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Teich, Andrew F. and Ning Qian. Comparison among some models
of orientation selectivity. J Neurophysiol 96: 404—-419, 2006. First
published April 19, 2006; doi:10.1152/jn.00015.2005. Several models
exist for explaining primary visual cortex (V1) orientation tuning. The
modified feedforward model (MFM) and the recurrent model (RM)
are major examples. We have implemented these two models, at the
same level of detail, alongside a few newer variations, and thoroughly
compared their receptive-field structures. We found that antiphase
inhibition in the MFM enhances both spatial phase information and
orientation tuning, producing well-tuned simple cells. This remains
true for a newer version of the MFM that incorporates untuned
complex-cell inhibition. In contrast, when the recurrent connections in
the RM are strong enough to produce typical V1 orientation tuning,
they also eliminate spatial phase information, making the cells com-
plex. Introducing phase specificity into the connections of the RM (as
done in an original version of the RM) can make the cells phase
sensitive, but the cells show an incorrect 90° peak shift of orientation
tuning under opposite contrast signs. An inhibition-dominant version
of the RM can generate well-tuned cells across the simple—complex
spectrum, but it predicts that the net effect of cortical interactions is to
suppress feedforward excitation across all orientations in simple cells.
Finally, adding antiphase inhibition used in the MFM into the RM
produces a most general model. We call this new model the modified
recurrent model (MRM) and show that this model can also produce
well-tuned cells throughout the simple—complex spectrum. Unlike the
inhibition-dominant RM, the MRM is consistent with data from cat
V1, suggesting that the net effect of cortical interactions is to boost
simple cell responses at the preferred orientation. These results sug-
gest that the MFM is well suited for explaining orientation tuning in
simple cells, whereas the standard RM is for complex cells. The
assignment of the RM to complex cells also avoids conflicts between
the RM and the experiments of cortical inactivation (done on simple
cells) and the spatial-frequency dependency of orientation tuning
(found in simple cells). Because orientation-tuned V1 cells show a
continuum of simple- to complex-cell behavior, the MRM provides
the best description of V1 data.

INTRODUCTION

Strong orientation tuning first emerges in primary visual
cortex (V1) (Hubel and Wiesel 1962). However, despite de-
cades of studies and progress, the exact mechanism underlying
the phenomenon remains controversial. Hubel and Wiesel
initially proposed that orientation tuning of a V1 cell is estab-
lished by receiving feedforward inputs from several lateral
geniculate nucleus (LGN) cells with properly aligned, center-
surround receptive fields. The oriented oN and OFF subregions
of a VI cell are assumed to arise from the on-center and
orr-center LGN cells, respectively. With a sufficiently large
aspect ratio (the length-to-width ratio of a subregion) and a

high spiking threshold to remove responses from nonpreferred
orientations, the V1 cell can have sharp orientation tuning as
observed. Although the proposed LGN-to-V1 connectivity pat-
tern has been supported by experimental evidence (Chapman et
al. 1991; Reid and Alonso 1995; Tanaka 1983), this feedfor-
ward model cannot be the whole story because it has difficul-
ties with other observations, especially the contrast invariance
of orientation tuning (Sclar and Freeman 1982; Skottun et al.
1987) and the effects of cortical inhibition blockade (Sillito
1975; Sillito et al. 1980; Tsumoto et al. 1979; for thorough
reviews also see Ferster and Miller 2000; Somers et al. 1995,
Sompolinsky and Shapley 1997). Contrast invariance refers to
the fact that the orientation tuning width of a cell does not
change much with the stimulus contrast. The feedforward
model predicts broadening of tuning with increasing contrast
because a cell’s membrane potential evoked by nonoptimal
orientations should increase with contrast and is therefore more
likely to reach the firing threshold at higher contrasts. Ander-
son et al. (2000a) recently found that neuronal noise explains
why a contrast-invariant membrane potential leads to a con-
trast-invariant firing rate. However, this important result does
not solve the problem of the feedforward model because the
model cannot explain contrast invariance of the membrane
potential in the first place. As the authors indicate, a cortical
contribution is required to completely explain contrast invari-
ance.

To resolve these problems, several groups proposed the
recurrent model (RM), which assumes a weak feedforward
orientation bias (i.e., a small aspect ratio) by the mechanism of
Hubel and Wiesel and a subsequent sharpening of the tuning
by both recurrent excitation and inhibition among the V1 cells
(Ben-Yishai et al. 1995; Carandini and Ringach 1997; Douglas
et al. 1995; Somers et al. 1995). The RM can account for an
impressively large amount of experimental data (Somers et al.
1995; Sompolinsky and Shapley 1997), including the contrast
invariance and the effects of inhibition blockade. However, it
has difficulties with more recent cortical inactivation experi-
ments (Chung and Ferster 1998; Ferster et al. 1996). By
silencing cortical spiking activities through cooling or electri-
cal shock and thereby greatly reducing intracortical interac-
tions, Ferster and coworkers found that the intracellularly
recorded orientation tuning curves of simple cells in the input
layer of cat V1 did not become broader than those under the
normal condition (Chung and Ferster 1998; Ferster et al. 1996).
Another problem with the RM is that the width of tuning in the
model is largely determined by the strong intracortical recur-
rent interactions. Consequently, the model cannot explain the
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fact that the orientation tuning width of simple cells decreases
with increasing spatial frequency of a grating stimulus (Vid-
yasagar and Siguenza 1985).

These problems of the RM prompted Troyer et al. (1998) to
propose a new modification of Hubel and Wiesel’s feedforward
model. According to Troyer et al., V1 orientation tuning
mainly results from the feedforward mechanism and the con-
trast invariance is maintained by cortical inhibition, which is
strongest between simple cells with opposite receptive-field
polarities. This inhibition is termed “antiphase” inhibition, and
there is partial evidence for it from intracellular recordings
(Anderson et al. 2000b; Ferster 1988; Hirsch et al. 1998). The
full version of the model also incorporates intracortical recur-
rent interactions for amplifying neuronal responses, but not for
sharpening the bandwidth of feedforward tuning. In the rest of
this paper, we will follow Ferster and Miller (2000) to refer to
this model as the modified feedforward model (MFM). Al-
though successful in many ways (Kayser et al. 2001;
Krukowski and Miller 2001; Troyer et al. 1998), the MFM has
more difficulties than the RM in explaining temporal dynamics
(Pei et al. 1994; Ringach et al. 1997, 2003; Shapley et al. 2003;
Shevelev et al. 1993, 1998) and the learning- and adaptation-
induced plasticity of orientation tuning (Dragoi et al. 2002;
Felsen et al. 2002; Teich and Qian 2003).

There is a new variant of the MFM (Lauritzen and Miller
2003) that includes untuned complex-cell inhibition, in addi-
tion to the antiphase inhibition, for the maintenance of contrast
invariance. There is also a new inhibition-dominant variant of
the RM (McLaughlin et al. 2000), such that V1 recurrent
interactions suppress a cell’s response at every stimulus orien-
tation. We have examined these interesting variants together
with the original RM and MFM in our study. However, it is
more logical for our presentation to first focus on the original
RM and MFM before moving on to their variants.

Both the RM and the MFM contain orientation-tuned feed-
forward input (as suggested by Hubel and Wiesel) and recur-
rent intracortical interactions. However, there are major differ-
ences between them (see METHODS), and these differences lead
to divergent properties of the models, as we show in this paper.
It is difficult to compare the models fairly based on the
published studies because different studies often implement the
models with very different degrees of complexity. We there-
fore implemented the RM and MFM at the same level of detail
in our comparison. In particular, we investigated the possibility
that the MFM and RM may be better suited for explaining
strong orientation tuning in simple and complex cells, respec-
tively. This is an interesting possibility because, if true, it helps
alleviate the above-mentioned conflicts between the models
and some experimental data (see piSCussiON). Another diffi-
culty with comparing the models is that a given result can
sometimes be described differently. For example, antiphase
inhibition in the MFM removes the contrast-dependent DC
responses across all orientations (Troyer et al. 1998). This
result can be described as either the presence or the absence of
cortical sharpening of orientation tuning in the MFM depend-
ing on whether one includes or excludes the DC responses in
the tuning-width calculation. Similarly, one can emphasize
either the same-orientation or the orthogonal-orientation inhi-
bition generated by broadly tuned antiphase inhibition. We will
be as specific as possible when comparing models herein.

