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Tanaka, Hirokazu, John W, Krakauer, and Ning Qian. An opti-
mization principle for determining movement duration. J Neuro-
physiol 95: 3875-3886, 2006. First published March 29, 2006;
doi:10.1152/jn.00751.2005. Movement duration is an integral com-
ponent of motor control, but nearly all extant optimization models of
motor planning prefix duration instead of explaining it. Here we
propose a new optimization principle that predicts movement dura-
tion. The model assumes that the brain attempts to minimize move-
ment duration under the constraint of meeting an accuracy criterion.
The criterion is task and context dependent but is fixed for a given task
and context. The model determines a unique duration as a trade-off
between speed (time optimality) and accuracy (acceptable endpoint
scatter). We analyzed the model for a linear motor plant, and obtained
a closed-form equation for determining movement duration. By solv-
ing the equation numerically with specific plant parameters for the eye
and arm, we found that the model can reproduce saccade duration as
a function of amplitude (the main sequence), and arm-movement
duration as a function of the ratio of target distance to size (Fitts’s
law). In addition, it explains the dependency of peak saccadic speed
on amplitude and the dependency of saccadic duration on initial eye
position. Furthermore, for arm movements, the model predicts a
scaling relationship between peak velocity and distance and a reduc-
tion in movement duration with a moderate increase in viscosity.
Finally, for a linear plant, our model predicts a neural control signal
identical to that of the minimum-variance model set to the same
movement duration. This control signal is a smooth function of time
(except at the endpoint), in contrast to the discontinuous bang—bang
control found in the time-optimal control literature. We suggest that
one aspect of movement planning, as revealed by movement duration,
may be to assign an endpoint accuracy criterion for a given task and
context.

INTRODUCTION

Every movement takes time. Movement duration is not
arbitrary, but rather appears to depend on other parameters and
on the requirements of the task and context. For example, it is
known that movement duration increases with movement ex-
tent and with the endpoint accuracy requirement (Fitts 1954).
Moreover, we typically do not rush to reach for a full cup of
coffee or spend a whole minute to pick up a pen. These
observations suggest that movement duration is not just epi-
phenomenal to other task variables but instead is itself a
planned variable.

Despite the importance of movement duration, few extant
models of motor planning are formulated to explain it. Instead,
proposed models focus on the problem of trajectory redun-
dancy: how the brain picks one stereotyped trajectory from an
infinite number of possible trajectories (see, e.g., Shadmehr
and Wise 2005). It is generally assumed that the brain applies

an optimization principle to single out a unique trajectory.
Since the pioneering work of Flash and Hogan, several such
optimization models have been proposed (Dornay et al. 1996;
Flash and Hogan 1985; Harris and Wolpert 1998; Todorov and
Jordan 2002; Uno et al. 1989). Although they differ greatly in
the cost function being optimized (e.g., trajectory smoothness
vs. endpoint accuracy), and in whether sensory feedback is
used, these models all share a common feature: the movement
duration is prefixed before the optimization process begins. In
other words, these models assume that the movement duration
is already known, and focus on determining the trajectory
within this preset duration. Consequently, these models cannot
predict or explain movement duration itself.

One of these models, the minimum-variance (MV) model of
Harris and Wolpert (1998), has been extended to explain
movement duration in Fitts’s experiment. Like previous mod-
els, the MV model cannot predict movement duration. How-
ever, Harris and Wolpert (1998) introduced an additional
procedure into the model to circumvent this problem: they ran
the MV model multiple times with different prefixed durations
and selected the duration that generated the desired endpoint
accuracy. The procedure literally assumes that, before each
movement, the motor system simulates many movements of
different prefixed durations until a desired duration is found.
Although such a trial-and-error process is plausible during
motor learning, it is unlikely to be a routine component of
planning simple or overlearned movements. One would have to
posit a forward model that is somehow run several times before
a movement is made. Alternatively, the motor system might
acquire, through experience, a huge look-up table (or its
function approximation) of all possible movement durations
for all possible movements with all possible accuracies. Thus
the biological correlates of the method used by Harris and
Wolpert to generate movement duration are somewhat implau-
sible and inefficient.

In this paper, we propose a new optimization principle that
directly predicts movement duration as well as movement
trajectory. Our model is closely related to the MV model,
although we assign a completely different cost function. In the
MYV model, the variance of the endpoint position over a short
postmovement period is minimized in the presence of signal-
dependent neuronal noise. We also include signal-dependent
noise in our model. However, we propose that it is unlikely that
endpoint variance needs to be minimized absolutely but only
relative to the demands of the given task. If the task is to pick
up a rock, there is little reason to minimize the variance to the
size of a pebble. From the perspective of survival, it may be
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more useful for an animal to minimize movement duration than
to minimize endpoint variance provided that the variance meets
the demands of the task. For example, to escape a predator, a
monkey will climb up a tree as quickly as possible, not as
accurately as possible, provided that movements are accurate
enough to avoid falling. For saccadic eye movements, there is
another reason that time minimization may improve survival:
during saccades, we are largely blind to visual inputs due to
saccadic suppression (Bridgeman et al. 1975). The brain may
want to minimize the impaired period of visual processing by
minimizing saccade duration. There is also evidence for re-
duced somatosensory transmission during limb and finger
movements (Ghez and Pisa 1972; Williams and Chapman
2000). Time minimization also appears appropriate for mod-
eling the Fitts experiment in which subjects were instructed to
reach any part of a target as fast as possible (Fitts 1954; Fitts
and Peterson 1964). The task does not require an endpoint
scatter smaller than the target size but does require minimum
duration.

We therefore suggest that the brain should try to minimize
movement duration under the constraint that endpoint accuracy
meets a criterion demanded by the task and context, in the
presence of signal-dependent neuronal noise. Here we mathe-
matically formulate this constrained minimum-time model,
analytically solve it for a linear motor plant, and demonstrate
that it determines a unique movement duration. This duration
reflects a trade-off between speed (time optimality) and accu-
racy (acceptable endpoint scatter). We then show that the
model can reproduce, among other things, Fitts’s law for arm
movements and the main sequence for saccadic eye move-
ments. Although we chose two well-known psychophysical
results to illustrate our model, we argue that constrained time
minimization is a more general principle for determining
movement duration (see DISCUSSION).

