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When a stimulus is presented, its encoding is known to progress from
low- to high-level features. How these features are decoded to
produce perception is less clear, and most models assume that
decoding follows the same low- to high-level hierarchy of encoding.
There are also theories arguing for global precedence, reversed
hierarchy, or bidirectional processing, but they are descriptivewithout
quantitative comparison with human perception. Moreover, ob-
servers often inspect different parts of a scene sequentially to form
overall perception, suggesting that perceptual decoding requires
working memory, yet few models consider how working-memory
properties may affect decoding hierarchy. We probed decoding
hierarchy by comparing absolute judgments of single orientations
and relative/ordinal judgments between two sequentially presented
orientations. We found that lower-level, absolute judgments failed to
account for higher-level, relative/ordinal judgments. However, when
ordinal judgment was used to retrospectively decode memory
representations of absolute orientations, striking aspects of absolute
judgments, including the correlation and forward/backward afteref-
fects between two reported orientations in a trial, were explained.
We propose that the brain prioritizes decoding of higher-level
features because they are more behaviorally relevant, and more
invariant and categorical, and thus easier to specify and maintain in
noisy working memory, and that more reliable higher-level decoding
constrains less reliable lower-level decoding.

Bayesian prior | interreport correlation | bidirectional tilt aftereffect |
efficient coding | adaptation theory

Visual stimuli evoke neuronal responses (a process termed
encoding), which lead to our perceptual estimation of the

stimuli (decoding). Experimental studies have firmly established
that encoding is hierarchical, progressing from lower-level repre-
sentations of simpler and less invariant features to higher-level
representations of more complex and invariant features along vi-
sual pathways (1). Researchers have also studied decoding by
using models to relate neuronal responses to perceptual estima-
tion. Most models posit, explicitly or implicitly, that decoding
follows the same low- to high-level hierarchy, often in the form of
what we call the absolute-to-relative assumption (2–6). For ex-
ample, these models may decode V1 responses to a line into a
perceived orientation of, say 51.2° (or a distribution around it).
Psychophysically, this is termed an absolute judgment. To de-
termine the relationship between two lines, the models first de-
code each orientation separately and the two resulting absolute
orientations are then compared. For instance, the two absolute
orientations may be subtracted to obtain the angle between the
lines (relative orientation), or the sign of the difference may be
used to determine whether the second line is clockwise or coun-
terclockwise from the first (ordinal orientation discrimination).
Absolute orientation of a single line is a simpler, less invariant,
lower-level feature than relative/ordinal relationship between two
lines, and physiological and computational evidence suggests that
these features are encoded according to the standard low- to high-
level hierarchy (Discussion). The absolute-to-relative assumption
then implies that their decoding follows the same hierarchy.

The absolute-to-relative assumption is common to many decod-
ing models including population average (7), maximum likelihood
(3), and Bayesian (8) when they are applied to discrimination.
The assumption is also used in signal detection theory’s definition
of d′ (2) and thus the use of Fisher information to calculate d′ (3,
4). Models based on the idea of relating tuning-curve slopes to
discrimination (6, 9, 10) are no exception: after the absolute dis-
tributions are determined by tuning curves and a noise model, they
are compared to calculate ordinal discriminability.
Despite its widespread use in both theoretical studies and data

analyses, the absolute-to-relative assumption was never rigorously
tested. Typically, people choose model parameters to simulate
observed ordinal discriminability without checking the relationship
between absolute and relative/ordinal judgments (2–6). In particu-
lar, the assumption predicts that absolute-judgment distributions
fully determine the corresponding relative-judgment distribution,
yet no study measured distributions of both absolute and relative
judgments to provide a strong test of the assumption. Indeed,
comparing d′ values between one- and two-stimulus paradigms
produced mixed results probably because such studies did not
measure the required distributions to provide the strong test (2, 11).
Moreover, d′ definition already uses the absolute-to-relative as-
sumption so these studies are not designed to test the assumption.
Surprisingly, previous studies on absolute/relative judgments also

cannot refute the absolute-to-relative assumption, which perhaps
explains why the assumption is still widely used. For example,
Westheimer (12) showed that the disparity threshold for detecting a
line’s jump in depth was much greater when the line was alone than
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when it was flanked by other lines. Note that, even for the single line
alone, there was a relative disparity between its prejump and post-
jump absolute disparities. He thus concluded (in modern terms) that
relative disparity across time is much worse than relative disparity
across space, and discussed that vergence might contribute to the
difference. He did not test whether we judge relative disparity (across
time or space) by comparing absolute disparities. Similarly, motion
studies focused on position- vs. velocity-based mechanisms (13, 14),
and vernier studies examined contributions of size, position, and
orientation mechanisms (15, 16), without testing whether a relative
judgment results from comparing corresponding absolute judgments.
Like disparity, vernier acuity across time is also much worse than that
across space (17, 18). In sum, although the brain is known to be
sensitive to relationships, the sensitivity is not always good when the
relationship is defined across time. More importantly, it is unclear
whether absolute judgments are compared to reach relative judg-
ments as assumed by most decoding models, or generally, whether
decoding follows the same low- to high-level hierarchy of encoding.
Contrary to the standard hierarchy, there are also theories ar-

guing for global-first perception or reversed hierarchy (19–21), or
bidirectional processing (22, 23). However, these theories are de-
scriptive without quantifying the relationship between feature
decoding at different levels (19–21) or comparing with perception
(22, 23). In fact, they usually do not distinguish between encoding
and decoding. Additionally, interpretations of some relevant ex-
periments have been discussed due to stimulus complexity (24–27).
We therefore measured distributions of both absolute- and

