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Teich, Andrew F. and Ning Qian. Learning and adaptation in a
recurrent model of V1 orientation selectivity. J Neurophysiol 89: 2086–2100,
2003. First published December 18, 2002; 10.1152/jn.00970.2002. Learning
and adaptation in the domain of orientation processing are among the
most studied topics in the literature. However, little effort has been
devoted to explaining the diverse array of experimental findings via a
physiologically based model. We have started to address this issue in
the framework of the recurrent model of V1 orientation selectivity and
found that reported changes in V1 orientation tuning curves after
learning and adaptation can both be explained with the model. Spe-
cifically, the sharpening of orientation tuning curves near the trained
orientation after learning can be accounted for by slightly reducing net
excitatory connections to cells around the trained orientation, while
the broadening and peak shift of the tuning curves after adaptation can
be reproduced by appropriately scaling down both excitation and
inhibition around the adapted orientation. In addition, we investigated
the perceptual consequences of the tuning curve changes induced by
learning and adaptation using signal detection theory. We found that
in the case of learning, the physiological changes can account for the
psychophysical data well. In the case of adaptation, however, there is
a clear discrepancy between the psychophysical data from alert human
subjects and the physiological data from anesthetized animals. In-
stead, human adaptation studies can be better accounted for by the
learning data from behaving animals. Our work suggests that adapta-
tion in behaving subjects may be viewed as a short-term form of
learning.

I N T R O D U C T I O N

It is well known that orientation discrimination, like most
other visual discrimination tasks, is subject to learning: One
can reliably detect significantly smaller orientational differ-
ences after being trained on the task over an extended period of
time (Gilbert 1994; Schoups et al. 1995; Shiu and Pashler
1992; Vogels and Orban 1985). The performance improvement
of this perceptual learning phenomenon is long-lasting, indi-
cating that the training process must lead to some form of
long-term changes in the brain. The psychophysically observed
specificities of perceptual learning, such as the lack of transfer
from learning at one orientation to the orthogonal orientation or
from one learned retinal location to a nearby nonoverlapping
location, strongly suggest that the site of plasticity must in-
volve, at least partially, early visual cortical areas where cells
have relatively narrow orientation tuning curves and small
receptive fields (Gilbert 1994). When two independent groups
recorded from monkey V1 cells after training monkeys on
orientation discrimination tasks, they indeed found a long-
lasting change in V1. The result, however, was puzzling ini-

tially: both groups found that the main effect of learning was a
firing-rate reduction for the cells tuned at and around the
trained orientation (Ghose and Maunsell 1997; Schoups et al.
1998); changes that could obviously explain learning, such as
a reduced variability of neuronal firing, were not observed. In
an effort to understand this finding, we reported previously in
abstract form (Qian and Matthews 1999) that when the ob-
served activity reduction is introduced into the recurrent model
of V1 orientation selectivity (Ben-Yishai et al. 1995; Carandini
and Ringach 1997; Douglas et al. 1995; Somers et al. 1995)
through changes of connection strengths, cells with preferred
orientations close to the trained orientation should have sharper
tuning at the trained orientation, while cells with preferred
orientations somewhat further away should have broader tun-
ing curves. Furthermore, these tuning-curve changes are pre-
cisely what is needed for improving orientation discrimination
at the trained orientation. On re-analyzing the data in light of
the model, Schoups et al. (2001) indeed found the predicted
changes in orientation tuning. In this paper, we present a full
account of our model with extensive simulations and provide a
detailed comparison with the relevant experimental data, par-
ticularly from Schoups et al. (2001).

The observed activity reduction after learning also suggests
that learning may be related to adaptation, since it is well
known that neurons tuned at and around the adapted orientation
have reduced firing rates. One obvious difference is that the
activity reduction after adaptation is transient, whereas the
reduction seems to be permanent after learning (Ghose and
Maunsell 1997; Schoups et al. 1998). However, this may
simply mean that learning is a more permanent version of
adaptation. The possible link between learning and adaptation
is strengthened by an earlier psychophysical finding that adap-
tation, like learning, can also improve orientation discrimina-
tion at the adapted orientation, albeit only briefly (Regan and
Beverley 1985). However, a recent physiological experiment
on anesthetized cats by Dragoi et al. (2000) showed that, unlike
learning, the V1 orientation tuning curves after adaptation
became broader for cells tuned around the adapted orientation.
In addition, the peak of these cells’ tuning curves shifted away
from the adapted orientation. Here we show that these physi-
ological changes to the orientation tuning after adaptation can
also be explained with the recurrent model by altering the
connection strengths in a different way. Thus, just as we will
compare our learning simulations to the learning study of
Schoups et al. (2001), we will also compare our adaptation
simulations to the adaptation study of Dragoi et al. (2000).
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While the behavioral consequence of learning is consistent
with the physiologically observed tuning curve changes, in the
case of adaptation we found that the physiological data from
anesthetized animals cannot explain the psychophysical obser-
vations on alert, attending human subjects. We will discuss the
relevant computational, psychophysical, and physiological re-
sults in this paper. A conclusion emerging from this discussion
is that orientation adaptation in alert human subjects may be
better viewed as a short-term form of orientation learning.

M E T H O D S

All simulations were performed with Matlab (Mathworks, Natick,
MA) on a Linux computer. The source code, which is modified from
that of Carandini and Ringach (1997), will be available to anyone
interested.

Simulating learning and adaptation in a recurrent model

We did not model the time course of synaptic modifications during
the process of learning or adaptation. Instead, we focused on how the
end effects of learning and adaptation on orientation tuning curves
that are found physiologically may be understood by changing the
connection strengths in the recurrent model of V1 orientation selec-
tivity (Ben-Yishai et al. 1995; Carandini and Ringach 1997; Douglas
et al. 1995; Somers et al. 1995). Among the published versions of the
recurrent model, that of Somers et al. (1995) is the most anatomically
and physiologically accurate. Their model was subsequently simpli-
fied by Carandini and Ringach (1997) to the most essential ingredi-
ents. For computational efficiency, we based our work on the simpli-
fied model of Carandini and Ringach (1997). Briefly, the model
considers N oriented V1 cells with their preferred orientations (�),
evenly distributed in the entire 180° range. These cells receive feed-
forward inputs that are weakly orientation-biased, as illustrated in Fig.
1A (for cats, the feed-forward inputs are from spatially aligned LGN

activities, while for monkeys, they may also include contributions
from center-surround cells in layer 4C of V1). To achieve strong
orientation tuning typically observed in V1, recurrent excitatory and
inhibitory connections are introduced among the model V1 cells.
Following the experimental evidence (Ferster 1986; Michalski et al.
1983), both excitatory and inhibitory connections in the model are
strongest among cells with the same preferred orientation, and they
drop off with increasing difference between the preferred orientations
of the cells (Fig. 1B). The model requires that the inhibitory connec-
tivity be wider than the excitatory connectivity, such that the net
interaction among the V1 cells follows a “Mexican hat” type of profile
(Fig. 1C). This interaction profile can sharpen the weak orientation
bias in the feed-forward input into the typical V1 orientation tuning
curves (Fig. 1D).

Quantitatively (Carandini and Ringach 1997), the membrane po-
tential V(�, �,t) of a cell with preferred orientation �, responding to a
stimulus orientation �, obeys the equation

��V/�t � V � Vf � Ve � Vi (1)

where � is the membrane time constant, and Vf,Ve, and Vi are the
synaptic potentials generated by the feed-forward, recurrent excita-
tory, and recurrent inhibitory inputs to the cell, respectively. The cell’s
firing rate is assumed to be related to its membrane potential via the
threshold function with a gain factor �

R � � max �V, 0� (2)

Note that for simplicity, V is measured relative to the firing threshold
and R is measured relative to the spontaneous firing rate. When a
stimulus orientation � is presented, the feed-forward input to the cell
with preferred orientation � takes the form

Vf��, �� � Jf° exp ���� � ��2/�2	f
2�� (3)

where Jf° and 	f determine the strength and width of the input. The
synaptic potentials from recurrent connections to a given cell with
preferred orientation � are determined by integrating contributions

FIG. 1. Baseline simulation of V1 orien-
tation tuning in a recurrent model. A: feed-
forward, weakly orientation-biased inputs to
the V1 cells. B: distribution of recurrent ex-
citatory (exc) and recurrent inhibitory (inh)
connections between 2 cells as a function of
the difference between the cells’ preferred
orientations. C: total recurrent interaction
profile, generated as [Je°E(�) � Ji°I(�)]. D:
orientation tuning curve for a V1 cell, with
0° preferred orientation.
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from all cells with preferred orientations �� covering the entire 180°
range

Ve��, t� � Je°�
�90°

90°

E�� � ���R���, t�d�� (4)

Vi��, t� � Ji°�
�90°

90°

I�� � ���R���, t�d�� (5)

where Je and Ji determine the strengths of excitatory and inhibitory
interactions, and E(�) and I(�) are the corresponding connection
probabilities. For a given broadly tuned feed-forward input Vf, the
firing rate R will evolve through time according to Eqs. 1 and 2 into
sharp orientation tuning found in V1 (Carandini and Ringach 1997).