Harris and Wolpert (1998) considered only minimization of
endpoint variance, although they did bring up the possibility of
time minimization when they wrote: “We propose that the
temporal profile of the neural command is selected so as to
minimize the final positional variance for a specified move-
ment duration, or equivalently to minimize the movement
duration for a specified final positional variance determined by
the task.” However, variance minimization and time minimi-
zation are not equivalent because cost functions of the two
approaches are very different (see piscussion). Hamilton and
Wolpert (2002) later extended the MV model into the TOPS
(task optimization in presence of signal-dependent noise)
framework and applied it to obstacle avoidance; like the MV
model, however, “in the TOPS framework the cost is move-
ment error,” not movement duration. In separate work, Harris
(1995, 1998) did consider time minimization but without the
crucial endpoint accuracy constraint. Studies of time minimi-
zation models, previously reported in the time-optimal control
literature (Bryson and Ho 1975; Stengel 1986), have been
proposed for both limb (Fitzhugh 1977) and eye (Enderle and
Wolfe 1987; Harris 1995, 1998) movement planning. How-
ever, such models are not considered biologically plausible
(see, e.g., Nelson 1983), mainly because, in the absence of an
endpoint accuracy constraint, they always lead to a bang—bang
control strategy where the control signal takes either the
maximum or minimum value, a property contradicted by mo-
toneuron and muscle activations, which are smooth functions
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of time. Here we show that our constrained minimum-time
model does not result in bang—bang control, but instead gen-
erates a smooth control signal. In fact, we will prove for the
case of a linear plant that the control signal predicted by our
model is identical to that of the MV model set to the same
movement duration.

METHODS
The constrained minimum-time model

As argued above, we assume that the brain minimizes movement
duration under the constraint that the endpoint accuracy meets a task-
or context-dependent criterion and that there is signal-dependent
neuronal noise in the control system. We denote the initial and final
times of a movement as O and 7, respectively, where 1, is the
movement duration to be minimized. In our mathematical model, the
endpoint accuracy constraint is actually two constraints. First, over
repeated trials, the expected endpoint position of the effector should
be equal to the target position during a postmovement period, £,
which was used in the MV model (Harris and Wolpert 1998) and
whose role has been analyzed mathematically by us and others (Feng
et al. 2002; Tanaka et al. 2004b). Second, the mean endpoint posi-
tional variance over #, should be bounded by a required final variance,
V. For mathematical simplicity, we assume that the mean variance
over t, is equal to V, in our analytical derivations. We have also

simulated the case where the mean variance is less than or equal to V,

and obtain very similar results (see DISCUSSION). As with the MV
model (Harris and Wolpert 1998), a nonzero 7, is needed to avoid
divergence of the control signal at time 7, (Tanaka et al. 2004b). Note
that, although V, is fixed for planning a given movement, it varies
according to the task and context (see Simulation of saccades and
Simulation of single-joint reaching). Finally, we assume that the
control signal has an additive Gaussian noise term whose SD is
proportional to the control signal (signal-dependent noise) (Harris and
Wolpert 1998; Todorov and Jordan 2002). The full model formulation
can be found in APPENDIX A. The goal is to minimize ¢, under the stated
constraints and noise.

We applied the above formulation to a linear motor plant of the
form

0"(1) + a, - 0"7V(1) + - - -+ 0 0() = Blul?) + &1)] )

where 6(7) is a scalar representing the effector position; for example,
it can be the horizontal position of the eye or elbow angle. 6(7) is the
kth derivative of 6(7) and Eg. I contains derivatives up to nth order.
The coefficients «; and (3 are determined by the dynamical properties
of eye and arm, and by muscle models (see Simulation of saccades
and Simulation of single-joint reaching). u(t) is a scalar representing
the neuronal control signal. &(7) is the signal-dependent noise term
mentioned above, which describes trial-to-trial variability; it has a
Gaussian distribution with zero mean

E[&0n]=0 (@)

and a SD proportional to the control signal (Harris and Wolpert 1998).
The noise is assumed to be white so that the covariance between noise
at times ¢ and ¢’ is given by

E [£(0E1t)] = Ki(1)8(t — ') 3

Here K is a constant that determines the noise strength and the delta
function indicates that there is no correlation between noise at times
t and ¢'. The variance of the noise at any given time is proportional to
the square of the control signal at that time.

The plant in Eg. I has a pole-only transfer function. In general,
temporal derivatives of the control signal can be added to the right-
hand side of Eg. I to introduce zeros to the transfer function (see, e.g.,
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Stengel 1986). However, we did not do so because we are not aware
of any physiological evidence for such derivatives. In addition, such
derivatives have the undesirable effect of amplifying signal-dependent
noise. Note also that Eq. / contains a general motor plant that has been
widely used to describe horizontal eye movements and single-joint
arm movements in the literature.

For convenience, we convert Eg.  into a set of first-order equations
in matrix form X = Ax + B(u + £) by introducing an n-dimensional
state vector x = [0, 0,..., 6 P]7. The matrices A and B are
uniquely determined by the coefficients in Eq. I (see APPENDIX A; see
also, e.g., Ogata 1998 for the state-space representation). Because we
consider a point-to-point movement from a stationary initial position
at 0, to a stationary final position 6, the initial and final state vectors
are given as x; = (0,, 0, .. ., 0)” and X, = (0, 0,...,0)". Thatis, the
velocity, acceleration, and higher-order temporal derivatives of the
position should all be zero at the beginning and end of a movement to
ensure stationarity (i.e., no systematic drift). The movement amplitude
is given as a difference between the initial and final positions (6, — 0,).
These boundary conditions are identical to those used in many
previous optimization models (Flash and Hogan 1985; Harris and
Wolpert 1998; Todorov and Jordan 2002; Uno et al. 1989).

With the linear plant, the constrained time-minimization problem
can be solved by standard variational calculus (see APPENDIX A). Once
the initial and final states (x; and x,) and the final variance (V) were
specified, we obtained an equation that determines the movement
duration ¢,

Vity
= () + (= )G ) ) )

where matrix functions H(z,) and G(zy) are defined in APPENDIX A. u;,
the control signal required to stabilize the plant in the desired final
state for the duration of the postmovement period, equals the product
of elastic constant of the motor plant and the final displacement. We
call this equation (Eq. 4) the duration equation because t,is the only
unknown variable in this equation and it can be uniquely determined
with given x;, x;, and V.. Because the duration equation is a highly
nonlinear function of t;, we resorted to numerical methods to solve
for 1.
We can also derive the optimal control signal
o= {4 Iy 0=i<p ®
uy (r=t=t+1)

The definition of function F(#) is provided in APPENDIX A. This control
signal is a smooth function of time except at time t, Thus time-
optimal control does not necessarily lead to bang—bang control (Bry-
son and Ho 1975) when appropriate constraints are imposed. Note that
this control signal solution is identical to that we derived for the MV
model if the MV model is set to the same ¢, (see Egs 2.21 and 2.22 in
Tanaka et al. 2004b). Therefore, for a linear plant, our model inherits
the features of the MV model set to the same movement time. The
main difference between the two models is that our model predicts
movement time whereas the MV model does not.

