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On the momentum term in gradient descent learning algorithms
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Abstract

A momentum term is usually included in the simulations of connectionist learning algorithms. Although it is well known that such a term
greatly improves the speed of learning, there have been few rigorous studies of its mechanisms. In this paper, I show that in the limit of
continuous time, the momentum parameter is analogous to the mass of Newtonian particles that move through a viscous medium in a
conservative force field. The behavior of the system near a local minimum is equivalent to a set of coupled and damped harmonic oscillators.
The momentum term improves the speed of convergence by bringing some eigen components of the system closer to critical damping.
Similar results can be obtained for the discrete time case used in computer simulations. In particular, I derive the bounds for convergence on
learning-rate and momentum parameters, and demonstrate that the momentum term can increase the range of learning rate over which the
system converges. The optimal condition for convergence is also analyzed.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Connectionist neural network models have been success-
fully applied to a wide range of problems (Rumelhart and
McClelland, 1986; McClelland and Rumelhart, 1986;
Anderson et al., 1990; Churchland and Sejnowski, 1992).
Although there are many different varieties of learning algo-
rithms available, the majority of them—including the
popular back-propagation learning algorithm—are of the
gradient descent type. For a given network architecture,
one usually starts with an error function which is parame-
terized by the weights (the connection strengths between
units) in the network. The gradient of the error function
with respect to each weight is then computed and the
weights are modified along the downhill direction of the
gradient in order to reduce the error. LetE(w) be the error
function, wherew is a vector representing all the weights in
the network, the simplest gradient descent algorithm, known
as the steepest descent, modifies the weights at time stept
according to:

Dwt ¼ ¹ e=wE(wt) (1)

where=w represents the gradient operator with respect to

the weights, ande is a small positive number known as the
learning rate.

It is well known that such a learning scheme can be very
slow. The inclusion of a momentum term has been found to
increase the rate of convergence dramatically (Rumelhart
et al., 1986). With this method, Eq. (1) takes the form:

Dwt ¼ ¹ e=wE(w) þ pDwt ¹ 1 (2)

wherep is the momentum parameter. That is, the modifica-
tion of the weight vector at the current time step depends on
both the current gradient and the weight change of the pre-
vious step. Intuitively, the rationale for the use of the
momentum term is that the steepest descent is particularly
slow when there is a long and narrow valley in the error
function surface. In this situation, the direction of the
gradient is almost perpendicular to the long axis of the
valley. The system thus oscillates back and forth in
the direction of the short axis, and only moves very slowly
along the long axis of the valley. The momentum term helps
average out the oscillation along the short axis while at the
same time adds up contributions along the long axis
(Rumelhart et al., 1986).

Other methods have also been proposed for improving the
speed of convergence of gradient descent learning algo-
rithms. For example, the conjugate gradient method has
been shown to be superior to the steepest descent in most
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applications (Press et al., 1992). However, the conjugate
method requires more storage of intermediate results than
the momentum method, and is non-local in the sense that the
information needed to update a weight is not all contained in
the pre- and post-synaptic units of the weight. This makes
the algorithm less biologically plausible and harder to
implement on hardware. In addition, the conjugate gradient
method is less robust than the momentum method when the
error surface is relatively flat, and when it is very different
from a quadratic form in most parts of the parameter space
(unpublished observations). Perhaps for these reasons, the
momentum method appears to be dominant in the connec-
tionist learning literature. In this paper, I attempt to mathe-
matically analyze the effect of the momentum term on the
speed of learning. I will first demonstrate an analogy
between the momentum term in gradient descent and the
mass of Newtonian particles in a conservative force field.
This analogy will help us understand how the momentum
term achieves its effect in the continuous time case. I will
then examine the discrete time case used in computer simu-
lations. Unlike the continuous time case, the discrete system
is not guaranteed to converge to a minimum. I will derive
the bounds for convergence one andp, and demonstrate that
the momentum term can increase the range ofe over which
the system converges. Whenp is close to one,e can be
nearly doubled. The optimal condition for fastest conver-
gence to a minimum is also analyzed.