Both the RM and MFM were originally proposed as orien-
tation mechanisms for simple cells (Somers et al. 1995; Troyer
et al. 1998). The MFM is applicable only to simple cells
because the connections in the model are based on receptive-
field phases (Troyer et al. 1998). (Of course, one can assume
that complex cells inherit their sharp orientation tuning from
the simple cells described by the MFM, but such complex cells
are unlikely to explain the observed orientation plasticity
induced by learning or adaptation; Felsen et al. 2002; Teich
and Qian 2003; Teich and Qian, unpublished observations.) In
contrast, the RM is applicable to complex cells because the
connections are independent of receptive-field phases. How-
ever, it is not clear whether the RM really works for simple
cells as well. On the one hand, Chance et al. (1999) showed
that strong recurrent interactions lead to complex-cell behavior
in a related model on frequency tuning. On the other hand, the
V1 cells in the RM of Somers et al. (1995) did seem to
maintain discrete oN and OFF subregions despite the strong
recurrent interactions, suggesting that the recurrent model
should work for simple cells. Other implementations of the RM
do not bear on this issue because they are more abstract and do
not explicitly include receptive fields (Ben-Yishai et al. 1995;
Carandini and Ringach 1997; Douglas et al. 1995; Teich and
Qian 2003).

A close examination of Somers et al.’s model reveals that
they made the simplifying assumption that all model cells have
the same even receptive-field phase (but different orientations).
Real V1 cells, however, cover a broad range of receptive-field
phases. If the strong recurrent connections are introduced
among V1 cells with different phases (determined by the
feedforward inputs) to generate sharp orientation tuning, can
the cells in such a multiphase RM maintain their phase sensi-
tivity? A related question is: Do phase-sensitive cells in Som-
ers et al.’s single-phase RM really behave like simple cells?
Furthermore, because there is also recurrent excitation in the
MEFM, do cells in that model maintain their simple-cell iden-
tity? We address these questions in this study. We then exam-
ined the receptive-field structure of the two variant models
mentioned above. Finally, we combined the RM and the MFM
into a new model, the modified recurrent model (MRM), and
investigated whether the new model provides the best descrip-
tion of orientation tuning in V1 where cells have various
degrees of simple to complex behavior. Preliminary results
were previously reported in abstract form (Teich and Qian
2004).

METHODS

We first implemented the RM and the MFM at an equal level of
detail and compared the responses of the two models to drifting
gratings and flashed stationary bars. These responses would allow us
to determine whether a model cell behaves like a simple or complex
cell. Our implementation of the MFM was based on Troyer et al.
(1998), who simulated both a very simple “conceptual” model and a
more detailed “computational” model. We implemented their compu-
tational model but replaced the spiking neurons with rate-coding
neurons; this simplification greatly improves computational efficiency
without altering the essential features of the original model. Their
conceptual model is not sufficient for our purpose because it has only
two receptive-field phases and does not include recurrent cortical
excitation; we wanted to know whether the MFM cells could behave
like simple cells in a multiphase implementation with recurrent
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excitation. After constructing the MFM, we then built the RM at the
same level of complexity. Both models start with a field of LGN cells,
and the LGN response to a stimulus is then fed to a cortical network
of V1 cells. The LGN cells are modeled the same way in both models
and will be described first. The main difference between the two
models is found in the aspect ratio of the thalamocortical connections
and at the connectivity patterns among the V1 cells (detailed below).
After implementing the RM and the MFM, we then considered the
MFM with complex inhibition, the inhibition-dominant RM, and the
MRM. All simulations were performed with Matlab (The MathWorks,
Natick, MA) on a Linux computer.

Stimuli

We used drifting sinusoidal gratings and stationary bars to probe
whether the cells in a model behave like simple or complex cells. The
drifting gratings had the form

S(x, y, 1) = cos (wx + wyy + wi) )

where w, represents the temporal frequency and w, and w,, represent
the spatial frequencies in the x and y dimensions, respectively. We did
not explicitly include constant background luminance and contrast in
the equation because the former would be filtered out by the LGN
receptive fields whose DC responses were near zero, and the latter
would be determined by scaling according to contrast response of real
LGN cells (see following text). In our simulations, w,/(27) = 2 Hz,
w, = w cos 0, and w, = w sin 6, where w/(2m) = 0.8 cycles/deg and
0 is the grating orientation (0 means vertical). The bars had a width of
30 arc min and a length spanning the entire receptive fields, and were
turned on for 400 ms and off for 300 ms. Thus for a vertical bar
stimulus, S(x, y, ) = 1 for =15 = x = 15 and 0 = ¢t = 400 (where
x is in arc minutes and ¢ is in milliseconds), and S(x, y, 1) = —1,
otherwise. Other bar orientations were obtained by rotation.

LGN responses

The LGN cells in both models closely follow the design of Troyer
et al. (1998) but have a more convenient temporal response function.
We considered 240 on-center and 240 orr-center cells. The cells of
each type are arranged in a rectangular grid to provide inputs to
vertically oriented V1 cells; feedforward inputs to V1 cells of other
orientations were computed by proper rotations of the inputs to the
vertical cells. Before rotation, centers of LGN cells were spaced 9 min
apart along the vertical axis and 6 min apart along the horizontal axis.
There was no spatial offset between the oN and OFr grids. Each cell’s
spatial receptive field is center-surround, modeled with a difference of
Gaussians

F0) = (7102 )e e = (16/0 e Srns 2)

where r is the distance in any direction from the center of the receptive
field, o 15" and o = 60'. The temporal response

center surround

function of the LGN cells takes the form (Chen et al. 2001)

h(t) = %exp( — %) cos (wit + ¢,) 3)

for t = 0 and h(¢r) = 0, otherwise. Here 7 determines the duration of
the temporal envelope, and the sinusoidal term with frequency !
generates excitatory and inhibitory responses. Because for many real
cells the first half-cycle of the temporal response is shorter by various
amounts than the second half-cycle, the parameter ¢, is introduced to
reduce the length of the first half-cycle (because of the rapid decay of
the exponential, the durations of the third and later half-cycles are not
important). In this paper, we let 7 = 16 ms, w{/(27) = 4 Hz, and ¢,
= 0.24. The overall duration of this temporal response function is
about 140 ms. The resulting temporal response curve was consistent
with physiologically reported temporal responses in LGN cells
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(Gielen et al. 1981; Saul and Humphrey 1990). We also added a
50-ms delay to V1 cells’ responses without explicitly simulating
random individual synaptic delays.

The LGN response R, to a given stimulus was first determined

through spatiotemporal convolutions of the stimulus S(x, y, t) with the
kernel f(r)h(t)

Ry = S(x, y, 1) * fir) = h(7) )

and then scaled according to a contrast response curve. LGN re-
sponses to a drifting grating of contrast C were scaled so that the
amplitude of the F1 component follows the contrast response curve
from Troyer et al. (1998): R = R, .,C"/(C5, + C"), where R ,,, = 53
spikes/s, n = 1.2, and Cs5, = 13.3% for oN-center cells; R, = 48.6
spikes/s, n = 1.29, and C5, = 7.18% for orr-center cells. These
contrast response functions assume stimulation at the optimal spatial
frequency for the LGN filter (about 0.55 cycles/deg). LGN responses
to nonoptimal frequencies were scaled down proportionally using the
ratio of the filtered responses to the nonoptimal and the optimal
frequencies. We assumed that the LGN contrast response curve to a
stationary bar would have the same shape as the F1 curves for
gratings. Because LGN responses to a flashed spot do not vary
significantly between oN- and orr-center cells (Saul and Humphrey
1990), we used an average n value of 1.245 and an average Cs, value
of 10.24 for both types of cells. We scaled the curve’s amplitude by
letting R,,,. = 285 spikes/s so that the initial peak response to a
flashed bar of 50% contrast and optimal width was about 250 spikes/s
(Tanaka 1983). Because the background firing rate is not included in
the contrast responses functions, we added a background firing rate of
10 spikes/s for on-center cells and 15 spikes/s for orr-center cells after
scaling [values taken from Troyer et al. (1998)].

