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We investigated the differences between two well-known optimiza-
tion principles for understanding movement planning: the minimum
variance (MV) model of Harris and Wolpert (1998) and the minimum
torque change (MTC) model of Uno, Kawato, and Suzuki (1989). Both
models accurately describe the properties of human reaching movements
in ordinary situations (e.g., nearly straight paths and bell-shaped velocity
profiles). However, we found that the two models can make very differ-
ent predictions when external forces are applied or when the movement
duration is increased. We considered a second-order linear system for the
motor plant that has been used previously to simulate eye movements
and single-joint arm movements and were able to derive analytical so-
lutions based on the MV and MTC assumptions. With the linear plant,
the MTC model predicts that the movement velocity profile should al-
ways be symmetrical, independent of the external forces and movement
duration. In contrast, the MV model strongly depends on the movement
duration and the system’s degree of stability; the latter in turn depends
on the total forces. The MV model thus predicts a skewed velocity profile
under many circumstances. For example, it predicts that the peak location
should be skewed toward the end of the movement when the movement
duration is increased in the absence of any elastic force. It also predicts
that with appropriate viscous and elastic forces applied to increase sys-
tem stability, the velocity profile should be skewed toward the beginning
of the movement. The velocity profiles predicted by the MV model can
even show oscillations when the plant becomes highly oscillatory. Our
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analytical and simulation results suggest specific experiments for testing
the validity of the two models.

1 Introduction

The problem of motor planning is ill posed. For a given initial and a tar-
get position, the required control signals cannot be uniquely determined
(Bernstein, 1967). Conceptually, the problem can be divided into a few sub-
problems (Hollerbach, 1982; Kawato, Furukawa, & Suzuki, 1987): (1) the
determination of a desired trajectory given an initial and a target position
in the visual coordinate system, (2) the coordinate transformation of the tra-
jectory from the visual coordinate system to the body-oriented coordinate
system, (3) the determination of muscle torques for producing the desired
trajectory, and (4) the specification of neuronal control signals for realizing
the muscle torques. In general, each of these subproblems is ill posed due
to kinematic or dynamic redundancies.

To understand why the brain chooses a particular motor plan among
infinite possibilities, it is usually assumed that the motor system tries to
optimize a certain quantity related to movements. One such optimization
principle is the minimum jerk (MJ) model proposed by Flash and Hogan
(1985). The model determines a unique trajectory by minimizing jerk, the
third temporal derivation of trajectory in the task-oriented coordinate sys-
tem. It thus prefers paths with smooth acceleration. It predicts straight paths
and bell-shaped velocity profiles often observed in human reaching move-
ments. The MJ model is purely kinematic, and it provides a solution to the
first subproblem mentioned above. Later, dynamic models were also pro-
posed, attempting to solve more than one subproblem simultaneously. We
will analyze and compare two representative dynamic models in this article:
the minimum torque change (MTC) model (Uno, Kawato, & Suzuki, 1989)
and the minimum variance (MV) model (Harris & Wolpert, 1998). The MTC
model is a dynamical extension of the MJ model; it prefers smooth mus-
cle torques instead of acceleration. In contrast, the MV model introduces a
signal-dependent noise term into the control signals and requires a mini-
mum postmovement variance around the target position. These dynamic
models explain a wider range of experimental observations than the MJ
model does (Uno, Kawato, et al., 1998; Harris & Wolpert, 1998). Several
authors have discussed how these optimization processes may be imple-
mented in a biologically plausible network (Massone & Bizzi, 1989; Kawato,
Maede, Uno, & Suzuki, 1990; Hoff & Arbib, 1993).

The MTC and MV models make similar predictions for movements un-
der normal situations (Uno, Kawato, & Suzuki, 1989; Harris & Wolpert,
1998), such as nearly straight paths and bell-shaped velocity profiles (Kelso,
Southard, & Goodman, 1979; Morasso, 1981; Abend, Bizzi, & Morasso, 1982).
This is remarkable since the two models employ very different optimization
criteria: the MTC model prefers the smoothness of muscle torques during
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the movement, while the MV model focuses on the accuracy after the move-
ment. The main purpose of this article is to explore the conditions under
which the two models make divergent predictions. Obviously, this is impor-
tant for determining which optimization principle, if any, may be used by
the brain for motor planning. Specifically, we formulate these optimization
processes with a linear motor plant and show that the velocity profiles pre-
dicted by the MV model can be highly asymmetrical when we change the
movement duration or the balance between viscous and elastic forces, while
the MTC model always predicts a symmetrical velocity profile. In section 2,
we provide an analytical formulation of these two models with a linear
plant and explain the underlying reasons for the different predictions. We
also determine the conditions under which the velocity profiles predicted
by the MV model become skewed toward the beginning or the end of a
movement. In section 3, we verify our analyses with numerical simulations
of representative cases. We discuss in section 4 some specific experiments
for testing the models. Since neither model includes sensory feedback, we
also briefly discuss potential effects of feedback on the velocity profile in
the framework of Todorov and Jordan’s recent model (Todorov & Jordan,
2002; Todorov, 2004). Preliminary results have been presented in abstract
form (Tanaka & Qian, 2003).