relative-orientation judgments to test the absolute-to-relative as-
sumption and the underlying low- to high-level decoding as-
sumption. We used simple line stimuli to avoid interpretation
complications. Our results not only unequivocally refuted the as-
sumption but also lead to a different computational framework.
The common low- to high-level decoding assumption is perhaps
based on the implicit notion that encoding and decoding occur in
the same sensory neurons and at the same time. However, under
natural viewing conditions, our small fovea and frequent saccades
introduce delays between the encoding of different parts of a scene
and the perceptual integration of the whole scene. Similarly, in
many psychophysical experiments (including ours), there are delays
between stimuli, and/or between the disappearance of the last
stimulus and the report. We therefore propose that, while encod-
ing occurs in sensory neurons at the time of stimulus presentation,
decoding often happens later in working memory. Once relevant
features are encoded and enter working memory, their decoding
could, in principle, follow any order. To understand decoding hi-
erarchy, then, one must consider working-memory properties of
stimulus features. Importantly, we propose that when the memory
stability (or distortion) and behavioral relevance (or irrelevance) of
more categorical, higher-level (or more continuous, lower-level)
features are considered, then decoding should start with high-
level features which then constrain the decoding of lower-level
features. We show that this framework explains our psychophysi-
cal data, including the new phenomena of backward aftereffect and
interreport correlation, whereas the common low- to high-level
decoding assumption or standard adaptation theories cannot.
Our model is formally similar to Stocker and Simoncelli’s model
(28) for Jazayeri and Movshon’s (29) experiment, but we focus on
the logical consequence of integrating working memory and per-
ceptual decoding while they do not (Discussion).

Results
Perceptual Decoding Does Not Follow the Standard Low- to High-Level
Hierarchy of Encoding. To probe decoding hierarchy, we designed a
stimulus protocol involving either one or two lines in a trial (1-line
and 2-line conditions, respectively; Fig. 1). When a single line is
flashed on the screen, subjects only perceive low-level features such as
its orientation. When two lines are presented sequentially, in addition
to the orientation of each line, subjects also perceive higher-level

features such as relationships between the lines. We compared and
modeled the reported line orientations in these two conditions.
We employed two 1-line conditions in which a single line of

either 50° or 53° orientation was shown for 500 ms. Following a
500-ms delay, subjects reported the line orientation by rotating
two marker dots (Methods). A subject’s reported orientations
over 50 repeated trials produced an absolute-judgment distri-
bution for either the 50° or 53° stimulus. These 1-line absolute
distributions for one naïve subject are shown in Fig. 2, Top.
Prominent features of the distributions are large spreads and
biases away from the true orientations which cannot be explained
by motor variability (SI Appendix). We therefore conclude that
the decoding of absolute orientations is unreliable, likely due to
noise accumulation in working-memory representations during
the delay between stimulus presentation and report (30, 31).
In the 2-line condition, the 50° and 53° lines were shown se-

quentially in counterbalanced, pseudorandomized order, with a
500-ms interstimulus interval to eliminate apparent motion (32).
After a 500-ms delay, subjects rotated the marker dots to report
the two orientations in the perceived order. We first analyzed the
two orientations separately (as the absolute-to-relative assumption
suggests) by compiling the histogram of the reports for each ori-
entation. The resulting 2-line absolute distributions are shown in
Fig. 2, Bottom, for the same subject. These distributions are even
less reliable compared with those from the 1-line conditions (Fig. 2,
Top), with greater variances and biases (see SI Appendix, text and
Fig. S1, for details). This is not surprising given that more time
elapsed between presentations and reports in the 2-line condition.
We then examined the relationship between the two reports in a
trial by plotting the subject’s report for the 53° line against that for
the 50° line. This joint distribution (Fig. 3A, gray dots) reveals a
striking pattern not predicted by either the 1-line or 2-line absolute
distributions. The gray dots form an elongation demonstrating that
the reports for the 50° and 53° lines in a 2-line trial were correlated
(interreport correlation; Pearson correlation coefficient = 0.63,
P = 9.3 × 10−7). Most dots are clustered above the positive di-
agonal line, indicating that in most trials the subject correctly

1-Line Condi�ons: 50° or 
53° in separate blocks

500 ms

500 ms

Subjects rotate the 
dots to match the 
line and click

2 dots appear

B 500 ms

500 ms

500 ms

500 ms

Rotate to match 
1st line and click

2 dots appear

Rotate to match 
2nd line and click

2-Line Condi�on: 50° and 
53° in random order

A

Fig. 1. The 1-line and 2-line test conditions. (A) Trial sequence of the 1-line
test conditions. The 50° and 53° lines were run in separate blocks. (B) Trial
sequence of the 2-line test condition. The 50° and 53° lines were presented
in each trial in counterbalanced, pseudorandomized order. For each condi-
tion, the marker dots appeared randomly at either horizontal or vertical
initial positions, and subjects rotated them and clicked to report orientation(s).
See Methods for details and the actual stimulus parameters.
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discriminated the ordinal relationship between the lines. More-
over, the trials with correct and incorrect ordinal discrimination
(gray dots above and below the diagonal) are separated from the
diagonal by a gap, which can also be seen in the relative-
orientation distribution (Fig. 3B, gray histogram) obtained by
subtracting the 50°-line report from the 53°-line report (equivalent
to projecting gray dots of Fig. 3A to the negative diagonal axis).
None of these observations is predicted by the absolute-to-

relative assumption with either the 1-line or 2-line absolute
distributions. To avoid clutter, only predictions from the 1-line
absolute distributions are shown (Fig. 3A, light blue dots for the
predicted joint distribution; Fig. 3B, light blue histogram for the
predicted relative distribution); they were simulated by re-
peatedly drawing two numbers, one from the 50° absolute dis-
tribution and the other from the 53° absolute distribution, and
subtracting them. The predicted distributions, by definition,
cannot have the interreport correlation or the gap between trials
with correct and incorrect ordinal discrimination; they also have
much larger percentages of trials with incorrect ordinal dis-
crimination compared with the observation (Fig. 3D).
All 12 subjects showed very similar results (SI Appendix, Fig.

S2). In particular, every subject showed a significant trial-by-trial
interreport correlation (mean Pearson correlation coefficient,
0.56 ± 0.04; all values of P < 0.025) that cannot be explained by
the absolute-to-relative assumption. To quantify this difference
further, note that the absolute-to-relative assumption predicts
that, in the 2-line condition, the variance of the relative distri-
bution should equal the summed variances of the two corre-
sponding absolute distributions. Fig. 3C shows the predicted
against the observed SDs for the 12 subjects, demonstrating that,
contrary to the prediction, the former is significantly larger than
the latter (two-tailed Wilcoxon signed rank test, P = 4.9 × 10−4).