Simulation of saccades

Horizontal eye movement dynamics was modeled with a second-
order differential equation

S L g ©®)

where 6 and T denote the horizontal eye displacement and the net
muscle torque, respectively. We set the time constants to #;, = 224 ms
and £, = 13 ms, based on measurements in human subjects (Robinson
et al. 1986). We further modeled the muscle torque 7 as a low-pass—
filtered control signal u(f)

3877

1+ S = 7
[3dt7_u 7)

with the time constant 7; = 10 ms (Harris and Wolpert 1998). The two
equations can be combined to give a third-order equation for the eye
plant in the form of Eq. I, with the coefficients

1 1 1 1 1 1
+ q=—t—+—
AT ST Lty bl L

(8)

—_

Thus the state x is a three-dimensional vector containing eye position,
velocity, and acceleration.

For main-sequence simulations, we considered saccades from the
primary position (6, = 0) to a stationary target located at various
eccentricities [0, (deg)]. The saccade amplitude was thus 6,. The target
was assumed to have width W, which was fixed at 1.5 deg (see
RESULTS for the effect of its variation). For determination of V, it
should be noted that it cannot be assumed that the visual system
foveates the target before the saccade; rather, for saccades of larger
amplitude, the target is more eccentrically located off the fovea and
thus has a lower visual resolution. This means that the visual estima-
tion of the target becomes more variable with larger saccades and the
endpoint variance of saccades must increase with saccadic amplitude
even for a fixed target size. We therefore included the actually
measured saccadic variability at different amplitudes in our expres-
sion of endpoint variance. Specifically, for a given target size, the SD
of final eye position is a linear function of the saccade amplitude (van
Opstal and van Gisbergen 1989). In addition, a larger target size
means that the V, can afford to be larger. Thus the SD of the final eye
position was modeled as a sum of the target size W and a linear term
of saccade amplitude o, ie.

V,= (W + ab)’ )

The slope a was fixed at 0.03, a value within the range of 0.02 to 0.05
seen in human subjects (see Fig. 5A of van Opstal and van Gisbergen
1989). We should emphasize that the dependency of variance on
amplitude in Eg. 9 is a consequence of increased target uncertainty
with amplitude. In other words, the primary factor is target uncertainty
(through visual estimation) rather than amplitude per se.

We also simulated the dependency of saccadic duration on the
initial eye position 6, Because 6; took nonzero values in these
simulations, saccadic amplitude was (6, — 6,). Equation 9 thus
became

V,=[W+a(6,— 0)I (10)

where the same values for a and W were used as in the main-sequence
simulation. Note that V, depends only on saccade amplitude (6, — 6,)
instead of on initial positions 6;. This is consistent with the experi-
mental finding that the variability of saccades is similar for different
initial positions (Pelisson and Prablanc 1988).

Simulation of single-joint reaching

We simulated single-joint movements of the forearm with the
following dynamic equation (Hogan 1984)

10 +bO=1 (rn

where 6 and 7 represent the elbow angle and the net muscle torque,
respectively. I and b are, respectively, the moment of inertia and the
intrinsic viscosity, for which we adopted the standard values of 0.25
kg - m? and 0.20 kg + m?/s for these parameters (van der Helm and
Rozendaal 2000). We introduced a second-order linear muscle model
with two time constants (muscle activation, 7, = 30 ms, and muscle
excitation, 7, = 40 ms) (Winters and Stark 1985)
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d d
<1+tt,*><1+t,,*>7=u (12)
dt dr

and obtained the fourth-order plant for the forearm with coefficients

b C 1) 1 (1 Ub
ay=—+|-+-] a=—+|-+-|
I t, ft, tt, t, t)1

1
@=0B="—

tt 1

3)
o =—

ttd
The four-dimensional state vector contains hand position, velocity,
acceleration, and jerk.

We simulated different movement distances (D) and target widths
(W). Movement distance was a product of the forearm length (L) and
an elbow-angle amplitude (6, — 0,),i.e., D = Ly(6,— 0,). The forearm
length was set to 0.35 m (Uno et al. 1989). We required that any part
of a finger tip of width w overlap the target with a 95% probability of
success (Harris and Wolpert 1998). Accordingly, we set

V= (W+ w)Ir (14)

with 7 = 1.96 to ensure a 95% success rate because the final position
is approximately Gaussian in distribution. The finger size w was fixed
at 0.6 cm (Harris and Wolpert 1998). The assumption is that the visual
system is able to provide accurate measures of w and W by foveating
on the finger and target before the reaching movement. Thus unlike
the saccadic variance Egq. 9, there is no amplitude dependency in Egq.
14. The sum of the widths in Eq. /4 determines the allowed variability
for the finger to hit the target.

Numerical methods

All the simulations were performed with Matlab (The MathWorks,
Natick, MA) on a Linux computer. For numerical solutions of the
duration Eq. 4, we used Simpson’s method to evaluate the integral in
the matrix G and applied the bisection method to find the optimal
movement duration (see, e.g., Press et al. 1992). The model has two
main free parameters: the noise intensity K and the postmovement
duration #,. We adjusted these parameters to fit the experimental data.
We also confirmed that the model depends smoothly on the choice of
the parameter values. In particular, we found that the results do not
change significantly for #, >50 ms for eye movements and >200 ms
for arm movements.

RESULTS

Our main analytical results for a linear plant, derived in the
APPENDIX A, are that the constrained time-minimization model
can determine a unique movement time according to Eq. 4 (the
duration equation), and that the control signal Eq. 5, and thus
the movement trajectory determined by our model, are identi-
cal to those given by the MV model set to the same movement
duration. In this section, we present results from our numerical
solutions of the duration equation and show that the main

H. TANAKA, J. W. KRAKAUER, AND N. QIAN

sequence of saccadic eye movements, the dependency of du-
ration on initial eye position, and Fitts’s law of arm movements
can all be explained by this equation.