Cortical receptive fields

The LGN inputs to a V1 cell were determined by a two-dimensional
Gabor connectivity function (a Gaussian multiplied by a sinusoid).
For vertically oriented V1 cells, it had the form

80 y) = exp{ = [X/(209)] — [y*/(207)] X cos (wx + ¢) ®

where w,/(21) = 0.8 cycles/deg, ¢ determined the V1 receptive-field
phase, and o, and o, determined the number of subregions and the
aspect ratio (see following text). For V1 cells with orientation 6, the
Gabor connectivity function g(x, y, ) was obtained from g(x, y) by
proper rotation. All LGN-to-V1 connections are excitatory. The pos-
itive values of the Gabor function represented excitatory connections
from oNn-center LGN cells and negative values represented excitatory
connections from orr-center LGN cells; in either case, the strength of
the connection was represented by the absolute value of the Gabor at
a given point. The Gaussian was elongated in the preferred orientation
of the V1 cell under consideration and the sinusoid had the same
orientation. The width and length of the Gaussian were defined by the
5% points of the peak, along the short and long axes of the Gaussian,
respectively. The number of subregions was determined by the ratio of
the Gaussian width to the width of a half-cycle of the sinusoid. The
aspect ratio was defined as the ratio of the Gaussian length to the
width of a half-cycle of the sinusoid. As noted in Eq. 5, we used a
sinusoid with a half-cycle width of 0.625°, corresponding to a spatial
frequency of 0.8 cycles/deg [roughly the mean preferred spatial
frequency of cat cortical cells at 5° eccentricity (Movshon et al.
1978b); all spatial dimensions can be scaled down to represent
monkey V1 cells without affecting our conclusions]. The MFM and
RM used the high and low values of the reported aspect ratios,
respectively. For the MFM, we picked the Gaussian envelope to
match the physiological receptive fields reported by Jones and Palmer
(1987) and used by Troyer et al. (1998): 2.65 subregions and an aspect
ratio of 4.54 (Fig. 1AI). These values yielded a feedforward input well
tuned for orientation (Fig. 1A2). For the RM, we also had 2.65
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A1 LGN-to-V1 connectivity A2 Feedforward tuning A3 V1 tuning
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= E == 0% - fied feedforward model (MFM, top row) and
E s = —RiA ) the recurrent model (RM, bottom row). In
o g 4 % the MFM, the lateral geniculate nucleus
s E o ;’30 (LGN) to primary visual cortex (V1) con-
w o o o © nectivity pattern is assumed to have a long
= g g ;,20 orientation axis (aspect ratio = 4.54; Al),
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when noise is introduced to the system
(Troyer et al. 2002), and does not affect our
results (which are at 50% contrasts) in the
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in the feedforward input and sharpen the
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subregions but lowered the aspect ratio to 2 (Fig. 1B1), which is in
line with the value used by Somers et al. (1995) and is close to the
value of 1.7 reported by Pei et al. (1994). This yielded a broadly tuned
feedforward input in Fig. 1B2.

Features common to the MFM and the RM

Both the MFM and the RM have cortical excitatory cells and
cortical inhibitory cells at eight evenly spaced spatial phases over 2m
and 64 evenly distributed orientations over 180°, for a total of 512
excitatory cells and 512 inhibitory cells. In the real cortex, excitatory
cells outnumber inhibitory cells by a factor of three. For computa-
tional efficiency, we did not explicitly model this fact; instead, we
simply let each excitatory cell in our models represent three cells of
the same type. The connections from an excitatory cell to any cell
represent the combined strengths of the three cells. The model cells
are assumed to represent the same area of visual space and have
retinotopically overlapping receptive fields (they draw feedforward
input from the same field of LGN cells). Each cortical cell receives
feedforward input from its LGN afferents as well as cortical input
from other V1 cells. The nature of the intracortical connections
depended on which model we used and is detailed below. For a given
V1 cell, the connections it received were divided into three sets: the
connections from LGN cells, the connections from excitatory V1
cells, and the connections from inhibitory V1 cells. We first normal-
ized each set of the connections such that the sum of all connections
within the set was one. We then multiplied all connections within a set
by a common weighting factor, and different weighting factors were
applied to different sets to manipulate their relative strengths. Because
the recipient V1 cell can be either excitatory or inhibitory, there are a
total of six weighting factors denoted by e — e, ¢ —i,i —e, i — I,
F — e, and F — i, which represent weights for excitatory to
excitatory, excitatory to inhibitory, inhibitory to excitatory, inhibitory
to inhibitory, feedforward to excitatory, and feedforward to inhibitory
connections, respectively.

J Neurophysiol « VOL 96

tuned component, yielding sharp, contrast-
invariant tuning (B3).
Stimulus orientation (deg)

The membrane potential (V) of each cortical cell was updated
according to the differential equation (Carandini and Ringach 1997;
Teich and Qian 2003)

TVIOE+ V=V + V, =V, ©)

where 7 is the membrane time constant (15 ms in all simulations), and
Vi, V., and V; are the synaptic potentials generated by the feedforward,
cortical excitatory, and cortical inhibitory inputs to the cell, respec-
tively. For example, for an excitatory cell with orientation 6, these
three values were given by

Vi=(F—e) X f f 8(x, y, 0) X Ry, (x, y)dxdy (@)
w2

V.=(e—e) X f Co(0 = 0")R,(0")d0’ ®
—al2
w2

Vi=(i—e) X J Ci(0 — 0)R(6)d0’ )

—72

where R,,,,, R., and R, are the firing rates of LGN cells, excitatory V1
cells, and inhibitory V1 cells, respectively; C,. and C,, represent the
normalized connectivity strengths from excitatory and inhibitory V1
cells to the excitatory V1 cell under consideration, and are determined
differently for each model (see details below). Similar equations can
be written for each inhibitory V1 cell. The interval (Ar) at which we
integrated Eq. 6 was 1 ms in all simulations. Our models directly
relate membrane potential to firing rate by the threshold function with
a gain factor « (Carandini and Ringach 1997; Teich and Qian 2003)

R = amax (V, 0) (10)

The « value was 5 for excitatory cells, 8 for inhibitory cells in our
MFM [to give inhibitory cells a higher firing rate as in Troyer et al.
(1998)], and 6.5 for all cortical cells in our RM.
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Intracortical circuitry for the MFM

Following Troyer et al. (1998), we determined the connection
between any two cortical cells a and b by computing the normalized
correlation between their receptive fields

c(a, b) = c'(a, b)/ \c'(a, a)c'(b, b) (02D

where ¢'(a, b) is the raw correlation computed by multiplying the two
Gabor connectivity functions (feedforward receptive fields) g(x, y, 6)
of cells a and b point by point and then summing across all points.
Two cortical cells with the exact same orientation and spatial phase
have a normalized correlation of 1 and thus have the strongest positive
(excitatory) connection; two cortical cells with the exact same orien-
tation and opposite spatial phase (antiphase) have a normalized
correlation of —1 and have the strongest negative (inhibitory) con-
nection. All other combinations are intermediate, with the nature of
the connection (excitatory or inhibitory) being determined by the sign
of the normalized correlation, and the strength of the connection being
determined by the absolute value of the normalized correlation
raised to a power Npow. Mathematically, the connection strength
C(a — b) from cell a to cell b is based on the normalized correlation
according to

Cla—b) = [sgn (a)c(a, b)]. "™ (12)

where sgn (a) = 1 if a is excitatory and —1 if a is inhibitory, and
[x] . = xif x > 0 and 0, otherwise. Npow determines the strength of
connectivity as a function of correlation; larger values lead to less
connectivity between cells that are weakly correlated. We used an
Npow value of 6, which is the default value used in Troyer et al.
(1998).

As we mentioned earlier, after normalizing the feedforward, corti-
cal excitatory, and cortical inhibitory connections to a given cell
separately, each connection type was then weighted. In the MFM, e —
e was set to 0.13, e — i was set to 0.15, i — e was set to 0.22, i —
i was set to 0, and F — e and F — i were set to 0.1. The background
V1 activity resulting from the LGN input in the absence of a stimulus
was 0 spikes/s for excitatory cells and 10 spikes/s for inhibitory cells.
Note that for the MFM, i — i was set to 0 as in Troyer et al. (1998);
a nonzero connection among the inhibitory cells will reduce their
activities across all orientations and thus make antiphase inhibition to
excitatory cells less effective.

Anatomical studies have suggested that thalamic inputs constitute a
small percentage of the total inputs to V1 simple cells, and that among
cortical inputs, excitatory synapses are more prevalent than inhibitory
synapses (Ahmed et al. 1994; Gabbott and Somogyi 1986; Peters and
Payne 1993). On the other hand, physiological studies showed that V1
responses to thalamic input are more powerful than to cortical input
(Stratford et al. 1996). In addition, cortical inhibitory synapses are
closer to the soma (Douglas and Martin 2004) and are thus probably
more powerful than cortical excitatory synapses. We did not explicitly
simulate these facts for the sake of computational efficiency. Instead,
we can simply assume that when comparing the feedforward connec-
tion strengths with intracortical connection strengths, each intracorti-
cal connection should be viewed as the combined effect of many
synapses. Likewise, when comparing the intracortical excitatory con-
nections with inhibitory connections, each excitatory connection
should be viewed as the combined connections from a few excitatory
cells. The same comments also apply to all of the other models
discussed in the following text.

The MFM with complex-cell inhibition

In addition to the standard MFM, we also ran a newer version of the
MFM with complex-cell inhibition (Lauritzen and Miller 2003). This
involved applying the same untuned, phase-insensitive inhibition to
every cortical cell. All of the parameters for the MFM with complex
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inhibition are identical to the standard MFM except for the connection
strengths between different cell types and Npow. The connection
strengths were as follows: e — e was set to 0.16, e — i was set to 0.18,
i—>ewassetto0.25,i —iwassetto0.1, and F — e and F — i were
set to 0.1. Npow was set to 24. These adjustments were made to
accommodate added complex inhibition. In addition, ¢i — e was set
to 1.2, ci — i was set to 1.2, and F — ci was set to 0.1, where ci
represents untuned, complex inhibition. Because complex inhibition is
applied equally to every cell, we had only one inhibitory complex cell
in every simulation and simply applied its output to every other
cortical cell at each time step.