A common measure of relative judgment is the percentage of
trials with correct ordinal discrimination. This is simply the per-
centage of the points above the diagonal in the joint distribution
(Fig. 3A) or to the right of zero in the relative distribution (Fig.
3B). Fig. 3D shows that, across the subjects, the observed percent
correct discrimination is significantly better than those predicted by
the absolute-to-relative assumption with either the 1-line absolute
distributions (open dots; two-tailed Wilcoxon signed rank test, P =
9.8 × 10−4) or the 2-line absolute distributions (crosses; P = 4.9 ×
10−4). Interestingly, although the 2-line absolute distributions have
larger variances and biases than do the 1-line absolute distributions
(SI Appendix, text and Fig. S1), the former produced better ordinal
discrimination than the latter (Fig. 3D), mainly because of the
exaggerated orientation difference (Fig. 4B). This further contra-
dicts the absolute-to-relative assumption, which predicts that good
ordinal discriminability requires small variance of corresponding
absolute distributions (2, 3).
We conclude that our data clearly refute the widely used

absolute-to-relative assumption and the broader low- to high-
level decoding assumption (2–6).

Perceptual Decoding Cannot Be Explained by a Sequential Mechanism
or by Conventional Adaptation. The interreport correlation above
indicates that, in the 2-line condition, the two lines in a trial are
not decoded independently. One might argue that a sequential
mechanism could explain the correlation. Specifically, subjects
might decode the absolute orientation of the first line and then
decode the second line relative to the first. If the first, absolute
decoding is more variable than the second, relative decoding (an
assumption that already contradicts the common absolute-
to-relative assumption), then the observed interreport correlation
could occur. This sequential theory predicts that the second-line
variance should equal the summed variances of the first line and
the angular difference. Fig. 4A plots the predicted SD against the
actual SD of the second line, demonstrating that the former is
significantly larger than the latter (two-tailed Wilcoxon signed
rank test, P = 4.9 × 10−4) and rejecting the theory. The theory
also cannot explain the gap between the correct and incorrect
discrimination trials in Fig. 3 A and B.
Additionally, the sequential theory cannot readily explain the

exaggerated angular difference between the lines in the 2-line
condition. Fig. 4B plots the reported angular difference for the
2-line condition against that for the 1-line condition; the former
(mean, 7.0° ± 1.0°) is significantly larger than the actual 3° (two-
tailed Wilcoxon signed rank test, P = 4.9 × 10−4), whereas the
latter (mean, 2.7° ± 0.6°) is not (P = 0.47). We show below some
additional properties of the data (see Figs. 5 and 7) that cannot
be explained by the sequential theory.
Finally, the exaggerated orientation difference in the 2-line

condition could simply be repulsive tilt aftereffect of orientation
adaptation. First note that the tilt aftereffect cannot explain the
interreport correlation. Indeed, different aftereffect magnitudes
across trials should produce an elongation parallel to the nega-
tive diagonal, instead of the observed elongation parallel to the
positive diagonal, in the joint distribution (Fig. 3A). We show
further data analysis below that cannot be accounted for by
conventional adaptation and its theories.
In conventional adaptation paradigm, two orientations are pre-

sented sequentially in a trial and subjects only report the second
orientation (test) but not the first (adaptor) (33, 34). It studies how
the first line affects the perception of the second one, which we will
call forward aftereffect. Our 2-line condition was different in that
the subjects reported the orientations of both lines in a trial,
affording an opportunity to investigate both forward aftereffect
and backward aftereffect (how the second line affected the per-
ception of the first one at the time of report). To this end, we split
each 2-line absolute distribution into two according to whether a
given orientation appeared first or second in a trial, resulting in

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Orientation (deg)

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Orientation (deg)

1-Line Absolute-judgment Distributions
Stimulus orientation: 50° Stimulus orientation: 53°

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Orientation (deg)

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Orientation (deg)

2-Line Absolute-judgment Distributions
Stimulus orientation: 50° Stimulus orientation: 53°

Fig. 2. A naive subject’s absolute-judgment distributions from the 1-line
test conditions (Top row) and 2-line test condition (Bottom row). The dis-
tributions for the 50° and 53° stimuli are shown on the Left and Right, re-
spectively. In each panel, the red and black arrows indicate the actual
stimulus orientation and the mean of the distribution (i.e., the mean of the
subject’s reported orientations), respectively. See SI Appendix, Fig. S1, for
comparisons of variances and biases between all 12 subjects’ 1-line and 2-line
absolute distributions. deg, degrees.
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four absolute distributions referred to as 50°-first, 50°-second, 53°-
first, and 53°-second distributions (four panels of Fig. 5A). By
comparing the mean of, for example, the 50°-first distribution (black

arrow in the Fig. 5A, Top Left) with the mean of the baseline, 1-line
50° distribution (the black arrow in the Fig. 2, Top Left), we obtained
the backward aftereffect on the 50° stimulus; it indicates how the 53°

Fig. 3. Observations from the 2-line condition and the corresponding predictions by the absolute-to-relative assumption. (A) A naive subject’s joint distribution with
the reported orientation for the 53° stimulus plotted against that for the 50° stimulus in each trial of the 2-line condition (gray dots). Predictions from the subject’s
1-line absolute distributions are shown for comparison (light blue dots). The trials with correct and incorrect ordinal discrimination of the stimulus orientations are above
and below the diagonal line, respectively. The red dot indicates the actual orientations. (B) The subject’s reported relative-judgment distribution (gray histogram) and
that predicted from the 1-line absolute distributions (light blue histogram). They were obtained by projecting the dots in A along the negative diagonal. The red, black,
and blue arrows indicate the actual orientation difference (3°), the mean of the reported orientation difference, and the mean predicted by the 1-line absolute dis-
tribution, respectively. SI Appendix, Fig. S2, shows the individual plots for the other 11 subjects. Note that 10,000 simulated samples were used to define the simulated
relative distributions well but only 100 of themwere randomly selected for the scatter plot of the simulated joint distribution to avoid clutter. (C) Relative-distribution SD
predicted by the absolute-to-relative assumption vs. the observation for all 12 subjects. (D) Percentage of correct ordinal discrimination predicted with the 1-line (open
dots) and 2-line (crosses) absolute distributions plotted against the observation for all 12 subjects. (Two of the 12 crosses happened to superimpose.) deg, degrees.