2. Physical analogy

Consider the continuous version of the steepest descent

dw
dt

¼ ¹ e=wE(w) (3)

wherew is a continuous function of time instead of indexed
by discrete time steps. Compare this equation with the
Newtonian equation for a point massm moving in a
viscous medium with friction coefficientm under the influ-
ence of a conservative force field with potential energy
E(w):

m
d2w
dt2

þ m
dw
dt

¼ ¹ =wE(w) (4)

wherew is the coordinate vector of the particle. It is clear
that Eq. (3) can be viewed as the special case of Eq. (4) for a
massless particle.

The above comparison between the steepest descent and
the Newtonian equation prompts us to examine if the mass
term in Eq. (4) could play some role in gradient descent. It
turns out that Eq. (4) is equivalent to the continuous version of
the momentum method specified by Eq. (2). To demonstrate,
we discretize Eq. (4) to obtain:

m
wt þ Dt þ wt ¹ Dt ¹ 2wt

Dt2
þ m

wt þDt ¹ wt

Dt
¼ ¹ =wE(w) (5)

After rearrangements, we have:

wt þ Dt ¹ wt ¼ ¹
(Dt)2

mþ mDt
=wE(w) þ

m
mþ mDt

(wt ¹ wt ¹ Dt):

(6)

This equation is identical to Eq. (2) if we let the learning rate
e and the momentump be related to the friction coefficientm

and massm according to:

e¼
(Dt)2

mþ mDt
, (7)

p¼
m

mþmDt
: (8)

Therefore, the steepest descent with a momentum term is
equivalent to a Newtonian particle moving through a
viscous medium under the influence of a conservative
force field. Note thatp ¼ 0 impliesm ¼ 0 and vice versa
according to Eq. (8). Thus, the momentum parameter plays
the role of mass.

3. Stability and convergence analyses

3.1. Continuous time case

The analogy between the momentum method and the
Newtonian mechanics discussed in the previous section
also establishes that the momentum method is stable in
the continuous time case and is guaranteed to converge to
a local minimum for any positivemandm (or equivalently,e
andp). This is because the total energy of the system

ET ¼ 1
2m

dwT

dt
dw
dt

þ E(w) (9)

is a Liapunov function that monotonically decreases due to
the presence of friction. Without the momentum term the
potential energyE(w) is the error function being minimized.
With the momentum term the total energyET is the new
error function. The two error functions become identical
towards the end of training because at the final equilibrium
state the weight vectorw will cease to change (or equiva-
lently the velocity of the particle will become zero).

How does the momentum term speed up the convergence
of the system to a local minimum? To understand this, we
expand the potential energy in Eq. (4) around a minimum at
w0 to obtain:

m
d2w
dt2

þ m
dw
dt

< ¹ H(w ¹ w0) (10)

whereH (the Hessian) is a symmetric and positive definite
matrix with the elements:

hi, j ¼
]2E(w)
]wi]wj

lw0
(11)

and the first order derivatives ofE(w) are omitted because
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they vanish at the minimum. Eq. (10) represents a set of
coupled and damped harmonic oscillators, with all the oscil-
lators having the same massm and damping coefficientm.
The coupling between them is determined by theH matrix.
Without loss of generality, we letw0 ¼ 0 in the following
discussion (w0 can always be eliminated with the substitu-
tion (w ¹ w0) → w).

