the peak conductance, Gy. A graph of this expression
is shown with #c;c = 1 ms, and Gy = 1 nS. Parameters used in our simulations were:
e = 1 ms; membrane capacitance C,, = 1 pF/cm?; diffusion coefficients Dg = 1.96
X 107° cm?/sec, Dnam = 1.33 X 107° cm?/sec, and D¢ = 2.03 X 1075 cm?sec; resting
membrane conductances of unit area g e = 1.95 X 10 Scm?, graresr = 1.63 X 107
Scm?, and gejrese = 3.89 X 1075 Scm?; initial intracellular concentrations ng o = 140
mM, nn.o = 12 mM, and ng o = 5.5 mM; extracellular concentrations ng o = 4 mM,
NNaow = 145 mM, and ng o = 120 mM. With this set of parameters, the resting mem-
brane potential was —78 mV. The Nernst potentials for K*, Na*, and CI were —90
mV, 63 mV, and — 78 mV, respectively. Total membrane resistivity R, was 4000 Qcm?.
Total cytoplasmic resistivity R; at rest was calculated (Qian and Sejnowski, 1989) to be
87 Qcm. Total surface area of the spine head was 0.65 wm?. Some of these parameters
were varied, as explained in the relevant figures or tables. The sources for these parameters
are given in Qian and Sejnowski (1989).
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and K* conductance changes, respectively. lonic driving forces similar to Eqs.
(1) and (2) were used for the electro-diffusion model rather than the constant-
field approximation used in Qian and Sejnowski (1989). The Nernst Potentials
were updated at each time step according to the instantaneous ionic concentra-
tions. We varied the magnitudes and durations of the conductance changes and
the spine neck dimensions. We also compared the effectiveness of inhibition on
the spine with inhibitory input on the dendrite at the base of the spine. The
standard parameters used and details of the simulations are summarized in the
caption of Fig. 1; any variation will be explicitly mentioned.

A measure of the effectiveness of shunting inhibition is the ratio of the max-
imum depolarization at a reference point in the neuron caused by an excitatory
input alone to the depolarization when both the excitatory and the inhibitory
inputs are present. This ratio, called the F factor (Koch and Poggio, 1983a), is
equal to 1 if the inhibition has no effect on the excitation. One obvious require-
ment for effective inhibition is that its time course should overlap substantially
with the excitatory synaptic conductance change. We modeled a spine located
in the middle of a 300 wm-long dendrites and the response at the spine head
was used to calculate F factors. Our simulation results based on both the cable
model and the electro-diffusion model are shown in Table I. The cable model
indeed showed strong veto effects, especially when the conductances were large,
as predicted. However, our electro-diffusion model showed no significant veto
effect over a wide range of conductances. Note also that when the G m/Gnam
ratio was increased, there were cases where the F factor decreased slightly. This
occurred because the CI~ Nernst potential shifted so much that it depolarized the
membrane away from its resting level. A CI~ conductance change alone, however,

did not cause any depolarization because there was no driving force and, there-
fore, no concentration change.

TABLE 1. F Factors at the Spine Head when Both Excitatory and CI- Mediated Inhibitory

Synaptic Inputs are Located on the Same Spine Predicted by Both the Electro-Diffusion
Model and the Cable Model.
e —————

GNavM = 0.1 nS GNa.M = 1.0 nS GNa,M = 10 nS

Geim/G, diffusion cable

diffusion cable diffusion cable

1.02

1.02

1.10 1.17 1.23 1.65
1.10 1.20 1.20 2.74 1.26 7.56
1.16 3.04 1.19 18.63 1.25 66.20
1.14 20.35 1.19 163.86 1.25 602.19
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FIGURE 2. Postsynaptic responses relative to the resting level at the spine head calculated
with the electro-diffusion model (solid lines) and the cable model (dotted lines). Two
traces are shown for each model: The top trace is the response with excitatory synaptic
input alone and the lower trace is the response to both excitatory and shunting inhibitory
inputs. Excitatory synaptic input: Gnom = 1 nS; inhibitory synaptic input: Gom = 10
nS.

The difference between the cable model and the electro-diffusion model de-
creased as the synaptic conductances decreased. For Gnamy = 0.1 nS, the two
models were essentially identical and both predicted that the inhibition was
ineffective. However, for longer durations of the synaptic input, the two models
may not agree even for synaptic conductance changes as small as 0.1 nS. (See
Section VI.) The details of the postsynaptic responses on the spine head are
shown in Fig. 2.