2 Analyses

Let us first define a motor plant to be used by both the MTC and the MV
models. We consider a second-order linear system whose dynamics is spec-
ified by

θ̈ (t) + a1θ̇ (t) + a0θ(t) = τ(t). (2.1)

This equation is based on Newtonian mechanics and has been used for
modeling eye movements (Robinson, Gordon, & Gordon, 1986) and single-
joint arm movements (Hogan, 1984). (The nonlinear equations for a two-
joint arm (Luh, Walker, & Paul, 1980) reduce to this linear form when the
upper joint is assumed to be fixed.) Here, a0 and a1 are elastic and viscous
constants, respectively. θ is a state variable representing eye position or
joint angle, and a dot over the variable denotes the temporal derivative.
τ(t) is the muscle torque. In our analysis of the MV model, we will make
the simplifying assumption that τ is also the neural control signal. In other
words, we assume that there is no delay between neural activity and muscle
responses. This simplification allows us to use the same dynamic equation
for the MTC and MV models and derive analytical solutions. In reality, the
muscle torque should be a low-pass filtered version of the control signal
(Winters & Stark, 1985). We will introduce this more realistic relationship
in our numerical simulations in section 3, and show that it does not change
the conclusions of our analysis.
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The second-order differential equation 2.1 can be reduced to the first
order by introducing a vector representation of the state:

x ≡
(

θ

θ̇

)
. (2.2)

Then the equation becomes

ẋ(t) = Ax(t) + Bτ(t), (2.3)

where the matrices A and B are defined as

A ≡
(

0 1
−a0 −a1

)
, B ≡

(
0
1

)
. (2.4)

The stability of the plant is determined by the eigenvalues of the matrix A,

λ± =
(

−a1 ±
√

a2
1 − 4a0

)
/2. (2.5)

The system is stable if the real parts of both eigenvalues are negative, and
unstable otherwise. This stability condition is satisfied if both a0 and a1
are positive. The stable system is called over-, critical-, or underdamped
according to whether a2

1 > 4a0, a2
1 = 4a0, or a2

1 < 4a0, respectively. We can
control the system’s degree of stability by adjusting a0 and a1 to alter the
real-part magnitude of the eigenvalues λ±. The system can also be made
oscillatory (underdamped) by increasing the elastic force relative to the
viscous force.

Equation 2.3 can be integrated after a coordinate transform that diago-
nalizes A, and θ(t) and θ̇ (t) can then be obtained via the inverse transform.
The results are:

θ(t) = (λ+eλ−t − λ−eλ+t)θ0 + ∫ t
0

(
eλ+(t−t′) − eλ−(t−t′)) τ(t′)dt′

(λ+ − λ−)
(2.6)

θ̇ (t) = λ+λ−(−eλ+t + eλ−t)θ0 + ∫ t
0

(
λ+eλ+(t−t′) − λ−eλ−(t−t′)) τ(t′)dt′

(λ+ − λ−)
(2.7)

under the initial condition that θ(0) = θ0 and θ̇ (0) = 0. Thus, θ(t) and θ̇ (t)
are essentially filtered versions of τ(t). Equation 2.7 will be used in our
numerical simulations of the MTC model’s velocity profiles in section 3.

2.1 The Minimum Torque-Change Model. We show analytically that
with the second-order linear plant, the MTC model always predicts sym-
metrical velocity profiles of movement.
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2.1.1 The Cost Function. The cost function of the MTC model is defined
as an integration of the torque changes over the movement duration [0, tf ]
(Uno, Kawato, et al., 1998),

CMTC = 1
2

∫ tf

0
τ̇ 2(t)dt. (2.8)

If there are no elastic and viscous forces in equation 2.1, this cost function
reduces to that for the MJ model. By minimizing the cost function, a unique
trajectory is specified among all trajectories that satisfy equation 2.1 and
appropriate boundary conditions (see below). The optimization process can
be solved by using either the Lagrange multiplier method (Uno, Kawato,
et al., 1989) or the Euler-Lagrange equation (Wada, Kaneko, Nakano, Osu,
& Kawato, 2001). The latter method is more convenient for proving the
symmetry of the velocity profile, as we show below. The solution based on
the Lagrange multiplier method is provided in the appendix and is used in
our numerical simulations in section 3.