Intracortical circuitry for the RM

Unlike the MFM, the connections between two cells in the standard
RM were independent of the cells’ receptive field phase relationship
and were determined only by the difference in the cells’ preferred
orientations. We used Gaussians to describe the connection strengths
as a function of the difference in the cells” preferred orientations. The
connections from an excitatory cell to any cell (the excitatory profile)
are given by a Gaussian with SD of 35°. The connections from an
inhibitory cell to any cell (the inhibitory profile) are given by a
Gaussian with SD of 52°. When these two profiles are subtracted from
each other, the resulting net recurrent interaction as a function of
preferred orientation difference has the “Mexican-hat” shape, a prom-
inent feature of the RM. Also unlike the MFM, there are direct
connections among the inhibitory cells.

Our previous work with the RM (Teich and Qian 2003) followed
the study of Ferster (1986) in assuming that stimuli orthogonal to a
cell’s preferred orientation do not evoke either excitatory or inhibitory
postsynaptic potentials. However, in this study we discovered that
once multiple phases are included, the RM requires at least some net
inhibition at orthogonal orientations to avoid spurious peaks at or-
thogonal orientations. The reason can be understood by considering
two cells with the same receptive-field phase that are oriented 90°
away from one another. When a light bar is aligned with the oN
subregion of one cell and thus generating maximum feedforward input
to the cell, the second, orthogonal cell receives minimum feedforward
input for this stimulus (see solid curve in Fig. 4A). When a dark bar
is aligned with the oN subregion of the first cell, the first cell receives
minimum feedforward input, whereas the orthogonal cell receives
maximum feedforward input (see dashed curve in Fig. 4A). This
orthogonal peak in the feedforward input to the second cell will lead
to a spurious peak in its orientation tuning unless there is some
stimulus-driven inhibition at the orthogonal orientation. There is also
experimental evidence supporting the presence of orthogonal inhibi-
tion (Allison et al. 2001; Bonds 1989; Martinez et al. 2002; Monier et
al. 2003; Shapley et al. 2003). In particular, Monier et al. (2003) found
that in one fifth of their intracellular recordings, inhibition peaked at
the orthogonal orientation, and some evidence for this was also found
by Martinez et al. (2002) in layer 5. Note that the MFM also requires
inhibition at orthogonal orientations (see DISCUSSION).

For the RM, ¢ — e and e — i were 1.6, i — ¢ and i — i were 1.8,
and F — e and F — i were 0.07. With these parameters, the
background V1 activity in the absence of a stimulus was 2.47 spikes/s
for all cortical cells. Figure 1 confirms that our multiphase implemen-
tations of the MFM and the RM work well in generating contrast-
invariant orientation tuning curves (Fig. 1, A3 and B3) as observed in
V1.

In the preceding implementation of the RM, the V1 cells’ receptive
fields had eight different spatial phases (determined by the feedfor-
ward LGN inputs) just as in the MFM. To compare with the original
single-phase RM of Somers et al. (1995), we also considered a
single-phase version of our RM by letting the eight cells at each
orientation all have the same even spatial phase. In this single-phase
RM, the values we used for ¢ — ¢ and ¢ — i were 1.55, and i — e,
i —i, FF— e, and F — i were identical to the values in the multiphase
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RM. The background V1 activity in the absence of a stimulus was 2
spikes/s for all cortical cells in the single-phase RM.

Differences between the MFM and the RM

The terms recurrent model and modified feedforward model may be
a little misleading because both models contain orientation-tuned
feedforward input and recurrent intracortical interactions. However,
there are major differences between them, as we alluded to above. To
make the discussions more precise, note that for both models, the
feedforward input to a V1 cell can be viewed as a sum of a DC
component (the constant baseline response across all orientations) and
a tuned component (the orientation-dependent portion) (Fig. 1, A2 and
B2). The DC component equals the response at the orientation
orthogonal to the cell’s preferred orientation. By subtracting this
component from the total feedforward input, one obtains the tuned
component. Both components grow with the stimulus contrast (Fig. 1,
A2 and B2) because a V1 cell receives inputs from both oN-center and
orr-center LGN cells, and as the stimulus intensity increases relative
to the background, the orr-center cell firing rates quickly drop to zero
and cannot go any lower to counter the growing oN-center cell
responses before they saturate (Shapley et al. 2003; Troyer et al.
1998).

There are several crucial differences between the two models. Most
prominently, the RM assumes that the tuned component of the
feedforward input is broad and is sharpened by intracortical interac-
tions, whereas the MFM assumes that the tuned component in the
feedforward input is narrow and is not sharpened further by intracor-
tical connections. These different feedforward tuning curves arise
from different assumptions about the aspect ratio of the LGN-to-V1
projections; the RM assumes a small aspect ratio, whereas the MFM
assumes a large one.

The intracortical processing is necessary for both models because,
without it, the V1 tuning would be similar to the feedforward tuning,
with a DC component (across all orientations) and a tuned component.
Because these components grow with contrast, a fixed firing threshold
cannot make the V1 tuning contrast invariant. In the RM, the intra-
cortical interactions both sharpen the tuned component and remove
the DC component of the feedforward input (Fig. 1B3). However,
according to the MFM, the intracortical interactions do not
sharpen the tuned component further but only remove the DC com-
ponent (Fig. 1A3).

These different requirements are realized by different intracortical
connection patterns used in the two models: /) The connections in the
MFM depend on both the orientation difference and the receptive-
field phase difference between two V1 cells. In the RM, the connec-
tions are only orientation dependent but not phase dependent. 2) Both
models assume that the connection strengths fall off with increasing
difference between two cells’ preferred orientations. However, the
RM assumes that the inhibitory connections cover a wider range of
orientation differences than that of the excitatory connections, result-
ing in a Mexican-hat net interaction profile, whereas the MFM
assumes equal width of the excitatory and inhibitory profiles. In the
RM, the inhibitory connections among cells tuned to very different
orientations suppress responses to the nonpreferred orientations in-
cluding the orthogonal orientation. In the MFM, the antiphase inhi-
bition among cells with similar receptive-field orientation (but oppo-
site receptive-field phases) does the same job. Although the inhibitory
connections in the MFM do not cover a broader range of orientation
differences than the excitatory connections, the inhibitory cells’ re-
sponses are assumed to have a broad, contrast-dependent DC compo-
nent, which suppresses the excitatory cells’ responses at the nonpre-
ferred orientations including the orthogonal orientation (Troyer et al.
1998). So strictly speaking, orthogonal inhibition is also present in the
MFM. 3) There are direct connections among the inhibitory cells in
the RM; such connections are not allowed in the MFM because they
would diminish the antiphase inhibition mentioned above. Antiphase

inhibition has also been called feedforward inhibition (Ferster and
Miller 2000), although the inhibitory cells do receive recurrent corti-
cal inputs.

There is also a quantitative difference between the two models:
cortical weights are an order of magnitude greater in the RM than in
the MEM. This is explained by the fact that cortical excitation and
inhibition are occurring at the same time in the RM because both are
phase-independent in the RM. Thus they tend to cancel each other,
and for the net excitation and inhibition after cancellation to be of
significant magnitudes, the original magnitudes must be large. In
contrast, the MFM has cortical excitation and cortical inhibition
occurring at different times because inhibition is antiphase from
excitation. Thus when cortical excitation is large in magnitude,
cortical inhibition will be small in magnitude, and vice versa. This
relationship allows the cortical weights in the MFM to be much
smaller for cortical connections to have a substantial effect on a cell’s
spiking output.

The modified recurrent model

We constructed a new model, the modified recurrent model
(MRM), which essentially is the RM with antiphase inhibition of the
MFM added. We started with the RM exactly like the one described
above. We will call the excitatory cells E cells and the inhibitory cells
I cells. These cells have LGN input and phase-independent recurrent
cortical connections exactly as described for the RM above. We then
added a third set of V1 cells that are antiphase inhibitory cells. We
will call these cells Al cells. The Al cells receive LGN input and
cortical excitation from E cells of the same spatial phase, using the
correlation-based rule from the MFM with an Npow value of 6. These
cells then deliver inhibition to the E and I cells, again using the
correlation-based rule and an Npow of 6 so that the maximum
inhibition is to cells with opposite spatial phases. Our simulations with
the MRM used 512 Al cells and 512 I cells (i.e., for each category of
inhibitory cell, there was one cell of each orientation/phase type) as
well as 512 E cells. The respective sums of all recurrent excitatory
connection strengths, recurrent inhibitory connection strengths, and
antiphase inhibitory connection strengths were each individually nor-
malized to one. We sete —eande —ito3.2,i >eandi —ito 3.5,
e—>aito0.7,ai ~>eandai >it00.2,and FF —e, F —1i,and F —
ai to 0.07. The background V1 activity resulting from LGN input in
the absence of a stimulus was 0 spikes/s for E cells and I cells, and 5.7
spikes/s for Al cells.