We made a few modifications to the model of Carandini and
Ringach (1997) without changing its essential features. First, we did

not truncate the recurrent connection probabilities E(�) and I(�) at
�60°, because biological systems are unlikely to enforce such an
abrupt cutoff. Instead, we used the following periodic functions for
the connection probabilities

E��� � ce�cos �2�� � 1�ae (6)

I��� � ci�cos �2�� � 1�ai (7)

where ce and ci are the normalization factors for making the total E
and I to a given cell unity, and the exponents ae and ai determine the
sharpness of the distributions. Second, in the original model, the
inhibitory profile is much wider than the excitatory profile. This has
been the source of some criticism because physiological data suggest
that the difference between the two profiles may be small (Ferster
1986). We therefore narrowed the difference (Fig. 1B) in our simu-
lations. Finally, the V1 orientation tuning widths in the simulations of
Carandini and Ringach (1997) are too sharp compared with typical V1
cells. We adjusted the parameters in the model so that the full width
at the half-height is about 40° (Fig. 1D). The standard set of param-
eters used in our simulations is listed in Table 1. Figure 1 shows that
the modified model works well in generating V1 orientation tuning
curves by sharpening the feed-forward inputs.

Our modification of Carandini and Ringach (1997) also eliminates
a major problem with their model—the appearance of spurious peaks
at nonoptimal orientations when noise is introduced into the feed-
forward input. The problem is serious because noise is an inevitable
component in any neural system. We have made extensive simulations
and have never seen spurious peaks with our parameter set. The
reason is that the parameters used by Carandini and Ringach (1997)
generate tuning curves with a 20° full width at half-height, twice as
sharp as typical V1 tuning curves. To obtain such sharp curves, they
had to use a sharp excitatory interaction profile, which makes the
system less stable. In contrast, we used a more diffuse excitatory
profile (Ferster 1986) to generate tuning curves with a 40° full width
at half-height, and the system is more stable. In Fig. 2, we show our
simulations with two different noise levels. No spurious peaks appear

TABLE 1. Parameters used in the simulations

N Number of cells in the network (128)
� Membrane time constant (15 ms)
�t Time step of integration (2 ms)
� Gain of spike encoder (10 spikes/s/mV)
Je° Strength of intracortical excitation (1.1 mV/spikes/s)
Ji° Strength of intracortical inhibition (1.1 mV/spikes/s)
Jf° Strength of feed-forward excitation (1.5 mV/spikes/s)
	f Gaussian width of feed-forward orientation bias (45°)
ae Exponent for excitatory connection distribution (2.2)
ai Exponent for inhibitory connection distribution (1.4)
Ae Fractional reduction of Je° at the trained or adapted orientation

(ranged from 0.005 to 0.015 in our learning simulations and
from 0.1 to 0.4 in our adaptation simulations)

Ai Fractional reduction of Ji° at the trained or adapted orientation
(was zero in our learning simulations, and was 0.01 to 0.03
larger than the corresponding Ae in our adaptation simulations)

	r Spread of the change in input connections at the trained or adapted
orientation to other orientations (ranged from 20° to 26°)

FIG. 2. Noise in the recurrent model. A: feed-
forward input with 10% noise. B: corresponding
V1 tuning curve. C: feed-forward input with 25%
noise. D: corresponding V1 tuning curve. In each
case, noise was introduced by selecting each feed-
forward input value from a Gaussian distribution,
with the mean set to the original, noise-free value
and the SD set to 0.1 or 0.25 times the mean. In
neither case did spurious peaks appear at nonopti-
mal orientations.
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even with noise much greater than those introduced by Carandini and
Ringach (1997).

Figure 1 shows the baseline behavior of the model before learning
or adaptation. We now describe how we modeled learning and adap-
tation by modifying connections in this framework. Obviously, we
have to assume that the adaptation induced changes are short term
while the learning induced changes are long-lasting. Without loss of
generality, we denote the learned or adapted orientation 0°. We found
that the easiest way to simulate the learning data of Schoups et al.
(2001) was to either reduce the excitatory recurrent connections or
increase the recurrent inhibitory connections to cells around the
trained orientation by a small amount. For the excitation manipula-
tion, we replaced the constant Je° in Eq. 4 by a function of the
preferred orientation � of the postsynaptic cell

Je��� � Je°�1 � Ae exp ���2/�2	r
2��� (8)

where Ae, a small positive fractional number, is the fractional reduc-
tion of the connection strength at the trained orientation (� 	 0°), and
	r determines the spread of reduction around the trained orientation.
Likewise, for the inhibition manipulation, we replaced the constant Ji°
in Eq. 5 by

Ji��� � Ji°�1 � Ai exp ���2/�2	r
2��� (9)

Since inhibition should be slightly increased, Ai should be a small
negative fractional number in this option. As a third alternative, we
could also simulate the learning data by reducing both recurrent
excitatory and inhibitory connections (i.e., letting both Ae and Ai be
positive fractional numbers), as long as Ae was slightly larger than Ai.
Since these three manipulations generated essentially the same
changes to the tuning curves, we will only report results from a simple
reduction in excitatory recurrent connections. The range of Ae used in
our learning simulations is listed in Table 1, whereas Ai was kept at
zero.

We were able to simulate the adaptation data of Dragoi et al. (2000)
by decreasing both recurrent excitatory and recurrent inhibitory con-
nections to cells around the adapted orientation by a large fraction,
i.e., by setting both Ae and Ai to large, positive fractional numbers. In
addition, unlike the third alternative for the learning simulation men-
tioned above, Ai had to be slightly larger than Ae to simulate the
adaptation data. The ranges of Ae and Ai used in our adaptation
simulations are listed in Table 1. Note that Ae and Ai only determine
the percentage reductions of the connection strengths from the orig-
inal values, but are not the actual amounts of reduction. Since the
inhibitory interaction profile had a lower peak and higher flanks than
that of excitation (Fig. 1B), the effect of introducing Ae and Ai in our
adaptation simulations was actually a slight decrease of net excitation
(i.e., reduced peak amplitude of the Mexican-hat interaction profile) to
cells around the adapted orientation just like the learning case; in
addition, there was a small decrease of net side inhibition (i.e.,
reduced trough amplitudes of the Mexican-hat interaction profiles).
We will provide intuitive explanations of why our learning and
adaptation manipulations can explain the observed physiological data
of Schoups et al. (2001) and Dragoi et al. (2000), respectively, in
RESULTS. Note that although the net connection changes for the learn-
ing and adaptation simulations differ, in both cases the largest changes
to the excitatory (Je) and inhibitory (Ji) connections occur for cells
tuned to the trained or adapted orientation.

For each cell with preferred orientation � and stimulus orientation
�, we can apply the above equations to obtain a steady-state response
R(�, �). If we plot R(
, �) as a function of � for a fixed � 	 
, we
obtain the orientation tuning curve of the model V1 cell with the
preferred orientation 
. On the other hand, if we plot R(�, 
) as a
function of � for a fixed � 	 
, we get the population response of all
model V1 cells in the network to a given stimulus orientation 
. Note
that before introducing learning- or adaptation-induced changes in the
model, the tuning curve R(
, �) and the population response R(�, 
)

have exactly the same shape. This is because the symmetry of the
network ensures that

R��, �� � R�� � �� � R�� � �� � R��� � ��� (10)

Therefore R(
, �) as a function of � is the same as R(�, 
) as a
function of �. For this reason, to obtain the orientation tuning curve of
the cell preferring the 0° orientation shown in Fig. 1D, we can simply
compute the population response of all cells to a 0° stimulus orien-
tation. However, the symmetry of the network is broken when Eqs. 8
and 9 are used for modeling learning and adaptation. In these cases,
the population responses and orientation tuning curves no longer have
identical shapes. This point will be important when we discuss the
psychophysical implications of learning and adaptation.