2.1.2 Symmetric Velocity Profiles Predicted by the MTC Model. By substi-
tuting equation 2.1 into equation 2.8 and applying the variational procedure
with respect to θ , we obtain the following Euler-Lagrange equation (Wada
et al., 2001):

d6θ(t)
dt6 − a2

1
d4θ(t)

dt4 + a2
0

d2θ(t)
dt2 = 0. (2.9)

The boundary terms of the partial integrations vanish because of the zero ve-
locity and acceleration conditions at the initial and final times. This equation
is clearly invariant under time translation. We can thus let the movement du-
ration be from −tf /2 to tf /2 such that a symmetrical velocity profile is equiv-
alent to an even function of time. The boundary conditions are θ(−tf /2) = θ0,
θ(tf /2) = θf , and θ̇ (−tf /2) = θ̇ (tf /2) = θ̈ (−tf /2) = θ̈ (tf /2) = 0.

The above differential equation is reduced to fifth order if we use the
velocity ω(t) ≡ θ̇ (t) as the variable

d5ω(t)
dt5 − a2

1
d3ω(t)

dt3 + a2
0

dω(t)
dt

= 0, (2.10)

and the original boundary conditions become five new conditions: ω(−tf /2)

= ω(tf /2) = ω̇(−tf /2) = ω̇(tf /2) = 0, and
∫ tf /2
−tf /2 dtω(t) = θf − θ0. The eigen-

values of equation 2.10 are zero and four nonzero values αi (i = 1, 2, 3, 4)
given by the characteristic polynomial:

α4 − a2
1α

2 + a2
0 = 0. (2.11)
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The solution of equation 2.10 is a linear combination of the eigenstates,
ω(t) = β0 + ∑4

i=1 βieαit where the coefficients βi are determined by the five
conditions mentioned above. Since equation 2.11 is a function of α2, only
two of the four eigenvalues, say α1 and α3, are independent, and the other
two are given by α2 = −α1 and α4 = −α3. It is then straightforward, though
tedious, to solve for βi and show that they satisfy the following simple
relations:

β1 = β2, β3 = β4. (2.12)

Using this result, the velocity can be expressed as

ω(t) = β0 + β1
(
eα1t + e−α1t) + β3

(
eα3t + e−α3t) . (2.13)

This solution is an even function of time ω(−t) = ω(t). Therefore, with
the linear plant, the velocity profile predicted by the MTC model is always
exactly symmetrical regardless of the parameter values.

2.2 The Minimum Variance Model. We now consider the MV model
with the second-order linear plant and determine the conditions under
which the velocity profiles are asymmetrical.

2.2.1 The Cost Function. According to the MV model (Harris & Wolpert,
1998), a signal-dependent noise term ξ should be added to the dynamic
equation 2.3:

ẋ(t) = Ax(t) + B [τ(t) + ξ(t)] . (2.14)

ξ is assumed to be a gaussian white noise with zero mean and a variance
proportional to the square of the control signal τ (Harris & Wolpert, 1998):

E[ξ(t)] = 0, E[ξ(t)ξ(t′)] = Kτ 2(t)δ(t − t′). (2.15)

Here K is a proportionality constant that scales the amplitude of noise. E[·]
denotes the operation of taking an average over the noise distribution.

The dynamic equation 2.14 is stochastic, so it is not particularly informa-
tive to consider each individual trajectory. Instead, we consider the expected
value of the state vector and the covariance matrix by averaging over the
signal-dependent noise ξ :

E[x(t)] = eAtx0 +
∫ t

0
eA(t−t′)Bτ(t′)dt′, (2.16)

Cov[x(t)] = K
∫ t

0
eA(t−t′)B

(
eA(t−t′)B

)T
τ 2(t′)dt′. (2.17)
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Here x0 = (θ0, 0)T is the initial state vector at t = 0. These expressions are
obtained by integrating the equation of motion, equation 2.14, and then
taking the average over the noise variable according to equation 2.15.

