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It has been debated whether kinematic features, such as the number of
peaks or decomposed submovements in a velocity profile, indicate the
number of discrete motor impulses or result from a continuous control
process. The debate is particularly relevant for tasks involving target
perturbation, which can alter movement kinematics. To simulate such
tasks, finite-horizon models require two preset movement durations to
compute two control policies before and after the perturbation. Another
model employs infinite- and finite-horizon formulations to determine,
respectively, movement durations and control policies, which are up-
dated every time step. We adopted an infinite-horizon optimal feedback
control model that, unlike previous approaches, does not preset move-
ment durations or use multiple control policies. It contains both control-
dependent and independent noises in system dynamics, state-dependent
and independent noises in sensory feedbacks, and different delays and
noise levels for visual and proprioceptive feedbacks. We analytically
derived an optimal solution that can be applied continuously to move
an effector toward a target regardless of whether, when, or where the
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target jumps. This single policy produces different numbers of peaks and
“submovements” in velocity profiles for different conditions and trials.
Movements that are slower or perturbed later appear to have more sub-
movements. The model is also consistent with the observation that sub-
jects can perform the perturbation task even without detecting the target
jump or seeing their hands during reaching. Finally, because the model
incorporates Weber’s law via a state representation relative to the target,
it explains why initial and terminal visual feedback are, respectively, less
and more effective in improving end-point accuracy. Our work suggests
that the number of peaks or submovements in a velocity profile does not
necessarily reflect the number of motor impulses and that the difference
between initial and terminal feedback does not necessarily imply a tran-
sition between open- and closed-loop strategies.

1 Introduction

Submovement decomposition is a major class of methods in motor re-
search that has been applied to analyze and compare various experimen-
tal conditions and subject groups (Flash & Henis, 1991; Milner, 1992; Lee,
Port, & Georgopoulos, 1997; Krebs, Aisen, Volpe, & Hogan, 1999; Novak,
Miller, & Houk, 2002). It assumes that a reaching movement is a super-
position of primitives, each produced by a motor impulse or command.
Typically a velocity profile is decomposed into a sum of shifted and scaled
versions of a standard profile, and the number of fitted components (sub-
movements) is interpreted as indicating the number of underlying discrete
motor impulses or commands. An alternative view is that a continuously
applied control policy can explain movement kinematics, including sub-
movements. Indeed, stochastic optimal control models have been shown to
produce movement kinematics similar to observed ones using continuous
control signals without explicitly summing discrete submovements (Har-
ris & Wolpert, 1998; Todorov & Jordan, 2002; Scott, 2004; Tanaka, Krakauer,
& Qian, 2006; Shadmehr & Krakauer, 2008; Qian, Jiang, Jiang, & Mazzoni,
2013).

The target perturbation paradigm (Georgopoulos, Kalaska, & Massey,
1981; Soechting & Lacquaniti, 1983; Flash & Henis, 1991; Heath, Hodges,
Chua, & Elliott, 1998) provides a particularly interesting case to contrast
these two views. In this paradigm, subjects are instructed to reach with
their hand to a target. At some point before or after movement onset, the
target jumps to a new position, and subjects have to correct their move-
ments to reach the new position. It is known that depending on the jump
time, the perturbation can greatly change movement kinematics compared
with the corresponding no-perturbation condition. In particular, the veloc-
ity profile varies with jump time and may show a plateau or a new peak. The
submovement view contends that such changes in velocity profile indicate
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changes in the number of discrete motor commands or impulses for con-
trolling the movements (Fishbach, Roy, Bastianen, Miller, & Houk, 2005,
2007). In contrast, the continuous-control view argues that there is no fun-
damental difference between the conditions with and without target per-
turbation (Pélisson, Prablanc, Goodale, & Jeannerod, 1986; Desmurget &
Grafton, 2000); in both cases, the system estimates its state (using sensory
feedback and internal prediction) to correct errors and move the effector to-
ward the target in a continuous process. Although perturbation introduces
a large error, it is corrected in the same way as errors in the no-perturbation
case.

Optimal feedback control models have already been used to explain
target-perturbation experiments. Some (Hoff & Arbib, 1993; Liu & Todorov,
2007) used finite-horizon formulations, which require a predetermined
movement duration to define the cost function and solve the optimiza-
tion problem (see the discussions in Tanaka et al., 2006 and Qian et al.,
2013). To simulate target perturbation, they have to be given two move-
ment durations (taken from experimental data) to compute two solutions
for use before and after the target jump, respectively. Consequently, the
models are forced to use two control policies to simulate target perturba-
tion experiments. Although each policy is run continuously, the require-
ment of two policies and a switch between them weaken the argument for
the continuous-control view. Moreover, requiring the models to “know”
two durations seems biologically implausible, particularly when the tar-
get jumps to an unpredictable position. Another model (Rigoux & Guigon,
2012) employed both infinite- and finite-horizon formulations. The infinite-
horizon component specifies a movement duration, which is then used to
determine the corresponding finite-horizon control policy, and both the du-
ration and control policy are updated at each time step. The model has the
advantage of treating movements with and without target perturbation uni-
formly. However, it has to compute a large number of durations and poli-
cies equal to the number of time steps for any movement. Moreover, if tar-
get perturbation increases movement duration (as it often does), the model
requires more control policies.

We therefore investigated whether a single, continuously applied control
policy could simulate movements both with and without target perturba-
tion. We and others recently proposed infinite-horizon stochastic optimal
feedback control models that do not preset or precompute movement dura-
tions or rely on finite-horizon control policies (Huh, Todorov, & Sejnowski,
2010; Jiang, Jiang, & Qian, 2011; Qian et al., 2013). In this letter, we extend
and apply this framework to target perturbation. We also model the ob-
servation that subjects can perform the perturbation task even when their
vision is suppressed during the target jump and they do not see their hands
during reaching (Goodale, Pélisson, & Prablanc, 1986; Pélisson et al., 1986).
A recent study found that visual and proprioceptive feedbacks have not
only different noise levels but also different delays (Crevecoeur, Munoz, &
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Scott, 2016). Although our study does not directly concern this interesting
finding, we incorporated it into our model to ensure that our conclusions
are valid under more realistic feedback conditions.