Since the orientation tuning in the recurrent model emerges with
time, we need to determine how many iterations to run the network in
our numerical simulations before plotting the results. For all simula-
tions with the standard parameter set, we report results from 500
iterations (corresponding to 1 s, since we used a step of 2 ms for
integrating Eq. 1) for two reasons. First, the network typically evolves
very quickly in the first 300 iterations, and by 500 iterations, the bulk
of the changes have already occurred. For the baseline simulation
(without learning or adaptation), the difference between the tuning
width at 500 and 2,000 iterations is 
0.001%, and the difference
between the peak firing rates is 
0.002%. For the leaning simulations,
the difference between 500 and 2,000 iterations for the average tuning
width and peak firing rate is 
0.6% and 0.3%, respectively. For the
adaptation simulations, the difference is 
0.4% for the average tuning
width and 
0.08% for the peak firing rates. Second, we are only
interested in the time scale comparable to that of the relevant psycho-
physical and physiological experiments. Although the process of
learning and adaptation can take a long time, the testing phase after
learning or adaptation for measuring subjects’ orientation discrim-
inability or cells’ firing rates only involve a brief stimulus presentation
(typically from 200 to 1,000 ms) in each trial.

For the learning simulations, our standard parameter set contains Ae

values ranging from 0.005 to 0.015 and 	r values ranging from 20 to
26. For the adaptation simulations, our standard parameter set con-
tains the same 	r range as the learning simulations (20–26), and Ae

values ranging from 0.1 to 0.4. In the adaptation simulations, each Ae

and 	r combination has a corresponding Ai value that is approximately
5–10% more than the Ae value; as both Ae and 	r increase, the
required Ai value also increases. For a given Ae, Ai, 	r combination, Ai

can generally be increased an additional 5–10% above the standard
range, and the simulation will continue to match the data of Dragoi et
al. (2000).

In addition to this standard set, we also made extensive simulations
to explore the effects of lowering 	r values (to as low as 4) in both the
learning and the adaptation simulation. Lower 	r values generally
yielded the same behavior from the model at 500 iterations except that
the range of activity reduction and the consequent tuning curve
changes around the trained or adapted orientation were reduced, as
expected. However, if the simulations for learning were run to 2,000
iterations, certain Ae values paired with low 	r values yielded orien-
tation tuning curves with an abnormally pointed apex. Also, in the
adaptation simulations, low 	r values yielded orientation tuning
curves that curve and bend in slightly unusual shapes. These abnor-
malities do not make any qualitative differences. However, we will
focus on the standard parameter set in this paper as these parameter
combinations yielded simulations with no complications.

Signal detection theory for orientation discrimination

We used signal detection theory (Green and Swets 1966) to relate
cells’ population responses to a performance measure for an orienta-
tion discrimination task. For convenience of description, we use
subscript i to label cells with different preferred orientations, and ri(�)
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to denote the ith cell’s mean firing rate (spikes/s) to stimulus orien-
tation �. The mean firing rate can be read from the cell’s orientation
tuning curve.

The mean number of spikes of cell i to stimulus orientation � over
the duration �t is therefore mi(�) 	 ri(�)�t. The actual activity in a
given trial, however, is highly variable. It has been shown that the
variance of the number of spikes under identical stimulus conditions
is proportional to the mean spike count: vari(�) 	 kmi(�), where k is
a dimensionless constant found to be between 1 and 4 (Peres and
Hochstein 1994; Shadlen and Newsome 1994; Snowden et al. 1992;
Softky and Koch 1993), and we used a value of 2 in our simulations.
We can therefore simulate the actual activity of cell i in a trial
according to

xi��� � � �mi���, �kmi���� (11)

where � (� ,	) is a random variable following a normal distribution
of mean � and SD 	 (we did not use a Poisson distribution because
it would force k 	 1).

To simulate psychophysical experiments of orientation discrimina-
tion, we will assume that two slightly different orientations, �1 and
�2, are presented sequentially in a trial, each for a duration of �t. Two
sets of population responses will be generated among the cells:
x(�j) 	 [xi(�j)]; j 	 1,2. In signal detection theory, each cell deter-
mines whether the two successive orientations in a trial form a
clockwise or counterclockwise rotation by comparing its responses to
the two orientations (Green and Swets 1966; Lehky and Sejnowski
1990). For cell i whose mean response to �1 is larger (smaller) than
to �2, it will make a correct decision when xi(�1) is larger (smaller)
than xi(�2) and an incorrect decision otherwise. (Strictly speaking,
this is only true when �1 and �2 always fall on the same side of the
cell’s tuning curve so that the tuning function can be considered
monotonic and the cell “knows” the right response based on its mean
activities to the 2 orientations. Since the difference between �1 and �2

(1°–2°) is much smaller than a typical orientation tuning width (about
40°), this is a reasonable assumption.) A pooling across all cells in the
population will then be performed to reach a final decision.

Since the response xi(�j) of cell i to stimulus orientation �j follows
a normal distribution N[mi(�j), �km1(�j)], the difference [xi(�1) �
xi(�2)] also follows a normal distribution with mean [mi(�1) �
mi(�2)] and SD �k[mi(�1) � mi(�2)]. By combining the cases of
[mi(�1) � mi(�2)]  0 and 
 0, we can express the probability of a
correct decision as (Green and Swets 1966; Lehky and Sejnowski
1990)

pi �
1

2
erfc��d�

�2
�; with d� �

�mi��1� � mi��2��
�k�mi��1� � mi��2��

(12)

where erfc(�) is the standard complementary error function whose
definition ensures that the value of pi is between 0.5 (chance) and 1
(perfect). The final decision of the system is based on a majority vote
of all cells: if more than one-half of the cells make a correct decision,

the final decision is assumed to be correct in that trial; otherwise it is
incorrect. By repeating this calculation over many trials, we can
obtain a percent correct measure for the orientation discrimination
task.

R E S U L T S

Learning

As mentioned above, we simulated orientation tuning of V1
cells before and after learning using the simplified recurrent
model of Carandini and Ringach (1997). The model assumes
that V1 cells receive a broadly tuned feed-forward input that is
subsequently sharpened by intracortical excitation and inhibi-
tion (Fig. 1). Before learning, the orientation tuning curves of
the model cells were all identical in shape but shifted with
respect to each other in peak location (Fig. 3A). Each curve can
be viewed as representing the average tuning curve of all cells
with the same preferred orientation for a given spatial location.
Since it was first reported that the main consequence of orien-
tation learning was a reduction of neuronal activities around
the trained orientation (Ghose and Maunsell 1997; Schoups et
al. 1998), we simulated this end effect of learning by slightly
depressing intracortical excitatory connections to cells at and
near the trained orientation (see METHODS). As expected, this
manipulation reduced the responses of the model cells around
the trained orientation (Fig. 3B), consistent with the physio-
logical reports. To generate this figure, the excitatory connec-
tions only needed to be reduced by 0.75% at the trained
orientation; this led to a 20% reduction of the neuronal activity
at the trained orientation. For the parameter ranges in our
standard parameter set (Table 1), the maximum activity reduc-
tion (occurring at the trained orientation) varied from 13% to
35%. Physiologically reported maximum reduction values
range from 10% to 30% (Ghose and Maunsell 1997; Schoups
et al. 1998).

In addition to response depression, there are also changes to
the shape of orientation tuning curves. Specifically, curve
narrowing and peak shifting were observed for model cells
whose preferred orientations were near the learned orientation.
In Fig. 4A, the orientation tuning curves of such a cell before
learning (dashed) and after learning (solid) are shown. The
peak shifting was toward the learned orientation; this made the
postlearning tuning curves asymmetrical, with sharpening on
the side facing the learned orientation. In contrast, orientation
tuning curves of cells with preferred orientations somewhat
further away from the learned orientation broadened modestly

FIG. 3. Simulation of learning in a recurrent
model. A: orientation tuning curves for a subset
of model V1 cells before learning. Dashed line
was derived by plotting the peak response of
every cell in the network. B: orientation tuning
curves for the same subset of model cells after
simulating learning at 0°. Peak response curve
(dashed) shows a dip at the learned orientation.
This figure was obtained with an Ae of 0.0075
and a 	r of 24.
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after learning (Fig. 4B). The point at which orientation tuning
curves ceased to show a “near” pattern of sharpening and
began to show a “far” pattern of broadening depended on the
parameter set used in a given simulation, particularly the
intracortical interaction profile. Cells with a preferred orienta-
tion very far away from (i.e., nearly orthogonal to) the trained
orientation showed little changes to their tuning curves. As we
will detail below, these features compare well with the phys-
iological data of Schoups et al. (2001).