Quantal analysis on excitatory postsynaptic potentials in area CA3 of the rat
hippocampus (Higashima et al., 1986; Brown et al., 1988) gave a quantal
conductance of about 1 nS at mossy fiber synapses. Therefore, the synaptic
conductance change due to a single presynaptic action potential should be about
a few nS. Similar measurements of unitary inhibitory conductance performed
on CA3 pyramidal cells of guinea-pig hippocampus obtained a value of 5-9 nS
(Miles and Wong, 1984). However, the conductance of synapses on pyramidal
cells in cerebral cortex may be much smaller. In the following simulations, we
fixed GnaMm at 1 nS and varied G¢p v unless otherwise indicated.

The morphologies of spines vary greatly. The critical parameters for our
simulations were the diameter and length of spine neck, which were varied from
0.1 pm t0 0.25 wm and 0.4 pm to 1.0 pm, respectively, with the neck membrane
area kept constant. We also considered the case where there was no spine neck
and the spine head was connected directly to dendrite. The cable model gave
large F factors when the neck was long and narrow and/or G m was large, but
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the electro-diffusion model produced no F factor larger than 2 over the entire
range. The effectiveness of inhibition was not very sensitive to the dimensions
of the spine neck because of two competing effects that cancel: As the spine
neck length was decreased and the diameter increased, the concentration changes
in the spine were reduced, making the inhibition more effective. However, the
input resistance of the spine head was also decreased, resulting in a smaller
depolarization and a reduced driving force for the inhibition.

1. On-Path Inhibition. Inhibitory synapses on pyramidal neurons are com-
monly located on the dendritic shaft at the base of the spine (Beaulieu and
colonnier, 1985; Martin, 1984). The simulations in Fig. 3 show that dendritic
on-path inhibition is much more effective than inhibition on the spine head. The
ionic concentration changes were much smaller for the dendritic inhibition be-
cause the dendrite had a diameter of 1 wm, and hence the cable equation was a
good approximation. Also, the driving force for the inhibition was strong because
the spine was electrically coupled to the dendrite well enough that the excitation
of the spine caused a large depolarization at the dendritic shaft.

2. Duration of Inhibition. Table II shows the F factors at the spine for a
range of durations of the synaptic conductance (determined by fycq in Fig. 1).
A longer duration produced a larger membrane depolarization that increased the
driving force for the inhibition and made the inhibition more effective. This

(mV)

Membrane potential

2 3 4 5

Time (ms)

FK."'URE 3. Responses relative to the resting level at the dendritic shaft at the base of a

Spine }lnder three conditions: no inhibition and the excitatory input (Gnam = 1 nS) on
© Spine head alone (solid), the excitatory input (Gnam = 1 nS) and the inhibitory input
AM = 10 nS) both on the same spine head (dashed), and the excitatory input (Gnam = 1

:!h On the spine head and the inhibitory input (G = 10 nS) on the dendritic shaft at
€ base of the spine (dotted).
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TaBLE II. F Factors at the Spine for a Range of
Durations of the Synaptic Conductance. The time
to peak (fpeak, €Xxplained in caption to Fig. 1a) was
varied for a synapse with Gy, = 1 nS and Geim

= 11 nS.

Ipeax(ms) diffusion cable
0.5 1.32 2.46
1.0 1.20 2.73
2.0 1.17 3.01
3.0 1.16 3.30
4.0 1.17 3.53

explains the increase of F factors with #,.. predicted by the cable model. How-
ever, the longer the conductance change, the larger the concentration change,
which makes inhibition less effective according to the electro-diffusion model.
The latter factor predominated for inhibition on the spine head, as shown in
Table II.

Repetitive stimulation of inhibitory interneurons in hippocampal slices for tens
of seconds can cause disinhibition of inhibitory potentials in pyramidal cells
(Thompson and Gahwiler, 1989). The most likely explanation is the intracellular
accumulation of CI". Our simulations suggest that a similar disinhibition can
occur on spines within milliseconds. The difference between the time scales can
be attributed to the difference between the intracellular volumes of cell bodies
and dendrites compared with spine heads.