Fig. 4. Second-report variability and orientation difference in the 2-line condition. (A) Second-report SD predicted by a sequential theory vs. the observation.
The open dots and crosses are results for the 50° and 53° stimulus orientations, respectively. (B) The perceived orientation difference in the 2-line condition vs.
that in the 1-line conditions for each subject. The red lines indicate the actual orientation difference of 3° between the 50° and 53° stimulus orientations. The
orientation difference was exaggerated in the 2-line condition, but not in the 1-line conditions. deg, degrees.
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stimulus that appeared second affected the report of the 50° stim-
ulus that appeared first. Fig. 5B shows the backward aftereffects
against the forward aftereffects for each subject. The open dots and
crosses are for the 50° and 53° lines, respectively. The backward and
forward aftereffects are similar for a subject and significantly cor-
related across subjects (Pearson correlation coefficient, 0.78; P =
6.3 × 10−6), suggesting mutual influence between the two lines in
working memory. Such bidirectional, temporal interactions are not
considered or explained by standard adaptation theories, which
interpret adaptation as a consequence of using past stimulus sta-
tistics to efficiently transmit future stimuli and therefore predict

only forward aftereffect (35–39). Similarly, sequential physiological
mechanisms, such as previous response history affecting current
responses, cannot explain the backward aftereffect.
One might argue that, in the 2-line condition, the second line in a

trial could adapt the first line in the next trial so that the backward
aftereffect could actually be the cross-trial forward aftereffect.
However, the average time from the offset of the second line in a
trial to the onset of the first line in the next trial was 6.03 s (in-
cluding a 2-s intertrial interval), much longer than the 0.5-s in-
terstimulus interval between the two lines within a trial. Given the
exponential decay of the tilt aftereffect (40, 41), the cross-trial ad-
aptation should be negligible compared with the within-trial ad-
aptation. However, the observed backward aftereffect was as large
as the forward aftereffect, ruling out the cross-trial interpretation.

Perception as Retrospective Bayesian Decoding in Working Memory
from High to Low Levels. To elucidate functional significance of
feature interactions in working memory revealed by the backward
and forward aftereffects and the exaggerated angular difference, we
first consider how lines’ absolute orientations and their ordinal re-
lationship are stored in working memory during the delay between
stimulus disappearance and report. Absolute orientation of a line
has a continuous value requiring a continuous attractor to represent
it in neuronal working memory (42). Such representations are un-
stable in the presence of noise and become distorted with time (30,
31), contributing to the biases and variances in the observed abso-
lute distributions (Fig. 2 and SI Appendix, Fig. S1). In contrast,
ordinal relationship between two lines is categorical requiring only
1 bit of information to specify, and can be reliably maintained in
point attractors which are resistant to noise (43). We therefore
hypothesize that once all relevant features are represented in
working memory, at the report time, the brain first decodes the
reliable ordinal relationship and then uses this information to ret-
rospectively constrain and improve the decoding of the distorted
absolute-orientation representations in working memory.
Specifically, consider trials in which lines with orientations

θ≡ ðθ1, θ2Þ= ð50°, 53°Þ are flashed successively (red dot in Fig. 6A),
evoking brief visual responses along the standard encoding hierarchy
(44, 45). Because these orientations and their relationship are task
relevant, they are represented in visual working memory after the
stimuli’s disappearances. By the time of reporting, the memory
representations r≡ ðr1,  r2Þ of the lines’ absolute orientations have
distorted forming a distribution PðrjθÞ across trials (blue circle in
Fig. 6A). If the brain were to use these noisy representations to
decode the lines’ absolute orientations, the ordinal relationship be-
tween the lines would be wrong on a considerable portion of trials
(area of the blue circle below the diagonal). Instead, we hypothesize
that, at the report time, the ordinal relationship is still stably main-
tained in working memory. Since it was encoded as soon as the
second line was flashed, before further noise accumulation in the
lines’ absolute representations, the stored ordinal relationship is
more likely to be correct than the absolute-to-relative assumption’s
prediction at the report time. The brain should first decode this
ordinal relationship and use it to constrain the decoding of the
distorted memory representations of the continuous absolute ori-
entations. Consider a trial with a particular realization of memory
representations (r1, r2) of the absolute orientations shown as a blue
dot in Fig. 6B. In the following, we assume that they are drawn from
Gaussian distribution around the stimulus orientations:

PðrjθÞ= 1
2π

ffiffiffiffiffiffiffiffiffi
σ1σ2

p e
− ðr1−θ1Þ2

2σ1
2 − ðr2−θ2Þ2

2σ2
2 ,

where σ1 and σ2 are the SDs for the first and second orientations,
respectively. We ignored the biases here as they can be readily in-
cluded by shifting ðθ1, θ2Þ. Viewed as a function of ðθ1, θ2Þ, this
expression becomes a likelihood function of the stimulus orientations