The inhibition-dominant recurrent model

We also ran some simulations with the inhibition-dominant RM of
McLaughlin et al. (2000). This model, like the standard RM, uses
phase-insensitive intracortical connections. In the standard RM, the
inhibitory profile is broader (i.e., covers a broader range of orientation
differences) than the excitatory profile to generate a net Mexican-hat
profile (see Intracortical circuitry for the RM above). This is the
opposite in the inhibition-dominant RM. However, in the inhibition-
dominant RM, inhibitory cells are more broadly tuned than excitatory
cells to produce an effective Mexican hat. The most important
difference between the standard and inhibition-dominant RMs is that
in the latter, inhibition is much stronger than excitation. We have
included these main features in our implementation. We first took the
inhibitory and excitatory connectivity profiles from our standard RM
and switched them so that the inhibitory profile is narrower than the
excitatory profile. We then used aspect ratios of 4.54 and 2.0 for the
V1 excitatory and inhibitory cells, respectively, to generate sharply
tuned excitatory cells and broadly tuned inhibitory cells. Finally, we
sete —>e100.05, e —>iwassetto(.1,7i — e was set to 0.5, — i was
set to 0.4, and F — e and F — i were set to 0.5. Our implementation
was quite simplified compared with McLaughlin et al.’s original
model; for example, we neglected the variability in V1 orientation
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selectivity (Ringach et al. 2002). However, the model is sufficient
for our purpose of studying the receptive-field structure of well-
tuned cells.

Parametric variations

Our conclusions in this paper are robust against the model param-
eters. For example, Fig. 3 shows that the RM cannot generate sharply
tuned simple cells when the intracortical connection strengths vary in
small steps from O to the full strengths. In addition, we reached the
same conclusion when we doubled the sampling density of the LGN
inputs, changed the contrast-response curves for our LGN responses,
or used different Mexican-hat interaction profiles.

In our implementations of the two models, we followed the stan-
dard assumptions that the RM and MFM have a low (2.0) and high
(4.54) aspect ratio for their LGN input connection pattern, respec-
tively (Fig. 1, Al and BI). We also ran some simulations of the RM
with a 4.54 aspect ratio and some simulations of the MFM with a 2.0
aspect ratio. In the former case, the input was already well sharpened,
and recurrent cortical connections simply removed the DC component
to maintain robust contrast invariance. Interestingly, even in this case,
the cells were complex, with response modulation ratios (F1/F0) <1.
In the latter case, the antiphase inhibition still removed the DC
components to maintain the contrast invariance and keep cells simple.
However, because there is no cortical sharpening of orientation tuning
in the MFM, the model V1 cells’ output firing was not well tuned for
orientation. In either case, the conclusion that the MFM and the RM
generate contrast-invariant simple and complex cell receptive-field
structure remains the same.

RESULTS

We start by presenting our comparisons between the RM and
MFEM because the other models we considered depend on
them. We will then show our simulations of the recent varia-
tions of the RM and MFM, i.e., the inhibition-dominant RM
and the MFM with complex inhibition. Finally, we will
present our MRM, which combines the key features of the RM
and MFM.

The multiphase RM and the MFM response to
drifting gratings

After implementing the multiphase MFM and the multiphase
RM at the same level of complexity (see METHODs and Fig. 1),
we compared the response properties of the two models. In
particular, we wanted to know whether the cells in the two
models behaved like simple or complex cells. Because the
F1/F0 ratio calculated from a cell’s response to a sinusoidal
grating is widely used for classifying the cell as either simple
or complex (Movshon et al. 1978a,c; Skottun et al. 1991), we
first used the ratio to assess our model cells. The FO component
of a response time course is the unmodulated DC component,
and the F1 component is the first harmonic (the component at
the temporal frequency of the grating stimulus). The amplitude
ratio of these two components is the F1/F0 ratio, and a cell is
classified as simple or complex according to whether the ratio
is >1 or <1 (Skottun et al. 1991). Although the simple and
complex cells may not form two discrete classes but are
idealized cases of a continuum (Chance et al. 1999; Mechler
and Ringach 2002; Tao et al. 2004), we can still use the ratio
to indicate how simple or complex a cell is.

Each model contained V1 cells of different orientations and
phases (as determined by the alignment of the LGN inputs). In
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the following, we will use the vertically oriented even-phase
cell from each model as an example; cells of other orientations
or phases have similar behavior. The LGN-to-V1 connectivity
patterns for the two example cells are shown in Fig. 1, A/ and
B1, respectively. We simulated their responses to a sinusoidal
grating at the cells’ preferred orientation and preferred spatial
frequency, and a temporal frequency of 2 Hz, which is the
temporal frequency originally used to define the F1/FO ratio
(Movshon et al. 1978a,c).

The results are shown in Fig. 2. For each model, we
considered the special case with all intracortical connections
set to zero (Fig. 2, first column), and the normal case with
full-strength intracortical connections (Fig. 2, second column).
The MFM and RM cells have similar response time courses
when the intracortical connections are turned off (Fig. 2, Al
and BI). Both responses have large temporal modulations and
the F1/F0 ratio is 1.37 for both models, indicating that the cells
are simple cells with phase sensitivity. However, intracortical
connections are essential for both models to generate contrast-
invariant orientation tuning. For the MFM, the intracortical
connections did not reduce the temporal modulation of the
response (Fig. 2A2). Instead, the antiphase inhibition in the
MEFM significantly suppressed the DC component of the re-
sponses, making the cell more simple with an F1/FO ratio of
1.63. In contrast, the intracortical connections in the RM
reduced the amplitude of the temporal modulation and in-
creased the DC component of the response (Fig. 2B2), making
the cell complex with an F1/F0 ratio of 0.38. Note that simply
establishing a threshold in Fig. 2B2 to eliminate the DC
component will not work. Such a threshold will eliminate the
entire response to a low-contrast drifting grating.

Figure 2 suggests that the recurrent mechanism of the RM
comes at a “cost” insofar as it cannot both sharpen orientation
tuning and leave spatial phase information intact. To obtain a
better sense of this relationship, we measured the relationship
between the orientation tuning width and the F1/F0 ratio for
both the MFM and the RM when the intracortical connections
are varied systematically. The measure of tuning width is the
standard half-width at half-height (HWHH) of an orientation
tuning curve. To vary the intracortical connections, we scaled
the standard values (see METHODS) of all connection strengths
by a factor between 0 and 1. The results are shown in Fig. 3,
with the dashed and solid curves for the MFM cell and the RM
cell, respectively. For both models, we began by setting all
cortical connections to zero (as in Fig. 2, Al and BI). This
represents the rightmost point for each curve in Fig. 3. As the
scaling factor increases from 0 to 1, the curves move toward
the left, indicating sharper tuning (smaller HWHH). The left-
most points on the curves are for the full-strength intracortical
connections. Note that, although both curves start at similar
F1/FO0 ratios, they start at different HWHH values because the
MFM has a feedforward input that is much more sharply tuned
than the feedforward input in the RM. Indeed, the only reason
that the cortical connections in the MFM change the HWHH
value is that they eliminate the baseline DC component of the
feedforward input (see Fig. 1). The tuned component of the
feedforward input is not sharpened by the intracortical connec-
tions in the MFM.

In Fig. 3, the RM clearly shows a trade-off between the
F1/F0 ratio and tuning width as recurrent cortical connections
are strengthened. There is no point on the curve where the
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F1/F0 ratio is >1 (simple cell) and yet the HWHH is close to
the physiological mean of about 20 to 25°. This confirms that
the RM cannot both generate sharp orientation tuning and leave
spatial phase information intact. By contrast, with increasing
intracortical connections, the MFM shows the expected in-
crease in the F1/FO ratio as the HWHH decreases. Therefore
the RM can be a valid orientation tuning mechanism only for
complex cells, whereas the MFM is suitable for simple cells.
However, because the orientation tuning width of V1 cells
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FIG. 3. Dependency of the response modulation ratio (F1/FO) and the
tuning width on the intracortical connections in the MFM (dashed curve) and
the RM (solid curve). Tuning width is measured by half-width at half-height
(HWHH). For both models, we started with all cortical connections set to zero
(the rightmost points of the curves), and then gradually increased the cortical
connection strengths until they reached their full standard values (leftmost
points on the curves). Note that both models have F1/FO >1 (horizontal thin
line) for a purely feedforward input (the rightmost point on each curve). As we
increase the strength of the cortical connections, the F1/F0 ratio of the MFM
increases, keeping the ratio >1. However, in the RM, the same procedure is
accompanied by a decrease in the FI1/FO ratio, making the cell complex.
Cortical connections reduce HWHH in both models. However, the feedfor-
ward input in the MFM is already well tuned for orientation; subsequent
sharpening by the cortical connections mainly arises from elimination of the
DC component.

varies considerably, it is possible that the RM mechanism with
weak recurrent connections is involved in some weakly orien-
tation tuned simple cells, such as those in the input layer of
monkey V1.