A related debate is the relative importance of feedforward versus feed-
back control of reaching. There is little doubt that reliable sensory feedback
can improve performance (Bernstein, 1967; Todorov & Jordan, 2002). How-
ever, sensory feedback in the initial phase of reaching does not seem to be
as important as that in the terminal phase (Beaubaton & Hay, 1986). This
has led to the proposal that motor control uses a crude or even open-loop
mechanism initially and switches to a refined, closed-loop mechanism later,
implying a two-stage process. However, few models have considered the
alternative that a single control policy may appear to assign different im-
portance to initial and terminal feedback. We therefore extended the previ-
ous infinite-horizon model (Phillis, 1985; Jiang et al., 2011; Qian et al., 2013)
to implement Weber’s law of sensory perception. This law states that un-
certainty in estimating a value is proportional to the value estimated. We
therefore assume, for example, that the uncertainty in judging the distance
between the hand and target is proportional to this distance (Baird, 1970).
We were able to implement Weber’s law via state-dependent noise in the
sensory feedback equation because we represented the effector state rela-
tive to the target. Surprisingly, this well-known sensory law has not been
incorporated into optimal feedback control models. We examined whether
the law naturally rendered initial and terminal sensory feedback less and
more effective, respectively, without assuming a switch between feedfor-
ward and feedback strategies.

Some preliminary results were reported in abstract form (Fangwen,
Zhaoping, & Qian, 2012).

2 Results

A stochastic optimal feedback control model is defined by equations spec-
ifying the system dynamics, sensory feedback (observation), state estima-
tion, control law, and cost function (e.g., Phillis, 1985; Todorov, 2005; Qian
et al., 2013). Similar to previous work, we used the following system dy-
namics:

dx = (Ax + Bu)dt + Fxdβ + Yudγ + Gdω, (2.1)

where x is the state vector and u is the control signal. The A and B matri-
ces are determined by the motor plant and Newtonian dynamics (see the
appendix for examples). The F, Y, and G terms represent state-dependent,
control-dependent, and control-independent noise in the dynamics. β and
γ are scalar Wiener processes and ω a vector of Wiener processes; their for-
mal differentials (random-walk steps in time dt) are gaussian white noises
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with zero mean and variance dt. The target state is defined to be x = 0, so
that x really represents the effector state relative to the target.

We modified commonly used observation equations to better represent
sensory feedback. First, we considered multiple feedback types or modali-
ties with different parameters,

dys = Csxsdt + Zsxsdδs + Dsdξs, (2.2)

where s = 1, 2, . . . , f indicates different types or modalities of sensory feed-
back with an observation ys vector for each feedback. For this study, we lim-
ited f = 2 with s = 1, 2 for vision and proprioception, respectively, but our
formulation and analytical derivation can be readily extended to larger f .
Cs are the observation matrices. Second, the observation vectors ys are based
on the delayed state vectors xs, which are related to the actual state vector
x according to the following low-pass filters (Jiang et al., 2011),

τsdxs = (−xs + x)dt (2.3)

where τs are the time constants that determine the delays of the different
feedback types (Crevecoeur et al., 2016). (Additionally, for each feedback
type, different time constants can be applied to different components of the
state vector, but this is omitted here for simplicity.) Using low-pass filters
instead of hard time shifts (Todorov, 2005) to model delays is analytically
advantageous. It is also physiologically plausible because delays caused by
neural processing are more like low-pass filtering than hard time shifts (Re-
ichardt, 1987; Egelhaaf & Reichardt, 1987; Qian & Andersen, 1997). Third,
there are both state-dependent noise (the Zs term) and state-independent
noise (the Ds term) in each observation equation. Because x represents the
effector state relative to the target, the state-dependent noise naturally im-
plements Weber’s law of sensory processing (see section 2.1). The Zs term
was not included previously (Jiang et al., 2011; Qian et al., 2013; Phillis,
1985). δs and ξs are scalar and vector Wiener processes, respectively. All the
random processes in equations 2.1 and 2.2 are independent of each other.
Importantly, equations 2.2 and 2.3 allow different delays and noise levels
for different sensory feedbacks.

Since our analysis follows Phillis (1985), which does not include delay
equations, we combined the delay equations with the system dynamics by
defining (Jiang et al., 2011)

x∗ ≡
⎡
⎣ x

x1

x2

⎤
⎦ , dy∗ ≡

[
dy1

dy2

]
, (2.4)
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and rewriting equations 2.1 to 2.3 as

dx∗ = (A∗x∗ + B∗u)dt + F∗x∗dβ + Y∗udγ + G∗dω∗, (2.5)

dy∗ = C∗x∗dt + Z∗x∗dδ + D∗dξ ∗, (2.6)

where the new, starred symbols are defined by the original ones as

A∗ ≡
⎡
⎣ A

1/τ1 −1/τ1

1/τ2 −1/τ2

⎤
⎦ , B∗ ≡

⎡
⎣ B

0
0

⎤
⎦ , C∗ ≡

[
0 C1 0
0 0 C2

]
,

F∗ ≡
⎡
⎣ F

0
0

⎤
⎦ , Y∗ ≡

⎡
⎣Y

0
0

⎤
⎦ , G∗ ≡

⎡
⎣ G

0
0

⎤
⎦ ,

Z∗ ≡
[

0 Z1 0
0 0 Z2

]
, D∗ ≡

[
D1

D2

]
, dω∗ ≡ dω, dξ ∗ ≡

[
dξ1

dξ2

]
,

and the 0’s and 1’s represent zero and identity matrices of proper dimen-
sions.

Our state-estimation and control-law equations are similar to those in
previous stochastic optimal feedback control models:

dx̂∗ = (A∗x̂∗ + B∗u)dt + K(dy∗ − C∗x̂∗dt), (2.7)

u = −Lx̂∗, (2.8)

where x̂∗ is the estimation of x∗. The two terms in equation 2.7 represent
internal prediction (using an efference copy of u and a forward model of
the plant) and corrections from the sensory feedbacks, respectively. (Some
studies view internal prediction as a form of feedback—see Desmurget &
Grafton, 2000—but we use feedback to denote sensory inputs only.)

The goal of optimal feedback control is to determine the Kalman-
estimator matrix K and control-law matrix L by minimizing an appropri-
ate cost function. To avoid explicit movement duration required by finite
horizon formulations, we adopted an infinite-horizon approach (Phillis,
1985; Jiang et al., 2011; Qian et al., 2013) with the following steady-state cost
function:

J = lim
t→∞

〈x̃TUx̃ + xTQx + uTRu〉, (2.9)

where x̃ = x − x̂ is the state estimation error and the brackets indicate ex-
pectation over all relevant noises. The three terms represent expected costs
(per unit time) of estimation error, reaching error, and energetic effort, re-
spectively. We need to find K and L that minimize J under the constraints
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of equations 2.5 to 2.8. We analytically derived the optimal solution as (see
the appendix):

K = P22CT(D∗D∗T + Z∗P11Z∗T)−1, (2.10)

L = (R + Y∗T(S11 + S12)Y∗)−1B∗TS11, (2.11)

ĀTS + SĀ + F̄TSF̄ + ȲTSȲ + Z̄TSZ̄ + V = 0, (2.12)

