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Abstract

A momentum term is usually included in the simulations of connectionist learning algorithms. Although it is well known that such a terr
greatly improves the speed of learning, there have been few rigorous studies of its mechanisms. In this paper, | show that in the limi
continuous time, the momentum parameter is analogous to the mass of Newtonian particles that move through a viscous medium
conservative force field. The behavior of the system near a local minimum is equivalent to a set of coupled and damped harmonic oscillat
The momentum term improves the speed of convergence by bringing some eigen components of the system closer to critical damp
Similar results can be obtained for the discrete time case used in computer simulations. In particular, | derive the bounds for convergenc
learning-rate and momentum parameters, and demonstrate that the momentum term can increase the range of learning rate over whi
system converges. The optimal condition for convergence is also anal@Ze3R9 Elsevier Science Ltd. All rights reserved.
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1. Introduction the weights, and is a small positive number known as the
learning rate.

Connectionist neural network models have been success- It is well known that such a learning scheme can be very
fully applied to a wide range of problems (Rumelhart and slow. The inclusion of a momentum term has been found to
McClelland, 1986; McClelland and Rumelhart, 1986; increase the rate of convergence dramatically (Rumelhart
Anderson et al., 1990; Churchland and Sejnowski, 1992). et al., 1986). With this method, Eq. (1) takes the form:
Although there are many different varieties of learning algo-
rithms available, the majority of them—including the
popu|ar back-propagation |earning a|gorithm_are of the Wherep is the momentum parameter. That is, the modifica-
gradient descent type. For a given network architecture, tion of the weight vector at the current time step depends on
one usually starts with an error function which is parame- both the current gradient and the weight change of the pre-
terized by the weights (the connection strengths betweenVious step. Intuitively, the rationale for the use of the
units) in the network. The gradient of the error function Momentum term is that the steepest descent is particularly
with respect to each weight is then computed and the slow when there is a long and narrow valley in the error
Weights are modified ak)ng the downhill direction of the function surface. In this Situation, the direction of the
gradient in order to reduce the error. LE(w) be the error ~ gradient is almost perpendicular to the long axis of the
function, wherew is a vector representing all the weights in  valley. The system thus oscillates back and forth in
the network, the simplest gradient descent algorithm, known the direction of the short axis, and only moves very slowly
as the steepest descent, modifies the weights at timet step @long the long axis of the valley. The momentum term helps
according to: average out the oscillation along the short axis while at the

same time adds up contributions along the long axis
Awp = — Vi E(W) (1) (Rumelhart et al., 1986).
whereV,, represents the gradient operator with respect to  Other methods have also been proposed for improving the
speed of convergence of gradient descent learning algo-
TTTel. 41-212-543-5213; Fax:+1-212-543-5161; E-mail: ng6@ rithms. For example, the conjugate gradient method has
columbia.edu been shown to be superior to the steepest descent in most

Aw, = — eV E(w) + pAw; _ 4 (2)
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applications (Press et al., 1992). However, the conjugate After rearrangements, we have:
method requires more storage of intermediate results than (AL m
the momentum method, and is non-local in the sense that thew, , ,, —w, = — VEW) +

information needed to update a weight is not all contained in M+ pAt m+ pAt
the pre- and post-synaptic units of the weight. This makes (6)

the algorithm less biologically plausible and harder to Thijs equation is identical to Eq. (2) if we let the learning rate

implement on hardware. In addition, the conjugate gradient ¢ and the momenturp be related to the friction coefficiept
method is less robust than the momentum method when theand massn according to:

error surface is relatively flat, and when it is very different )

from a quadratic form in most parts of the parameter space . _ (A1) ' @)

(unpublished observations). Perhaps for these reasons, the M+ pAt

momentum method appears to be dominant in the connec-

tionist learning literature. In this paper, | attempt to mathe- p=

matically analyze the effect of the momentum term on the

speed of learning. | will first demonstrate an analogy Therefore, the steepest descent with a momentum term is

between the momentum term in gradient descent and theequivalent to a Newtonian particle moving through a

mass of Newtonian particles in a conservative force field. viscous medium under the influence of a conservative