3. Interactions between Synapses on Dendrites. We next studied interac-
tions between excitatory and inhibitory synapses at adjacent sites on dendrites
ranging in diameter from 0.1 to 2.0 pm. The predicted F factors for the cable
model, given in Table IlI, were very large when the dendritic diameter was small
and the G, was large. For the electro-diffusion model, two competing factors
determined the effectiveness of inhibition: For dendrites with large diameters,
the concentration effects were small, so the Nernst potential did not change very
much and the inhibition was effective. However, the polarization of the mem-
brane from the resting level was smaller in larger dendrites, which made inhibition
less effective. The F factors in Table IIla were not monotonically increasing
with increasing dendritic diameter because of these two factors and their inter-
action. For G; = G,, the first factor dominated and the inhibition was compar-
atively more effective on small dendrites. When G; = 100 G., the second factor
dominated and the inhibition was more effective on large dendrites. In any case,
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TasLe III. F Factors for Both Excitatory and Inhibitory Synapses on Dendrites at the
Same Site, with Different Dendritic Diameters. Gnam = 1 nS. Top: Electro-Diffusion
Model; Bottom: Cable Model.

dendritic diameter (pm)

Gam/Gram 0.1 0.25 0.5 1.0 2.0
0.1 1.07 1.04 1.02 1.01 1.00

1 1.47 1.45 1.18 1.07 1.03

10 1.87 1.66 2.26 1.66 1.31

107 1.91 2.67 3.43 3.10 3.25

dendritic diameter (pum)

Gam/Gram 0.1 0.25 0.5 1.0 2.0
0.1 1.08 1.06 1.04 1.02 1.01

1 1.72 1.39 1.19 1.08 1.04

10 8.31 5.16 3.03 1.88 1.38
10 73.07 43.15 22.46 11.01 5.65

when the dendritic diameter was 0.1 pm, the F factors were always less than
2, similar to the previous results for inhibition on spines.

4. K*-Mediated Inhibition. The equilibrium potential for K* is generally
below the resting membrane potential (12 mV below in our model), so that an
increase in K* conductance leads to a hyperpolarization. In a previous study,
We found that inhibition on spines mediated by K * was not effective for excitatory
conductances greater than 10 nS (Qian and Sejnowski, 1989). In this section,
We consider excitatory conductances that are lower and more realistic for pyr-
flITlidal neurons. We find that for smaller excitatory conductances, hyperpolar-
1zing inhibition can be quite effective. Synaptic responses to Gn,m = 0.1 nS
are shown in Fig. 4, which also shows that an inhibition of Gxm = 1 1S is
very effective in reducing the response. In comparison, the inhibition due to a
Slm.ilar or much larger conductance change for CI” was not effective. For large
eXclitatory conductance changes, the K* inhibition became as ineffective as CI
cause of the large K* concentration changes that rapidly shift the K* Nernst
Potential, as shown in Table IV.
forl';hil_)itiQn mediated by K* in cortical neurons has a time course that can last
Significant fraction of a second when it is activated by GABA receptors
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Membrane Potential (mV)

Time (ms)
FIGURE 4.  Response relative to the resting level at the spine head to an excitatory input
of Gnam = 0.1 nS and one of the following four different inhibitory synaptic inputs: no
inhibition (solid), K* inhibitory synaptic input with Gx, = 1 nS (dotted), CI" inhibitory
input with Gy = 1 nS (dashed), and Gy = 100 nS (long-dashed).

through G proteins. We therefore studied the steady-state behavior following a
step change in conductances of Gy, = 0.1 nS and Gx = 1 nS and found that
the response at the spine head was about 6.9 mV with excitation alone and 1.3
mV with both excitation and inhibition. In steady state, the K* efflux from the
spine head was balanced by the K* diffusion from the dendritic shaft to the
head. Thus, the inhibition mediated by K* conductances remained effective for
slow inhibitory synaptic potentials when the excitatory conductances were small.
Since an excitatory synaptic conductance typically lasts for only a few ms, an
excitatory input arriving a few ms earlier than the inhibitory input will not be
affected by the inhibition. Once an inhibitory input is active, there is a long
time window during which arriving excitatory inputs are inhibited.

TaBLE IV. F Factors at the Spine Head when Both Excitatory and K* Mediated In-

hibitory Synaptic Inputs are Located on the Same Spine Predicted by both the Electro-
Diffusion and the Cable Models.