ĀP + PĀT + F̄PF̄T + ȲPȲT + Z̄PZ̄T + ḠḠT = 0, (2.13)

where P is the correlation matrix of the extended state vector that concate-
nates x∗ and x̃∗ ≡ x∗ − x̂∗, S is a matrix of Lagrange multipliers, V is a ma-
trix related to the cost terms, subscripts 11 and 12 refer to the upper left
and upper right quarter blocks of a square matrix, and the barred matri-
ces are defined with the corresponding unbarred ones (see the Appendix).
Phillis’s original solution can be recovered by setting Z∗ = 0. For a given
motor plant, the optimal K and L can be found quickly by iterating equa-
tions 2.10 to 2.13 to convergence (Jiang et al., 2011; Qian et al., 2013). We
define K ≡ [K1 K2] where K1 and K2 are the first and last half columns of
K and correspond to the Kalman estimators for visual and proprioceptive
feedbacks, respectively. By setting K1 or K2 or both to 0 during simulations,
we can model different feedback conditions.

2.1 Weber’s Law and Different Effects of Initial and Terminal Visual
Feedback. Weber’s law of sensory perception has the form

�p = kp, (2.14)

where �p is the change in a stimulus property that produces a just notice-
able difference in the perception of the property and p is the current value
of the property. The dimensionless proportionality constant k is called the
Weber fraction. For �p to be perceptually noticeable, it has to overcome
the noise in neural representations of p. Therefore, equation 2.14 implies
that noise in p representation is proportional to p. Because in our model,
the state vector x represents the end effector relative to the target, the state-
dependent observation noise (the Zs term of equation 2.2) implements We-
ber’s law: as the hand state gets closer to the target state, x becomes smaller
in magnitude, and the uncertainty in observation of x becomes smaller ac-
cordingly. (State-dependent observation noise does not implement Weber’s
law for models that use separate, absolute representations of the effector
and target.)

The Zs matrix thus determines Weber fractions in our model. For the
diagonal Zs we used, the diagonal terms are proportional to Weber frac-
tions for the components of x, which include position, velocity, and accel-
eration (see the Appendix). We determined the ratios among the diagonal
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terms of Z1 using the Weber fractions of visual judgments of distance (Baird,
1970; McKee, Levi, & Bowne, 1990; Levi & Klein, 1992), velocity (McKee,
Silverman, & Nakayama, 1986), and acceleration (Mueller & Timney, 2016).
In other words, the properties measured in visual psychophysical experi-
ments were assumed to be applicable to the visual guidance of the hand’s
reaching movements to targets. Following Crevecoeur et al. (2016), we fur-
ther assumed that proprioception is faster but noisier than vision and let
τ1 = 100 ms, τ2 = 50 ms, D2 = 2.5D1, and Z2 = 2.5Z1. A complication is that
proprioception can sense the hand but not the target. Therefore, proprio-
ceptive feedback of the state should really be viewed as resulting from the
integration of proprioception of the hand and visual perception or memory
of the target, and we assume that Weber’s law applies to this integration.
Our conclusions in this letter are not sensitive to these or other parameters.
For example, we obtained qualitatively similar results when the factor relat-
ing proprioceptive and visual noises varied from 2 to 5, or when both delay
constants were set to 100 ms or a value from 50 to 150 ms, or when Weber’s
law for proprioception was eliminated (by setting Z2 to 0 and doubling D2).

We used the optimal solution for a single-joint motor plant (see the ap-
pendix for details) to simulate the four visual feedback conditions for reach-
ing movements in Beaubaton and Hay (1986). That study compared sub-
jects’ movements under full vision, no vision, vision in the initial half and
vision in the terminal half of the hand-position trajectory. For all conditions,
the target was always visible and stationary. When the hand was invisible,
subjects could not use vision to estimate the hand state, so we set K1 = 0.
Figure 1 shows the simulated position trajectories (panel a) and the end-
point variabilities (panel b) in the four conditions. Consistent with experi-
mental findings, we found that the initial-vision condition produced a more
variable end-point position than did the terminal-vision condition, and that
with the end-point variability as the measure, the initial- and terminal-
vision conditions were, respectively, similar to no-vision and full-vision
conditions.

Figure 1b is based on simulation results at 1 s but our conclusion does
not depend on this choice of end point. Figure 2 shows the SDs of the
hand position as a function of time for the four conditions. The con-
clusion is the same for any time after 0.5 s as the end time (Figure 1a
shows that it is reasonable to assume that movements ended after 0.5 s).
Thus, the model explains different effects of initial and terminal visual
feedback on end-point accuracy without assuming two mechanisms. In-
tuitively, because of Weber’s law, visual feedback toward the end of a
movement is highly accurate due to small distances between the hand and
target states, and consequently, its presence versus absence largely deter-
mines end-point variability. On the other hand, our simulations suggest
that initial feedback had a significant impact on the positional variability
during the movement (see Figures 1a and 2). Indeed, in the early phase
of movements, the terminal-vision and no-vision conditions were similar
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Figure 1: Simulations of the four vision conditions (Beaubaton & Hay, 1986).
(a) The four conditions are full vision (Full), no vision (None), vision in the ini-
tial half (Initial), and vision in the terminal half (Terminal), of the hand-position
trajectory. The white and gray backgrounds indicate visible and invisible hands,
respectively. In each panel, the solid red curve is the average hand position tra-
jectory and the two dashed red curves are the 5 and 95 percentiles estimated
from 1000 simulations. The dark gray curves are 20 sample trials. (b) The box
plot for each condition shows the median end-point position (long red line), 25
and 75 percentiles (blue box), and outliers (red crosses), from 1000 simulations at
1 sec. Consistent with Beaubaton and Hay (1986), the terminal-vision condition
was more accurate than the initial-vision condition. In addition, the terminal-
and initial-vision conditions were similar to the full- and no-vision conditions,
respectively.
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Figure 2: SDs of the hand position as a function of time for the four vision
conditions. The blue, orange, yellow, and purple curves are for the full-vision,
terminal-vision, no-vision, and initial-vision conditions, respectively. At the be-
ginning, all four conditions had similar SDs because even when visual feedback
was available, it was crude (because of Weber’s law) and delayed.

to each other. This is not surprising because these two conditions were
identical up to the midpoint of each trajectory, and from that point on,
the continuous Newtonian dynamics kept the two conditions similar until
accurate feedback in the terminal-vision condition gradually made a differ-
ence on convergence. Likewise, at the beginning, the initial-vision and full-
vision condition were similar to each other. We note that the experiments
also showed larger end-point biases in the initial- and no-vision conditions
than in the terminal and full-vision conditions (Beaubaton & Hay, 1986).
Since this could be trivially explained by assuming that visual perception
of the hand state is less biased than proprioception, we did not model this
result explicitly.