This analogy will help us understand how the momentum force field. Note thap = 0 impliesm = 0 and vice versa

term achieves its effect in the continuous time case. | will according to Eqg. (8). Thus, the momentum parameter plays

then examine the discrete time case used in computer simuthe role of mass.

lations. Unlike the continuous time case, the discrete system

is not guaranteed to converge to a minimum. | will derive

the bounds for convergence eandp, and demonstrate that 3. Stability and convergence analyses

the momentum term can increase the rangeaifer which

the system converges. Whenis close to onee can be 3.1. Continuous time case

nearly doubled. The optimal condition for fastest conver-

gence to a minimum is also analyzed. The analogy between the momentum method and the
Newtonian mechanics discussed in the previous section
also establishes that the momentum method is stable in

2. Physical analogy the continuous time case and is guaranteed to converge to
a local minimum for any positivenandu (or equivalently e

Consider the continuous version of the steepest descent andp). This is because the total energy of the system

(Wy — Wi _ ag)-

. 8
m+ pAt ®)

dw dw' dw

—_— _ Er = im———+EW 9
wherew is a continuous function of time instead of indexed S @ Liapunov function that monotonically decreases due to
by discrete time steps. Compare this equation with the the presence of friction. Without the momentum term the
Newtonian equation for a point mass moving in a potential energ¥(w) is the error function being minimized.

viscous medium with friction coefficient under the influ- ~ With the momentum term the total energy is the new
ence of a conservative force field with potential energy €rror function. The two error functions become identical
E(w): towards the end of training because at the final equilibrium
5 state the weight vector will cease to change (or equiva-
dw  dw i i i
mo Wy W v, EW) @) lently the velocity of the particle will become zero).
dt dt How does the momentum term speed up the convergence

wherew is the coordinate vector of the particle. It is clear of the system to a local minimum? To understand this, we

that Eq. (3) can be viewed as the special case of Eq. (4) for aexpand th? Potential energy in Eq. (4) around a minimum at
. Wy to obtain:
massless particle.

The above comparison between the steepest descent and d®w  dw
the Newtonian equation prompts us to examine if the massmﬁj”’“a
term in Eq. (4) could play some role in gradient descent. It
turns out that Eq. (4) is equivalent to the continuous version of
the momentum method specified by Eq. (2). To demonstrate,
we discretize Eqg. (4) to obtain: ho— 9*E(W)

Y awiawg

~ —H(w—wy) (20)

whereH (the Hessian) is a symmetric and positive definite
matrix with the elements:

(11)

W 4 ap + Wi ap — 2W, Wi at — W
m =-V,E 5
S e W) (©)

and the first order derivatives &{w) are omitted because
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they vanish at the minimum. Eq. (10) represents a set of A, are given by:
coupled and damped harmonic oscillators, with all the oscil-
lators having the same massand damping coefficieni. A = — g ﬁ(i_ ﬁ) (20)
The coupling between them is determined by kheatrix. 'v{z} 2m m\4m u
Without loss of generality, we let/; = 0 in the following
discussion\{, can always be eliminated with the substitu-
tion (W — wg) — w).

SinceH is symmetric and positive definite, it can always
be diagonalized with an orthogonal mat@} through a
similarity transformation:

Sincen, mandk; are all positive, the real parts of the two
eigenvalues are always negative so that the convergence of
the system is ensured. For a givery, the speed of its
convergence is determined by the magnitudes of the real
parts of the eigenvalues, with larger magnitudes correspond-
. . ing to faster convergence. It is easy to show that
H=QKQ, QQ =I (12)  |Ren | = IRen l, 21)
whereK is a diagonal matrix with positive entries: and the equality holds when the square root in Eq. (20) is
Ky zero or imaginary. Therefore, the speed of convergence
K, of w'; is limited by IRe\ ;. To see the effect of the
K = (k > 0), (13) momentum term, we need to compafBe\; ;| with
- ‘R@\i,0|=|)\i,0|=ki/”"
K, The following result, which is proved in Appendix A,
provides the condition under which the momentum term
kis are the eigenvalues bf, andn is the number of oscilla-  improves the speed of convergence.
tors (or equivalently, the number of weights). Using the
transformation: Result I For positive mu and k, the inequality

w = QTW, (14) |Re>\i’1| > Re>\i'0| (22)