GNa.M = 0.1 nS GNavM = 1.0 nS GNa.M = 10 nS

Gk M/GraMm

diffusion cable diffusion cable diffusion cable

0.1 1.01 1.07 1.02 1.07 1.07 1.07
1 1.11 1.18 1.24 1.33 1.58 1.79
10 6.05 8.03 7.35 17.65 1.70 47.53

10? * * * * 1.66 *

*F factors undefined because the responses were hyperpolarizing, indicating very effective inhibition.
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V. The Cable Model for Electro-Diffusion

The electro-diffusion model is highly computation-intensive and cannot be used
routinely for large-scale simulations of complex dendritic trees (Wathey et al.
1989). It would be desirable to have a model that was as efficient as the cable
model. We will prove here that a simple extension of the cable model can, in
fact, provide an accurate approximation to the predictions of the electro-diffusion
model.

The following modifications to the discrete approximation of the standard
cable model should be made at each time step:

(1) Calculate the intracellular concentration of each ionic species explicitly
in each compartment from the membrane currents and the ionic currents
flowing between compartments.

(2) Compute the new membrane equilibrium potentials for each compartment
using the intracellular and extracellular ionic concentrations according to
the Nernst equation and update the membrane batteries:

E
* FZk

RT
= —1n

ny(out)
n(in) ’

an

where n,(out) is the ionic concentration of species k outside the membrane
and m,(in) is the ionic concentration inside the membrane. This makes the
membrane current expressions identical to those used in the electro-dif-
fusion model.

(3) Replace the single longitudinal resistance between compartments with
parallel resistances R;; (Qian and Sejnowski, 1989).

1 = (F*RT)Dnz3, (18)
Rix
in series with batteries (step 4) for each ionic species.

(4) Determine the longitudinal batteries by the Nernst potential for ionic con-
centrations of the two compartments they connect and update in the same
way as the membrane batteries. The potential of the battery for species &
between compartments j and j + 1 is:

RT

E,' =
* FZk

i j)
m(j + 1)

19)

where a positive value for E;, means that the positive terminal of the
battery js pointing to the j + 1 compartment.
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Steps 3 and 4 account for the effects of the longitudinal component of electro.-
diffusion in Eq. (11). We show here that this approximation is exact in limit
that the compartments approach zero length.

Consider two compartments at x and x + dx. The longitudinal battery for
ionic species k between these two compartments, according to step 4, is:

RT RT 1d RT d
dE ) = g0 _ KTy by D | o R dn,

Fz, ny(x + dx) Fz, n, dx Fz; n; dx
For a nerve fiber of cross-sectional area A, the ionic current of species k between
these two compartments is:

dE (x) + V(x) — V(x + dx)
RixdxlA

I(x) =

dn, AFz Dy dV
— — AFgD, T LTHTWW T

dx Olg dx ) (20)

Equation (18) and the definition of o, in Eq. (12) were used in this deriva-
tion. The flux J(x) is defined as the number of ions moving across a unit area

in unit time, of ionic species k between the two compartments. Thus, from
Eq. (20),

AFZk dx Olg dx

hix) = B2 —Dk[@ ' ﬂﬂ], @

Modified Cable Model

Outside

Eix Inside R E

K iK

FIGURE 5.  Electrical circuit for a single compartment of the modified cable model. The
batteries in the membrane and between compartments are calculated from the Nernst
potentials and change value during a response as concentrations change. The resistivities

in the cytoplasm are also updated at each time step.
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which is identical to the longitudinal component of the Nemst—Planck electro-
diffusion equation for ionic species k. The continuity equation of the electro-
diffusion model (Eq. (13)) is also satisfied in cable model because of Kirchoff’s
law. Therefore, results predicted by the modified cable model should be equiv-
alent to those of the one-dimensional electro-diffusion model.

A schematic view of the modified cable model is represented in Fig. 5. This
model was applied to the dendritic spine model in Qian and Sejnowski (1989).
The results were in excellent agreement with the electro-diffusion model except
when the conductances and ionic concentrations changed very rapidly. The dif-
ferences were mainly due to the fact that we used the constant-field approximation
for the membrane currents in that version of the electro-diffusion model, but
used ohm’s law for the batteries in the modified cable model.