The multiphase RM and MFM responses to bars

Because Hubel and Wiesel (1962) used bar stimuli to define
simple and complex cells, we confirmed our above conclusions
with bars. Briefly, we simulated the responses of the two
example V1 cells to either a vertical light bar or a vertical dark
bar aligned with the on subregion of the receptive field for 400
ms. The time courses of the LGN inputs in the two models
were very similar. However, the firing outputs from the two
models are quite different. For the MFM cell, the light bar in
the oN subregion generated an ON response but not an OFF
response, and the dark bar in the oN subregion generated an OFF
response but not an oN response, mirroring the LGN input to
the cell. These are the characteristics of a simple cell. In
contrast, the RM cell had both on and ofF responses regardless
of the type of bar, and thus behaved like a complex cell. In
other words, for the RM cell, identities of the oN and OFF
subregions determined by the LGN inputs are lost at the level
of output firing.

Single-phase RM response to bars

We also examined whether the introduction of some phase
specificity into the recurrent connections of the RM would
allow the cells in the model to preserve their simple-cell
identity. In fact, the single-phase model of Somers et al. (1995)
can be viewed as restricting the recurrent interactions in the
RM to the cells with the same receptive field phase (but
different orientations) only and, as we mentioned in the INTRO-
DUCTION, Somers et al.’s model cells do have discrete oN and
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OFF subregions. We have reproduced Somers et al.’s results by
using our implementation of the single-phase RM described in
METHODS. We found that indeed, the model cells retain their
phase sensitivity (results not shown). However, the single-
phase RM has a problem not noted previously: a model V1
cell’s preferred orientation can change by 90° depending on
whether a light bar or a dark bar is used to measure the tuning.
To illustrate this problem, we considered a single-phase RM
consisting of even-phase V1 cells only, each with a central oN
region flanked by two oOFF regions according to the alignment of
the LGN inputs. There are Mexican-hat recurrent connections
among the cells with the same even phase but different orien-
tations. We considered a vertically oriented example cell from
the model and generated tuning curves from the oN responses
evoked by light and dark bars centered on the central oN region
of the receptive field.

Figure 4 shows the results, together with those from the
corresponding multiphase RM cell for comparison. Figure 4A
shows the tuning curves of the feedforward inputs for the light
and dark bars. They are identical for the single-phase and the
multiphase RM cells. Figure 4, B and C shows the tuning
curves of the output firing for the single-phase RM cell and the
multiphase RM cell, respectively. When a light bar is used to
stimulate the single-phase RM, the cell prefers vertical orien-
tation, as expected (Fig. 4B, solid curve). However, when a
dark bar is used instead, the peak of tuning shifts by 90° (Fig.
4B, dashed curve). This can be understood from the feedfor-
ward inputs in Fig. 4A: a light and a dark bar aligned with the
central oN subregion generates a maximum and a minimum
response, respectively, leading to a 90° shift between the light
and dark bars’ feedforward tuning peaks. The single-phase RM
simply amplifies around the peak of the feedforward tuning and
suppresses other orientations, thus preserving this 90° shift in
the output firing. In contrast, the multiphase RM does not have
this problem of peak shift (Fig. 4C) because of the strong
excitation among cells with the same orientation but difference
phases. For example, when the example cell receives minimal
feedforward input generated by a dark bar aligned with its
central oN region, the cell with the opposite receptive field
phase receives maximal feedforward input and sends strong
excitation to the example cell to keep it activated as well.

A Feedforward tuning

Because real V1 cells do not show a 90° peak shift according
to the polarity of the bars (Hubel and Wiesel 1962, 1968), we
conclude that the single-phase RM is not a viable model for
simple cells. It should be noted, however, that Somers et al.
(1995) designed the model to investigate primarily how recur-
rent cortical interactions shape feedforward inputs; they were
not particularly concerned with receptive-field structures. It is
thus reasonable for them to make the single-phase simplifica-
tion. Indeed, every model has to use simplifying assumptions
appropriate for the question under investigation that may not be
appropriate for other questions.

Alternative models of orientation tuning

The above results show that the MFM and RM are well
suited for explaining sharp orientation tuning in simple and
complex cells, respectively. For completeness, we also simu-
lated two variations of the MFM and the RM. They are the
MFEM with complex-cell inhibition (Lauritzen and Miller 2003)
and the inhibition-dominant RM (McLaughlin et al. 2000; Tao
et al. 2004; Wielaard et al. 2001). We constructed these models
at the same level of detail as the MFM and the RM above, and
found that they replicated simple cell physiology, as detailed
below. When the excitation in the inhibition-dominant RM is
substantially increased, it becomes similar to the standard RM
and produces complex cells (Tao et al. 2004).

The MFM with complex inhibition

The MFM has recently been modified to include untuned
complex-cell inhibition (Lauritzen and Miller 2003); this is in
response to the finding that such inhibitory cells exist in layer
4 of the cat V1 (Hirsch et al. 2003), although their fraction in
layer 4 and connectivity to other cells are not known. The same
physiological study also found a couple of poorly tuned inhib-
itory simple cells in layer 4 that could provide antiphase
inhibition in theory. Thus the new MFM has untuned complex
inhibition in addition to antiphase inhibition. We found that the
new MFM produced well-tuned simple cells just like the
original MFM (Fig. 5). The only difference was that the
untuned complex inhibition slightly reduced the role for an-
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FIG. 4. Comparison between single-phase and multiphase RMs showing that the single-phase RM has the problem of producing orthogonal tuning peaks for

light and dark bars. Example cells used here are vertically oriented and even phase as in the previous figures. Bars are centered on the central ON region of the
receptive field, and the tuning curves used here are made from the ON responses 400 ms after stimulus onset. A: tuning curves of the feedforward inputs, with
the peak and the trough at the cell’s preferred orientation for the light bar (solid curve) and dark bar (dashed curve), respectively. They are the same for the
single-phase and multiphase RM cells. B: tuning curves of the firing output for the single-phase RM cell. Problem is that they simply follow the input curves,
with the tuning peaks differing by 90° for the light and dark bars. C: tuning curves of the firing output for the corresponding mulitiphase RM cell, with the same
peak location for the light and dark bars.
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tiphase inhibition in eliminating the orthogonal response; now
the two mechanisms shared this responsibility. One might
predict that this would mean that the cortical connections
would not increase the F1/F0 ratio quite as much because the
antiphase effect would be weaker. However, our simulations
yielded an F1/FO ratio of 1.61 when complex inhibition was
added (similar to the 1.63 value with pure antiphase inhibition),
probably because complex inhibition also serves to reduce the
DC component in a cell’s temporal response.

The inhibition-dominant RM

The inhibition-dominant RM of McLaughlin et al. (2000) is
a version of the RM that includes detailed V1 anatomy.
Interestingly, McLaughlin et al. implemented the Mexican-hat
intracortical interactions not by a broader inhibitory connec-
tivity profile but by broader tuning of inhibitory cells (see
METHODS). Because the complex-cell behavior in any RM stems
from strong net recurrent excitation (the peak of the Mexican
hat) among cells with different phases, one expects that if the
recurrent inhibition is much stronger than recurrent excitation
(and thus removes the peak of the Mexican hat), the result-
ing inhibition-dominant RM should produce simple cells. This
is indeed what McLaughlin et al. found (McLaughlin et al.
2000; Wielaard et al. 2001). We have reproduced this finding
in Fig. 6.

The inhibition-dominant RM makes the strong prediction
that the net effect of cortical connections on simple cells is
inhibitory. Specifically, the cortex inhibits a simple cell’s
response to LGN input at every orientation (including the
preferred orientation). This is why in Fig. 6, the LGN input to
the cell is larger than it is in the other models. In contrast, the

A No cortical connections B

RM, the MFM, and the MRM presented below all predict that
cortex suppresses the LGN input only away from a V1 cell’s
preferred orientation, but boosts the LGN input around the
cell’s preferred orientation. (The MFM boosts responses at the
preferred orientation through phase-specific cortical excitation.
Because the recurrent excitation in the inhibition-dominant RM
is not phase specific, any such boosting leads to complex cell
behavior as in the original RM.) Wielaard et al. (2001) exam-
ined the inhibition-dominant RM further and found that when
cortical connections are silenced in the model, a simple cell’s
response at its preferred orientation increases by threefold.
Cortical inactivation experiments in cat V1 (Chung and Ferster
1998; Ferster et al. 1996) found a decrease, although similar
experiments have not been done in monkeys (see DISCUSSION).