Finally, Beaubaton and Hay (1986) found that the difference in end-
point accuracy between the initial/no-vision conditions and the terminal/
full vision conditions became smaller for slower movements. To explain this
result, we first defined the movement duration of a trial as the first time
when the velocity had been less than 0.05 m/s for 40 ms, and then used this
criterion to sort the simulated trials from fast to slow. We then plotted the
end-point accuracies of the four vision conditions for the fast trials (dura-
tions less than 0.45 s) and slow trials (durations more than 0.6 s) in Figures
3a and 3b, respectively. (Each of the two groups of trials constituted about
a quarter of the total number of trials.) Consistent with the experimental
finding (Beaubaton and Hay, 1986), the differences in end-point accuracy
between the initial/no-vision conditions and the terminal/full vision con-
ditions were smaller for the slow trials.

2.2 Target perturbation at various times. We next used the same model
to simulate target-perturbation experiments. In Figure 4, the target was
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Figure 3: End-point-accuracy difference among the four vision conditions for
fast and slow trials. Fast (<0.45 s) and slow (>0.6 s) trials of Figure 1 are ana-
lyzed separately. The differences in end-point accuracy between the initial/no-
vision conditions and the terminal/full vision conditions were smaller for the
slow trials (bottom panel) than for the fast trials (top panel), consistent with the
experimental finding of Beaubaton and Hay (1986).

initially 0.5 m away from the hand but jumped farther away from the hand
by 0.1 m at various times to make a total distance of 0.6 m. The two columns
of the figure show the position and velocity profiles, respectively. Different
rows show results of different jump times (no jump, 0.1, 0.2, 0.3, and 0.4 s af-
ter reaching starts). Figure 5 shows the corresponding results for the target
jumped closer to the hand by 0.1 m to make a total distance of 0.4 m.

The simulations in Figures 4 and 5 reproduced some key features of the
target-perturbation experiments (Georgopoulos et al., 1981; Soechting &
Lacquaniti, 1983; Flash & Henis, 1991; Heath et al., 1998; Goodale et al., 1986;
Pélisson et al., 1986; Fishbach et al., 2005, 2007). When the target jumped
early during reaching, the kinematics were similar to those of the no-jump
condition, with smooth and single-peaked mean velocity profiles. When
the target jumped late, however, the mean velocity profiles became less
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Figure 4: Simulations of target jump to a far position. The target was initially
0.5 m away from the hand, but jumped farther away from the hand by 0.1 m
at various times to make a total distance of 0.6 m. The top row shows results
for the no-jump condition with a distance of 0.6 m. The remaining rows show
results for jumps at t = 0.1, 0.2, 0.3, 0.4 s after the start of reaching. The two
columns show the position trajectories and velocity profiles, respectively. For
the position plots, the solid green lines indicate the target positions with the
steps at the jump times. For the velocity plots, the dashed vertical green lines
indicate the same jump times.
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Figure 5: Simulations of target jump to a near position. The target was initially
0.5 m away from the hand but jumped closer to the hand by 0.1 m at vari-
ous times to make a total distance of 0.4 m. The format was identical to that of
Figure 4.
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regular and showed a plateau or second peak. Importantly, all simulations
in Figures 4 and 5 were produced by a single policy with fixed estimator
K and control law L. In all cases, the model was run continuously, with-
out any prefixed or precomputed duration, to move the hand toward the
target regardless of whether, when, and where the target jumped. At any
time, the estimator combines sensory feedback with internal prediction to
produce estimated state vector for guiding control. To our knowledge, this
is the first computational demonstration that a single feedback control pol-
icy with fixed parameters simulates different kinematic features of target-
perturbation experiments.

In a variation of the target-perturbation paradigm (Goodale et al., 1986),
subjects did not see their hands during the movement. In addition, the tar-
get jumped when the subjects’ saccadic eye movement to the target was at
peak speed (around the start of reaching). Consequently, the subjects were
unaware of the jump because of transient saccadic suppression of vision. It
was found that subjects corrected for the jump just fine even though they
were unaware of it and that the movement kinematics with and without
the jump were similar. We modeled the invisible hand by setting K1 = 0.
Since our model represents the hand state relative to the target whose visual
feedback was also suppressed around peak saccadic speed, proprioception
alone could not determine the state during saccadic suppression. We there-
fore modeled the unaware condition by also setting K2 = 0 for 50 ms and let-
ting the target jump at the midpoint of this time window. When both K1 and
K2 were 0, the first term of equation 2.7, which represents internal predic-
tion, still estimated the state, effectively providing a memory mechanism.
The results of our simulations for movements with and without target jump
are shown in Figure 6. The model produced similar position and velocity
profiles for the two conditions and corrected for the jump occurred dur-
ing the 50 ms blind window, reproducing the experimental findings. Two
factors contributed to the results. First, although the target jumped when
sensory feedbacks were suppressed, the new target location was observed
after the saccade, which guided subsequent control. Second, as noted above,
earlier sensory feedback was not as important as later feedback because of
Weber’s law. The similarity between the jump and no-jump conditions was
due to the fact that the jump occurred at the start of the hand movement
(Goodale et al., 1986), regardless of the hand visibility for the rest of the
reaching. Indeed, the jump and no-jump conditions were still similar when
we simulated the visible hand condition (results not shown).

2.3 Submovement Decomposition. We discussed in section 1 the de-
bate on whether the number of decomposed submovements could deter-
mine the number of discrete motor impulses or commands for movement
control. We investigated this issue by applying a submovement decom-
position method (Lee et al., 1997) to the velocity profiles of sample trials
produced by our model for target-perturbation experiments (see Figures 4
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Figure 6: Simulations of target jump during saccadic suppression of vision. The
target was initially 0.5 m away from the hand. The top row shows the position
and velocity traces for the no-jump condition. The bottom row shows the re-
sults for the case where the target jumped away from the hand by 0.05 m in a
50 ms time window (marked by dotted vertical lines) during which the vision
was suppressed. The jump and no-jump conditions produced similar results (in
agreement with the experiment) because the jump time was early.

and 5). Three examples of decomposition for each of various jump condi-
tions are shown in Figure 7. By applying the method to 1000 velocity pro-
files from each condition, we obtained the histograms in Figure 8. Similar
to the results of decomposing observed velocity profiles (Fishbach et al.,
2005, 2007), we found with our simulations that no-jump and early-jump
conditions produced fewer numbers of decomposed submovements than
those of the late-jump conditions. For a given jump condition, different tri-
als could produce different numbers of submovements because the sam-
pled noises (from the same distributions) fluctuated. For a given trial, the
number of submovements depends on the shape of the standard profile and
the criterion of fit. With symmetric standard profile (Lee et al., 1997) and a
criterion of accounting for 99% variance, we found that all velocity profiles
we tried, including those from the no-jump condition, produced multiple
submovements. Importantly, the velocity profiles were all simulated with
exactly the same single control policy run continuously in time. Therefore,