SinceH is symmetric and positive definite, it can always
be diagonalized with an orthogonal matrixQ through a
similarity transformation:

H ¼ QKQT, QQT ¼ I (12)

whereK is a diagonal matrix with positive entries:

K ¼

k1

k2

]

kn

0BBBBB@

1CCCCCA (ki . 0), (13)

kis are the eigenvalues ofH, andn is the number of oscilla-
tors (or equivalently, the number of weights). Using the
transformation:

w9 ¼ QTw, (14)

Eq. (10) can now be written as a set of uncoupled and
damped oscillators:

m
d2w9

dt2
þ m

dw9

dt
¼ ¹ Kw9 (15)

We can now consider each oscillator separately. Theith
oscillator is governed by:

m
d2w9i

dt2
þ m

dw9i

dt
¼ ¹ kiw9i (16)

with ki as the spring constant.Under the special case of no
momentum term, which is equivalent to settingm ¼ 0, the
solution of Eq. (16) is simply:

w9i(t) ¼ celi,0t (17)

wherec is a constant and

li,0 ¼ ¹
ki

m
: (18)

Obviously, differentw9i will converge at a different rate
determined byki, and the one corresponding to the smallest
ki will have the slowest speed. Sincew is a linear combina-
tion of w9, the convergence ofw will be limited by the
smallestki in the system.

To see how the momentum term helps speed up the con-
vergence, note that whenm Þ 0, the general solution of Eq.
(16) becomes:

w9i(t) ¼ c1eli, 1t þ c2eli, 2t (19)

wherec1 andc2 are constants, and the eigenvaluesl i,1 and

l i,2 are given by:

l
i, 1

2

� 	¼ ¹
m

2m
6

�����������������������������
m

m
m

4m
¹

ki

m

� �
:

s
(20)

Sincem, m andki are all positive, the real parts of the two
eigenvalues are always negative so that the convergence of
the system is ensured. For a givenw9i , the speed of its
convergence is determined by the magnitudes of the real
parts of the eigenvalues, with larger magnitudes correspond-
ing to faster convergence. It is easy to show that

lReli,1l # lReli,2l, (21)

and the equality holds when the square root in Eq. (20) is
zero or imaginary. Therefore, the speed of convergence
of w9i is limited by lReli,1l. To see the effect of the
momentum term, we need to comparelReli, 1l with
lReli,0l¼ lli,0l¼ ki =m:

The following result, which is proved in Appendix A,
provides the condition under which the momentum term
improves the speed of convergence.

Result 1: For positive m,m and ki, the inequality

lReli,1l . Reli, 0l (22)

holds, and therefore the momentum term improves conver-
gence, if and only if

ki ,
m2

2m
(23)

That is, givenm andm, for thosekis satisfying Inequality
(23), the momentum term improves the convergence of the
correspondingw9is. The convergence of the remainingw9is
is not improved or slowed down. Therefore, to achieve an
overall improvement,m andm should be chosen such that
Inequality (23) is satisfied for the majority ofkis. To
quantify the degree of improvement, we define a positive
parametera according to:

lReli,1l ; alReli, 0l¼ a
ki

m
: (24)

Obviously, ana larger than 1 indicates improvement of
convergence, and largera means greater improvement.
We prove the following result in Appendix A.

Result 2. a reaches the maximum value of 2, and therefore
the momentum term is most effective, when

ki ¼
m2

4m
: (25)

More specifically,a increases monotonically from 1 to 2
when ki increases from a very small value tom2/4m. It
then decreases monotonically from 2 to 1 when ki increases
fromm2/4m tom2/2m. Finally, when ki is larger thanm2/2m,
a is smaller than 1 and decreases monotonically to 0.

Thus, givenmandm, the best convergence improvements
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are for thosew9is whosekis are near the value specified by
Eq. (25), at the middle of the range allowed by Inequality
(23). Eq. (25) is known as thecritical dampingcondition for
damped harmonic oscillators in physics (Kleppner and
Kolenkow, 1973). Smallerkis correspond to the so-called
heavy damping condition where a relatively weak spring
slowly pulls the oscillator, without oscillation along the
way, to its equilibrium condition through a very viscous
medium. Largerkis correspond to the light damping condi-
tion where a strong spring quickly pulls the oscillator to its
equilibrium position, overshoots, and oscillates back and
forth, through a relatively less viscous medium, resulting
in an overall slow settlement. The critical damping condi-
tion is right at the interface between these two cases, and it
allows the fastest return of the oscillator to its equilibrium
position. It is thus not surprising that the critical damping
condition provides the best convergence improvement for
the gradient descent learning algorithm.