The modified recurrent model (MRM)

Because the antiphase connections in the MFM were found
to increase the F1/F0 ratio (Fig. 3), we asked whether antiphase
inhibition could make a recurrent mechanism relevant for sharp
orientation tuning in simple cells. To do this, we started with a
multiphase RM with phase-independent intracortical connec-
tions. We then introduced an additional set of inhibitory cells
that received feedforward input from the LGN and same-phase
excitatory connections from cortical excitatory cells in the RM.
This extra set of inhibitory cells supplies antiphase inhibition to
all cortical cells in the RM (see METHODS). What resulted was a
phase-dependent response well tuned for orientation. Both the
oN and oOfr response to light and dark bars (results not shown)
and the modulated response to a drifting grating (Fig. 7)
showed spatial phase dependency, with the latter yielding an
F1/F0 ratio of 1.53. This demonstrates that phase-independent
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FIG. 6. Steady-state responses of a V1 cell
from the inhibition-dominant RM to a 2-Hz drift-
ing grating at the cell’s preferred orientation
(vertical) and preferred spatial frequency (0.8
cycles/deg). Temporal firing outputs of the cell
with the cortical connections turned off and on
are shown in A and B, respectively.
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recurrent connections and antiphase inhibition together can
provide a mechanism for orientation tuning in V1 simple cells.
In this modified recurrent model (MRM), the phase-indepen-
dent recurrent connections sharpen orientation tuning and the
antiphase inhibition preserves phase dependency. The cell in
Fig. 7 had an HWHH value of around 25°.

By adding antiphase inhibition to the RM, we not only
produced well-tuned simple cells, but also created a model
whereby a cell can have a range of F1/F0 values, from simple
to complex, by varying the relative strengths of antiphase and
recurrent inhibition. As noted in METHODS, the MRM has three
types of cortical cells: excitatory (E), inhibitory (I), and an-
tiphase inhibitory (Al). The E and I cells make up the Mexican-
hat interaction profile that sharpens tuning bandwidths and the
Al cells primarily enforce phase specificity. We started with
the MRM parameters used above that generated well-tuned
simple cells (the topmost point of the curve in Fig. 8). We then
gradually reduced the AI connection strength from 0.2 to 0 and
at the same time increased the I connection strength from 3.5
to 3.9. The fractional decrease of the AI connections was
matched by the fractional increase of the I connections to keep
tuning curve amplitudes roughly consistent. At the end of the
process, the cells were complex (the lowest point in Fig. 8)
because this model is essentially the RM. The intermediate
cases cover a broad range of the FI1/FO ratios or varying
degrees of simple—complex behavior, all with sharp orientation
tuning (Fig. 8). This result of the MRM should be compared

2

F1/F0 Ratio

0.5

0 . .
15 30 45 60 75

Half-Width at Half-Height (deg)

FIG. 8. MRM can produce well-tuned cells with varying degrees of simple—
complex behavior by varying the relative strengths of antiphase and recurrent
inhibition. MRM with strong antiphase inhibition (used in Fig. 7 for simple
cells) corresponds to the topmost point on the curve, with F1/FO ratio >1.
MRM with no antiphase inhibition (equivalent to the RM) corresponds to the
lowest point on the curve. Intermediate combinations of antiphase and recur-
rent inhibition produced a full spectrum of F1/F0 values.
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with that for the MFM and the RM in Fig. 3. The RM is unable
to produce well-tuned simple cells; it can produce only well-
tuned complex cells. The MFM can produce well-tuned simple
cells but not complex cells. Because real orientation-tuned V1
cells vary in their degree of simple—complex behavior, the
MRM is the best model in this sense.

DISCUSSION

In this study, we implemented the MFM, the RM, and some
of their variations at the same level of detail, and compared
their receptive field properties. We found that over a broad
range of cortical connection strengths, the RM cannot generate
both sharp, contrast-invariant orientation tuning and strong
phase dependency at the same time. Thus the standard RM is
not suitable for explaining the emergence of sharp orientation
tuning in V1 simple cells. In contrast, the MFM, with or
without broad complex-cell inhibition, can generate both
strong orientation tuning and phase dependency and behave
like well-tuned simple cells. We also found that one cannot
endow the RM with simple-cell properties by restricting the
recurrent cortical connections to cells with the same receptive
field phase (but different orientations); although such a single-
phase RM is phase sensitive (Somers et al. 1995), the tuning
peak can shift by 90° depending on whether the stimulus is a
light or a dark bar. An inhibition-dominant version of the RM
produces simple cells (and also complex cells if the recurrent
excitation is substantially increased), but it predicts that a
simple cell’s response to its preferred orientation should in-
crease after cortical inactivation (see following text). Finally,
we found that when the antiphase inhibition of the MFM is
added to the multiphase RM, the resulting MRM does behave
like real simple cells, with the recurrent mechanism sharpening
the tuning and the antiphase inhibition maintaining the recep-
tive field phase specified by the LGN inputs. By varying the
relative strengths of the antiphase and recurrent inhibition, the
MRM can produce well-tuned cells covering a broad range of
simple to complex behaviors. We conclude that the standard
MFM and RM are best suited to account for strong orientation
selectivity in simple and complex cells, respectively. Although
complex cells could also be constructed from simple cells with
the MFM mechanism, the RM mechanism is needed to explain
the plastic properties of orientation tuning (Felsen et al. 2002;
Teich and Qian 2003; Teich and Qian, unpublished results).
Because simple and complex cells may represent idealized
cases of a continuum (Chance et al. 1999; Mechler and
Ringach 2002; Tao et al. 2004), it is conceivable that both the
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RM and the MFM mechanisms are used to various degrees in
V1, as suggested by our MRM simulations.

Reconciling the RM and some data

The assignment of the MFM and the RM to simple and
complex cells helps avoid some apparent contradictions be-
tween the models and the experimental data. As we mentioned
in the INTRODUCTION, two pieces of data have been noted as
major evidence against the RM (Ferster and Miller 2000). First,
when intracortical contributions are diminished by cortical
inactivation, the intracellularly recorded orientation tuning
curves do not become broader. The RM predicts broadening.
Second, Vidyasagar and Siguenza (1985) found that the orien-
tation tuning width decreases with increasing spatial frequency
of the stimulus. The RM predicts that the tuning width should
be largely determined by the Mexican-hat intracortical inter-
action profile and should only weakly depend on the feedfor-
ward tuning width. Both contradictions can be avoided if we
assume the RM is just for complex cells. Ferster et al. recorded
only input layer simple cells from cat V1 in their inactivation
experiments (Chung and Ferster 1998; Ferster et al. 1996).
Likewise, Vidyasagar and Siguenza (1985) indicated that the
spatial-frequency dependency of orientation tuning width is
significant only for simple cells but not for complex cells.
Consistent with the results of Vidyasagar and Siguenza (and
with the RM), Mazer et al. (2002) failed to find significant
spatial-frequency dependency of orientation tuning in monkey
V1 where most cells are complex.

Plasticity properties of orientation tuning

It has been shown that orientation adaptation and learning
can alter the peak location and slope of orientation tuning
curves of V1 cells (Dragoi et al. 2000; Felsen et al. 2002;
Schoups et al. 2001; Teich and Qian 2003). Although this
paper does not concern plasticity, we briefly discuss the issue
here because of its relevance to evaluating models of orienta-
tion selectivity. Our previous work (Schoups et al. 2001; Teich
and Qian 2003) and ongoing research (Teich and Qian, unpub-
lished observations) indicate that to explain the observed plas-
tic changes of orientation tuning, particularly those induced by
adaptation, one has to assume a broad feedforward tuning and
the Mexican-hat recurrent intracortical connections. Thus the
MFM and the MFM with complex inhibition cannot explain
the observed plastic properties whereas the RM and the MRM
can. However, the multiphase RM model presented in this
paper can become unstable when some specific cortical con-
nections are dramatically reduced to mimic the effects of
adaptation. This problem can be avoided if the RM cells
achieve their complex cell status by mixing different phases of
the feedforward inputs instead of by the recurrent inputs. The
recurrent connections in such a phase-independent RM can
then be altered to account for the observed plastic properties
without any instability. In fact, the simplified RM used in our
previous plasticity study (Teich and Qian 2003) is equivalent to
such a phase-independent RM. The MRM presented herein
does not have the stability problem of the multiphase RM
because the antiphase inhibition makes the model stable during
connection modifications. In summary, the MFM behaves like
V1 simple cells but cannot explain the observed plastic prop-

erties of orientation tuning. The MRM covers a spectrum of
simple—complex behavior and can explain the plastic proper-
ties. The multiphase RM behaves like V1 complex cells but
may become unstable when a specific pattern of large connec-
tion changes is introduced to model plastic properties. The
phase-independent RM (through mixed-phase feedforward in-
puts) behaves like complex cells and can explain the plastic
properties. The details of our modeling of orientation plasticity
will be presented in another publication.