412 Z. Li, P. Mazzoni, S. Song, and N. Qian

Figure 7: Submovement decomposition of simulated velocity profiles. Three
trials from each jump condition in Figure 4 are decomposed using the methods
of Lee et al. (1997) with the criterion of accounting for 99% variance. Dashed blue
curves indicate submovements. Solid blue and red curves indicate the fitted and
originally simulated velocity profiles, respectively.
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Figure 8: Distributions of numbers of decomposed submovements. The fre-
quency histograms of the numbers of decomposed submovements for the vari-
ous jump conditions in Figure 4 are shown. The frequency of each condition was
estimated from 1000 trials of simulations. Profiles from later-jump conditions re-
quired more submovements to fit than those from no-jump or early-jump con-
ditions.

our results suggest that the number of decomposed submovements does
not necessarily reflect the number of discrete motor impulses, commands,
or policies.

A related experimental finding is that velocity profiles of slower move-
ments require more submovements to fit (Morasso, Ivaldi, & Ruggiero,
1983; Darling, Cole, & Abbs, 1988; van der Wel, Sternad, & Rosen-
baum, 2009; Levy-Tzedek, Krebs, Song, Hogan, & Poizner, 2010; Shmuelof,
Krakauer, & Mazzoni, 2012). To explain this finding, we used the same cri-
terion for Figure 9 to define the duration of a trial and sort the simulated
trials of the no-jump condition from fast to slow. We then divided the trials
into fast, medium, and slow groups according to whether the duration is
less than 0.5 s, between 0.5 and 0.6 s, and greater than 0.6 s, and determined
the submovement decomposition for each group. The results in Figure 9
show that our single-policy model reproduced the experimental finding
that slower trials required more submovements to fit. Again, the conclu-
sion is that the number of submovements does not necessarily reflect the
number of underlying motor impulses, commands, or control policies.

2.4 Two-Dimensional Target Perturbation. In the above, we modeled
one-dimensional target perturbation in which the target jumped parallel
to the movement path to become either closer to or farther away from the
hand. We also used a two-dimensional motor plant described in Liu and
Todorov (2007) to simulate target jumps perpendicular to the initial move-
ment path. Figure 10 shows example simulations in which the hand started



414 Z. Li, P. Mazzoni, S. Song, and N. Qian

Figure 9: The dependence of submovement number on movement duration.
The simulated trials of the no-jump condition of Figure 4 were divided into fast,
medium, and slow groups according to whether the movement duration was
less than 0.5 s, between 0.5 and 0.6 s, or greater than 0.6 s. The submovement
decomposition was done for each group separately to produce the frequency
histogram.

moving horizontally to a target 0.3 m to the right, which then jumped per-
pendicular to the initial movement path by 0.05 m in either direction. The
jump time was 100, 200, or 300 ms after the movement onset. Since in the
experiment of Liu and Todorov (2007), subjects did not see their hands dur-
ing reaching, we set the vision part of the Kalman matrix K1 = 0 as before.
We averaged movement trajectories over 4000 trials in order to compare
them with the reported, average results (Liu & Todorov, 2007). Consistent
with experimental observations, the simulated average hand trajectories
turned gradually toward the new target locations, with sharper turns for
later jumps (see Figure 10a), the average speed profiles became more irreg-
ular for later jumps (see Figure 10b), and the movement duration was longer
for later jumps (see Figure 10c). Following Liu and Todorov (2007), the ter-
minations of the curves in Figure 10c indicate movement durations, and the
termination criterion was the time when average hand velocity was smaller
than 0.5 cm/s for 40 ms. (Note that this criterion was for the average veloc-
ity across trials and different from the one for individual trials used above.)
As we mentioned in section 1, Liu and Todorov (2007) simulated these per-
turbations with a finite-horizon model and had to preset two movement
durations to compute two control policies for each jump time. We used the
same motor plant, but because of the infinite-horizon formulation, we were
able to apply a single policy for all the simulations in Figure 10 without
presetting any movement duration.

3 Discussion

In this study, we first extended an infinite-horizon stochastic optimal feed-
back control model (Phillis, 1985; Jiang et al., 2011; Qian et al., 2013) by
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Figure 10: Simulations of two-dimensional target perturbation. The hand
started moving horizontally to a target 0.3 m to the right, which then jumped
perpendicular to the initial movement path by 0.05 m in either direction. The
jump time was 100, 200, or 300 ms after the movement onset. (a) The average
movement trajectories. The red, green, and blue curves represent jumps at 100,
200, and 300 ms, respectively. (b) The average velocity profiles for the three jump
times. (c) The average corrective distance along the perturbation axis (perpen-
dicular to the initial movement direction) for the three jump times.

incorporating Weber’s law of sensory perception. We were able to achieve
this by adding state-dependent noise to the observation equation because
the model represents the effector state relative to the target. Models that use
separate, absolute representations of effector and target in the state vector
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would need to compare the effector and target states to realize Weber’s law.
We also considered visual and proprioceptive feedback with different de-
lays and noise levels. We analytically derived an optimal solution for the
extended model. We then applied the model to show that terminal vision
was more effective in reducing end-point variability than initial vision, and
these two partial vision conditions produced end-point accuracies similar to
those of the full-vision and no-vision conditions, respectively, and that the
differences among the conditions became smaller for slower movements.
These simulation results explain Beaubaton and Hay’s findings coherently
without assuming a switch between crude and fine or between open- and
closed-loop strategies. We also applied the same model (and parameters) to
simulate target-perturbation experiments for various times of target jump.
Consistent with experimental findings (Georgopoulos et al., 1981; Soechting
& Lacquaniti, 1983; Flash & Henis, 1991; Heath et al., 1998; Goodale et al.,
1986; Pélisson et al., 1986; Fishbach et al., 2005, 2007), the model produced
smooth, single-peaked mean velocity profiles when the target jumped early
and irregular mean profiles with a plateau or a second peak when the target
jumped late. Additionally, the model explained the observations that sub-
jects can perform the task even when they do not see the jump and when
their hands are invisible during reaching (Goodale et al., 1986). Moreover,
we found that the simulated velocity profiles, including those from the no-
jump condition, appeared to have multiple submovements, and the num-
ber of submovements was larger for trials that were slower or perturbed
later. Importantly, all of these simulations were produced by a single, fixed
control policy. The model did not assume different mechanisms at differ-
ent periods of movements or for different jump times and locations nor re-
quire different numbers of policies for movements of different durations.
Finally, we simulated two-dimensional target perturbations in which the
target jumped perpendicular to the initial movement direction. Here again
we used a single policy to simulate different jump times and directions.