Consider a movement over an interval 0 ≤ t ≤ tf . The cost function to be
minimized by the MV model is the variance of the position summed over
a certain postmovement duration [tf , tf + tp] (Harris & Wolpert, 1998). We
first consider the simplified case that the cost function is the variance of the
position at the final time point tf only. The problem, then, is to minimize the
variance of position θ at tf under the constraint that the expected value of
the state x at tf is the target state xf = (θf , 0)T (Harris & Wolpert, 1998). The
variance of the position is the (1,1) component of the 2×2 covariance matrix,
equation 2.17. The constrained optimization can be solved by introducing
a 2 × 1 Lagrange multiplier µ, with the resulting augmented cost function:

C′
MV = K

∫ tf

0
f (t; tf ) τ 2(t) dt − µT (

E[x(tf )] − xf
)
, (2.18)

where

f (t; tf ) ≡
[
eA(tf −t)B(eA(tf −t)B)T

]
1,1

. (2.19)

The subscript denotes the (1, 1) component of the matrix. f (t; tf ) is a weight-
ing factor that determines how much the noise in control signal τ(t) at time
t contributes to the final variance of position. By applying the variational
principle with respect to τ(t) to equation 2.18, we obtain an analytical solu-
tion for the optimal control signal:

τ(t) = µTeA(tf −t)B
2Kf (t; tf )

. (2.20)

The Lagrange multiplier vector µ is a constant that can be determined via
equation 2.16 and the boundary condition E[x(tf )] = xf . Note that the control
signal u(t) is inversely related to the weighting factor f (t; tf ). This makes
sense because, as we mentioned above, f (t; tf ) determines how much the
noise in the control signal at time t will contribute to the variance at the final
time tf . A large f means a large contribution, and the corresponding noise
(and thus the control signal) should be small in order to minimize the final
variance.

A problem with the above simplification is that since f (tf ; tf ) = 0 accord-
ing to equation 2.19, u(t) given by equation 2.20 diverges at tf . The problem
can be avoided by using the integration of the variance (and also the con-
straint) over a postmovement period [tf , tf + tp] as the cost function (Harris
& Wolpert, 1998). The reason is that noise at tf does not affect positional
variance at tf but does contribute to the variance after tf . It can then be
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shown that equation 2.20 becomes

τ(t) =
∫ tf +tp

tf
µ(t′)TeAt′dt′e−AtB

2K
∫ tf +tp

tf
f (t; t′)dt′

(0 ≤ t ≤ tf ) (2.21)

τ(t) = a0θf (tf < t ≤ tf + tp), (2.22)

and the divergence problem disappears. Here, the Lagrange multiplier vec-
tor µ(t) is a function of time. The meaning of equation 2.21 is similar to that
of equation 2.20, with the torque inversely proportional to the weighting
factor for the noise. Equation 2.22 is the torque needed for balancing the
elastic force over the postmovement period in order to keep the position at
θf .

2.2.2 Velocity Profiles Predicted by the MV Model. A precise discussion of
the velocity profile shape predicted by the MV mode requires determining
the Lagrange multiplier vector µ from the boundary conditions and then
substituting equation 2.20 into equation 2.7. However, since the result will
be complicated, involving integrals with no closed-form solutions, we take
a more heuristic approach here and verify our conclusions via numerical
simulations in section 3. Specifically, we focus on the weighting factor f (t; tf )

because it determines how much the noise in the control signal τ(t) at time
t contributes to the positional variance at the end of the movement tf . If,
for example, f (t; tf ) is small at the start of a movement and becomes large
near the end, then the signal-dependent noise during the early phase of
the movement does not matter as much as the noise near the end, and we
expect a large initial control signal and a velocity profile skewed toward the
beginning.

Using the same diagonalization procedure for obtaining equation 2.7, we
can express the weighting factor, equation 2.19, in terms of the two eigen-
values λ± of matrix A. For the nondegenerate case λ+ �= λ−, the weighting
factor is given by

f (t; tf ) =
(
eλ+(tf −t) − eλ−(tf −t))2

(λ+ − λ−)2 (0 ≤ t ≤ tf ), (2.23)

and for the degenerate (i.e., critical damping) case where the two eigenval-
ues λ± take the same value λ,

f (t; tf ) = (tf − t)2 e2λ(tf −t) (0 ≤ t ≤ tf ). (2.24)

We first consider a stable case when both eigenvalues are real and nega-
tive. By differentiating equations 2.23 and 2.24, the weighting factor is found
to have a single peak at

t∗ = tf − 1
λ+ − λ−

ln
λ−
λ+

(2.25)
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for the nondegenerate plant and

t∗ = tf + 1
λ

(2.26)

for the degenerate plant. For real and negative eigenvalues, we have |λ−| ≥
|λ+| according to equation 2.5, and it is easy to see that t∗ is always less than
tf . The system is most stable when the two negative eigenvalues have similar
and large magnitudes. Under this condition, t∗ is very close to tf , indicating
that noise in the early phase of movement tends to decay away quickly and
does not contribute much to the final variance. This means that the con-
trol signal can be large around the start of the movement, and the velocity
profile should thus be skewed toward the movement onset. As one or both
eigenvalues become smaller in magnitude, the system’s degree of stability
decreases, and t∗ shifts toward the start of the movement. (With very small
eigenvalue magnitudes, t∗ can even be less than 0, and the weighting factor
will be a monotonically deceasing function over [0, tf ].) Consequently, the
early noise becomes more and more important, the control signal should
thus be weaker near the movement onset, and the velocity profile will even-
tually become more skewed toward the end of the movement.