Eq. (10) can now be written as a set of uncoupled and holds, a}nd therefor_e the momentum term improves conver-
gence, if and only if

2
20010 ) 14
mdchZ”dd_V\t/: — KW @) K< om (23)

. . That is, givenm and p, for thosek;s satisfying Inequality
We can now consider each oscillator separately. the 53y the momentum term improves the convergence of the
oscillator is governed by: correspondingv’;s. The convergence of the remainings
d?w, aw’, , is not improved or slowed down. Therefore, to achieve an
2 TP a s kiw'; (16) overall improvementm and p should be chosen such that
Inequality (23) is satisfied for the majority dfis. To

with k; as the spring constant.Under the special case of noquantify the degree of improvement, we define a positive
momentum term, which is equivalent to settimg= 0, the parameter according to:
solution of Eq. (16) is simply:

W (t) = ceot (17)

damped oscillators:

m

IRe\ 1] = alReN; ol = . (24)
w

Obviously, ana larger than 1 indicates improvement of
convergence, and larget means greater improvement.
No= — ﬁ (18) We prove the following result in Appendix A.

0=

wherec is a constant and

Result 2 « reaches the maximum value of 2, and therefore

Obviously, differentw’; will converge at a different rate the momentum term is most effective, when

determined b;, and the one corresponding to the smallest

k; will have the slowest speed. Sineeis a linear combina- K = u_z (25)

tion of w’, the convergence ofv will be limited by the T 4m

smallestk; in the system. More specifically,: increases monotonically from 1 to 2
To see how the momentum term helps speed up the con-

” when k increases from a very small value jcf/4m. It
vergence, note that when # 0, the general solution of Eq. then decreases monotonically from 2 to 1 wheiméreases
(16) becomes:

from p?/4m top%/2m. Finally, when kis larger thanp%2m,
Wi(t) = Clemt + Cze)\‘vzt (19) « is smaller than 1 and decreases monotonically to 0.
() =

wherec; andc, are constants, and the eigenvaladgsand Thus, givermandy, the best convergence improvements
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Fig. 1. Using Eq. (31), Mai\; 11, IN; 11) is plotted as a function gf andek;. The shaded area has values less than 1, and therefore corresponds to the parameter
range for convergence. It has the triangular shape predicted by Result 3.

are for thosaw';s whosek;s are near the value specified by Similar to the continuous case, this set of equations can be
Eqg. (25), at the middle of the range allowed by Inequality decoupled by diagonalizingd using Egs. (12)—(14) to
(23). Eg. (25) is known as thaitical dampingcondition for obtain:

damped harmonic oscillators in physics (Kleppner and
Kolenkow, 1973). Smallek;s correspond to the so-called
heavy damping condition where a relatively weak spring We can now consider each of the equations separately, with
slowly pulls the oscillator, without oscillation along the theith equation given by:

way, to its equilibrium condition through a very viscous

medium. Largek;s correspond to the light damping condi- Witp1=[1+p—ek]wi—pwi 1. (28)
tion_v_vh(_ere a strp_ng spring quickly pulls the_ oscillator to its Supplying the dummy equatios
equilibrium position, overshoots, and oscillates back and
forth, through a relatively less viscous medium, resulting
in an overall slow settlement. The critical damping condi- /w'; , W1 Wi

tion is right at the interface between these two cases, and it| | = ) = R (29)
allows the fastest return of the oscillator to its equilibrium \Wit+1 Wit Wit
position. It is thus not surprising that the critical damping
condition provides the best convergence improvement for