This specific pattern of tuning sharpening and broadening
can be understood intuitively. Consider the three orientation
tuned cells marked 1, 2, and 3 in Fig. 3, with cell 1 tuned to the
trained orientation. The Mexican-hat interaction profile among
the cells (Fig. 1C) means that cells 1 and 2 excite each other
while cells 1 and 3 inhibit each other. Therefore part of the
response of cell 2 at the trained orientation is due to the
excitation from cell 1. Similarly, the diminished response of
cell 3 at the trained orientation is partly due to the inhibition
from cell 1. Since orientation learning causes a long-lasting
reduction of neuronal activities at and around the trained ori-
entation, cell 2 will lose some excitation at the trained orien-
tation and thus have a sharper tuning curve, while cell 3 will
lose some inhibition and become more broadly tuned. Thus an
activity reduction at and around the trained orientation in the
recurrent model will lead to the specific pattern of tuning curve
sharpening and broadening due to the disturbance of the bal-
ance of excitation and inhibition in the network. The sharpen-
ing and broadening in the orientation domain discussed here
are analogous to the receptive field contraction and expansion
in the spatial domain reported by Pettet and Gilbert (1992).
During the learning process, cells with preferred orientations
further away from the stimulus orientations are initially silent
and are therefore in an “orientation scotoma,” and their orien-

tation tuning curves expand (broaden) over time. In contrast,
those with preferred orientations near the stimulus orientations
are repeatedly stimulated, and their orientation tuning curves
contract (sharpen).

Schoups et al. (2001) observed trends for both the “near”
sharpening and “far” broadening of orientation tuning curves
predicted above in their physiological data. However, since the
broadening effect failed to reach statistical significance, the
data analysis was focused on the sharpening. To facilitate
comparison between the model and the data, we measured the
slope at the learned orientation for all the model cells, both
before and after learning (in units of spikes/s/°). The result,
shown in Fig. 4C, well replicates the physiological counterpart
in Fig. 2C of Schoups et al. (2001). In particular, the physio-
logical data showed that cells with the steepest slope at the
trained orientation before learning are the ones with the great-
est increase in slope after learning. This is duplicated by our
model, as the highest portion of the prelearning slope (dashed
curve) in Fig. 4C has the greatest increase after learning (solid
curve). This fact is significant for the following reason. Tuning
curves with the steepest slope at the learned orientation will
show the greatest change in firing to small orientational
changes around this orientation. Therefore these cells could be
the most important for distinguishing small differences in
orientation at the learned orientation (Albrecht and Geisler
1997; Lehky and Sejnowski 1990; Regan and Beverley 1985).
If these are the same cells whose tuning curve slope at the
learned orientation increases the most after learning, this could
explain the improved psychophysical performance of subjects
after learning. We will examine this issue more closely with
signal detection theory below. With our standard parameter set,
our model predicts that tuning curve sharpening occurs for
cells with preferred orientations between 18° and 30° away

FIG. 4. Effects of learning in the recurrent
model. This figure makes the effects of the
learning simulation in Fig. 3 more explicit.
Learning has been simulated at 0° (marked by
vertical lines). In all panels, dashed and solid
lines represent the prelearning and postlearning
conditions, respectively. A: pre- and postlearn-
ing orientation tuning curves of a cell whose
preferred orientation (�14°) is close to the
learned orientation. Learning causes sharpening
of the tuning curve, with a higher slope on the
side facing the learned orientation, and a shift
of peak toward the learned orientation. B: pre-
and postlearning orientation tuning curves of a
cell whose preferred orientation (49°) is far
from the learned orientation. Leaning causes
modest broadening of the tuning curve on the
side facing the learned orientation. C: slopes of
cells’ tuning curves at the learned orientation
(0°) before and after learning. Note that the
greatest increase in slope occurs for cells whose
prelearning slope is the highest at the learned
orientation. D: peak shift of orientation tuning
curves caused by learning. A shift toward the
trained orientation is defined as negative. In
both C and D, the x axis is the cells’ preferred
orientations before learning. Simulation param-
eters were the same as for Fig. 3.
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from the learned orientation; Schoups et al. (2001) found this
range to be between 12° and 20°.

The far broadening predicted by the model can also contrib-
ute to the performance improvement at the trained orientation.
The reason is that before learning, these far cells have practi-
cally no response near the trained orientation and therefore
cannot contribute to the discrimination of two slightly different
orientations around the trained orientation. After learning, the
curve broadening allows the cells to reach over and have some
responses near the trained orientation and thus contribute to the
discrimination. However, since the responses from the far cells
are small at the trained orientation, the contribution to the
performance improvement around the trained orientation by
the far cells through broadening is much less than that by near
cells through sharpening.

Figure 4C is symmetric with respect to the trained orienta-
tion. Thus the cell with the highest slope at the trained orien-
tation can be found on either side of the trained orientation.
This highest slope is 2 before learning. After learning, this
value ranges from 2.5 to 5.2 for various combinations from our
standard parameter set. Schoups et al. (2001) normalized their
orientation tuning curves and found the highest slope to be
about 2–2.5% change in firing per degree before learning and
about 3% change in firing per degree after learning. Normal-
izing our values in the same fashion gave a prelearning max-
imum slope of 5% change per degree, and a postlearning range
of 5.5–13.5% change per degree. Thus, although our postle-
arning slope values were higher than the values from Schoups
et al. (2001), our model’s prelearning slope was higher as well,
and the ratio of the pre- and postlearning slopes is similar in
both cases.

We also quantified the peak shift of the cells in our model.
The shift caused by learning as a function of the preferred
orientation before learning is plotted in Fig. 4D. Here, we have
defined shifting toward the trained orientation as a negative
shift and shifting away from the trained orientation as positive
shift. Negative shift was observed after learning in our model.
For various parameter combinations in the standard set, the
maximum peak shift tended to occur for cells whose preferred
orientations before learning were between 20° and 40° away
from the trained orientation, and the maximum shift magnitude
varied from 4.2° to 12.4°. There are no physiological data we
can compare these simulation results with, because in the
physiological experiments of Schoups et al. (2001), the learned
and control cells were different populations of cells because it
is impossible to hold the same cells for recording through

months of training process. The peak shift is thus an untested
prediction of the model.

Adaptation

The baseline simulation of the model before adaptation is
identical to that before learning, and the result is duplicated in
Fig. 5A. We simulated adaptation by depressing both intracor-
tical excitatory and intracortical inhibitory connections around
the trained orientation by a large fraction (see METHODS). The
consequence of the manipulation was a reduction of net exci-
tation at the peak and a reduction of net inhibition at the
troughs of the Mexican-hat interaction profile for cells around
the adapted orientation.

As in the learning simulations, adaptation depressed the
amplitude of orientation tuning curves for cells whose pre-
ferred orientations were near the adapted orientation (Fig. 5B).
The maximum reduction value for the simulation in Fig. 5 is
19.7% at the adapted orientation, and our standard parameter
set for adaptation gave maximum reduction values ranging
from 10.0% to 49.4%. These values are in accordance with
Dragoi et al. (2000), who reported max reduction values of
over 40%. In addition to depressing response amplitudes, sim-
ulating adaptation in the recurrent model broadened orientation
tuning curves for cells with preferred orientations near the
adapted orientation and shifted peaks away from the adapted
orientation (Fig. 6A), all in accordance with the physiological
data for adaptation by Dragoi et al. (2000). Another related
change to the tuning curve in Fig. 6A was that on the side of the
curve facing away from the adapted orientation (termed the far
side of the tuning curve hereafter), the responses were stronger
after adaptation so that over this portion, the postadaptation
curve was above the preadaptation curve. This is again in
agreement with the physiological data (Dragoi et al. 2000).
Finally, Dragoi et al. (2000) found statistically insignificant
sharpening for tuning curves of cells whose preferred orienta-
tion was more than 60° away from the adapted orientation. We
looked at orientation tuning curves in this range in our adap-
tation simulations, and we also found modest sharpening for
these curves (Fig. 6B).