Whenki is small, a first order expansion of Eq. (19) shows
thatli,1 < li,0 at this limit. That is, smallki is similar to the
no momentum case. Therefore, without the momentum term
the system behaves like heavy damping. The momentum
term speeds up learning by bringing some eigen components
of the system closer to the critical damping.

3.2. Discrete case

While the above results of the continuous case give a
clear physical picture of the effect of the momentum term,
computer simulations are necessarily discrete. We investi-
gate how the momentum term works in the discrete case in
this section. Eq. (6) near a local minimum becomes:

wt þ 1 ¼ [(1þ p)I ¹ eH]wt ¹ pwt ¹ 1: (26)

Similar to the continuous case, this set of equations can be
decoupled by diagonalizingH using Eqs. (12)–(14) to
obtain:

w9t þ 1 ¼ [(1þ p)I ¹ eH]w9t ¹ pw9t ¹ 1: (27)

We can now consider each of the equations separately, with
the ith equation given by:

w9i, t þ 1 ¼ [1þ p¹ eki ]w9i, t ¹ pw9i, t ¹ 1: (28)

Supplying the dummy equationw9i, t ¼ w9i, t, we can rewrite
the equation in matrix form:

w9i, t

w9i, t þ 1

 !
¼ A

w9i, t ¹ 1

w9i, t

 !
¼ At

w9i,0

w9i,1

 !
, (29)

where the matrixA is given by:

A¼
0 1

¹ p 1þ p¹ eki

 !
: (30)

The convergence ofw9i is determined by the eigenvalues of
matrix A:

l
i, 1

2

� 	¼
1þ p¹ eki 6

������������������������������������
(1þ p¹ eki)2 ¹ 4p

p
2

: (31)

To ensure convergence, we requirelli, 1l , 1 andlli,2l , 1,
or equivalently:

Max(lli, 1l, lli,2l) , 1: (32)

We prove the following result in Appendix A.

Result 3: Max(lli,1l, lli,2l) , 1, and therefore the system
described by Eq. (28) converges, if and only if
¹ 1 , p , 1 and0 , eki , 2þ 2p.

Fig. 1. Using Eq. (31), Max(lli,1l, lli,1l) is plotted as a function ofp andeki . The shaded area has values less than 1, and therefore corresponds to the parameter
range for convergence. It has the triangular shape predicted by Result 3.
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A graphical demonstration of this result is shown in Fig. 1.
Without the momentum term (p ¼ 0), the condition for
convergence ofw9i becomes 0, eki , 2. When positivep
is used, the range of learning ratee that ensures convergence
clearly increases withp. Sincep can be almost as large as 1,
the parameter range of convergence can be nearly doubled.
It is interesting to note that in most simulations of connec-
tionist learning algorithms, thep values were indeed chosen
to be close to 1, typically around 0.9 (for examples see
Rumelhart et al., 1986; Qian and Sejnowski, 1988, 1989).
Also note that unlike the continuous case, the system is not
guaranteed to converge for any positive values ofe, p andki .

Similar to the continuous case, we are also interested in
finding out how the rate of convergence is affected by the
momentum term. It is easy to show from Eq. (28) that with-
out the momentum term (p ¼ 0), the convergence speed of
w9i is determined by:

li,0 ¼ 1¹ eki (33)

Obviously, if bothlli,1l andlli,2l are smaller thanlli,0l then
the momentum term speeds up the convergence ofw9i ; if
one of them is larger thanlli, 0l, then the convergence is
slowed down. To avoid tedious calculations with compli-
cated inequalities, we consider the special case of smalle

typically used in simulations, and expandl in Eq. (31) to
obtain:

l
i, 1

2

� 	 <
1¹

eki

1¹ p
,

p 1þ
eki

1¹ p

� �
:

8>>><>>>: (34)

Both are positive for smalleki . For ¹ 1 , p , 0, we
have li,1 . li,0 and therefore the momentum term slows
down the convergence for negativep. On the other hand, for
0 , p , 1, we haveli,1 , li,0. We will also haveli, 2 , li,0
if p , 1¹