Fig. 5. Forward/backward aftereffects between two lines in a trial. (A) The
same naive subject’s first and second absolute-judgment distributions from
the 2-line test condition. (They are obtained by splitting each of the distributions
in the Bottom of Fig. 2; see Perceptual Decoding Cannot Be Explained by a Se-
quential Mechanism or by Conventional Adaptation.) The top and bottom rows
represent the first and second absolute-judgment distributions, respectively;
the left and right columns are for the 50° and 53° stimulus orientations,
respectively. In each panel, the red and black arrows indicate the stimulus
orientation and the mean of the distribution (i.e., the mean of the subject’s
reported orientations), respectively. (B) The backward aftereffect plotted
against the forward aftereffect for each of the 12 subjects. The open dots
and crosses are results for the 50° and 53° stimulus orientations, respectively.
Open dots in the third quadrant and crosses in the first quadrant indicate
repulsive aftereffects. The figure show that large aftereffects were repulsive,
but small ones were a mixture of repulsion and attraction. deg, degrees.
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given current memory representations and is illustrated with a
green circle in Fig. 6B. Absent any other information, the esti-
mated orientations would be computed as the means of the likeli-
hood function, that is, they would coincide with memory
representations (r1, r2). If, however, the decoded ordinal relation-
ship happens to be θ1 < θ2, then it constrains the absolution orien-
tations to be above the diagonal line in the joint space of Fig. 6B,

effectively imposing a prior distribution that is a step function
along the diagonal line. This prior distribution then eliminates
the part of the likelihood distribution below the diagonal (shaded
area in Fig. 6B), giving rise to a posterior distribution of orienta-
tions that is entirely above the diagonal, that is, compatible with the
ordinal relationship. The reported orientations will then be com-
puted as the means of the posterior distribution, illustrated with the

Fig. 6. Perception as retrospective Bayesian decoding in working memory. (A and B) Schematic illustration of the theory. The x and y axes represent the first and
second orientations, respectively. θ’s and r’s stand for stimulus orientations and their working-memory representations, respectively. The red dot indicates the actual
orientations in a trial of the 2-line condition. The blue circle in A and the blue dot in B indicate the distribution of the two lines’ memory representations and a
specific sample from it, respectively, at the report times in the 2-line condition. The area of the blue circle in A under the diagonal is the portion of incorrect ordinal
discrimination based on the memory representations. For the blue-dot sample in B, the green circle indicates its likelihood function, and the Bayesian prior of
ordinal relationship eliminates the shaded green portion, shifting the means of the posterior distribution to the green dot. (C) Simulated joint distribution for the
subject of Fig. 3A, with the estimate for the 53° line against that for the 50° line in the 2-line condition (light green dots). The actual data are shown as gray dots
(same as the gray dots in Fig. 3A). The light blue dots indicate simulated samples of memory representations (see Perception as Retrospective Bayesian Decoding in
WorkingMemory from High to Low Levels). (D) Relative distributions obtained from the joint distributions in C by projecting them along the negative diagonal line.
The gray, light blue, and light green histograms represent the relative distributions from the observation, the memory representation, and the retrospective
Bayesian decoding, respectively. The black, blue, and green arrows indicate the mean of these relative distributions. The blue arrow is at the 3° and occluded by the
red arrow, whereas the green arrow exaggerates the angular difference similar to the observation (black arrow). Note that 10,000 simulated samples were used to
define each simulated relative distribution well, but only 100 of themwere randomly selected for the corresponding scatter plot of the simulated joint distribution
to avoid clutter. (E) The aftereffects predicted by the retrospective Bayesian decoding against the observations across subjects. The open dots and crosses are results
for the 50° and 53° stimulus orientations, respectively. (F) The angular differences predicted by the retrospective Bayesian decoding against the observations across
subjects. The simulations underestimated the angular difference for 2 of the total 12 subjects; this discrepancy can be eliminated by introducing a free parameter
(see Perception as Retrospective Bayesian Decoding in Working Memory from High to Low Levels). deg, degrees.
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green dot ðθ̂1, θ̂2Þ in Fig. 6B. Regardless of the ordinal relationship
between r1 and r2, that between θ̂1 and θ̂2 agrees with the decoded
ordinal relationship. For the Gaussian PðrjθÞ above, ðθ̂1, θ̂2Þ can be
derived analytically as follows:

θ̂1 = r1 −
ffiffiffi
2
π

r
σ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ12 + σ22
p e

− ðΔrÞ2
2ðσ12+σ22Þ 1

erfc

 
Δrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðσ21 + σ22Þ
p

!, [1]

θ̂2 = r2 +

ffiffiffi
2
π

r
σ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 + σ22

q e
− ðΔrÞ2

2ðσ21+σ22Þ 1

erfc

 
Δrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðσ21 + σ22Þ
p

!, [2]

where Δr= r1 − r2 and erfc is the complementary error function
(see Methods for details). We note that, in standard Bayesian
models, priors are based on previous experiences such as image
statistics. In contrast, our model derives the prior from the ordinal
relationship, which is decoded before the absolute orientations in
working memory (but encoded after the absolute orientations in
sensory neurons).
We applied this retrospective Bayesian theory, which uses the

higher-level ordinal-orientation decoding to constrain the lower-
level absolute-orientation decoding, to explain our 2-line data.
Since the Bayesian prior mostly changes the joint distribution
without affecting the absolute (marginal) distributions much (Fig.
6B), we used each subject’s 2-line absolute distributions to produce
samples ðr1,  r2Þ and the SDs of these distributions as the σ’s in
Eqs. 1 and 2 to decode ðθ̂1, θ̂2Þ. We shifted each subject’s two
absolute distributions by opposite amounts to make their mean
angular difference equal 3°, and hence the exaggeration of the
simulated angular difference is strictly the consequence of our
decoding scheme. (Without the shifting, the simulations matched
the data even better.) For each subject, we used his/her actual
ordinal discrimination performance (x axis of Fig. 3D) to de-
termine the fraction of trials with correct and incorrect ordinal
relationship. The simulations had no other free parameters.
Fig. 6 C and D show the decoded joint distribution (green

dots) and relative distribution (green histogram), respectively,
for the naive subject of Fig. 3. They were similar to the observed
joint distribution (gray dots) and relative distributions (gray
histogram), respectively. (The joint and relative distributions of
the memory samples were shown as light blue dots and histo-
grams.) SI Appendix, Fig. S3 shows the same results for the other
subjects. For a memory sample ðr1,  r2Þ, its decoded estimate
ðθ̂1, θ̂2Þwas always shifted away from the diagonal (Eqs. 1 and 2),
exaggerating the angular difference and producing similar