Next, we consider the unstable case where the eigenvalues are real but
at least one of them is positive. This implies a negative viscous constant,
which could be realized with a robotic manipulandum. In this case, it can be
shown that the weighting factor, equation 2.23 or equation 2.24, is a mono-
tonically decreasing function of time. Again, this means that the velocity
profile should be skewed toward the end of the movement.

In the case of complex eigenvalues λ± = µ ± iν, the system is oscillatory.
The analytical expression for the weighting factor becomes

f (t; tf ) = e2µ(tf −t)

2ν2

[
1 − cos 2ν(tf − t)

]
, (2.27)

which is also oscillatory with frequency ν/π . When this frequency is suffi-
ciently high, one expects to see oscillation in the control signal and thus in
the velocity profile as well.

We plot in Figure 1 the weighting factor as a function of time for a few
representative cases. Figure 1A shows curves corresponding to four nega-
tive eigenvalues for the degenerate (critical damping) plant. As mentioned
above, the peak shifts to the left as the system’s degree of stability (the mag-
nitude of the eigenvalue) decreases. A stable overdamping, an unstable, and
a stable underdamping (oscillatory) case are shown in Figure 1B.

Finally, since the above arguments are based on how the signal-depen-
dent noise propagates through time, one expects that the movement dura-
tion should affect the shape of the velocity profile in the MV model. For
a very stable system where the noise decays with time, a longer duration
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(B) Stable and Unstable Cases
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Figure 1: The weighting factor f (t; tf ) plotted as a function of normalized time
t/tf . (A) Four cases of stable, critical damping with λtf equal to −1.5, −2.0,
−2.5, and −3.0 from left to right. (B) A stable overdamping (λ±tf = −1, −2), an
unstable (λ±tf = 0.4, 0.2), and a stable underdamping (oscillatory) case (λ±tf =
−1 ± 5i).

will make the early noise contribute even less to the final variance, and the
velocity profile should be skewed more toward the movement onset with
increasing duration. This explains a result in Harris and Wolpert (1998)
that the velocity profile of a saccadic eye movement model becomes more
skewed toward the beginning with longer duration. Likewise, if the system
is less stable or unstable such that the velocity profile is skewed toward the
end, the skewing can be slight for a short duration but should become more
pronounced with increasing duration.

Note that duration is a prefixed parameter in both the MV and MTC
models that does not depend on movement amplitude, even though actual
movement duration usually increases with amplitude (Fitts, 1954). For the
linear plant we used, both models predict that when the movement am-
plitude is changed, the velocity profile will simply be scaled up or down
without changing its duration or shape. One can avoid this problem by an
ad hoc adjustment of the movement duration according to the amplitude
prior to the optimization procedure.

We summarize our arguments for the MV model as follows. When we
change the viscous and elastic constants of the system by applying exter-
nal viscous and elastic forces, the shape of the movement velocity profiles
should change. In particular, when the system is made more (or less) sta-
ble, the peak of the velocity profile should be shifted toward the beginning
(or end) of the movement. The skewing should be more pronounced with
increasing duration. Intuitively, a more stable system tends to attenuate the
signal-dependent noise more over time, the control signal (and the associ-
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ated noise) can thus afford to be large around the movement onset, and the
velocity profile will consequently be skewed toward the beginning. In con-
trast, a less stable or unstable system may amplify noise through time, the
control signal should start small, and the velocity profile will be skewed to-
ward the end. When the system is made strongly oscillatory, the noise effect
oscillates in time, and the velocity profile should also show oscillation.

3 Simulations

We have conducted extensive numerical simulations in order to confirm
our analyses above, particularly when the simplifying assumptions for the
MV model are removed. We consider single-joint movements of the forearm
with the dynamic equation

I0θ̈ (t) + (b0 + b)θ̇(t) + (k0 + k)L2
0θ(t) = τ(t). (3.1)

This equation can be derived by fixing the shoulder angle in the two-joint
arm model examined by Uno, Kawato, et al. (1989). θ represents the elbow
angle and τ is the muscle torque exerted to the elbow. I0, b0, k0, and L0 are
the moment of inertia, the intrinsic viscosity, the intrinsic elasticity, and the
length of the forearm, respectively, and we adopt the standard values of 0.25
kg · m2, 0.20 kg · m2/s, 0 N/m, and 0.35 m for these parameters (Harris &
Wolpert, 1998). We also included externally applied viscosity b and elasticity
k for altering the system’s degree of stability and oscillation. This single-joint
system does not have any kinematic redundancy but does have dynamic
redundancies.