V1. Discussion

In most circumstances, the cable model of electrical conduction in neurons gives
accurate predictions for membrane potentials during transient electrical events.
A tiny amount of charge is enough to cause a substantial change in the membrane
potential because the membrane capacitance is small, and as a consequence, the
ionic concentrations usually are nearly constant (Qian and Sejnowski, 1989).
However, the individual concentrations of certain ions could change significantly
as long as changes in the total charge are nearly balanced out. This is more
likely to happen in very small structures such as dendritic spines and for an ion
such as Ca* *, which is normally maintained at a very low concentration inside
acell. Thus, the predictions from the cable model should not be used without
a careful analysis.

We have developed a one-dimensional electro-diffusion model of electrical
conduction, which reduces to the cable model when ionic concentrations are
approximately constant. This model was used to study changes in ion concen-
Frations and membrane potentials in dendritic spines in response to synaptic
nputs. We found that ionic concentrations changed considerably in many cir-
Cumstances. Thus, significant errors can be made in estimating membrane po-
tentials and concentration changes using the cable model if the effects of diffusion
and the changes in the driving forces for membrane current are not taken into
account.

The major conclusion of this study is that CI” shunting inhibition on spines
cannot be very effective regardless of how large the synaptic conductance changes
are. Shunting inhibition is significantly more effective when it is on the dendritic
shaft On-path to the cell body. This may partly explain the anatomical findings
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that most synapses on spines are putatively excitatory and that the majority of
the putative inhibitory synapses are found on dendritic shafts. Shunting inhibitory
synapses on spines may have other functions. Although they may not contribuge
significantly to the electrical responses of the cell, they can certainly cause large
local ionic concentration changes that may be important in regulating certain
cellular functions.

The inhibitory synapses on spines may contribute to the electrical respon-
siveness of a cell if they are mediated through K* currents. Our simulations
predict that K* hyperpolarizing inhibition on a spine head can be very effective
when the excitatory synaptic conductance changes are less than 10 nS. The major
inhibitory neurotransmitter in the visual cortex is GABA; GABA, receptors are
coupled to CI- channels and GABAp receptors are linked to K* channels. There-
fore, we specifically predict that the inhibition on spines is mediated by the
GABA; receptors. This prediction is consistent with the finding that GABA,
input to hippocampal pyramidal cells is preferentially dendritic (Janigro and
Schwartzkroin, 1988), where the majority of inputs are onto spines. Another
way to have effective inhibition on a spine is through conductance decreases of
either Na™ or Ca* ™, although this type of inhibitory mechanism has not been
found in cortical neurons.

All these results can be understood as a consequence of changing ionic con-
centrations and shifting equilibrium potentials. The postsynaptic responses are
mainly determined by the ionic species with the largest transient membrane
permeability. Regardless of the equilibrium potential for this species (excitatory
or inhibitory), the opening of channels with sufficient duration will shift the
equilibrium potential of the synapse toward zero because of the large concen-
tration changes. Therefore, if the equilibrium potential of the ionic species is
greater than zero (Na* and Ca™ %), the cable model will overestimate the re-
sponse. For ions whose equilibrium potential is less than zero (K* and CI), the
cable model makes predictions that can be qualitatively incorrect. For example,
under certain conditions an inhibitory synaptic input that causes a large K*
conductance increase may, in fact, produce a postsynaptic depolarization.

Our simulations have shown that discrepancies between the cable model and
our electro-diffusion model increase with the magnitude and duration of the
synaptic conductance changes. Since the cable model is valid only when the
concentration changes are small, we can derive a condition under which the
cable model is self-consistent. The intracellular concentration change of the kth
ionic species caused by membrane current /, within time duration At is An, =
LAt/vzF, where v is the effective intracellular volume, z is the valence of the
ion involved, and F is the Faraday’s constant. (Of course, n;, will eventually
stop changing with time when the membrane current is balanced by the intra-
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cellular diffusion.) The criteria for the self-consistency of the cable model is
simply IAnkl/nk,O < 1, where n, ¢ is the initial intracellular ionic concentration,
or At < |vzFn o/I.