backward and forward aftereffects for similar σ1 and σ2 (Fig. 6 B
and C). Across memory samples, the estimates spread along the
positive diagonal showing interreport correlation similar to the
data (Fig. 6C). In the few trials where the ordinal relationship
between the lines was incorrect, the estimates shift to the other
side of the diagonal (Fig. 6C), reproducing the gap between the
trials with correct and incorrect ordinal relationships (Fig. 6D).
Fig. 6E compares the observed and the simulated aftereffects

across the subjects. Since the forward and backward aftereffects
were similar according to both the data and theory, they were
combined in this comparison to reduce variability. Open dots and
crosses represent the results for the 50° and 53° lines, respectively.
Fig. 6F compares the observed and the simulated angular differ-
ence between the lines. The theory explained the data well for 10 of
the total 12 subjects. For the other two subjects (see also the 2nd
and 10th rows of SI Appendix, Fig. S3), the simulated angular dif-
ferences were smaller than the observed. This discrepancy can be
easily eliminated by introducing a free parameter to scale the σ’s in
Eqs. 1 and 2. This means that, for these two subjects, the SDs of the
2-line absolute distributions were not good approximations of the
SDs of the corresponding memory representations.
Eqs. 1 and 2 predict that for small Δr and similar σ1 and σ2 (as in

our experiment), average reported angular difference, θ̂2 − θ̂1, in-
creases with σ. The 12 subjects we tested showed different SDs of
their 2-line absolute distributions, which must be related to the SDs
(σ1 and σ2) before application of Bayesian prior. The prediction then
becomes that subjects with large (small) SDs should also show large
(small) reported angular difference between the two lines. Fig. 7A
confirms this prediction (Pearson correlation coefficient, 0.83; P =
0.00090). Also as predicted, the percentage of correct ordinal dis-
crimination did not decrease significantly with SDs (Fig. 7B; Pearson
correlation coefficient, 0.24; P = 0.45), supporting our hypothesis
that ordinal relationship between the lines was stably maintained
in working memory and unaffected by the noise in memory
representations of the absolute orientations accumulated over the
delay period between presentations and reports. Note that different
subjects’ SDs at the report time differed by more than a factor of
2 while their ordinal discrimination performances were in the nar-
row range from 84% to 98% correct. This suggests that the subjects’
noise differences at the time of second-line presentation must be
small and that the large SD differences at the report time must
mostly reflect different rates of their memory distortion with time.

Discussion
By measuring joint distributions of two judgments in a trial, which
contained distributions of both absolute and relative judgments, we
refuted the absolute-to-relative assumption which has been widely
used in neural decoding models and signal detection theory. To the
extent that absolute and relative/ordinal orientations are features of

Fig. 7. Test of two predictions of the retrospective Bayesian decoding theory. (A) Reported orientation difference as a function of the mean SD of the absolute
distributions in the 2-line condition for all 12 subjects. (B) Percentage of correct ordinal discrimination as a function of the mean SD of the absolute distributions in
the 2-line condition for all 12 subjects. As predicted, the reported orientation difference increased with the SD, whereas the ordinal discrimination performance
did not decrease with the SD. deg, degrees.
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different levels (see below), our study also rejected the general low-
to high-level decoding assumption. We proposed a computational
theory that views visual perception as retrospective decoding in
working memory from high- to low-level features. We demonstrated
that the theory accounts for all essential aspects of the data including
interreport correlation, bimodal relative distribution with a gap near
zero, exaggerated orientation difference, and similar backward and
forward aftereffects. We also confirmed two predictions of the the-
ory, namely that orientation difference, but not ordinal discrimina-
tion performance, depends on the noise in absolute judgments at the
time of report. These findings argue for a paradigm of perception
that integrates perceptual decoding and working memory.
We considered the relationship between two sequentially pre-

sented orientations as a higher-level feature than the individual
orientations themselves for a few reasons. Physiologically, most
V1 neurons are tuned to single orientations (44) while a significant
fraction of V2 neurons are tuned to combinations of orientations
(45). Computationally, successful object recognition models (in-
cluding HMAX and related deep-learning networks) encode single
orientations and their relationships in two successive layers of
processing [e.g., the study by Riesenhuber and Poggio (46)].
Conceptually, the relationship between two orientations depends
on the two individual orientations but not vice versa. Although, in
principle, V1 neurons or the first layer of neural networks could
directly encode all combinations of angular differences between
two orientations (or even more complex objects), this is not the
case presumably because of computational difficulties.
Our experiment, like most psychophysical experiments, re-

quired working memory because of the delays. Under natural
conditions, because of frequent saccades and small foveas, our
coherent perception of the world must also depend on working
memory. Compared with lower-level features (e.g., absolute ori-
entation, luminance), higher-level properties (e.g., ordinal orien-
tation, facial expression) are more invariant and categorical, and
are thus easier to specify and maintain in working memory. They
are also more behaviorally relevant (47). For example, the abso-
lute orientation of a person’s eyebrow varies constantly with
viewers’ head and eye orientations, providing little useful in-
formation. However, whether the eyebrow tilts more clockwise or
counterclockwise from a moment ago (or with respect to the eye)
is invariant over a broad range of viewing parameters and conveys
facial emotion (48). Although lower-level features are encoded
earlier along visual pathways, once all task-relevant features reach
working memory their later decoding does not have to follow the
order of encoding. Indeed, decoding should focus on behaviorally
relevant, high-level features. Lower-level features are decoded
only when necessary, and because their continuous values render
their memory representations unreliable (30, 31), their decoding
should be constrained by more reliable, higher-level decoding for
consistency and accuracy. Our work provides evidence for such
high- to low-level decoding.
Since we used a Bayesian approach, our model is formally

similar to previous Bayesian models, particularly those on how
categorization affects perception (28, 29, 49). It is also related to
studies on visual working memory (50–52), especially the mem-
ory combination of categories and particulars (53). However, our
study focuses on the integration of perceptual decoding and
memory properties of low- and high-level features and the logical
implications of this integration on decoding hierarchy whereas
the previous studies do not. This key difference leads to very
different interpretations of formally similar models. Specifically,
in our study, successively presented lines and their relationship
clearly defined a low- to high-level encoding hierarchy, and de-
lays between stimuli and between the last stimulus and report
engaged working memory. This allowed us to demonstrate that
perceptual decoding did not follow the same hierarchical order
of encoding but, instead, was accounted for by a retrospective,
high- to low-level procedure in working memory. Importantly,