Wip1=[1+p)l —eHw' —pw';_ ;. (27)

i.t =W, We can rewrite
the equation in matrix form:

where the matripA is given by:

the gradient descent learning algorithm. 0 1
Whenk; is small, a first order expansion of Eq. (19) shows A= 1 . (30)
that\; ; = N o at this limit. That is, smalk; is similar to the P 1+p-ek

Nno momentum case. T_herefore, Without_the momentum termpe convergence of’; is determined by the eigenvalues of
the system behaves like heavy damping. The momentum y,trix A:

term speeds up learning by bringing some eigen components

of the system closer to the critical damping. N oy 1tP— ek = \/(1+p—ek)>—4p (31)
{3} 2 ‘
3.2. Discrete case To ensure convergence, we requixg;| < 1 andIN 5l <1,
or equivalently:
While the above results of the continuous case give a Max(IN; 41, IN o) < 1. (32)

clear physical picture of the effect of the momentum term, _ _ _
computer simulations are necessarily discrete. We investi- We prove the following result in Appendix A.
gate how the momentum term works in the discrete case in

this section. Eq. (6) near a local minimum becomes: Result 3 Max(IN; 1, I\ 2l) <1, and therefore the system
described by Eg. (28) converges, if and only if

Wiy 1= [(1+p)I — eH]w, — pw; ;. (26) —1l<p<land0<ek <2+ 2p.
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A graphical demonstration of this resultis shown in Fig. 1. shown above that the momentum term can not only increase
Without the momentum termp(= 0), the condition for the speed of convergence for smgd], but can also nearly
convergence ow'; becomes &< ek; < 2. When positivep double the parameter range for convergence.
is used, the range of learning ratthat ensures convergence
clearly increases with. Sincep can be almost as large as 1,
the parameter range of convergence can be nearly doubled4. Discussion
It is interesting to note that in most simulations of connec-
tionist learning algorithms, thevalues were indeed chosen In this paper we demonstrated an equivalence between
to be close to 1, typically around 0.9 (for examples see the momentum parameter in the gradient descent learning
Rumelhart et al., 1986; Qian and Sejnowski, 1988, 1989). algorithms and the mass of Newtonian particles that move
Also note that unlike the continuous case, the system is notthrough a viscous medium under a conservative force field.

guaranteed to converge for any positive values pfandk;.

The behavior of gradient descent near a local minimum is

Similar to the continuous case, we are also interested inequivalent to a set of coupled and damped harmonic oscil-

finding out how the rate of convergence is affected by the
momentum term. It is easy to show from Eq. (28) that with-
out the momentum ternp(= 0), the convergence speed of
w'; is determined by:

)\i,0=1_6ki (33)

Obviously, if bothl\; 1| andIN; ,| are smaller thaii; ol then
the momentum term speeds up the convergence’ ofif
one of them is larger thaf\ ol, then the convergence is
slowed down. To avoid tedious calculations with compli-
cated inequalities, we consider the special case of small
typically used in simulations, and expaidn Eq. (31) to
obtain:

ek;
1-p

Mgy~ p(1+ 1e|_<ip>.

Both are positive for smallk,, For —1<p<0, we
have N\ 1 > N\ o and therefore the momentum term slows
down the convergence for negatipeOn the other hand, for
0<p<1,wehavey ; <\ o. We will also have\; , <\ o

if p<1-./ek. Therefore, when & p<1—/ek, the
momentum term speeds up convergence.

It is easy to see from Eq. (34) that whprincreases); ;
decreases whil®; ; increases. The best convergence speed
is achieved when, ; = \; ». Using the original Eq. (31) we
find that the besp value is given by

2
o= (1- )
for small ek;, and the corresponding eigenvalues are

A 1 =1—/ek <N
'v{z} '

(34)

(35)

(36)

One might argue that #k; is not restricted to be small then

lators. Within a reasonable parameter range, the momentum
term can improve the speed of convergence for most eigen
components in the system by bringing them closer to critical
damping. For the discrete time case, the momentum term
provides the additional benefit of nearly doubling the para-
meter range over which the system converges.