������
eki

p
. Therefore, when 0, p , 1¹

������
eki

p
, the

momentum term speeds up convergence.
It is easy to see from Eq. (34) that whenp increases,l i,1

decreases whilel i,2 increases. The best convergence speed
is achieved whenli,1 ¼li, 2. Using the original Eq. (31) we
find that the bestp value is given by

p¼ 1¹
������
eki

p� �2
(35)

for small eki, and the corresponding eigenvalues are

l
i, 1

2

� 	¼ 1¹
������
eki

p
, li,0: (36)

One might argue that ifeki is not restricted to be small then
the best convergence speed could be achieved by excluding
the momentum term (p ¼ 0), and by settingeki ¼ 1 so that
li,0 ¼ 0. The problem is that there aren (the number of
weights in the network)kis for a given local minimum
and they can be of very different magnitudes. To ensure
convergence for allw9is, e has to be smaller than
2=Max(ki). This results in smalleki for mostkis. We have

shown above that the momentum term can not only increase
the speed of convergence for smalleki, but can also nearly
double the parameter range for convergence.

4. Discussion

In this paper we demonstrated an equivalence between
the momentum parameter in the gradient descent learning
algorithms and the mass of Newtonian particles that move
through a viscous medium under a conservative force field.
The behavior of gradient descent near a local minimum is
equivalent to a set of coupled and damped harmonic oscil-
lators. Within a reasonable parameter range, the momentum
term can improve the speed of convergence for most eigen
components in the system by bringing them closer to critical
damping. For the discrete time case, the momentum term
provides the additional benefit of nearly doubling the para-
meter range over which the system converges.

The optimal choice of the momentum and learning-rate
parameters for theith eigen component (w9i) in both the
continuous and discrete time cases (see Eqs. (23) and
(35)) depends on the value ofki, which characterizes the
ith canonical dimension of the error surface. Since for a
given local minimum thekis characterizing the minimum
can cover a wide range of values, it is impossible to make
the near optimal choice for allw9is at the same time. One
strategy might be to use different momentums and learning
rates for different weights (wi) in the network, resulting in
momentum and learning rate matrices. This approach has
been found to speed up training (Jacobs, 1988). However, it
may be limited by the fact that eachwi is a linear combina-
tion of all w9i . The convergence of eachwi, therefore,
depends on allkis, and no single optimal set of parameters
can be chosen forwi.

Obviously, one should first decouple the weights by rotat-
ing w into the eigenspace of the HessianH (see Eq. (14))
and then use Eq. (25) or Eq. (35) to determine the optimal
training parameters for each eigencomponent separately.
However, this is practically impossible to do because of
the huge size ofH for networks with large numbers of
weights. Diagonal approximation ofH, which neglects all
off-diagonal terms, has been found to be adequate in the
Optimal Brain Damage (OBD) algorithm for removing
unimportant weights (LeCun et al., 1990). Under this
approximation, we haveki ¼ hi, i , Q¼ I , and the weights
are still left coupled. It is an empirical question whether
the kis so determined can be used effectively in Eq. (25)
or Eq. (35) for choosing training parameters. An affirmative
answer would allow an integration of these equations into
the OBD algorithm to improve the rate of convergence with-
out much extra computational cost.

An alternative approach for speeding up training would
be to use a single set of momentum and learning-rate para-
meters for all the weights in the network, but to let them step
through ordered sets of values over time during training. A
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few iterations at each parameter set would quickly converge
thosew9i components in allwis whosekis approximately
satisfy the optimal condition. Differentw9i components
would be converged at different times.
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Appendix A Proof of Results 1 and 2

First, consider the case when

0 , ki #
m2

4m
: (A1)

Under this condition, bothli, 1 and li,2 of Eq. (20) are
negative real numbers. It is easy to show that:

¹ li,1 . ¹ li,0 (A2)

and therefore Inequality (22) holds. According to the defini-
tion of a in Eq. (24), we have

m

2m
¹

����������������������������
m

m
m

4m
¹

ki

m

� �s
¼a

ki

m
: (A3)

Since it is straightforward to verify that

m

2m
¹

����������������������������
m

m
m

4m
¹

ki

m

� �s
.

ki

m
(A4)

and

m

2m
¹

����������������������������
m

m
m

4m
¹

ki

m

� �s
# 2

ki

m
(A5)

we have

1 , a # 2: (A6)

Rearranging Eq. (A3) to obtain:

mki

m2 a2 ¹ a þ 1¼ 0 (A7)

we see that when ki → 0, a → 1; and when
ki ¼m2=4m, a ¼ 2. To demonstrate thata increases mono-
tonically for ki in the interval(0,m2=4m], note that

]a

]ki
¼

a2mki

m2 ¹ 2amki
. 0 (A8)

because

m2 ¹ 2amki $ m2 ¹ 4mki . 0: (A9)

Next consider the case when

m2

4m
, ki ,

m2

2m
(A10)

Under this condition, bothli, 1 and li, 2 are complex with
negative real parts equal to(¹ m=2m). Therefore,

lReli,2l¼ lReli, 1l¼
m

2m
.

ki

m
¼ lli,0l (A11)

and therefore Inequality (22) holds. According to the defini-
tion of a in Eq. (24), we have

m

2m
¼ a

ki

m
(A12)

Obviously,a decreases monotonically from 2 to 1 forki in
the interval[m2=4m, m2=2m].

The above considerations establish the sufficient condi-
tion for Result 1. To prove the necessary condition, we
finally consider the remaining case

ki $
m2

2m
(A13)

Again, bothli, 1 andli,2 are complex with a negative real
part equal to(¹ m=2m). Therefore,

lReli,2l¼ lReli, 1l¼
m

2m
,

ki

m
¼ lli,0l (A14)

and Inequality (22) does not hold. Eq. (A12) remains valid
here and it indicates thata decreases monotonically from 1
to 0 for ki in the interval[m2=2m, `).

Appendix B Proof of Result 3

For clarity we drop the subscripti for l andk. We system-
atically examine the magnitudes ofl1 and l2 under all
possible conditions.

We first show that the conditioneki . 0 is required for
convergence. Assumeeki # 0. Then,

l1 ¼
1þ pþ leklþ

��������������������������������������
(1þ pþ lekl)2 ¹ 4p

p
2

$
1þ pþ leklþ

��������������������������
(1þ p)2 ¹ 4p

p
2

¼
1þ pþ leklþ l1¹ pl

2
$ 1 ðA15Þ

The last step is obvious by consideringp , 1 andp $ 1
separately. Thus, the convergence of the system requires
eki . 0. This means the learning ratee should be positive
because by definitionki is always positive.

Let

D ; (1þ p¹ ek)2 ¹ 4p (A16)

in Eq. (31). It can be shown thatD $ 0 when
p # (1¹

�����
ek

p
)2 or p $ (1þ

�����
ek

p
)2, and thatD , 0 when

(1¹
�����
ek

p
)2 , p , (1þ

�����
ek

p
)2. We consider these cases of

D $ 0 andD , 0 separately.

I . D $ 0
Under this condition,l1,2 are real. We further divide this
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case into two sub-cases corresponding to the two conditions
that ensureD $ 0.

A. p $ (1þ
�����
ek

p
)2

Under this condition, we have 1þ p¹ ek $
1þ (1þ

�����
ek

p
)2 ¹ ek¼ 2þ 2

�����
ek

p
. 0. This implies that

l1,2 . 0 and l1 $ l2. The convergence of the system
requires

l1 ¼
1þ p¹ ekþ

�����������������������������������
(1þ p¹ ek)2 ¹ 4p

p
2

, 1, (A17)

which reduces to:�����������������������������������
(1þ p¹ ek)2 ¹ 4p

q
, 1¹ pþ ek: (A18)

However, the right-hand side 1¹ pþ ek # 1¹

(1þ
�����
ek

p
)2 þ ek¼ ¹ 2

�����
ek

p
# 0 while the left side is greater

or equal to zero. This contradiction leads to the conclusion
that: If p $ (1þ

�����
ek

p
)2, the system diverges.