The saccadic main sequence

Figure 1A shows that our model reproduces the main se-
quence: the linear relationship between saccadic amplitude and
duration (Bahill et al. 1975; Baloh et al. 1975). In this set of
simulations, we set the postmovement duration to 7, = 100 ms
and the noise proportionality constant to K = 5.5 X 10~ *. The
movement durations were calculated with saccadic amplitudes
ranging from 2.5 to 50 deg. For comparison, we reproduced in
Fig. 1B the corresponding experimental data taken from van
der Geest and Frens (2002). There is close agreement between
the simulation and the data. In addition to the linear relation at
relatively larger saccade amplitudes, the model can also ex-
plain the downturn at smaller amplitudes. Although we used a
particular set of parameter values in Fig. 1A to match the data
in Fig. 1B, we observed similar linear relationships with many
other parameter combinations; the difference was mainly in the
slopes and intercepts of the line. In particular, we always
obtained a nearly linear relationship with target sizes W >1.0
deg. When the target size was <1.0 deg, the duration—ampli-
tude plot became somewhat curved but remained a monoton-
ically increasing function, consistent with the experimental
data.

After determining the optimal duration, we calculated the
optimal control signal predicted by our model according to Eq.
5, and the corresponding movement trajectory. The model
predicts that the peak velocity is a monotonically increasing
function of the amplitude with a gradual fall-off in slope (Fig.
2A), again in close agreement with experimental data (Baloh et
al. 1975; van der Geest and Frens 2002). Note that previous
optimization models, including the MV model, cannot predict
peak velocity values without extra assumptions because peak
velocity critically depends on duration. The velocity profiles
and the optimal control signals obtained with our model (re-
sults not shown) are identical to those of the MV model (Harris
and Wolpert 1998) set to the same movement times, as we have
already shown analytically (see METHODS).

Harris (1998) demonstrated that bang—bang control derived
through time minimization can explain the main sequence but
not the shape of the velocity profile. In contrast, our con-
strained time-minimization model avoids nonphysiological
bang—bang control and explains both the main sequence and
the shape of velocity profiles.

Saccadic duration is known to be dependent not only on
amplitude but also on initial eye position. In particular, several

< 200p 200 — -
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~ 150p 150}
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5 1001 100
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FIG. 1. Main sequence for saccadic eye move-
ments (the linear relationship between saccadic dura-
tion and amplitude). A: model simulation. B: corre-
sponding experimental data taken from van der Geest
and Frens (2002), with permission from Elsevier. Data
were obtained with both the scleral search coil method
(dots) and a video-based 2D eye-tracking method
(crosses).
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studies found that centrifugal saccades (i.e., away from the
primary position) are slower than centripetal saccades (i.e.,
toward the primary position) of the same amplitude (Abel et al.
1979; Eggert et al. 1999; Pelisson and Prablanc 1988). Figure
3C shows experimental data taken from Pelisson and Prablanc
(1988). A subject made 30-deg saccades from three different
starting positions 6;: /) 6; = 0 and 6, = 30 deg. The saccade
was purely centrifugal, from the primary position to a point of
30-deg eccentricity (the curve marked with filled circles). 2) 6;
= —10 deg and 6, = 20 deg. The saccade was 10-deg
centripetal and 20-deg centrifugal, from a point of 10-deg
eccentricity, through the primary position, and to a point of
20-deg eccentricity on the other side (the curve marked with
filled triangles). 3) 6; = —20 deg and 6, = 10 deg. The saccade
was 20-deg centripetal and 10-deg centrifugal, from a point of
20-deg eccentricity, through the primary position, and to a
point of 10-deg eccentricity on the other side (the curve marked
with filled squares). We simulated these three saccades with
the same parameters as used in the main-sequence simulations
above and the results are shown in Fig. 3A. There is good

A

Velocity (deg/s)

10 20 30
Saccade Amplitude (deg)

qualitative agreement between the simulations and the data,
with the purely centrifugal saccade taking a longer time than
that with a centripetal component. We also found that a 55%
increase of the K parameter can produce a more quantitative
agreement between the model’s prediction (Fig. 3B) and the
data (Fig. 3C). Adjusting the parameter K is justified because
there is considerable intersubject variability in the magnitude
of signal-dependent noise (Jones et al. 2002), and the main-
sequence data (Figs. 1B and 2B) and the data here (Fig. 3C) are
taken from different experiments with different subjects.

It is important to note that because the saccadic amplitude (6,
— 0,) was fixed at 30 deg, the endpoint variance (Eq. 10) used
in our simulations did not depend on initial eye position 6,.
This is consistent with the experimental finding that saccade
variability was similar for the three different initial eye posi-
tions (Pelisson and Prablanc 1988). The reason that the simu-
lated saccadic duration depends on initial eye position is the
presence of an elastic restoration force in the eye plant (the
third term of Eq. 6). Because this force results from elastic
connective tissues instead of from neuronal control signal, it is

FIG. 3. Dependency of saccadic duration on initial eye
position. Saccadic amplitude was fixed at 30 deg. Initial
eye position was 0, —10, and —20 deg from the primary

0 50 100 150 0 5_?_. 100 150 position for the 3 curves in each panel. A: simulations with
Time (msec) ime (msec) the same set of parameters as in Figs. 1 and 2. B: simula-
tions with a 55% increase in K value without changing
C other parameters. C: corresponding experimental data,
500 taken from Pelisson and Prablanc (1988) with permission
' ‘\ from Elsevier. Curves marked with filled circles, triangles,
, -~ d s s for initial positions that were 0, —10, and
— L, s, _. and squares are for initial p R ,
% 400 Jr,;'-".\,\\t'. —20 deg away from the primary position, respectively.
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not accompanied by signal-dependent noise. Centripetal sac-
cades are facilitated by this noise-free elastic force. In contrast,
centrifugal saccades have to overcome the elastic force. A
larger control signal cannot fully cancel the effect of the elastic
force because the increased signal-dependent noise will gen-
erate a greater endpoint variation. A longer duration is thus
needed to ensure accuracy of the saccade. Our explanation
provides a simpler and more quantitative (but not mutually
exclusive) alternative to that offered by Pelisson and Prablanc
(1988). They suggested that saturation in oculomotor neuron
activity and/or nonlinear length—tension relationship in ex-
traocular muscles could cause the kinematic differences in
centrifugal and centripetal saccades, but did not provide quan-
titative evidence.

Fitts’s law

Fitts’s law quantifies the intuitively unsurprising notion that
it takes a longer time to reach for a smaller or more distant
target. It is expressed as 1, = a; + a, log, 2D/W) (see a
reproduced plot in Fig. 4C), where W is the target size, D is the
movement distance, and a; and a, are empirical constants (Fitts
1954). An important feature of Fitts’s law is that movement
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duration depends only on the ratio of movement distance to
target size, instead of on each parameter separately.