The optimal choice of the momentum and learning-rate
parameters for théh eigen componentw(;) in both the
continuous and discrete time cases (see Egs. (23) and
(35)) depends on the value &f, which characterizes the
ith canonical dimension of the error surface. Since for a
given local minimum thek;s characterizing the minimum
can cover a wide range of values, it is impossible to make
the near optimal choice for all’;s at the same time. One
strategy might be to use different momentums and learning
rates for different weightsaf) in the network, resulting in
momentum and learning rate matrices. This approach has
been found to speed up training (Jacobs, 1988). However, it
may be limited by the fact that eagh is a linear combina-
tion of all w;. The convergence of each;, therefore,
depends on ak;s, and no single optimal set of parameters
can be chosen fow;.

Obviously, one should first decouple the weights by rotat-
ing w into the eigenspace of the Hessidn(see Eq. (14))
and then use Eq. (25) or Eg. (35) to determine the optimal
training parameters for each eigencomponent separately.
However, this is practically impossible to do because of
the huge size oH for networks with large numbers of
weights. Diagonal approximation &f, which neglects all
off-diagonal terms, has been found to be adequate in the
Optimal Brain Damage (OBD) algorithm for removing
unimportant weights (LeCun et al.,, 1990). Under this
approximation, we havé; =h;;, Q=I1, and the weights
are still left coupled. It is an empirical question whether
the kis so determined can be used effectively in Eq. (25)
or Eqg. (35) for choosing training parameters. An affirmative

the best convergence speed could be achieved by excludinganswer would allow an integration of these equations into

the momentum termp(= 0), and by settingk, = 1 so that
Ni.o=0. The problem is that there are(the number of
weights in the networkk;s for a given local minimum
and they can be of very different magnitudes. To ensure
convergence for allw'is, ¢ has to be smaller than
2/Max(k;). This results in smaltk; for mostk;s. We have

the OBD algorithm to improve the rate of convergence with-
out much extra computational cost.

An alternative approach for speeding up training would
be to use a single set of momentum and learning-rate para-
meters for all the weights in the network, but to let them step
through ordered sets of values over time during training. A
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few iterations at each parameter set would quickly converge Under this condition, botfy; ; and N , are complex with

thosew’; components in allv;s whosek;s approximately
satisfy the optimal condition. Differentv’; components
would be converged at different times.
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Appendix A Proof of Results 1 and 2

First, consider the case when

2

u
o (A1)

Under this condition, both\; ; and \; , of Eq. (20) are
negative real numbers. It is easy to show that:

—N,1> —No

0<k =

(A2)

and therefore Inequality (22) holds. According to the defini-
tion of « in Eq. (24), we have

I piw k\_ k

2m m<4m u) —Y (A3)
Since it is straightforward to verify that

b (e kYK (Ad)
2m m\ 4m u U
and

LN AL

2m m(4m M) N 2M (A9)
we have

1<a=2 (AB)
Rearranging Eq. (A3) to obtain:

m 4

_'jaz—a+1=o (A7)
W
we see that when k—0, a—1; and when

ki = u%/4m, « =2. To demonstrate that increases mono-
tonically fork; in the interval(0, u?/4m, note that

2
g_z: % >0 (A8)
because
p? — 20mk = p? — 4mk > 0. (A9)
Next consider the case when
“—2 <k < ”“—2 (A10)
am 2m

negative real parts equal {e- u/2m). Therefore,

IR@\LZI:\ReAMI:%n> %:D\wl (A11)
and therefore Inequality (22) holds. According to the defini-

tion of o in Eq. (24), we have

P k;

Ml | Al12
m= (A12)
Obviously,« decreases monotonically from 2 to 1 fqrin
the interval[u®/4m, p?/2m.