For both learning and adaptation, there is a neural activity
reduction around the trained or adapted orientation. This was
reproduced in our simulations by a reduction of net excitation
(the positive part of the Mexican-hat interaction profile in Fig.
1C) to cells around the trained or adapted orientation. How-
ever, learning leads to near sharpening and (statistically insig-
nificant) far broadening of tuning curves (Schoups et al. 2001)

FIG. 5. Simulation of adaptation in the recur-
rent model. A: orientation tuning curves for a
subset of model V1 cells before adaptation.
Dashed line was derived by plotting the peak
response of every cell in the network. B: orien-
tation tuning curves for the same subset of cells
after simulating adaptation at 0°. The peak re-
sponse curve (dashed) shows a dip at the adapted
orientation. This figure was obtained with an Ae

of 0.2, an Ai of 0.22, and a 	r of 20.
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while adaptation causes near broadening and (statistically in-
significant) far sharpening (Dragoi et al. 2000). In addition,
learning is predicted to shift tuning-curve peaks of near cells
toward the trained orientation (Fig. 4), whereas adaptation
shifts them away from the adapted orientation (Dragoi et al.
2000). We were able to reproduce these opposite features in
our learning and adaptation simulations by introducing differ-
ent modifications to the connections in the recurrent network.
As we explained earlier, the reduction of net excitation alone
can generate the features associated with learning. The main
difference between our learning and adaptation simulations
was that for the latter, the net inhibitory interaction (the neg-
ative part of the Mexican-hat in Fig. 1C) was reduced for cells
around and somewhat away from the adapted orientation. This
reduction of net inhibition was responsible for the enhanced
responses on the far side of the tuning curves of the near cells
(Fig. 6A). The enhanced responses, in turn, “pulled” the peak
away from the adapted orientation and broadened the curve on
the side facing the adapted orientation. In other words, the
reductions of the net excitatory and the net inhibitory parts of
the Mexican-hat interaction profile have opposite effects on the
tuning curves. When the net-excitation reduction is dominant,
learning related features will be observed. With progressively
stronger reduction of the net inhibition, the learning-related
features will be weakened, and the adaptation-related features
will eventually emerge. Note that the reduction of net inhibi-
tion cannot be used alone to model adaptation; the reduction of
net excitation is also necessary in the adaptation simulation to
generate the dip of neural activity around the adapted orienta-
tion.

Every analysis we performed on the learning simulations
was applied to the adaptation simulations. Thus we plotted in
Fig. 6C the slope of tuning curves at the adapted orientation

against the cells’ preferred orientation before adaptation. As
expected, the broadening of the orientation tuning curves low-
ered the slope values. The highest slope at the adapted orien-
tation before adaptation is 2; after adaptation, this value ranges
from 1.7 to 0.8 for our standard parameter set. We also plotted
peak shift caused by adaptation against the preferred orienta-
tion before adaptation (Fig. 6D). In keeping with the conven-
tion used in Fig. 4D, we have plotted peak shifting away from
the adapted orientation as a positive shift. Positive peak shift-
ing was reported in the adaptation study of Dragoi et al. (2000),
and our Fig. 6D closely resembles Fig. 1E in their paper.
Dragoi et al. (2000) reported a maximum shift of about 10° for
simple cells whose preferred orientation was between 5° and
22.5° away from the adapted orientation. Our standard param-
eter set gave maximum shift values that ranged from 1.6° to
10°, and the range of cells where this maximum appears was
from 25° to 40° away from the adapted orientation. In Fig. 1E
of their paper, Dragoi et al. (2000) show that the range from
22.5° to 45° also has a high shift value, which is nearly as high
as the maximum in the 5° to 22.5° range, and the error bars for
the shift values of these two groups of cells largely overlap.

Orientation discriminability after learning and adaptation

We have shown above that our simulations can reproduce
the main features of the physiological experiments for both
learning and adaptation. We now present our studies on
whether and how these physiological changes may be related to
the behavioral consequences of learning and adaptation ob-
served psychophysically.

The main behavioral consequence of orientation learning is
an improvement of orientation discrimination at the trained
orientation. As we mentioned earlier, the tuning curve changes

FIG. 6. Effects of adaptation in the recur-
rent model. This figure makes the effects of the
adaptation simulation in Fig. 5 more explicit.
Adaptation has been simulated at 0° (marked
by vertical lines). In all panels, dashed and
solid lines represent the preadaptation and post-
adaptation conditions, respectively. A: the pre-
and postadaptation orientation tuning curves of
a cell whose preferred orientation is close (21°)
to the adapted orientation. Adaptation caused
broadening of the tuning curve, with a smaller
slope on the side facing the adapted orientation,
and a shift of peak away from the adapted
orientation. B: pre- and postadaptation orienta-
tion tuning curves of a cell whose preferred
orientation is far (70°) from the adapted orien-
tation. Adaptation caused modest sharpening of
the tuning curve on the side facing the adapted
orientation. C: slopes of cells’ tuning curves at
the adapted orientation (0°) before and after
adaptation. D: peak shift of orientation tuning
curves caused by adaptation. A shift away from
the adapted orientation is defined as positive. In
both C and D, the x axis is the cells’ preferred
orientations before adaptation. Simulation pa-
rameters were same as for Fig. 5.
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predicted by our model and confirmed by the physiological
experiments should be able to explain the psychophysically
observed performance improvement at the trained orientation.
To make this statement more quantitative, we used signal
detection theory (Green and Swets 1966) to relate cells’ pop-
ulation responses to a performance measure for an orientation
discrimination task (see METHODS). We considered the discrim-
ination of two orientations differing by 1.5° and presented for
200 ms around the trained orientation. In Fig. 7A, we plot the
percent correct performance as a function of the maximum
activity reduction at the trained orientation. The leftmost point
corresponds to the performance before learning. The figure
shows that the performance increases as the activity reduction
increases.

We also examined how training at one orientation may affect
performances at other orientations in the model by placing the
1.5° orientation difference at a full 180° range of orientations
(Fig. 7B, bold curve). For comparison, we also show the
corresponding curve before learning (thin curve), which is
largely flat (we did not include the oblique effect in the
baseline model as it is irrelevant to the current study). The
figure indicates that training at one orientation should not affect
performance at the orthogonal orientation, consistent with psy-
chophysical observations (Schoups et al. 1995). The curves
also suggest that there should be a positive transfer to orien-
tations near the trained orientation, and a smaller amount of
negative transfer to orientations further away.

Finally, we also applied the signal detection theory proce-
dure to our adaptation simulations. The result (data not shown)
was a decrease in performance at the adapted orientation below
baseline and a moderate increase in performance for orienta-
tions adjacent to the adapted orientation; in other words, the
precise opposite from the learning simulation and the adapta-
tion psychophysical literature. Therefore according to signal
detection theory, the psychophysical observation of Regan and
Beverley (1985) cannot be explained by the physiological data
of Dragoi et al. (2000) (see DISCUSSION).

Although we used signal detection theory above, qualita-
tively identical conclusions can be reached with other methods
that rely on the differences between neurons’ responses to the
two orientations being discriminated. For example, one could

simply assume that the psychophysical performance is a mono-
tonic function of the sum of the squared response differences
(or the absolute values of the differences) from all cells. On the
other hand, there are also methods that do not seem sensible.
For instance, if one pools the response differences of all cells
without first squaring them or taking absolute values, the
differences of opposite signs will cancel each other, leading to
almost no discriminability both before and after learning or
adaptation.

In addition to signal detection theory, another well-known
method is Bayesian analysis. Bayesian method predicts that the
sharpening (broadening) of tuning curves will improve (im-
pair) orientation discriminability because the sharpness of tun-
ing determines the sharpness of the posterior probability dis-
tributions. Therefore the tuning-curve change for best improv-
ing performance under Bayesian method is near sharpening but
not concurrent far broadening. Although powerful and useful
for many applications, we believe that the Bayesian approach
is problematic as a method for relating neuronal activities to
psychophysical performances. The reason is that to estimate
the posterior probability distributions, Bayesian method has to
make the unreasonable assumption that at all times, the cells
“know” their responses to all orientations including those that
are not present in the current trial. In contrast, signal detection
theory only requires the responses to the two stimulus orien-
tations being compared.