Our model reproduces Fitts’s law. First, by examining the
duration Eq. 4, we can show analytically that duration is
determined by the ratio of D and W when the finger size (w) is
negligible. Specifically, we prove that with the linear arm
model of Eq. 11, the duration Eq. 4 can be reduced to a much
simpler form (see ApPENDIX B)

W+ w\’
c- (T) = g(t)

where C = 1,L3/r°K, L is the forearm length, and g(z)) denotes
the (1,1)-component of the matrix G~ l(z‘f). Equation 15 clearly
indicates that the duration 7,is a function of D/(W + w). When
the finger width is negligibly small compared with the target
size, the duration is dependent only on the ratio D/W, as in
Fitts’s law.

Second, with Eq. 4 (or equivalently with Eg. 15), we
simulated the predicted movement duration numerically. Fig-
ure 4, A and B shows the results plotted against the index of
difficulty (ID), log, (2D/W). For these simulations, we chose a
postmovement duration #, = 400 ms, and the noise proportion-
ality constant K = 5 X 107>, We also confirmed that the
qualitative features of the results remained invariant under

(15)
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FIG. 4. Arm movement duration as a function of index
of difficulty log, (2D/W). A and B: model simulations. A:
W was varied for 3 fixed D values (30, 40, 50 cm). B: D
was varied for 3 fixed W values (0.6, 1.0, 1.4 cm). C:
experimental data replotted from Fitts (1954).
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many other parameter combinations. The three curves in Fig.
4A were for reaching movements with fixed distances of 30,
40, and 50 cm, respectively. Each curve was obtained by
varying the target width. When the ID is small (i.e., the target
width is large) the three curves overlap and the duration
depends only on the ID as predicted by our analytical result
above. Each curve becomes roughly linear at large values of
ID, in accordance with the logarithmic form of Fitts’s law. For
comparison, we replotted Fitts’s data in Fig. 4C. The three
curves in Fig. 4B were for reaching movements to targets of
fixed width of 0.6, 1.0, and 1.4 cm, respectively. Each curve
was obtained by varying the movement distance. Although the
curves are somewhat more curved than those in Fig. 4A, the
qualitative features of the curves are similar to the logarithmic
Fitts’s law. Interestingly, we found that the curves in Fig. 4B
can be well fit by a power law of the form: ¢, = a,(D/W)®.
Previous experimental studies have noted deviations from the
log form of Fitts’s law (Schmidt and Lee 1998). The power law
has been suggested as a more accurate alternative for fitting
duration data (Schmidt and Lee 1998). Indeed, even for sim-
ulations in Fig. 4A and Fitts’s original data replotted in Fig. 4C,
the power law provides a better fit than the log law. The
residual errors are 0.0050 and 0.012 for the power-law and
log-law fits of Fitts’s data, respectively. A problem with the log
law is its divergence at small D. The power law avoids this
problem.

We also predicted how peak velocity (p,) scales with the
movement distance (D) (Fig. 5). The three curves in the figure
were obtained with the target size W fixed at 0.6, 1.0, and 1.4
cm, respectively. These curves are roughly linear with the same
slope in the log-log plot, indicating a power-law relationship
p, = (const.) X D@ Curve fitting of these and additional
simulation results (not shown) confirmed that the value of the
exponent remains in a relatively narrow range of [0.50, 0.55]
when the target size is varied from 0.3 to 3.0 cm.

Finally, we explored how movement duration depends on
the dynamic parameters of the plant. We found that the effect
of viscosity is particularly interesting because our model makes
an initially unexpected prediction: movement duration should
decrease with increasing viscosity (Fig. 6). In these simula-
tions, we assumed that in addition to the intrinsic viscosity b in
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FIG. 5. Simulation of arm movement peak velocity as a function of move-
ment distance. Three curves were obtained by fixing target size at 0.6, 1.0, and
1.4 cm, respectively. Note that a logarithmic scale is used for both axes.
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FIG. 6. Simulation of movement duration as a function of external viscos-
ity. Movement distance was fixed at 25 cm and 3 target sizes (0.6, 1.0, and 1.4
cm) were considered.

Eq. 11, there is an externally imposed viscosity b so that Eq. 11
was replaced by

10+ B+bo=r1 (16)
where b ranged from 0 to 5 kg-m?/s in increments of 0.5. Three
different target sizes (0.6, 1.0, and 1.4 cm) were simulated for
a movement distance of 25 cm (similar results were obtained
for other parameter combinations). This prediction may at first
appear counterintuitive because it asserts that a higher resistive
viscous force makes the movement go faster. However, it
actually makes good sense: improved system stability at higher
viscosity reduces the propagation of signal-dependent noise
through time (Tanaka et al. 2004b) and the system can thus
afford to use a larger control signal without violating the
endpoint accuracy constraint. This is analogous to the case of
walking on ice. To avoid falling, we have to walk more slowly
than the maximum speed we could achieve on ice. However, if
the ice is sprinkled with sand, resistance increases, stability
improves, and we can afford to walk a little faster.

In the limiting case of extremely high viscosity, the move-
ment must be slower because it becomes very difficult to move.
Our model fails to predict an increase of duration in this limit
because we did not include a control cost (a measure of energy
consumption) in the cost function and so the control signal can
grow without bound. With this limitation in mind, we predict
that with increasing viscosity, the movement should first be-
come faster and then slow down.

DISCUSSION

In this paper, we propose a novel optimization principle
that—unlike previous models that determine trajectory only—
can also determine movement duration. Our main hypothesis is
that it is evolutionarily adaptive to move as fast as possible for
the degree of accuracy that is selected for the given task and
context. Specifically, we assume that the brain minimizes
movement duration in the presence of signal-dependent noise
and under the constraint of an acceptable endpoint scatter
around the target position. We solved this constrained mini-
mum-time model analytically for linear motor plants and ob-
tained a closed-form equation for determining the movement
duration (the duration equation Eq. 4). Our analysis also

JUNE 2006 « WWW.jn.org

9002 ‘9T aunr uo Bio AbBojoisAyd-ul woly papeojumoq



http://jn.physiology.org

3882

proved that for linear plants, the control signal (and thus
muscle torque and movement trajectory) predicted by our
model is identical to that predicted by the MV model set to the
same movement time. However, there is no general equiva-
lence between our model and the MV model because they use
very different cost functions (see following text). Because the
predicted control signal is a smooth function of time, our work
demonstrates that time-optimal control does not necessarily
lead to discrete bang—bang control when appropriate con-
straints are applied. For arm movements, the duration equation
can be transformed to analytically prove part of Fitts’s law: that
movement duration depends only on the ratio of movement
distance to target width, instead of on each parameter sepa-
rately. The full Fitts’s law relationship and its power-law
variant are obtained through numerical solutions of the dura-
tion equation. Numerical simulations also predict the saccadic
main sequence—the relationship between saccadic duration
and amplitude—and the dependency of saccadic duration on
initial eye position. Furthermore, our work provides a new
explanation of why centrifugal saccades are slower than cen-
tripetal ones of the same amplitude. A centrifugal saccade has
to overcome the restoration force of the elastic tissue. A larger
control signal cannot fully cancel the effect of the elastic force
because the increased signal-dependent noise would generate
greater endpoint variance.