When the synaptic conductance G, is small, say, 0.1 nS, I, ~ G,E,, where
E, is the reversal potential relative to the resting potential. The preceding con-
dition gives At < 10 ms for Na* in a spine, assuming that the effective volume
v is equal to twice the volume of the spine. Therefore, the cable model may not
be valid for spines if the duration of the conductance change is longer than 10
ms, even for synaptic conductance changes as small as 0.1 nS. the inclusion of
ionic pumps would not alter the preceding conclusions for a typical Na—K pump
current density of 1 ~ wA/cm? (Weer and Rakowski, 1984), in which case the
total pump current of the spine head is about 107'* A, three orders of magnitude
smaller than the synaptic current. Even when the pump molecules are close-
packed in the membrane, the maximum possible pump current density is 100
pA/cm?, and the total pump current of the spine head is still about 10 times
smaller than the synaptic current for a 0.1 nS conductance. The effect of the
Na-K pump would be significant if we assume that the spine apparatus is also
densely packed with pump molecules and its surface area is about 10 times that
of the spine.

lonic concentration changes are usually not explicitly considered in the cable
model. Although ionic currents in the cable model can be integrated to yield
concentration changes, this usually gives erroneous results (Qian and Sejnowski,
1989), even when the membrane potentials are predicted fairly well. Often,
the cable model is solved first to find the membrane potentials and then dif-
fusion processes are introduced to determine the ionic concentration changes
(Gamble and Koch, 1987; Yamada et al., 1989). Our model, however, con-
Siders the membrane potential and the ionic concentration changes at the
Same time and thus provides a more natural and accurate way for solving the
problem.

In our simulations, we have assumed that extracellular ionic concentrations
}VCre constant to simplify our calculations. This may not be a valid approximation
Inrestricted extracellular spaces for the same reasons that the cable model broke
down in restricted intracellular spaces. If the extracellular space around a spine
head that is effectively available for exchange in 0.5 ms is about the same as
the volume of spine, then a change of concentration in the spine head would
fause an equal change with opposite sign outside the spine head. For ¢z, = 0.25
s, the extracellular [Na*] would change from 140 mM to about 110 mM, and
[K+] from 4 mM to about 34 mM in about 0.5 ms. (See Yamada et al., 1989
O a similar estimate.) Although the extracellular K* concentration would in-
frease by a larger factor, the maximum value of an excitatory synaptic response
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is mainly determined by the Nernst potential of Na* because the Na* perme-

ability is much larger during an excitatory synaptic input. Also, glial cells are
very effective in maintaining K* homeostasis on a longer time scale so that the
actual change during maintained activity is probably less.

Thus, the main effect of a limited extracellular space is on the Nernst potentia]
of Na*. Based on the preceding estimates, this would reduce the peak response
of the postsynaptic potential by about 6% at the spine head. For large 1, and
multiple synaptic inputs, the Na™ concentration change is greater but is achieved
over a longer period of time. The corresponding effective extracellular space
around the spine head would then be larger because more time allows ions to
diffuse further. Thus, the modification would not be much greater. For an ex-
citatory input driven by a Na* current, the effects of restricted extracellular
space always reduce the amplitude of response and thus will tend to make the
differences with the cable model even greater.

For synapses on large dendrites rather than on spines, we do not expect any
significant difference between the electro-diffusion model and the cable model
because the ionic concentration changes are negligible. Synaptic inputs on thick
dendrites should not suffer the saturation caused by shifts of the Nernst potential,
the absence of temporal summation, and lack of an inhibitory veto effect that
we have demonstrated for synapses on spines. On the other hand, large com-
partments are also harder to depolarize, which is needed to increase the driving
force of the inhibitory currents. This second factor may not be as important if
a compartment also receives a large number of convergent excitatory synapses.
Note that the more depolarized a cell, the more effective the inhibitory synapses
become and the less effective the excitatory synapses. Indeed, if the depolari-
zation is large enough to trigger an action potential, the driving forces for the
inhibitory currents on soma and dendrites reach their maximum and the driving
forces for the excitatory currents reach their minimum, especially if the effects
of the action potentials propagate up the dendritic tree. Thus, inhibitory synapses
on the cell body and proximal dendrites could control the effects of action
potentials propagating up dendritic trees and the temporal firing patterns of the
neuron (Lytton and Sejnowski, 1991).

This raises the interesting possibility that otherwise identical synapses could
have different functions depending on their location. It has been reported that
during learning and development, the spine neck shortens and merges into the
dendrite (Rausch and Scheich, 1982; Coss and Globus, 1978; Brandon and Coss,
1982; Coss et al., 1980). The concentration changes in spines are caused not
just by the small volume of the spine head but also by the long, narrow spine
neck, which helps to maintain the large concentration changes that occur in the
spine head. Thus, synapses on spines with long necks could switch to a different
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functional state if the neck were to shorten sufficiently for the spine to merge
with the dendritic shaft.
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