Our study demonstrates for the first time that a single control policy
can explain a broad range of kinematic features observed in different ex-
perimental conditions and trials. This demonstration offers a more parsi-
monious interpretation of the observations. Thus, ineffective initial visual
feedback does not necessarily imply open-loop control at the start of move-
ments. Indeed, in the extreme case of no sensory information about the ini-
tial state vector at all, it would be impossible to decide in which direction
to move the hand. Likewise, different kinematic features for different per-
turbation times or different movement durations do not necessarily imply
different control strategies, and the number of peaks or decomposed sub-
movements in a velocity profile does not necessarily reflect the number of
motor impulses or commands or policies. Instead, our work suggests that
variations in experimental conditions might naturally lead to variations in
kinematics without changes in underlying control mechanisms or policies.
For example, the jump time determines when the large perturbation error
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occurs during a movement, and that could be sufficient to account for the
jump-time dependence of kinematics. Similarly, different trials have differ-
ent samples of noise sequences, and this fluctuation could be sufficient to
explain trial-by-trial variation of kinematics.

Most optimization models for biological motor control use a finite-
horizon formulation (Flash & Hogan, 1985; Uno, Kawato, & Suzuki, 1989;
Harris & Wolpert, 1998; Todorov & Jordan, 2002; Scott, 2004; Todorov, 2004;
Diedrichsen, Shadmehr, & Ivry, 2010). Because they require movement du-
ration to define the cost functions, these models have to be given the dura-
tion before solving the optimization problems and initiating movements. To
avoid this problem, we and others have recently advocated infinite-horizon
formulations (Huh et al., 2010; Jiang et al., 2011; Qian et al., 2013), which
can predict movement duration instead of prefixing it. The contrast be-
tween finite- and infinite-horizon formulations is particularly striking for
modeling target-perturbation experiments. Because target jump changes
movement duration, finite-horizon models have to be given two preset
durations—one for the original target location and the other for the final
target location. Moreover, the second duration depends on when and where
the target jumps and the hand state at the time of jump, and finite-horizon
models have to be given different second durations for different situations.
There is also a model that uses both infinite- and finite-horizon approaches,
with the former determining the movement duration and the latter speci-
fying a control policy for that duration (Rigoux & Guigon, 2012). Because
the model updates the duration and the corresponding policy at each time
step, its number of required finite-horizon policies equals the number of
time steps and changes with different movement durations for different
conditions. We showed in this letter that our purely infinite-horizon ap-
proach provides a simpler explanation of target-perturbation experiments.
Our model does not need to be given or compute movement durations ex-
plicitly, and it uses a single policy to move the hand toward the target re-
gardless of whether, when, or where the target jumps or whether the jump
is visible.

Computational modeling shows only theoretical possibilities. Whether
stochastic optimal feedback control models or submovement decompo-
sition models better account for biological motor control is an empirical
question. Similarly, only experiments can help differentiate the validity of
infinite-horizon models presented here and elsewhere (Huh et al., 2010;
Jiang et al., 2011; Qian et al., 2013), the finite-horizon models (Harris &
Wolpert, 1998; Todorov & Jordan, 2002; Scott, 2004; Tanaka, Krakauer, &
Qian, 2006), and the mixed formulation (Rigoux & Guigon, 2012). We pre-
viously discussed the similarities and differences, and the strengths and
weaknesses, of finite- and infinite-horizon models and speculated that they
both might be employed by biological systems (Qian et al., 2013). Specif-
ically, parsimonious, infinite-horizon policies might provide default con-
trol mechanisms, whereas finite-horizon policies might be called for when
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additional optimization and the associated computational cost are justi-
fied. Our study is broadly consistent with this speculation: it shows that
an infinite-horizon model with a single policy is able to perform a variety
of tasks, but a finite-horizon model with multiple policies might help refine
these tasks (e.g., by forcing their completion in a prefixed time frame with
less trial-by-trial variation of movement duration).

We already noted that because our model represents the effector state
relative to the target, we can implement Weber’s law easily by introducing
state-dependent noise in the observation equations. Another consequence
of this relative, hand-centered representation is that the control signal and
the corresponding force vanish as the effector approaches the target even
for constant control-law matrix L (see equation 2.8). (If force is needed to
maintain the effector, one can simply add a component to the state vector
or a term in equation 2.8.) In contrast, other models often use a state vector
that represents the effector and target separately with respect to a reference
frame not centered on the hand (e.g., Todorov, 2005). With such absolute
representation, the state vector is not zero even when the effector reaches
the target. Consequently, L has to vary with time or state and drop to zero
to eliminate the control signal (and the force) when the hand reaches the
target. Obviously, different choices of the reference frame produce different
absolute representations of the effector and target and, consequently, dif-
ferent L dependence on time or state. Experimentally measured force gains
do change with time or state (Liu & Todorov, 2007; Dimitriou, Wolpert, &
Franklin, 2013), although it is unclear which absolute representation they
support. These and other findings suggest that the brain may use both ab-
solute and relative state representations (Graziano, 2001; Dimitriou et al.,
2013). How to determine the reference frame for the absolute-representation
component is an open question for future investigation.

Our explanation of Beaubaton and Hay’s (1986) experiments relies on
Weber’s law and is not identical to that based on the difference between
foveola and peripheral vision. The fovea spans only about 1 degree of vi-
sual angle, roughly the size of the thumbnail at arm’s length. In contrast,
hand movements in many experiments and in daily life can often span
visual angles of 10 degrees or more so that during most parts of such move-
ments, the eyes can foveate only the hand or the target but not both. There-
fore, foveal vision of both hand and target is available only when the hand
has almost reached the target.