We should emphasize that we used standard eye and arm
models and parameters in our simulations. As mentioned in
METHODS, the only free parameters adjusted to fit the experi-
mental data are the postmovement duration 7, and the noise
proportionality constant K. Because the results are not sensitive
to 1, for large values of 7, (=50 ms for eye and =200 ms for
arm movements), K is the main free parameter of the model.
Note that at the level of abstraction used in our model, K is not
the noise strength of a single neuron, which would be more or
less fixed. Rather, K measures the noise strength of the neuro-
nal population that generates the control signal. Decreasing K
is thus equivalent to increasing the number of cells in the
population. It is this interpretation of K that justifies its use as
a free parameter.

Despite its simplicity, our model makes several testable
predictions. First, for the main-sequence simulation in Fig. 1A,
the linear relationship between the duration and amplitude
depends on a constant saccadic target size. The model predicts
that the linear relationship should be violated if, for example,
the target size scales with the amplitude. Second, the small
divergence of the three curves in Fig. 4A is caused by a
nonzero finger width used in the simulations. The model
predicts greater divergence for single-joint movements if the
finger width is increased artificially, say, by wearing a glove.
Third, Fig. 5 shows the model’s prediction of the relationship
between peak velocity and movement distance for single-joint
movement. Finally, the model predicts a reduced movement
duration with a moderate increase of viscosity (Fig. 6).

The endpoint accuracy constraint used in our analyses and
simulations required the variance averaged over a postmove-
ment duration to equal a criterion. However, one may argue
that it would be more reasonable to require that the variance be
less than or equal to the criterion. We also ran a simulation
with this inequality constraint and the results (not shown) are
very similar to those with the equality constraint. This is
because to minimize movement duration, the largest allowed
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control signal, and thus the largest allowed noise in the control
signal, should be used. The characteristics of the plant, which
determine how noise propagates through time (Tanaka et al.
2004), are such that the largest allowed variance will be
realized at the end of a movement. Consequently, the inequal-
ity constraint reduces to the equality constraint for our simu-
lations. An exception occurs when movement extent ap-
proaches zero. Under this condition, the control signal and thus
signal-dependent noise approach zero and there is no move-
ment variability to satisfy the equality constraint. Thus the
inequality constraint has to be used in this special case and the
predicted movement duration is zero because it is the shortest
time that satisfies the inequality constraint.

In our model, the speed—accuracy trade-off is described as
the minimum duration needed to achieve a predetermined
endpoint scatter. In the MV model, the trade-off is described as
the minimum variance achievable within a predetermined du-
ration. Intuitively, one might argue that there is an obvious
equivalence between the two models. The argument would go
that the MV model fixes the duration and finds the variance,
whereas our model fixes the variance and finds the duration,
and thus the two models must be equivalent. However, such
intuition is logically flawed. A hidden assumption in such an
argument is that there is a fixed, one-to-one relationship be-
tween endpoint variance and movement duration. However, the
variance—duration relationship is not a starting premise but the
solution of an optimization process and thus depends on the
choice of cost function. The MV model and our model use
completely different cost functions. Consequently, there is no
a priori reason to believe that they will generate the same
variance—duration relationship. Therefore one should not as-
sume equivalence between the two models without a rigorous
mathematical demonstration. Indeed, to the best of our knowl-
edge, ours is the first such demonstration for linear plants. For
nonlinear plants, the two models are likely to be different; or at
the very least, equivalence would need to be rigorously dem-
onstrated.

Even for a linear plant, where there is indeed mathematical
equivalence between our model and the MV model, there is
still an important distinction between the models in terms of
biological plausibility. Consider the case of reaching out to
touch a target of a certain size (such as pushing a button). Our
model says that vision provides an estimate of target size and
location, which can be used to determine the movement dura-
tion and control signal so that we successfully hit the target in
one trial. In contrast, the MV model requires movement dura-
tion to be fixed at an arbitrary value. If we miss the target or
touch it with unnecessary precision, we then adjust the preset
movement duration accordingly. The process is then repeated
iteratively until an optimal duration is found. This is literally
what Harris and Wolpert (1998) did in their simulation of
Fitts’s law. If the time spent on trial and error is taken into
account, the movement is no longer the fastest allowed. Alter-
natively, the MV model could assume that the brain stores a
huge look-up table (or its function approximation) containing
the movement durations for all possible movements at all
possible accuracies that one is ever going to encounter. This
assumption simply converts the original problem into a new
one, i.e., how this huge table or its approximation is acquired
and stored and how it should be structured to allow quick
retrieval of an entry. In our model, sensory inputs provide a
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natural basis for choosing the required endpoint accuracy,
which then starts the optimization process. In contrast, in the
MYV model, there is no obvious biological basis for picking the
right movement duration before the optimization process starts.

The above discussion also suggests that it should be easier to
implement our model than the MV model in neural or artificial
systems. In particular, even after a neural circuit has already
learned the optimization procedure, the MV model still has to
rely on trial and error or to acquire a huge look-up table to
determine the movement duration. In contrast, our model can
simply feed the sensory estimate of target size and location into
the optimization circuit.

It should also be pointed out that Wolpert and colleagues
only numerically solved their MV model. In contrast, we
solved our constrained minimum-time model analytically and
compared it with our previous analytical solution of the MV
model (Tanaka et al. 2004b).

Although our constrained time-minimization model appears
particularly appropriate for understanding fast eye and arm
movements, the model may be applicable to movement plan-
ning in general. According to our model, the brain favors the
fastest movement that can satisfy the desired endpoint accu-
racy. Thus slow movements do not necessarily contradict our
model; in our framework, the movement is slow because the
subject has set a very stringent accuracy criterion for the task.
Likewise, if a subject performs the same motor task with
different durations under different contexts, our interpretation
would be that the different contexts demand different endpoint
accuracies. Indeed, a tennis player’s second serve is usually
slower than the first serve because higher accuracy is de-
manded to avoid a double fault. Therefore to understand
movement planning, it is critical to know the desired accuracy
set by the subject. In the Fitts paradigm, accuracy is explicitly
determined by the instruction to land anywhere within the
target. In many other motor control experiments and for natural
movements made outside the laboratory, an accuracy require-
ment is not explicitly imposed but instead is set implicitly by
the subject depending on object size, task, and context. We
suggest that to understand movement duration it is necessary to
measure the actual endpoint variance over repeated trials to
reveal the implicit accuracy criterion.