D I S C U S S I O N

The ultimate goals of this computational study are two-fold.
First, we would like to understand the changes to V1 orienta-
tion tuning curves generated by learning and adaptation in the
orientation domain. Second, we are interested in relating the
physiologically observed changes to the perceptual conse-
quences of orientation learning and adaptation. The results
reported in this paper demonstrate that a physiologically based
model can help bring us closer to these goals. At the same time,
the effort also raises many new questions. In the following
discussion, we summarize our main findings and discuss some
related studies and the key open issues.

FIG. 7. Signal detection theory applied to the learning simulations. A: fraction of correct responses for discriminating an
orientation difference of 1.5° at the trained orientation, plotted as a function of the percent neural activity reduction at the trained
orientation. The larger the activity reduction, the better the performance. The leftmost point corresponds to the performance before
learning. Each point was estimated from 10,000 trials. The curve was obtained with a 	r of 20, and Ae varied from 0 (leftmost point)
to 0.02 (rightmost point). B: transfer of learning at one orientation (0°) to other orientations. The 1.5° orientation difference was
placed at 128 evenly spaced orientations in the entire 180° range. Each point was estimated from 1,000 trials. The simulation was
run twice; once with postlearning neuronal responses (bold line) and once with prelearning neuronal responses (thin line). The
learning simulation was run with an Ae of 0.015 and a 	r of 20.
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Physiological comparisons

Our modeling on changes of V1 orientation tuning curves
has been focused on two physiological studies, the orientation
learning study of Schoups et al. (2001) with behaving monkeys
and the orientation adaptation study of Dragoi et al. (2000)
with anesthetized cats. Our main finding is that the physiolog-
ically observed changes in V1 from both studies can be under-
stood in the framework of the recurrent model of V1 orienta-
tion selectivity. In the case of learning, the reduction of neu-
ronal firing rate and the sharpening of orientation tuning curves
near the trained orientation can be accounted for by slightly
reducing net recurrent cortical excitation to cells around the
trained orientation. In the case of adaptation, the reduction of
neuronal firing rate, the broadening of the tuning curve at the
adapted orientation, and the peak shift away from the adapted
orientation, can be reproduced by significantly reducing both
recurrent excitation and recurrent inhibition to cells around the
adapted orientation such that both the peak (net excitation) and
the troughs (net inhibition) in the Mexican-hat interaction
profiles had reduced amplitudes. The utility of our modeling
effort is supported by the fact that we predicted the tuning
curve changes caused by learning (Qian and Matthews 1999)
before the physiological data were re-analyzed to confirm the
prediction (Schoups et al. 2001).

Very recently, Ghose et al. (2002) reported that the only
change they could find in monkey V1 after orientation learning
was a small firing rate reduction around the trained orientation
and that they failed to find the slope change in orientation
tuning curves reported by Schoups et al. (2001). The difference
between the two physiological studies may be explained by the
difference in the learning paradigms employed. In the experi-
ment of Schoups et al. (2001), the monkeys were trained to
discriminate a grating orientation from the 45° diagonal in each
trial. This paradigm had been applied to human subjects pre-
viously, and like humans, the monkeys showed the orientation
and location specificities typically associated with orientation
perceptual learning. Ghose et al. (2002) also trained monkeys
to discriminate orientations of grating stimuli presented at a
retinal eccentricity similar to the Schoups et al. (2001) study
(3° vs. 3.2°). However, in addition to grating orientation, the
spatial frequency of the gratings was also varied from trial to
trial. Therefore the monkeys in their experiment had to learn to
discount the frequency variation, a task different from orien-
tation discrimination. Thus there is a possibility that the learn-
ing displayed by their monkeys may partially be attributed to
learning to discount the frequency variation. This possibility is
supported by two pieces of evidence. First, the monkeys in
their experiment did not show the typical location specificity
after perceptual learning. Indeed, learning to ignore the fre-
quency variations may be more conceptual than perceptual in
the sense that it is more related to task understanding than to
pushing perceptual threshold of orientation discrimination.
Second, their monkeys’ postlearning threshold, defined at 79%
correct performance, was 4°–5°, whereas the threshold for
Schoups et al.’s monkeys, defined at 85% correct performance,
was about 0.6°–1.2°. This is another indication that perhaps
their monkeys did not learn as much about orientation discrim-
ination per se as the monkeys of Schoups et al. (2001). There-
fore their failure to find slope changes in V1 orientation tuning
curves might be due to the lack of sufficient perceptual learning

in orientation discrimination; conceptual learning of discount-
ing frequency variation would not be expected to affect orien-
tation tuning.

In the case of adaptation, there is also a physiological report
that appears to be different in at least one aspect from the study
of Dragoi et al. (2000) modeled in this paper. Recording from
V1 of anesthetized monkeys, Müller et al. (1999) found that for
cells preferring orientations near the adapted orientation, the
adaptation process shifted the peak locations of the tuning
curves away from the adapted orientation, in agreement with
Dragoi et al. (2000). However, contrary to the broadening
reported by Dragoi et al. (2000), Müller et al. (1999) found
sharpening of tuning at the adapted orientation. We have been
unable to find a connection modification scheme in the recur-
rent model that could shift the peak away from the adapted
orientation and sharpen the slope of tuning curves at the
adapted orientation at the same time. One difference between
the two physiological studies on adaptation is species: Dragoi
et al. (2000) used cats while Müller et al. (1999) used monkeys.
A related difference is that monkey V1 appears to have sig-
nificantly fewer simple cells than cat V1. In this aspect, it is
interesting to note that Müller et al. (1999) reported that the
tuning curve changes they found only occurred to complex
cells, and the 10 simple cells they encountered showed no
changes at all. Dragoi et al. (2000), on the other hand, recorded
from 130 cells; 88 of them showed tuning curve changes, and
some of these must be simple cells. Finally, Dragoi et al.
(2000) adapted their cells for as long as 10 min, while Müller
et al. (1999) only adapted their cells for �0.5 s. Further
experimental investigations are needed for pinpointing the
main factors responsible for the contradictions between these
two physiological studies.

Psychophysical comparisons

We have shown that according to signal detection theory, the
learning-induced changes in orientation tuning curves, pre-
dicted by our model (Qian and Matthews 1999) and confirmed
by Schoups et al. (2001), are precisely what is needed for
explaining the improved discriminability at the trained orien-
tation. Specifically, after learning, the population responses to
two slightly different orientations around the trained orienta-
tion can better differentiate the two orientations. Based on our
simulation results, we hypothesize that during the training
process, there is an increasingly larger firing rate reduction at
and around the trained orientation. This leads to progressively
stronger changes to orientation tuning curves, which in turn
results in better orientation discrimination at the trained orien-
tation, as shown in Fig. 7A. Although the tuning-curve sharp-
ening of near cells and the broadening of far cells can both help
improve orientation discriminability at the trained orientation,
we find that the contribution of the near sharpening is more
important than that of the far broadening. This is due to the fact
that the broadening is not as pronounced as the sharpening
because inhibition is not as strong as excitation in the Mexican-
hat interaction profile among the V1 cells tuned to different
orientations. In addition, the firing rate of the far cells at the
trained orientation is much lower than that of the near cells.
These considerations may also help explain that the broadening
of far cells in the data of Schoups et al. (2001) failed to reach
statistical significance.
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Our model also predicts that perceptual learning at one
orientation should not affect performance at the orthogonal
orientation (see Fig. 7B), consistent with psychophysical ex-
periments on orientation learning (Schoups et al. 1995). In
addition, the model predicts a positive transfer of learning to
similar stimulus orientations and a smaller, negative transfer to
orientations somewhat further away. The transition point from
positive to negative transfer depends on the specific pattern of
tuning curve sharpening and broadening, which in turn de-
pends on the details of the Mexican-hat interaction profile. The
negative transfer may be difficult to detect because it is smaller
than the positive transfer and because there is often a small,
nonspecific component in perceptual learning experiments
(caused by the improved task familiarity through the training
process) that may mask the small negative transfer predicted in
Fig. 7B.