Our model makes testable predictions. First, in Figures 1 and 2, although
toward the end of the movements, the initial- and no-vision conditions were
similar and the terminal- and full-vision conditions were similar, the model
predicts the opposite before the final convergence on the target: there is
greater positional variance in the terminal- and no-vision conditions than in
the initial- and full-vision conditions. Second, a closely related prediction is
that the time to reach the midpoint of the position trajectory has much larger
variance in the terminal- and no-vision conditions than in the initial- and



A Single Policy Explains Reaching with and without Perturbation 419

full-vision conditions. Confirmation of these predictions will be further evi-
dence for the effects of visual feedback even at the beginning of movements.
Third, although initial feedback is ineffective in reducing final positional
variance, it should still be useful for crude aspects of movements such as
general direction. The experiment of Bard, Hay, and Fleury (1985) seems to
support this prediction. Finally, in a previous paper (Qian et al., 2013) we
compared different predictions from the finite- and infinite-horizon control
models (e.g., the absence versus presence of trials in which the hand over-
shoots the target). This study suggests another test that could potentially
distinguish between the models. As we mentioned in section 1, the finite-
horizon models require two movement durations to compute two control
policies for use before and after the target jump. If the target jumps at an
unpredictable time or to an unpredictable location, it is impossible to know
the second movement duration before the jump. If, in addition, the jump
is undetected because of saccadic suppression of vision during the jump
(Goodale et al., 1986; Pélisson et al., 1986), then the finite-horizon models
would not know when to reset the movement duration or switch the con-
trol policy. In contrast, according to our infinite-horizon model, movement
duration is not preset but an emergent property that depends on when and
where the target jumps regardless of whether the jump moment is detected.
Therefore, for an unpredictable and undetected target jump, our infinite-
horizon model predicts a change of duration while the finite-horizon mod-
els do not.

In summary, we have proposed an infinite-horizon stochastic opti-
mal feedback control model for understanding target-perturbation exper-
iments. Because we incorporated Weber’s law, the model also explains
differences between initial and terminal visual feedback. Our model can re-
produce different kinematic features under various conditions with a single
control policy and suggests a parsimonious new interpretation of relevant
experimental findings.

Appendix: Model Details and Derivation

As noted in the text, we extended the formulation of Phillis (1985) and Qian
et al. (2013) in two ways. First, we added the Z term to each feedback equa-
tion to implement Weber’s law of sensory perception. Second, we included
multiple sensory feedbacks with different delays and noise levels to repre-
sent, for example, differences between vision and proprioception. In equa-
tions 2.1 and 2.2, x is the state n-vector, u is the control m-vector, and each
ys is a sensory-feedback k-vector. A, B, Cs, Ds, F, G, Y, and Zs are matrices
of proper sizes. A and B are determined by the motor plant and Newtonian
mechanics (see the examples that follow). More explanations can be found
in Qian et al. (2013). We transformed these equations and the delay equa-
tion 2.3 into equations 2.5 and 2.6 by defining the new state x∗ and obser-
vation y∗ (see equation 2.4), which, for two sensory feedbacks, are 3n- and
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2k-vectors, respectively. The procedure can be extended to more than two
feedbacks. Equations 2.7 and 2.8 are standard estimation and control-law
equations, where x̂∗ is also 3n-vector.

The cost function defined in equation 2.9 contains three terms, at the
steady state. 〈x̃TUx̃〉 represents estimation error, 〈xTQx〉 measures the move-
ment performance since x is the effector state relative to the target, and
〈uTRu〉 is the effort or energetic cost. U, Q, and R are constant matrices that
are positive definite or semidefinite (Qian et al., 2013). Equation 2.9 can be
expressed in x∗ and x̃∗ ≡ x∗ − x̂∗ as

J = lim
t→∞

〈x̃∗TU∗x̃∗ + x∗TQ∗x∗ + uTRu〉, (A.1)

where

U∗ ≡
⎡
⎣U

0
0

⎤
⎦ , Q∗ ≡

⎡
⎣ Q

0
0

⎤
⎦ .

The problem is to find Kalman-estimator matrix K and control-law ma-
trix L that jointly optimize the cost J under the constraints of equations 2.5
to 2.8. To solve the problem, we adapted Phillis’s approach by first defining

X ≡
[

x∗

x̃∗

]
, dω̄ ≡

[
dω∗

dξ ∗

]
, Ḡ ≡

[
G∗ 0
G∗ −KD∗

]
,

Ā ≡
[

A∗ − B∗L B∗L
0 A∗ − KC∗

]
, F̄ ≡

[
F∗ 0
F∗ 0

]
,

Ȳ ≡
[−Y∗L Y∗L

−Y∗L Y∗L

]
, Z̄ ≡

[
0 0

−KZ∗ 0

]
,

where X is a 6n-vector termed extended-state vector, and then combining
equations 2.5 to 2.8 as

dX = ĀXdt + F̄Xdβ + ȲXdγ + Z̄Xdδ + Ḡdω̄. (A.2)

The Z̄ term stems from the state-dependent noise terms Zs not present in
the original formulation (Phillis, 1985; Qian et al., 2013).

With further definitions,

P ≡
[

P11 P12

P21 P22

]
≡ 〈XXT〉, (A.3)

V ≡
[

Q∗ + LTRL −LTRL
−LTRL LTRL + U

]
, (A.4)
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where P is the correlation matrix of the extended state X and the subscripts
refer to the four block matrices of 3n × 3n each, the cost, equation A.1 be-
comes

J = lim
t→∞

〈XTVX〉 = lim
t→∞

〈tr(XTVX )〉 = lim
t→∞

〈tr(VXXT)〉

= lim
t→∞

tr(VP). (A.5)

We next converted the stochastic differential, equation A.2, into a deter-
ministic one. First, equation A.2 has the formal solution (Tanaka et al., 2006)

X(t) = e
∫ t

0 Ā(te )dte X(0) +
∫ t

0
e
∫ t

t′ Ā(te )dte
[ (

F̄Xdβ
)∣∣

t′

+ (
ȲXdγ

)∣∣
t′ + (

Z̄Xdδ
)∣∣

t′ + (
Ḡdω̄

)∣∣
t′
]
, (A.6)

for the general case that Ā may be a function of t. Then, using the definition
of P, we have

P(t) = 〈e
∫ t

0 Ā(te )dte X(0)X(0)Te
∫ t

0 ĀT(te )dte〉

+
∫ t

0

∫ t

0
e
∫ t

t′ Ā(te )dte〈 (F̄Xdβ
)∣∣

t′
(
dβXTF̄T)∣∣

t′′

+ (
ȲXdγ

)∣∣
t′

(
dγ XTȲT)∣∣

t′′ + (
Z̄Xdδ

)∣∣
t′

(
dδXTZ̄T)∣∣

t′′

+ (
Ḡdω̄

)∣∣
t′

(
dω̄TḠT)∣∣

t′′ 〉e
∫ t

t′′ ĀT(te )dte . (A.7)

The double stochastic integral can be divided into three parts: t′ > t′′, t′ < t′′,
and t′ = t′′. Because all the random processes are assumed to be indepen-
dent, the first two parts are zero. For example, consider t′ > t′′ and the first
expectation term 〈 (F̄Xdβ