The above discussion leads to a more general interpretation
of the simulation results in Figs. 4 and 5 for the Fitts experi-
ment. Take Fig. 5 as an example. This figure shows the
predicted peak velocity as a function of movement distance at
three different target sizes for the Fitts paradigm. However, if
the brain generally prefers the fastest movement that satisfies
an endpoint accuracy criterion, then the predictions should be
applicable to different non-Fitts contexts. The only difference
is that under the Fitts paradigm, subjects are explicitly told to
use the target size as the endpoint accuracy criterion, whereas
in other contexts, subjects choose an implicit criterion that
needs to be revealed by measuring the endpoint scatter over
repeated trials. Therefore if we interpret the three target sizes in
Fig. 5 as three different internal criteria, then the predictions in
the figure should be valid in general: that is, if the same subject
makes the same movement trajectory to the same target in three
different contexts and happens to show three different levels of
endpoint accuracy as in Fig. 5, then the three curves in the
figure are the predicted velocity—distance relationships.
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Like many previous optimization models (Dornay et al.
1996; Flash and Hogan 1985; Harris and Wolpert 1998; Uno et
al. 1989), our constrained minimum-time model is purely
feedforward, and does not take sensory feedback signal into
account. Feedforward planning may be appropriate for well-
practiced movements, but sensory feedback can have a pro-
found influence on the motor planning and trajectory formation
(Carlton 1981; Keele and Posner 1968; Sober and Sabes 2005;
Tanaka et al. 2004a; Todorov and Jordan 2002). Indeed, a
qualitative account of Fitts’s law based on sensory feedback
and corrective submovements has been suggested (Crossman
and Goodeve 1983; Keele 1968). In future work we plan to
extend our constrained minimum-time model by including
sensory feedback in a manner proposed by Todorov and Jordan
(2002) and then compare feedforward- and feedback-based
accounts of Fitts’s law.

Another potentially useful extension of our model would be
an inclusion of a control cost term in the cost function. Control
cost measures the energy consumption of a movement. It
seems reasonable to assume that when a movement is relatively
easy and brief, as is the case for the Fitts experiment and
saccadic eye movements, factors such as energy consumption
and muscle fatigue are not important. On the other hand, for
difficult movements (such as weight lifting, extremely high
viscosity) or repetitive movements (such as running), these
factors are likely to be relevant. In such cases, the variability in
duration of the same movement trajectory may be explained by
the variation in the relative weighting between time minimi-
zation and energy minimization, in addition to variation in
task- and context-dependent accuracy criteria.

APPENDIX A: DETAILED FORMULATION OF THE
MODEL AND ITS SOLUTION

Here we describe the model formulation, and derive the duration
Eq. 4 and the optimal control signal Eq. 5. As we explained in the text,
we assume that the brain minimizes movement duration 7, under the
constraint that the endpoint accuracy of the movement meets the
criterion for the current task. To describe the model concisely, we use
both the scalar [6(#)] and vector [x(7)] notations, where 0 is the effector
position and x = [6, 0, ..., 6~ "]” is the state vector. The accuracy
constraint can be expressed as two equality constraints. The first is the
final position constraint, which requires that at each moment in the
postmovement duration (z, ¢, + t,), the expected effector position 6
equals the desired target location 6, and that temporal derivatives of
0 equal O (to avoid drift after the movement). In vector notion, we
have

x; = E[x(1)]

where x, = (60, 0, .. ., 0)”. The second constraint is the final variance
constraint, which requires that the effector variance averaged over the
postmovement duration equals a fixed, task-dependent value V,

(=t=t+1) (AD)

(A2)

P

1 [#wto
V= - dt Var [0(1)]
1

f

Here we focused on the variance of 6(7) instead of using the full
covariance matrix of x(#) because the former provides the most direct
measure of the movement accuracy. The relationship between the
other elements of the covariance matrix and the movement accuracy
is not straightforward. In addition, there are considerably fewer data
available on the other elements of the covariance matrix such as the
variance of acceleration or the covariance between velocity and jerk.
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Thus there is little information on how to set constraints on those
elements.

The optimization process with the equality constrains can be solved
with the Lagrange multiplier method. The augmented cost function is

1 irtip
Surlty u(t); A, (0] = 1, + A[V, - tf dt Var [O(t)]]

Ir

+ f " a0y — B0l (A3)

i

where A and () are Lagrange multipliers. 7, and u(f) over 0 =t =
ty + 1, are varied to minimize Sy,

Although the above constrained minimum-time model could be
applied to any motor plant, we restrict ourselves to a linear dynamics
Eq. 1 to obtain a closed analytical solution. With the state-space
representation x = (6, 0, 6, ...)7, the nth order differential Eq. I is
reduced to a set of first-order equations in matrix form

X=Ax+Bu+é (A4)
where the dynamical matrices are
0 1 0 0
0 0 1 0 0
A= 0 0 0 B=| (A5)
: : : 0
- Q) - — Q) B

The components for the eye and arm matrices are already given in
METHODS. Equation A4 has the following formal solution

x(t) = e'x, + f t dr' " IBlu() + E(1t')] (A6)

0

Using the noise model in Eq. 2, we can then explicitly evaluate the
right-hand side of the final position constraint (Eq. AI) as a linear
functional of the control signal

t
x; = E[x(t)] = "'x; + f dr' e "Bu(t') (r=t=t+1) (A7)

0

Similarly, the formal solution (Eq. A6) and the noise model (Egs. 2
and 3) can be used to der;ve the expected full covariance matrix of x(7)
as K [ dt'e*""""BBe" "), By extracting the (1,1)-component of
the covariance matrix, we can express the right-hand side of the final
variance constraint (Eq. A2) as a quadratic functional of the control
signal

1 |t K | t
V,=— drVar[6(] = - dr | dr'fie's 0u(e) (A8)
’ 1y 0

Here f(r'; 7) is the (1,1)-component of the matrix ¢~ BBTeAT(~1),
This function f(¢'; f) is the weighting factor describing how much
signal-dependent noise at time ¢’ contributes to the positional variance
at a later time ¢ (Tanaka et al. 2004b).