this procedure makes logical sense only because higher-level stim-
ulus features are more categorical and thus easier to maintain in
working memory, and are more important behaviorally. In contrast,
previous studies (28, 49, 53) focused on integrating categorical and
continuous cues without discussing the absolute-to-relative as-
sumption, decoding hierarchy, or stability differences between low-
and high-level memories. A model by Stocker and Simoncelli (28)
assumes that a commitment to one category leads to a suboptimal
model of conditional perception and estimation biases. Instead, our
memory considerations logically lead to the framework that ordinal
relationship should be decoded first and then produce a Bayesian
prior to constrain the decoding of absolute orientations. This
decoding hierarchy improves the reliability of decoded orientations
because, according to our theory, the binary ordinal relationship
does not deteriorate in working memory whereas continuous ab-
solute orientations (and their angular difference) do.
The trial-by-trial interreport correlation we found suggests that

neural representations for the two stimuli being compared must be
correlated. This correlation differs from the commonly studied
noise correlation or synchronization among different neurons’ re-
sponses to the same stimulus (54–58). The backward aftereffect
cannot be explained by optimal (or efficient) encoding/trans-
mission theories of adaptation and perceptual bias, although the
theories have been very successful in accounting for many other
phenomena (35–39, 59, 60): by the time the second orientation is
presented after a 0.5-s interval, the first orientation must already be
encoded in V1 and transmitted to higher areas; any perceptual
influence from the second to the first orientation must not be for
efficient encoding/transmission of the first orientation.
In summary, our findings not only reject the absolute-to-relative

assumption and the associated low- to high-level decoding as-
sumption widely used in theoretical studies and data analyses, but
also call for a revision of popular theories of adaptation. By sepa-
rating encoding and decoding hierarchies and assigning high- to low-
level decoding to working memory, we propose a computational
framework for understanding perception. The framework may be
applicable to a broad range of demonstrations that higher-level
properties influence the perception of lower-level properties (19, 61–
66). For example, higher-level segmentation cues such as transparency
may produce a Bayesian prior to constrain lower-level decoding of
motion integration (65, 66). Our work also raises the question of
whether generally, higher-level, more categorical memories (e.g.,
person A is good) are more stable than lower-level, less categorical
memories (e.g., the things person A did or tweeted), and if so, whether
the former influences the latter more strongly than the other way
around, regardless of the memories’ temporal order of formation.

Methods
Subjects. Twelve subjects consented to participate in the experiment; 10of them
are naive to the purpose of the study. They all had normal or corrected-to-
normal vision. The study was approved by the Institutional Review Board of
the New York State Psychiatric Institute and was carried out in accordance with
the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Apparatus. The visual stimuli were presented on a 21-inch Viewsonic P225f
monitor controlled by a PC computer. The vertical refresh rate was 60 Hz, and
the spatial resolution was 1,024 × 786 pixels. The monitor was calibrated for
linearity with a Minolta LS-110 photometer. In a dimly lit room, subjects
viewed the monitor from a distance of 75 cm through a black, cylindrical
viewing tube (10-cm inner diameter) to exclude potential influence from
external orientations. Each pixel subtended 0.03° at this distance. A chin rest
with a head band or bite bars were used to stabilize the head (see below).
All experiments were run in Matlab with PsychToolbox 3 (67, 68).

Visual Stimuli. A round, black (0.15 cd/m2) fixation dot, 0.3° in diameter, was
always shown at the center of the white (55.5 cd/m2) screen. All stimuli were
black lines of 3° (length) by 0.03° (width), centered on the fixation dot, and
oriented either 50° or 53° counterclockwise from horizontal. The dot and lines
were created with antialiasing (Screen BlendFunction of Psychtoolbox 3) to
ensure smooth appearance under the viewing condition.
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Procedures. The main experiment consisted of five conditions, each run in a
separate block of trials. Subjects were instructed to always look at the fixation
dot in the center of the viewing tube. They initiated a block of trials by clicking a
mouse button, and 500 ms later the first stimulus appeared. There were two
1-line test conditions (Fig. 1A), in which a single line of a fixed orientation
(either 50° or 53° counterclockwise from horizontal in separate blocks) was
flashed for 500 ms in each trial. Five hundred milliseconds after the disap-
pearance of the line, a red marker dot and a green marker dot, each 0.12° in
diameter, appeared on opposite sides of the fixation dot either vertically or
horizontally (randomly chosen with equal probability). Subjects then used the
mouse to rotate the dots, which were always constrained on opposite sides of
an invisible circle centered at the fixation point, to match the perceived ori-
entation of the flashed line as closely as possible and clicked a mouse button to
report. The invisible circle had a diameter of 2.4°, smaller than the 3° line
length, so that subjects had to use the line orientation, instead of the line end
points, to place the marker dots. After a 2-s intertrial interval, the same line
was flashed for the next trial and the process repeated for a total of 50 trials.

To ensure that the mouse control of the dots’ rotation had fine enough
resolution in orientation, the Matlab code first rotated the dots on a (in-
visible) circle of a diameter equal to the screen height (786 pixels or 23.6°). It
then radially (toward the fixation) projected the dots onto the circle of 2.4°
diameter (without rounding off) and drew them with antialiasing. Both
circles had the fixation point as the center. Consequently, the smallest
movement of the mouse (1 pixel) changes the orientation of the dots by at
most tan−1ð1=786Þ = 0.073°. This resolution is adequate because it was more
than two orders of magnitude smaller than the spread of a typical distri-
bution of orientation judgments (Fig. 2).