For the MTC model, we used the Lagrange multiplier method presented
in the appendix to find the torque numerically and then used equation 2.7
to obtain velocity.

For the MV model, we made the simplifying assumptions in section 2
that the control signal is the muscle torque and that the skewing of velocity
profile can be qualitatively understood by the weighting factor f . These
limitations are removed in our simulations. We considered a second-order
muscle model to relate the neural control signal u to the muscle torque τ

(Winters & Stark, 1985):

(
1 + ta

d
dt

) (
1 + te

d
dt

)
τ(t) = u(t), (3.2)

where ta and te are muscle activation and excitation time constants, and
their values are 40 and 30 ms, respectively. This equation implies that the
torque is acquired by low-pass filtering the control signal. Consequently,
we expect a smooth rise of the muscle torque instead of a sudden onset.
We used the original cost function of Harris and Wolpert (1998) by inte-
grating the positional variance over a period of 400 ms after the movement
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(longer postmovement duration does not alter the results), and numerically
calculated the velocity profiles via quadratic programming.

We considered only stable cases in our simulations since unstable cases
generate divergent movement trajectories that are difficult to test experi-
mentally. Based on our analyses, we examined how the system’s degree of
stability, the movement duration, and the plant oscillation affect the shape
of the predicted velocity profiles.

3.1 Effects of the System’s Degree of Stability. The system has different
degrees of stability when its eigenvalues have different magnitudes but the
same (negative) sign. The simplest way to change the degree of stability is to
apply external viscous and elastic forces to the forearm. In psychophysical
experiments, arbitrary elastic and viscous forces can be introduced by a
robotic manipulandum. One could also add the elastic force by attaching a
spring to the hand.

The movement duration was fixed at 400 ms in all simulations. We first
considered the baseline simulation with no external forces (b = k = 0). We
then increased the viscous coefficients b from 1 to 5 in step of 1 kg · m2/s.
This range of viscous force can be achieved by a manipulandum (Shadmehr
& Mussa-Ivaldi, 1994). We also imposed an external elastic force for each b
according to k = (b0 + b)/4I0L2

0 such that the plant was in critical damping
condition. k ranged from 0.33 to 220 N/m.

Based on our analyses in section 2, the velocity profile of the MV model
should skew more toward the beginning as the system becomes more stable,
while the velocity profile of the MTC model should always remain symmet-
rical. This is confirmed by the simulations in Figure 2. Figure 2A shows the
normalized velocity profiles predicted by the MV model. The right-most
profile is the baseline case without any external forces, and it skews slightly
toward the end of the movement. The profile gradually shifts toward the
movement onset as the system’s degree of stability increases with the ex-
ternal forces. To show the peak shift more clearly, we plot in Figure 2B the
normalized peak locations of the profiles in Figure 2A as a function of the ex-
ternal viscosity. Along the vertical axis, 0, 0.5, and 1 indicate the beginning,
midpoint, and end of the movement, respectively.

The corresponding simulations for the MTC model are shown in Fig-
ures 2C and 2D. As expected, the predicted velocity profiles are always
symmetrical regardless of the external forces. The six normalized velocity
profiles almost overlap each other completely.

3.2 Effects of the Movement Duration. We next simulated the effects
of the movement duration on the shape of the velocity profile. We varied
the duration from 200 ms to 1000 ms in steps of 200 ms while keeping all
other parameters to their standard values. No external forces were applied
in these simulations. The results for the MV model are shown in Figures 3A
and 3B. The peak of the velocity profile shifts more toward the end of the
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Figure 2: Velocity profiles and peak locations under different degrees of system
stability. (A) Normalized velocity profiles predicted by the MV model. The right-
most curve corresponds to no external force applied to the arm model. The other
four curves, from right to left, are for a critical damping system with increasing
system stability via external viscous and elastic forces. (B) Normalized peak
location of the velocity profiles in A. The peak locations are divided by the total
movement duration. (C) Normalized velocity profile predicted by the MTC
model with the same plant parameters as in A. (D) Normalized peak location
of the profiles in C.

movement with increasing duration. In contrast, the MTC model always
predicts symmetrical profile (see Figures 3C and 3D). These results are again
in agreement with our analyses. The movement duration can be easily ma-
nipulated in psychophysical experiments by requiring different accuracy at
the target location or varying movement amplitude (Fitts, 1954).