The above considerations establish the sufficient condi-
tion for Result 1. To prove the necessary condition, we
finally consider the remaining case

2
7
= Al13
k=2 (A13)
Again, both); ; and); , are complex with a negative real
part equal ta— u/2m). Therefore,

P~
2m
and Inequality (22) does not hold. Eq. (A12) remains valid
here and it indicates that decreases monotonically from 1
to O fork; in the interval[u?/2m, ).

IR\ ol = IRe 1/ = %=|xi|0| (A12)

Appendix B Proof of Result 3

For clarity we drop the subscripfor A andk. We system-
atically examine the magnitudes af; and A, under all
possible conditions.

We first show that the conditiogk; > O is required for
convergence. Assumd; =< 0. Then,

_ 14p+lekl+ /(14 p+lekl)2 —4p
- 2

_ 1+p+lekl++/(1+p)?—4p
- 2

_1+ptleki+11—pl
= > =

The last step is obvious by consideripg< 1 andp = 1
separately. Thus, the convergence of the system requires
ek; > 0. This means the learning ra¢éeshould be positive
because by definitiok; is always positive.

M

1 (A15)

Let
A=(1+p—ek®—4p (A16)
in Eq. (31). It can be shown thah = 0 when

p=(1—/ek)? or p= (14 v/ek)?, and thatA < 0 when
(1— /ek)? < p < (1+ \/¢ek)®>. We consider these cases of
A = 0 andA < 0 separately.

I.A=0
Under this condition); ; are real. We further divide this
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case into two sub-cases corresponding to the two conditionsl +p = ek <2+2p, or p> — 1. To showp < 1, assume

that ensure\ = 0.

A.p= (1++/ek)?

Under this condition, we have H#p—ck=
1+ (1++/ek)? — ek=2+2/ek>0. This implies that
A, 2>0 and N\; =\,. The convergence of the system
requires

_ 1+p—ek+\/(1—i-p—ek)2—4p<l

M > (A17)
which reduces to:

V@+p—e?—ap<1—p+ek (A18)
However, the right-hand side -Ap+ek=1-

(1+ \/ek)® + ek= — 2y/ek = O while the left side is greater
or equal to zero. This contradiction leads to the conclusion
that: If p= (1+ \/ek)?, the system diverges.

B.p=(1—/ek?
We further divide this subcase into two for the purpose of
proof.

a.l+p—ek=0

Under these conditions we also havg,>0 and
M =N, Eq. (ALl7) gives the stability condition, which
leads to the requirement& > 0, which is already stated,
and 1-p+ek>0, which is satisfied because
1—p+ek=1—(1—+/ek)>+ek=2y/ek>0. We con-
clude that: if p=(1—+/ek)> and 1+p—ek=0 and

the oppositep=1. Thenek =1+ p= 2. Consequently,
p=(1—/ek)? implies ,/p= \/ek—1. Combining this
with ek <3+ p givesp < 1, a contradiction. Therefore,
p < 1. Because the condition-8p — ek > 0 is contained
in the condition 2+2p—ek >0 when Ipl <1, we can
simplify the convergence requirements to: Ip=
(1—/ek)? pl <1 and 1+p=ek<2+2p, the system
converges.

.A<0
This occurs wher(1— v/ek)?> < p < (1+ 1/ek)? . Both
A1 andX, are complex in this case. Eq. (31) becomes:

1+p—ek*iv/4p— (14 p—ek)?
5 .

Stability requires that\, /= ,/p <1, orp < 1. We con-
clude that if(1 — \/e_k)2 < p < 1, the system converges. For
p to have a solution, we requir¢l — \/&)2 <1, or
0<ek<4.

Combining all of the above cases together, we arrive at
the conclusion that ifpl < 1 and 0< ek < 2+ 2p the sys-
tem converges. Since we have exhaustively considered all
possible cases in the above derivations, this is not only the
sufficient condition but also the necessary condition for
convergence.

N 2= (A21)
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