There was one 2-line test condition (Fig. 1B) in which two lines of fixed
orientations (again 50° and 53°) were presented sequentially in each trial,
with an interstimulus interval of 500 ms between them to eliminate ap-
parent motion (32). The order of presenting the two orientations was
counterbalanced and randomized across 50 trials. Subjects used the mouse
to rotate the marker dots, which appeared 500 ms after the disappearance
of the second orientation, to match the first orientation and click, and then
to match the second orientation and click. They were told that the order of
the two different clicks must match the order of the lines so this condition
required orientation discrimination. The 3° difference between the two lines
was chosen so that subjects could readily discriminate them (69–72). All
other aspects of this condition, including the 2-s intertrial interval, were
identical to those for the 1-line test conditions above.

Finally, there were two 1-line control conditions. These were identical to
the two 1-line test conditions above except that, in each trial, the line stayed
on the screen until subjects rotated the marker dots to match its orientation
and clicked, and that there were 20 trials per condition. Since the line stayed
on to provide visual feedback for the placement of the marker dots, these
control conditions measured the variability arising from subjects’ fine-motor
control capabilities, namely, how well subjects were able to place the marker
dots at the intended orientation.

The block orders between the two 1-line test conditions and between the
1-line and 2-line test conditions were pseudorandomized. For all subjects, the
two 1-line control conditions were always run last.

In all conditions, subjects always indicated the perceived orientation by ro-
tating the marker dots without reporting any numbers. This experimental
design ensured a fair comparison among absolute and relative judgements and
ordinal discrimination. Before data collection, subjects were given detailed in-
structions and sufficient practice trials to understand the tasks and familiarize
with the mouse control of the dot rotation. For all conditions, subjects were
instructed to take time tomatch the perceived orientations as closely as possible.

Subjects received no feedback on their performance at any time; this
minimized their learning of stimulus statistics across trials (SI Appendix, text
and Figs. S4–S6).

Note that we ran the 1-line test conditions in separate blocks so that we
could measure the absolute distribution of each orientation without in-
terference from the other. It is important for us to have a reliable measure of
the absolute distributions to show that even these absolute distributions
failed to explain the relative/ordinal judgments. These 1-line conditions also
served as the baseline condition for calculating forward and backward af-
tereffects (see Perceptual Decoding Cannot Be Explained by a Sequential
Mechanism or by Conventional Adaptation). The 2-line condition did mix the
two orientations to measure their interactions.

Head Stabilization. For a given line on the screen, its retinal and perceived
orientationsmay varywith the roll of the head and eye. Specifically, voluntary
head roll can induce counter eye roll (torsion), and since they do not cancel
completely (73), the retinal image orientation can change. We therefore

stabilized the head, with two methods. We collected data from 12 subjects
with a chin rest and a head band. We repeated all measurements on two
subjects (one naive) using bite bars (Bite Buddy; University of Houston,
Houston, TX). Since the results from the two methods were identical, we
report the results from the first method in the text but mention the results
from the second method in SI Appendix. Note that because the subjects used
the marker dots to match the perceived orientation in each trial, only the
head roll between the stimulus presentation and the mouse click within a
trial could affect the matching result; head rolls between trials would not
matter. Also note that small horizontal and vertical eye movements would
not change the stimulus orientation. Large eye movements were unlikely
because the subjects looked through the viewing tube and the fixation point
and a small line were the only visual stimuli inside the tube.

To further control for possible motor noise (explained in SI Appendix),
when the two subjects used the bite bars to repeat the experiment, there
was a small modification for the 2-line condition: the initial marker dot
orientation was closer to the first line. They repeated the other conditions
without modification.

Data Analysis and Statistics. For each 1-line test condition, the 50 reported
orientations of a given subject were sorted and binned into a histogram with a
bin size of 1°; this produced the absolute-judgment distributions for the 50° and
53° stimulus orientations, to be referred to as the 1-line absolute distributions.
We applied the same analysis to the 1-line control conditions to demonstrate
that variability from motor control was negligible for our tasks.

For the 2-line test condition, we plotted the reported orientation for the
53° line against that for the 50° line in a trial as a joint distribution to reveal
interreport correlation for each subject. We also subtracted the reported
orientation of the 50° line from that of the 53° line in each trial, and then
sorted and binned the differences from 50 trials into a histogram; this
produced the relative-judgment distribution for each subject, to be referred
to as the observed relative distribution.

According to the absolute-to-relative assumption, for each subject, the ab-
solute distributions completely determine the corresponding joint and relative
distributions. We therefore computed the predicted joint and relative distri-
butions by repeatedly drawing a number from the 50° absolute distribution and
a number from the 53° absolute distribution, and subtracting the former from
the latter. This was done 10,000 times to define the predicted distributions well,
but only 100 samples were shown in scatter plots of joint distributions to
avoid clutter.

We also generated absolute distributions from the 2-line condition. This was
done by simply compiling a subject’s reported orientations for the 50° and 53°
lines separately across trials, regardless of when a given line appeared. We refer
to these absolute distributions as the 2-line absolute distributions to distinguish
them from the 1-line absolute distributions above.

When comparing predictions of the absolute-to-relative assumption and the
corresponding observations, we used the nonparametric Wilcoxon signed-
rank test.

Derivations for the Retrospective Bayesian Decoding Theory. We outline the
derivations of Eqs. 1 and 2. We consider two continuous variables, denoted as
θ= ðθ1, θ2Þ, for the two line orientations in a trial. We assume that their noisy
working-memory representations r = ðr1, r2Þ obey Gaussian distribution:

PðrjθÞ∼ exp

 
−
ðr1 − θ1Þ2

σ21
−
ðr2 − θ2Þ2

σ22

!
.

When viewed as a function of θ for a given r, this is the likelihood func-
tion. To decode the estimated values of θ from their memory representa-
tions, we assume that the ordinal relation between them (e.g., θ1 < θ2) was
decoded earlier and can now be used as a Bayesian prior, resulting in the
following posterior distribution:

PðθjrÞ∼ 1θ1<θ2 exp

 
−
ðθ1 − r1Þ2

σ21
−
ðθ2 − r2Þ2

σ22

!
,

which is the product of the likelihood and the prior. We then find the es-
timated values for θ as averages over the posterior distribution. This results
in Eqs. 1 and 2.
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