As mentioned in the Introduction, it is also known that
immediately after orientation adaptation, the orientation dis-
crimination at the adapted orientation is improved in human
subjects (Regan and Beverley 1985). This psychophysical ob-
servation cannot be explained by the physiological findings of
Dragoi et al. (2000), who found a broadening of tuning curves
at the adapted orientation in anesthetized cats. We have con-
firmed this obvious conclusion by applying signal detection
theory to our adaptation simulations. The adaptation data of
Müller et al. (1999) from anesthetized monkeys may explain
the improved discriminability at the adapted orientation, but as
we will discuss next, their data fail to explain the tilt afteref-
fect, another perceptual consequence of adaptation. These dis-
crepancies may not be too surprising given the enormous
difference between the psychophysical adaptation studies with
attending human subjects performing a difficult discrimination
task and the physiological adaptation studies on anesthetized
animals. Interestingly, the psychophysical effects of adaptation
on discrimination reported by Regan and Beverley (1985) can
be very well explained by our learning simulations shown in
Fig. 7B. In particular, the positive and negative transfer profile
in Fig. 7B resembles Fig. 3 in their paper. Furthermore, our
Fig. 7B can explain that adaptation at one orientation does not
affect discrimination at the orthogonal orientation (Westheimer
and Gee 2002). (A previously reported effect of orthogonal
adaptation (Clifford et al. 2001) has been shown to result from
improper control of training (Westheimer and Gee 2002). A
related effect using a very different paradigm, where the
“adapting” stimulus temporally separates the two test stimuli
being compared (Dragoi et al. 2002), is more likely due to
orientation-specific masking than to adaptation.)

These considerations suggest that human adaptation results
can be better accounted for by the physiological data of learn-
ing from behaving monkeys (Schoups et al. 2001) than by the
physiological data of adaptation from anesthetized animals
(Dragoi et al. 2000). The implication is that orientation adap-
tation in alert subjects may be viewed as a short-term version
of orientation learning. It may be easier to observe the negative
transfer predicted in Fig. 7B in an adaptation experiment
(Regan and Beverley 1985) than in a learning experiment
because there is no lengthy training process involved in adap-
tation studies to generate any nonspecific improvement. A
prediction is that, in behaving monkeys, the effect of adapta-
tion should be more similar to the learning experiments of
Schoups et al. (2001). [A very recent study measured adapta-

tion effects with alert monkeys (Dragoi et al. 2002), but the
adapting and test orientations were unrelated to animals’ be-
havior. The effects are similar to those in Dragoi et al. (2000)
and can thus be explained by our adaptation simulations.]

Another effect of orientation adaptation is the tilt aftereffect:
adapting to one orientation makes subsequently presented
nearby orientations appear to be rotated away from the adapted
orientation (Gibson 1933; Wolfe 1984). Intuitively, one might
think that the observed shift of the tuning-curve peaks away
from the adapted orientation in anesthetized animals (Dragoi et
al. 2000; Müller et al. 1999) could explain the tilt aftereffect.
However, it has been pointed out previously that precisely the
opposite is likely to be true (Gilbert and Wiesel 1990; Yao and
Dan 2001). The key point is that it is the peak location (or
weighted average orientation) of the population response, in-
stead of the tuning curve, that determines the perceived orien-
tation. The tilt aftereffect requires that the population responses
(to stimulations near the adapted orientation) be shifted away
from the adapted orientation. This in turn requires that the
tuning curves around the adapted orientation be shifted toward
the adapted orientation (Gilbert and Wiesel 1990; Yao and Dan
2001). It has also been noted that tuning-curve sharpening of
the near cells can help (Gilbert and Wiesel 1990). These
requirements are precisely satisfied by our learning simula-
tions. However, our adaptation simulations and the adaptation
data from anesthetized animals (Dragoi et al. 2000; Müller et
al. 1999) all show a shifting-away of the tuning curves and
therefore cannot explain the tilt aftereffect.

To make the above considerations more specific, we plotted
the postlearning (Fig. 8, top panels) and postadaptation (Fig. 8,
bottom panels) population responses of our model to a stimulus
orientation 14° away from the trained or adapted orientation.
(The corresponding prelearning/adaptation population re-
sponses peak precisely and symmetrically at the stimulus ori-
entation and are thus not shown.) Each population response is
plotted in two ways: the activity of a given cell can be plotted
at either 1) its preferred orientation before learning/adaptation
(Fig. 8, A and C), or 2) its preferred orientation after learning/
adaptation (Fig. 8, B and D). If the perceived orientation
corresponds to the peak location, then only the learning plot in
Fig. 8A can explain the tilt aftereffect. If the perception corre-
sponds to the weighted average orientation (arrows) instead,
then the learning plots in either Fig. 8, A or B, can explain the
illusion. The adaptation plots, on the other hand, either show
little effect or an effect in the wrong direction. These results
reinforce our above suggestion that adaptation in alert subjects
may be better viewed as a short-term version of learning and
cannot be explained by the adaptation data or simulations for
anesthetized animals. We predict that adaptation in alert sub-
jects performing an orientation discrimination task must gen-
erate a short-term shift of population activity like those shown
in Fig. 8A (or equivalently, a short-term change of tuning
curves shown in Fig. 3) from our learning simulations.

There is a large asymmetry in the population response of
Fig. 8B, with the right side of the curve dropping faster than the
left side. This is because the postlearning preferred orientations
are shifted toward the trained orientation (0°) and the shifts are
larger for cells near the trained orientation (Fig. 4D). Likewise,
the slower drop on the right side in Fig. 8D is due to the
shift-away of the postadaptation preferred orientations from the
adapted orientation (Fig. 6D). The peak shift also explains why
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the curves in Fig. 8, A and C, are wider and narrower than those
in Fig. 8, B and D, respectively.

Which way of plotting population responses in Fig. 8 is
more reasonable? Suppose a cell prefers orientation �pre before
adaptation, and for a short period after adaptation, its preferred
orientation shifts to �post. The critical question is this: when this
cell fires after adaptation, does it signal the presence of �pre or
�post in the stimulus? While there is no known answer, we
believe that in the case of adaptation, the cell must always
signal �pre rather than �post. The reason is that the meaning of
a cell’s activity is most likely determined by its projections to
higher centers. This connectivity pattern is largely shaped
when the cell’s preferred orientation is �pre, and is unlikely to
be altered by only a brief shift of the preference to �post after
adaptation. Thus, as far as the tilt aftereffect after adaptation is
concerned, we should only consider panels Fig. 8, A and C. The
situation is less clear for perceptual learning because learning-
induced changes are long-lasting and could lead to some reor-
ganization downstream.

A better known consequence of orientation adaptation is the
elevation of contrast detection threshold (Regan and Beverley
1985). This can be explained by the peak firing rate reduction
at the adapted orientation. It is not ad hoc to use the slope of the
orientation tuning curves to explain orientation discriminabil-
ity, and the peak firing rate to account for contrast detection
threshold. In both cases, we assume that the brain relies on
signals that can best perform the respective tasks. Specifically,
in the discrimination task, two similar orientations with high
luminance contrast (well above contrast threshold) are com-
pared, while in the detection task, the presence or absence of a
stimulus with low luminance contrast (near contrast threshold)
is judged. In either task, the best performance is achieved by
cells with the largest differential responses to the conditions

being compared. For the discrimination task, cells with the
steepest tuning slopes at the stimulus orientations give the
largest differential responses to the two stimuli. For the detec-
tion task, on the other hand, cells with maximum responses at
the stimulus orientation give the largest differential responses
to the presence and absence of the stimulus. Therefore, while
orientation-discrimination learning should lead to a tuning-
curve sharpening near the trained orientation (Schoups et al.
2001), contrast-detection learning should lead to an increased
peak firing rate. A recent fMRI study is consistent with this
prediction (Furmanski and Engel 2002).