B. p # (1¹
�����
ek

p
)2

We further divide this subcase into two for the purpose of
proof.

a. 1þ p¹ ek $ 0
Under these conditions we also havel1,2 . 0 and

l1 $ l2. Eq. (A17) gives the stability condition, which
leads to the requirementsek . 0, which is already stated,
and 1¹ pþ ek . 0, which is satisfied because
1¹ pþ ek $ 1¹ (1¹

�����
ek

p
)2 þ ek¼ 2

�����
ek

p
. 0. We con-

clude that: if p # (1¹
�����
ek

p
)2 and 1þ p¹ ek $ 0 and

ek . 0, the system converges. It can be shown that these
conditions also implyjpj , 1. First,p $ ek¹ 1 . ¹ 1. To
show p , 1, assume the opposite thatp $ 1. Then
(1¹

�����
ek

p
)2 $ p $ 1. This leads toek $ 4. Using this result,

(1¹
�����
ek

p
)2 $ p becomes

�����
ek

p
¹ 1 $

���
p

p
, or ek $

1þ pþ 2
���
p

p
. This contradicts the assumptionek , 1þ p.

Therefore,p # 1.
The results can be summarized as: If

p # (1¹
�����
ek

p
)2, jpj , 1, and 0, ek # 1þ p, the system

converges.

b. 1þ p¹ ek # 0
In this case,l1,2 # 0 and jl2j $ jl1j. Stability now

requires:

l2 ¼
1þ p¹ ek¹

�����������������������������������
(1þ p¹ ek)2 ¹ 4p

p
2

. ¹ 1 (A19)

which reduces to�����������������������������������
(1þ p¹ ek)2 ¹ 4p

q
, 3þ p¹ ek: (A20)

This is turn leads to the requirements 3þ p¹ ek . 0 and
2þ 2p¹ ek . 0. We conclude that ifp # (1¹

�����
ek

p
)2,

1þ p¹ ek # 0, 3þ p¹ ek . 0 and 2þ 2p¹ ek . 0, the sys-
tem converges. Similar to the case above, the conditions
also imply lpl , 1. To see this, first note that

1þ p # ek , 2þ 2p, or p . ¹ 1. To showp , 1, assume
the oppositep $ 1. Then ek $ 1þ p $ 2. Consequently,
p # (1¹

�����
ek

p
)2 implies

���
p

p
#

�����
ek

p
¹ 1. Combining this

with ek , 3þ p gives p , 1, a contradiction. Therefore,
p , 1. Because the condition 3þ p¹ ek . 0 is contained
in the condition 2þ 2p¹ ek . 0 when lpl , 1, we can
simplify the convergence requirements to: Ifp#
(1¹

�����
ek

p
)2, jpj , 1 and 1þ p # ek , 2þ 2p, the system

converges.

II . D # 0
This occurs when(1¹

�����
ek

p
)2 , p , (1þ

�����
ek

p
)2 . Both

l1 andl2 are complex in this case. Eq. (31) becomes:

l1,2 ¼
1þ p¹ ek 6 i

�����������������������������������
4p¹ (1þ p¹ ek)2

p
2

: (A21)

Stability requires thatll1, 2l¼
���
p

p
, 1, or p , 1. We con-

clude that if(1¹
�����
ek

p
)2 , p , 1, the system converges. For

p to have a solution, we require(1¹
�����
ek

p
)2 , 1, or

0 , ek , 4.
Combining all of the above cases together, we arrive at

the conclusion that iflpl , 1 and 0, ek , 2þ 2p the sys-
tem converges. Since we have exhaustively considered all
possible cases in the above derivations, this is not only the
sufficient condition but also the necessary condition for
convergence.
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