3.3 Effects of the Plant Oscillation. Finally, we compared the two mod-
els when the plant has complex eigenvalues and is thus oscillatory. This
happens when the elastic force is more dominant over the viscous force and
can be achieved by imposing a strong external elastic force or partially can-
celing the intrinsic viscous force via a manipulandum. In our simulations,
we used the elastic coefficient k of 200, 300, and 400 N/m while keeping all
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Figure 3: Velocity profiles and peak locations under various movement dura-
tions. The format is same as Figure 2, with A and B for the MV model and C and
D for the MTC model.

the other parameters to their standard values. The corresponding values for
νtf /π were 1.26, 1.53, and 1.78, respectively. The movement’s duration was
400 ms in all simulations.

The simulated velocity profiles for the MV model are shown in Figure 4A.
The right-most curve corresponds to the largest k value. It is clear from
the figure that as k increases, the profile becomes more oscillatory, and the
peaks shifts toward the end of the movement. With the largest k we used, the
predicted velocity is initially negative, indicating that the movement should
first be in the opposite direction of the target. In contrast, the velocity profiles
for the MTC model shown in Figure 4B are always symmetrical. Again, these
simulations are consistent with our analytical considerations. Note that the
MTC model solution, equation 2.13, can also be oscillatory when α’s are
complex. However, we found through simulations that k has to be larger
than about 1000 N/m for the oscillation to be observed. In addition, the
MTC solution always has to be symmetrical with or without oscillation.
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Figure 4: Velocity profiles under different degrees of plant oscillation. (A) Pre-
diction of the MV model when the external elasticity k takes values of 200, 300,
and 400 N/m, respectively. (B) Prediction of the MTC model under the same
condition.

4 Discussion

The main goal of this study is to compare the two well-known models for
motor planning: the minimum variance model and the minimum torque
change model. We have focused on the different velocity profiles predicted
by the two models and found through analyses and simulations that with
a second-order linear plant, the MTC model always predicts a perfectly
symmetrical velocity profile, while the MV model predicts skewed velocity
profiles under many conditions. Our results suggest the following specific
experiments for testing the validity of the two models. Subjects should be
instructed to make single-joint movements of the forearm in a horizontal
plane; this is the condition where the second-order linear plant used in our
studies is valid. The movement velocity profiles should be measured under
each of the following manipulations:

1. Different levels of viscous forces are applied through a manipulan-
dum.

2. Different movement durations are imposed by asking the subjects to
hit the target position with various degrees of precision.

3. Different elastic forces are applied through either a manipulandum or
attachment of springs.

If the observed velocity profiles under these manipulations are all symmet-
rical, the MTC model is supported. But, if the velocity profiles become more
skewed toward the movement onset with increasing viscosity in condition 1,
the skewing is more pronounced with movement duration in condition 2,
and the velocity profile becomes more skewed toward the end (and more
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oscillatory) with elastic force in condition 3, the MV model is favored. All
other possible outcomes will suggest that neither model is correct. In condi-
tion 1, the movement duration may increase with viscosity. This confound
should not matter for testing purposes because a concurrent increase of du-
ration with viscosity would only make the skewing predicted by the MV
model stronger. When the applied elastic force is very strong in condition 3,
the MV model makes the counterintuitive prediction that the movement
should first be in the opposite direction of the target (see Figure 4A).

In this study, we considered the second-order linear plant that is often
used in motor control modeling and can be realized with single-joint arm
movements. This simplification allowed us to gain analytical insights into
the two models. The simplification is justified because we are mainly in-
terested in searching for specific conditions where the two models can be
clearly differentiated. It may be desirable to extend our studies to nonlin-
ear plants, such as the two-link arm model, because many extant experi-
mental studies involve multijoint movements. However, nonlinear systems
are not only difficult to analyze but also difficult to simulate due to the
local-minimum problem in the optimization process. Our simulations (not
shown) indicate that the problem becomes worse when large external forces
are applied. Predictions from the two models based on nonlinear simula-
tions may thus be less reliable for distinguishing the models than the re-
sults in this article. In addition, the MTC and MV models’ predictions have
a complex dependence on the system parameters in general. This makes
experimental tests of the models difficult due to the uncertainties in the es-
timation of arm’s intrinsic parameters. In contrast, we show here that for the
special case of single-joint movements, the symmetry of the velocity pro-
files predicted by the MTC model holds for any parameter combinations.
Likewise, the trend of velocity peak shift predicted by the MV model when
duration and external forces are manipulated is valid regardless of the in-
trinsic parameter values. The simple case we considered in this article may
thus provide a more conclusive test of the models.