Synaptic mechanisms

In this paper, we have focused on how to model the end
effects of learning and adaptation observed physiologically by
altering connections in a recurrent network of V1 orientation
selectivity. We have not studied what kind of synaptic plastic-
ity rules could produce the required connection changes. While
this is an interesting question that deserves investigation, here
we only briefly argue that the general features of the connec-
tion changes (Eqs. 8 and 9) proposed in our model are not
unreasonable. First, our model mainly requires synaptic de-
pression of the recurrent connections. Mechanisms for short-
term depression after repeated stimulation have been described
(Abbott et al. 1997; Stratford et al. 1996; Tsodyks et al. 1998;
Varela et al. 1997) and may be responsible for the transient
decrease of connection strengths needed in our adaptation
simulations. Long-term depression (LTD) of synaptic connec-
tions needed in our learning simulations has also been docu-
mented (Artola and Singer 1990; Bear et al. 1987; Fregnac et
al. 1994; Kirkwood et al. 1996); these studies indicate that
synaptic modifications can switch from long-term potentiation

FIG. 8. Population responses after learning
and adaptation. All 4 graphs show postlearning/
adaptation population responses of all model
cells to a stimulus orientation of �14° (marked
by dashed vertical lines). The learned/adapted
orientation was 0°. A and B: population re-
sponses after learning. C and D: population re-
sponses after adaptation. In A and C, the pre-
ferred orientation of each cell before learning/
adaptation was used as the x axis. In B and D, the
preferred orientation of each cell after learning/
adaptation was used as the x axis. Arrows indi-
cate the weighted average orientation of the dis-
tributions. Learning was simulated with an Ae of
0.075 and a 	r of 24. Adaptation was simulated
with an Ae of 0.2, an Ai of 0.22, and a 	r of 20.
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(LTP) to LTD as the postsynaptic activity decreases below a
certain sliding threshold. Second, our model requires that for
both recurrent excitatory and inhibitory connections (the solid
and dashed curves in Fig. 1B), the largest reduction is for cells
tuned to the trained or adapted orientation and the reduction
gradually tapers off for cells whose preferred orientations are
further away (Eqs. 8 and 9). This makes sense because cells
tuned to the trained or adapted orientation fire most during the
learning or the adaptation process and should thus experience
the strongest modification. Note that in our adaptation simula-
tion, the net reduction of inhibition in the troughs of the
Mexican-hat is not achieved by a larger reduction of inhibition
for cells away from the adapted orientation than for cells tuned
to the adapted orientation; the opposite is true. Rather, the net
inhibition reduction occurs at the troughs instead of at the peak
of the Mexican hat, because at the peak, the concurrent exci-
tation reduction more than compensates for the inhibition re-
duction and the excitatory connection profile is narrower than
the inhibitory one. Third, we would like to mention that some
aspects of Schoups et al.’s (2001) learning data and Dragoi et
al.’s (2000) adaptation data can also be reproduced by chang-
ing the feed-forward connections of the model in an orienta-
tion-dependent manner. However, we did not report any of
these simulations because the presynaptic cells of the feed-
forward connections are not orientation tuned and are therefore
unlikely to support an orientation-dependent synaptic modifi-
cation mechanism. Finally, we predicted that the adaptation-
induced changes in alert subjects performing a discrimination
task and in anesthetized animals must be quite different. This
is not far fetched as there is evidence suggesting that synaptic
plasticity can be dependent on behavioral context (Ahissar et
al. 1992) and that the physiological substrate of learning in
alert monkeys can be task dependent (Crist et al. 2001). We
speculate that the connection changes used in our adaptation
simulations never happen to behaving subjects performing an
orientation discrimination task; instead, short-term adaptive
changes similar to our learning simulations first occur, and
these changes gradually become permanent during the long
training process.

Models of V1 orientation selectivity

In addition to the interesting problems of learning and ad-
aptation, our work is also relevant to the on-going debate on
the mechanisms of orientation tuning in V1 (Ferster and Miller
2000; Sompolinsky and Shapley 1997). In their classical stud-
ies of orientation selectivity, Hubel and Wiesel (1962) pro-
posed a feed-forward model, which posits that oriented V1
cells receive inputs from several LGN cells with properly
aligned, center-surround receptive fields (Reid and Alonso
1995). However, to accommodate a large number of related
physiological observations, such as the contrast invariance of
orientation tuning and the effects of inhibition blocking (see
Somers et al. (1995) for a thorough discussion), several groups
proposed the recurrent model adopted in this paper, which
assumes a weak orientation bias via the feed-forward mecha-
nism of Hubel and Wiesel (1962) and a subsequent sharpening
of the tuning via intracortical excitation and inhibition (Ben-
Yishai et al. 1995; Carandini and Ringach 1997; Douglas et al.
1995; Somers et al. 1995). As we explained in RESULTS, the
learning- and adaptation-induced changes simulated in this

study rely on the recurrent interactions (see also Dragoi et al.
(2000)). A strictly feed-forward model cannot predict those
changes since modification of the feed-forward connections
would only change the overall amplitude of V1 responses
without generating the specific pattern of broadening and
sharpening or peak shifts of the tuning curves observed phys-
iologically.

Our work also helps alleviate two criticisms against the
recurrent model: we showed that the model still works when
the recurrent excitatory and inhibitory profiles are made similar
(but not identical), and that when the parameters are more
consistent with physiology, the model does not generate spu-
rious peaks under the noise condition (see METHODS). However,
other problems with the recurrent model, such as the inconsis-
tency with the cortical inactivation experiments and the near
independence of tuning on stimulus’ spatial frequency, have
been noted (Ferster and Miller 2000) and have prompted
Troyer et al. (1998) to propose a modified feed-forward model.
According to this model, V1 orientation tuning mainly results
from the feed-forward mechanism and the contrast invariance
is maintained by feed-forward inhibition between cells with
opposite receptive field polarities. While successful in many
ways (Kayser et al. 2001; Krukowski and Miller 2001; Troyer
et al. 1998), the modified model is unlikely to explain the
learning- and adaptation-induced changes because it does not
assume a Mexican-hat interaction profile among cells tuned to
different orientations. It is also not clear if the modified feed-
forward model is consistent with some other phenomena ac-
counted for by the recurrent model (Somers et al. 1995; Som-
polinsky and Shapley 1997).

Perhaps the truth lies somewhere between the recurrent
model and the feed-forward model (Miller et al. 2001): the
relative weighting between the feed-forward and recurrent
contributions might be different for different V1 cells. We have
made additional simulations by varying this weighting in the
recurrent model and found that most results reported in this
paper remain qualitatively the same under many different com-
binations of feed-forward and recurrent contributions to V1
tuning. The main exception is that the sharpening effect in the
learning simulation does require a weak feed-forward tuning
and a strong recurrent connection. It is interesting to note in
this context that physiologically, the learning-induced sharp-
ening was mainly found in superficial and deep layers
(Schoups et al. 2001), where the recurrent connections may be
more dominant than the input layer 4, and that the cortical
inactivation experiments were limited to simple cells (Ferster
and Miller 2000), which may receive less recurrent connec-
tions than complex cells (Chance et al. 1999).

In conclusion, we have proposed a model for understanding
the V1 orientation tuning-curve changes induced by perceptual
learning and adaptation, as reported by Schoups et al. (2001)
and Dragoi et al. (2000), respectively. The two physiological
studies found reduced neural activities around the trained or
adapted orientation, but opposite patterns of changes to orien-
tation tuning curves. We were able to account for the key
features of both studies by introducing different modifications
to the connections in a recurrent network for V1 orientation
selectivity (Carandini and Ringach 1997; Somers et al. 1995).
We also applied signal detection theory to quantify the percep-
tual consequences of the tuning curve changes and compared
the results with the relevant psychophysical data. The learning-
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induced tuning curve changes can not only explain the psy-
chophysical consequences of learning, but also the psycho-
physical consequences of adaptation, if the same changes are
assumed to be long-lasting for learning but short-term for
adaptation. In contrast, the adaptation data of Dragoi et al.
(2000) cannot explain the altered orientation discriminability
(Regan and Beverley 1985) or the tilt aftereffect observed after
adaptation. A related physiological study on adaptation by
Müller et al. (1999) also fails to explain the tilt aftereffect. We
hypothesize that the discrepancies in the case of adaptation are
caused by the difference between the psychophysical experi-
ments with attending subjects and the physiological studies
with anesthetized animals. We predict that with behaving an-
imals performing an orientation discrimination task, the adap-
tation-induced physiological changes should be more like a
short-term version of the learning experiments of Schoups et
al. (2001). Finally, we would like to point out that our approach
is quite different from previous perceptual learning models
(Herzog and Fahle 1998; Peres and Hochstein 1994; Poggio et
al. 1992) that rely on training artificial neural networks through
connectionist learning algorithms. Although interesting in their
own right, those models have relatively limited implications
for biological systems. The explanatory and predictive power
of our model derives from its close relation to physiology.
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