)∣∣
t′

(
dβXTF̄T

)∣∣
t′′ 〉. Because dβ|t′ cannot affect X at

either the same time t′ or the previous time t′′, it can be factored out, and
its expectation is zero. For t′ < t′′, dβ|t′′ can be factored out and has zero ex-
pectation. Similar arguments apply to the other noise terms of equation A.7.
The t′ = t′′ part of the integral is along the diagonal line of the (t′, t′′) plane
and is therefore a single integral. Since for standardized Wiener process
β, dβ is gaussian white noise with zero mean and variance dt, we have
〈dβ2〉 = dt. Equation A.7 then becomes

P(t) = e
∫ t

0 Ā(te )dte P(0)e
∫ t

0 ĀT(te )dte

+
∫ t

0
e
∫ t

t′ Ā(te )dte (F̄PF̄T +ȲPȲT + Z̄PZ̄T + ḠḠT)e
∫ t

t′ ĀT(te )dte dt, (A.8)

which is a deterministic equation. Finally, differentiating this equation pro-
duces
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Ṗ = ĀP + PĀT + F̄PF̄T + ȲPȲT + Z̄PZ̄T + ḠḠT. (A.9)

At steady state, we have Ṗ = 0, which is equation 2.13 in the text.
The problem now becomes optimizing the cost, equation A.5, under the

constraint of Ṗ = 0. Similar to Phillis (1985), we found the solution, equa-
tion 2.10 to 2.13, via the Lagrange multiplier method. The augmented cost
function is

Ja = J +
∑

i j

Ṗi jSi j = J + tr(ṖS), (A.10)

where S is the matrix of Lagrange multipliers. Since P is symmetric, S is
also symmetric, so that each unique constraint has a unique multiplier. Ad-
ditionally, standard Kalman filter has the property that the estimate x̂∗ is
orthogonal to the estimation error x̃∗; this implies that P12 = P22 and the P12

constraints are not new. Therefore, S has the form

S ≡
[

S11 0
0 S22

]
. (A.11)

By setting ∂Ja/∂K = 0, ∂Ja/∂L = 0, and ∂Ja/∂P = 0 and using the identity
∂ (AXBXT )/∂X = ATXBT + AXB for any A, B, X matrices of proper dimen-
sions, we obtained the solution equations 2.10 to 2.12. For a given motor
plant and parameter set, optimal K and L can found numerically by iter-
ating equations 2.10 to 2.13 to convergence (Jiang et al., 2011; Qian et al.,
2013).

We used two motor plants for the simulations in this letter. The first was
a single-joint arm described in our previous studies (Tanaka et al., 2006;
Qian et al., 2013). The state vector x contained angular position, velocity,
acceleration, and jerk of the hand as components:

x =

⎡
⎢⎢⎣

θ

θ̇

θ̈

θ̈

⎤
⎥⎥⎦ . (A.12)

The system followed second-order Newtonian dynamics and a second-
order equation relating neural control signal u to muscle force (Winters &
Stark, 1985), leading to

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 −α1 −α2 −α3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0
0
bu

⎤
⎥⎥⎦ , (A.13)



A Single Policy Explains Reaching with and without Perturbation 423

in equation 2.1, where

α1 = b
tateI

, α2 = 1
tate

+
(

1
ta

+ 1
te

)
b
I
,

α3 = b
I

+ 1
ta

+ 1
te

, bu = 1
tateI

, (A.14)

with the arm’s moment of inertia I = 0.25 kg m2, viscosity b = 0.2 kg m2/s,
and muscle activation and excitation time constants ta = 0.03 s and te =
0.04 s. For the figures, we converted elbow angle θ to hand position along
the movement path by multiplying θ with the forearm length (L0 = 0.35 m).
The matrices for the noise terms in equation 2.1 were F = 0, Y = 0.02B, and
G = 0.03I4, where I4 is the 4 × 4 identity matrix. The observation matrices
were

Cs =
⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦

for s = 1, 2. The fourth component of the state vector was assumed to be
unobservable (Todorov, 2004; Qian et al., 2013) as there is no evidence that
the sensory systems can perceive the third-order temporal derivative of
position. Following Crevecoeur et al. (2016), we assumed that visual feed-
back was more delayed but less noisy than proprioceptive feedback and set
τ1 = 100 ms, τ2 = 50 ms, Z2 = 2.5Z1, and D2 = 2.5D1. As noted in the text,
we set diagonal entries of Z1 as proportional to Weber fractions of visual
perception of position, velocity, and acceleration reported in the literature
(Baird, 1970; McKee et al., 1990; Levi & Klein, 1992; Mueller & Timney, 2016):

Z1 = 1
2.5

⎡
⎣ 0.03 0 0 0

0 0.06 0 0
0 0 0.3 0

⎤
⎦ .

D1 can be any matrix of small numbers, and we let

D1 = 1
2.5

⎡
⎣ 0.0005 0 0

0 0.005 0
0 0 0.025

⎤
⎦ .

The matrices in the cost function were Q = diag(1, 0.01, 0, 0), R = 0.0001,
and U = diag(1, 0.1, 0.01, 0).

The second motor plant, taken from Liu and Todorov (2007), was a
point-mass effector on a plane driven by a two-dimensional neural control
signal. The system followed second-order Newtonian dynamics and a first-
order equation relating the control signal to muscle force. The state vector x
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contains the horizontal and vertical components of the position, velocity,
and force:

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

px

py

vx

vy

fx

fy

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A.15)

Importantly, we represented these quantities relative to the target. The sys-
tem dynamics was characterized by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

−b/m 1/m
−b/m 1/m

−1/τ

−1/τ

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

1/τ 0
0 1/τ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A.16)

where the mass m = 1 kg, viscosity b = 10 Ns/m, and muscle time con-
stant τ = 50 ms (Liu & Todorov, 2007). Noise terms in equation 2.1 were
F = 0, G = diag(0.1, 0.1, 1, 1, 0, 0). The control-dependent noise had both
horizontal and vertical components Yxudγx and Yyudγy to model noise in
two-dimensional control signal (Todorov & Jordan, 2002).

Yx =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
5 0
0 5

⎤
⎥⎥⎥⎥⎥⎥⎦

, Yy =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 5

−5 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In equation 2.6, we let C = I6, 2.5Z1 = Z2 = diag(0.03, 0.03, 0.06, 0.06,

0.3, 0.3), 2.5D1 = D2 = diag(0.001, 0.001, 0.01, 0.01, 0.1, 0.1). Matrices in
cost function were Q = diag(0.02, 0.02, 0.2, 0.2, 0, 0), R = 0.0002I2 and U =
diag(0.25, 0.25, 0.025, 0.025, 0.0025, 0.0025).

To model target jump to a new position, we modified the relevant po-
sition component of x while keeping other components unchanged. Move-
ment is simulated using the Euler method with time step dt = 1 ms.
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