It is known that large-amplitude saccadic eye movements show skewed
velocity profiles (Collewijn, Erkelens, & Steinman, 1988; Harris & Wolpert,
1998). To the extent that the eye can be approximated by a linear plant, this
observation argues against the MTC model for eye movements. Indeed, the
MTC model was proposed only for arm movement, not eye movement (Uno,
Kawato, et al., 1998), while the MV model was proposed for both (Harris
& Wolpert, 1998). Skewed velocity profiles in arm movements have also
been reported (Nagasaki, 1989; Milner & Ijaz, 1990). However, these studies
usually employ multi-joint arm movements, a condition under which the
MTC model can also predict skewed velocity profile (Uno, Kawato, et al.,
1989). We therefore conclude that the extant data cannot distinguish the two
models, and new experiments as outlined above should be performed.

Our analyses can be readily generalized to higher-order linear systems,
and we expect that our conclusions will still be valid. It would also be in-
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teresting to examine the implications of the other models developed by
Kawato et al. that are closely related to the MTC model considered here.
They include the minimum muscle-tension-change model (Uno, Suzuki, &
Kawato, 1989) and the minimum motor-command-change model (Kawato,
1992). Since all of these models require smoothness in dynamic variables,
and the smoothness criterion is independent of the system stability or du-
ration, we speculate that they may all predict nearly symmetrical velocity
profiles under a linear plant.

Both the MTC and MV models are purely feedforward and are perhaps
most appropriate for understanding rapid, well-learned movements. How-
ever, sensory feedback, when present, has been shown to have profound
effects on trajectory formation (Keele & Posner, 1968; Carlton, 1981; Sheth &
Shimojo, 2002). Todorov and Jordan recently proposed an extended linear-
quadratic-gaussian (LQG) model that includes sensory feedback during
movement execution (Todorov & Jordan, 2002; Todorov, 2004). We have
performed some simulations with their model and the linear plant used
in this article, and found that sensory feedback can strongly influence the
shape of the predicted velocity profile. For example, for single-joint move-
ments without external forces, the feedback can cause the velocity profile
to change from skewing toward the end to skewing toward the beginning
of a movement. Since the extended LQG model contains many parameters
not present in the MTC or MV model and some of those parameters (such
as the relative weighting between the error and the control cost) can also
influence the shape of the velocity profile, we will present a full account of
the extended LQG model predictions in a future publication.

Appendix A: A Solution of the MTC Model by the Lagrange Multiplier
Method

We present a solution of the MTC model based on the Lagrange multiplier
method, following the original work of Uno, Kawato, et al. (1989). We used
this method for our numerical simulations of the MTC model in section 3,
because the Euler-Lagrange method can be numerically less stable under
some parameters.

The problem is to minimize the torque change, equation 2.8, under the
constraint that the dynamic equation, equation 2.3, should be satisfied. The
augmented cost function after introducing a Lagrange multiplier vector px
is thus

C′
MTC =

∫ tf

0
dt

(
1
2
τ̇ 2 − pT

x (ẋ − Ax − Bτ)

)
. (A.1)

The variation procedure would give rise to a second-order differential equa-
tion. Instead, by introducing an auxiliary variable z(t) as the temporal
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derivative of the torque τ(t), we obtain a new cost function,

C̃′MTC =
∫ tf

0
dt

(
1
2

z2 − pT
x (ẋ − Ax − Bτ) − pτ (τ̇ − z)

)
, (A.2)

that will give rise to a set of first-order differential equations. Here, pτ is
another Lagrange multiplier to enforce the constraint that z should be the
derivative of τ . Applying the variation principle with respect to x, z, τ , px,
and pτ , we have the following set of equations:




ẋ = Ax + Bτ,

z = pT,

τ̇ = −pτ ,

ṗx = −ATpx,

ṗτ = −BTpx.

(A.3)

The boundary conditions of the state variable at the initial and final time
are

θ(0) = θ0, θ̇ (0) = 0, θ̈ (0) = 0,

θ(tf ) = θf , θ̇ (tf ) = 0, θ̈ (tf ) = 0. (A.4)

The initial condition of the Lagrange multipliers px(0) and pτ (0) is deter-
mined so that the boundary conditions A.4 are satisfied. Finally, by inte-
grating equations A.3, the muscle torque is obtained as

τ(t) = a0θ0 − pτ (0)t + BT(AT)−1
[
t12 + (AT)−1(e−ATt − 12)

]
px(0). (A.5)

Here 12 is a 2 × 2 unit matrix. The optimal trajectory is obtained by solving
the dynamical equation with the muscle torque, equation A.5.
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