We used a shortcut to simplify the above variational problem.
Because the target is always at position 6, after , the control signal
should balance the elastic force of the plant (v, = «,6,/8) to maintain
the plant at the target location after the movement. By fixing the
postmovement control signal to u,, the positional constraint Eq. Al is
automatically satisfied after the movement (1, <1 = 1, + 1), and we
only need to enforce the positional constraint at time #,: x, = E [x()].
With the fixed control signal in the postmovement duration, the final
variance constraint (Eg. A8) can also be simplified to
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‘/ftl’ ¥ 2 2
e dtF()u’(f) + uH(t,) (A9)
0

where the functions F(¢) and H(z,) are defined as integrals of the
weighting factor

F(o) = f " e ) (A10)

If

iy t
H(t,) = dr | di'fit’s )
I I

The first and second terms in the right-hand side of Eq. A9 represent
the contribution of noise during and after the movement, respectively.
Equation A3 can then be reduced to a simpler cost function

and

(AID)

S‘MT[tf, u(); Aul =t + )\[Vf - tl fmp dt Var [6([)]:|

P Yy

+ 'l — Elx(@)]]
By substituting the explicit forms of Egs. A7 and A9 for the con-
straints, and applying the calculus of variation to Eq. A12 with respect

to t,and u(7) (0 =t < 1,), we obtain the necessary conditions for time
optimality

as NN i
0=-M_;_= [f dif(t; 1+ t,)u(r) — f difr; tf)uz(t)]
0

ot
f P 0

(A12)

(A13)

8S~MT T —At
= = +
0 sull) 2KNF(Du(t) + w'e B
In deriving Eq. A13, we used OE [x(t)]/dt, = 0 based on Eq. A7, so
there is no u-dependent term. Equation Al4 gives

(Al4)

MT o B
2K\F(1)

ult)= — (A15)

Substituting this control signal expression into the final position
constraint Eg. A7 we obtain the ratio of the multipliers

"

" =2KG (1) (x; — e "x)) (A16)
where matrix G is defined as
v BB
G(t) = dt ————— Al7
(%) —[> F) (A17)

analogous to the Grammian matrix for a linear, time-invariant system
(Bryson and Ho 1975; Stengel 1986). The matrix G has to be
nonsingular for the ratio of the multipliers to exist, analogous to the
nonsingular requirement on the Grammian matrix for achieving con-
trollability [4, 32]. For the eye and arm plants used in the simulations,
G values are indeed invertible. Substituting this ratio of multipliers
into Eq. A15, we obtain the optimal control signal (Eg. 5). Note that
the optimal control signal does not explicitly depend on the noise
proportionality constant K. The duration Eq. 4 is obtained by substi-
tuting the optimal control signal expression into the final variance
constraint (Eq. A9). Finally, the multipliers are determined by Egs.
Al3 and AI6.

Note that the time optimization condition (Eq. A13) is not explicitly
used to derive the optimal control signal and the duration equation, but
only to determine the Lagrange multipliers. This is a common feature
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of all time-optimal control problems with a linear constraint of u(7)
and a quadratic constraint of u(f) (Smith 1974). Because of this
feature, the same optimal control signal and movement duration can
be obtained when the cost function #,is replaced by any monotonically
increasing function of 7.

APPENDIX B: DERIVATION OF EQ. 15

Here, by partially evaluating the matrix exponential e*, we derive
the simpler form (Eg. 15) of the duration Eq. 4 when there is no elastic
force in the dynamics of the linear plant, which is the case for
single-joint reaching. As explained in METHODS, by combining the two
second-order differential equations (Egs. /1 and 12) for single-joint
dynamics and muscle model, we have a fourth-order motor plant. The
components of the 4 X 4 matrices A and B (Eg. A5) are given in
METHODS. The matrix A has the characteristic polynomial A* + a,A>
+ a,A? + a,A = 0, where we used the fact that o, = 0, ascribed to
the lack of an elastic term in Eq. /1. Therefore there are one zero
eigenvalue and three nonzero eigenvalues (A, A,, and A;).

Although we could calculate the matrix exponential by explicitly
deriving the eigenvalues and eigenvectors, the final expression would
be cumbersome without a clear structure. Instead, we evaluate the
matrix exponential e*’ with the help of the Cayley—Hamilton theorem.
According to the theorem, any n X n matrix (M) satisfies p(M) = 0,
where p is the characteristic polynomial of M, p(\) = det ]\ — M|,
and I is the identity matrix (see, e.g., Strang 2003). By applying the
theorem iteratively, any power of M equal to or higher than its
dimensions n (and any analytical function of M) can be reduced to a
linear summation of lower powers up ton — 1, i.e., M* = "=/ .M’
(k = n). Therefore for the 4 X 4 matrix A, the matrix exponential can
be expressed as a weighted sum of I, A, A2, and A3

M= o(r) T+ (1) - A+ y(r) - AP+ () - A

where ¢,(¢) (i = 0, 1, 2, 3) are functions of time. With this expression,
the calculation of matrix exponential is reduced to that of the ¢
function values. To determine the values of ¢, we diagonalize the
above equation

(BI)

M= Go(t) + T+ (1) + A+ (o) - A+ (1) - A

where A = diag (0, A;, A,, A;). By comparing the four diagonal
components, we can prove ¢,(f) = 1, and derive equations for ¢,, ¢,,
and ¢5

(B2)

ANoAL AT i) M =1
MM b | =] e - (B3)
AP S | A0 -1

An explicit solution for ¢,, ¢,, and ¢ is not relevant for the
following discussion. By evaluating Eq. BI with ¢, = 1 and the A
matrix, we see that the matrix exponential has the following form

1

Aty —

(=)

e (B4)

0

The second, third, and fourth columns are complicated functions of
¢,, ¢b,, and ¢, which are omitted because they are irrelevant for this
proof. With this form of matrix exponential and the initial condition
x; = (0, 0,0, 0)7, we readily see

x;— e, = (6,— 0,0,0,00" = (D, 0,0,0)/L, (BS)

After substituting this expression into the duration Eq. 4, we see that
only the (1,1)-component of the G™ l(lf) matrix survives, and that the
duration depends on the movement distance D only, instead of on 6,
and 0, separately
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Vi _D

2
K = 17) (G~ )I,I(t/) (B6)

Note that the (1,1)-component of Gil(tf) was simply denoted as g(t,)
in the main text. Because we required the final variance V,to be (W +
w)?/r?, we obtain the simpler form (Eq. 15). Note that the simpler
version of the duration equation holds only when there is no elastic
force; the saccade duration derived from the model is dependent on
the initial position 6, and final position 6, instead of on the difference
0, — 0, only, because of the elastic term in the eye plant, just as we
showed in Fig. 3.
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