Series et al. (2004), who recently compared the RM and the
MEM from the perspective of coding efficiency, suggested that
learning-induced sharpening of orientation tuning curves in the
RM (Teich and Qian 2003) cannot explain the postlearning
improvement of orientation discriminability. Their main argu-
ment is that recurrent connections in the RM lead to correla-
tions among cells’ firing and a lower coding efficiency. How-
ever, in our simulations (Teich and Qian 2003), the sharpening
was achieved by a reduction (instead of an increase) of the
recurrent connections in the RM, which should reduce (not
increase) the correlations between the cells, compared with the
baseline RM before learning. Therefore the postlearning im-
provement caused by the sharpening of tuning in the RM may
be even stronger when the correlations between the cells’ firing
are considered. Series et al. showed that based on the coding
efficiency alone, the brain should use a feedforward architec-
ture to create new tuning. However, they did not show how the
observed orientation plasticity might be accounted for by the
feedforward model.

The models of McLaughlin et al. and the inhibition-
dominant RM

McLaughlin et al. recently proposed large-scale models of
V1 orientation selectivity based on more detailed anatomy of
monkey V1 (McLaughlin et al. 2000; Wielaard et al. 2001).
Although their early implementations consider only a single
receptive field phase according to the connectivity of the
feedforward inputs (McLaughlin et al. 2000; Wielaard et al.
2001), those models are effectively multiphase models because
of the random variations of the spatial location of receptive
fields. Their later implementation directly includes multiple
receptive field phases (Tao et al. 2004). We group their models
with the RM because they also use phase-independent Mexi-
can-hat intracortical interactions, although the Mexican hat is
realized through different tuning widths between inhibitory and
excitatory cells, instead of through different connectivity
ranges in the standard RM (see METHODS). When the net
recurrent excitation of the Mexican hat is strong in McLaughlin
et al.”s models, the cells behave like complex cells (Tao et al.
2004), just as in the standard RM. On the other hand, when the
net recurrent excitation is largely eliminated, the resulting
inhibition-dominant RM generates simple cells (Tao et al.
2004), as reproduced in our Fig. 6. By varying the relative
strengths of recurrent excitation and inhibition, cells with
different degrees of simple—complex behavior can be produced
(Tao et al. 2004).

As mentioned earlier in RESULTS, the inhibition-dominant
RM makes the critical prediction that, for V1 simple cells, net
intracortical interactions are inhibitory across all stimulus ori-
entations; consequently, a simple cell’s response at its pre-
ferred orientation should increase after cortical inactivation
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(Wielaard et al. 2001). In contrast, the RM, the MFM, and the
MRM all assume that there is cortical boosting of responses at
a cell’s preferred orientation and cortical inactivation should
reduce cells’ preferred responses. Ferster and coworkers found
large response reductions (50—65%) at the preferred orienta-
tion of cat simple cells after cortical inactivation (Chung and
Ferster 1998; Ferster et al. 1996). Note that although Ferster et
al. reported only the F1 component of the cell’s responses, the
predictions discussed here hold for the F1 component. How-
ever, similar inactivation experiments have not been done in
monkey V1 modeled by McLaughlin et al. Further experiments
are needed to resolve this issue.

Mechanisms of V1 orientation tuning

The main goal of comparing the MFM, the RM, and their
variants is, of course, to determine which mechanism is more
relevant to the emergence of strong orientation tuning in V1.
We have already touched on this issue above and will attempt
a more comprehensive discussion here. We first note that
certain properties of V1 orientation tuning can be explained by
either model. These include the contrast invariance and the
inhibition blockade experiments (Somers et al. 1995; Troyer et
al. 1998). The RM can additionally explain the preserved
orientation tuning under the blockade of the oN channel (Som-
ers et al. 1995). Because the MFM has not been applied to this
finding, we simulated the blockade of the on-center inputs to
V1 in our implementation of the MFM and found that the
MEFEM is also consistent with these findings (results not shown);
the primary effect, consistent with the data (Horton and Sherk
1984; Schiller 1982; Sherk and Horton 1984), was an ampli-
tude reduction. There was no broadening of tuning.

We have considered other relevant experimental results that
may discriminate the two models, and in some cases, we have
reached different conclusions from what are commonly as-
sumed in the literature. The input layer of cat V1 is dominated
by simple cells (Hubel and Wiesel 1962). Because we have
shown in this paper that the RM cells are not simple, the RM
must not be responsible for the initial emergence of strong
orientation tuning in cat V1. The MFM and the MRM are more
viable candidates. However, it is possible for the standard RM
mechanism to be involved in further refinements of orientation
tuning at the complex-cell level outside the input layer. In
addition, most input layer cells of monkey V1 are, like LGN
cells, not well tuned to orientation, and the majority of the cells
outside the input layer are complex. Thus the RM may well be
responsible for the emergence of strong orientation selectivity
in monkey complex cells. Both the inhibition-dominant RM
and the MRM can produce a continuum of simple- to complex-
cell behavior with sharp orientation tuning. However, the
former is not a viable model for cat V1 (and was not designed
for cat V1) because it is inconsistent with Ferster et al.’s
finding of reduced simple-cell response at the preferred orien-
tation under cortical inactivation. Whether the model is appli-
cable to monkey V1 depends on whether Ferster et al.’s finding
can be replicated in monkey.

As we mentioned above, the cortical inactivation experi-
ments were done with simple cells and the spatial-frequency
dependency of orientation tuning was found in simple, but not
complex, cells. These data further rule out the role of the RM
in orientation selectivity of V1 simple cells. By restricting the

RM to complex cells, the apparent contradiction between these
data and the RM can be avoided. The cortical inactivation
experiments provided a main motivation for Troyer et al.
(1998) to propose the MFM as an alternative to the RM. But
how well is the MFM supported by the cortical inactivation
experiments? Recall that the MFM relies on feedforward inhi-
bition to maintain contrast invariance. This inhibition (whether
antiphase or untuned complex) can be provided only by V1
interneurons. Cortical inactivation by cooling or electrical
shock should thus diminish the inhibition and destroy contrast
invariance. This means that if HWHH is used to measure
tuning width, the MFM predicts that under high stimulus
contrast, the intracellularly recorded tuning curves should be
broader under the cortical inactivation condition than under the
normal condition. More specifically, the inactivation-generated
broadening should be mainly the result of a contrast-depen-
dent, orientation-untuned DC component that, under the nor-
mal condition, is suppressed by the antiphase inhibition (Shap-
ley et al. 2003; Sompolinsky and Shapley 1997). Unfortu-
nately, Ferster et al. reported only the F1, but not the DC,
component of the intracellular responses. In addition, they did
not test contrast invariance under the inactivation condition. A
critical test of the MFM would be to measure the contrast
invariance and the DC component of tuning under the cortical
inactivation condition.

A controversy related to the mechanism of orientation se-
lectivity is whether orientation tuning curves change their
width or shape over time (Celebrini et al. 1993; Gillespie et al.
2001; Mazer et al. 2002; Pei et al. 1994; Ringach et al. 1997,
2003; Shapley et al. 2003; Sharon and Grinvald 2002; Shev-
elev et al. 1993). A common assumption is that if orientation
tuning curves of V1 cells are fully sharpened immediately after
a stimulus is presented, then the feedforward input must be
sharply tuned. On the other hand, if tuning curves are initially
broad and sharpen over time, then the recurrent cortical con-
nections must play a role in the sharpening of orientation
tuning curves. However, because the strict feedforward model
of Hubel and Wiesel is known to be incomplete as a result of
its lack of contrast invariance, one must use the MFM as a
viable version of the feedforward model. When the tuning
width is measured by HWHH (as is usually the case), even the
MEFEM predicts a cortical sharpening of the tuning curve over
time because the antiphase inhibition in the MFM removes the
untuned DC component in the feedforward inputs. Thus de-
pending on how the tuning width is measured, cortical con-
nections can significantly change the width of tuning curves
over time in both models. Because the temporal evolution of
tuning sharpening can be very fast in a model (Somers et al.
1995), it may be difficult to distinguish the models based on the
temporal dynamics measurements.

Another point of contention in the recurrent/feedforward
debate concerns the nature of inhibition. Note that all models
showing contrast-invariant orientation tuning require net inhi-
bition at off-optimal orientations to suppress the contrast-
dependent DC responses (Shapley et al. 2003; Sompolinsky
and Shapley 1997). In the MFM, this inhibition is provided by
broadly tuned simple cells (with the strongest inhibition be-
tween antiphase pairs) and untuned complex cells; in the RM,
it is provided by a broad connectivity profile of inhibitory
complex cells whose tuning widths are not important; and in
the inhibition-dominant RM, it is provided by broadly tuned
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inhibitory simple cells with phase-independent connectivity.
As we mentioned in METHODS, there is evidence for inhibition at
a cell’s nonpreferred orientations including the orthogonal
orientation (Allison et al. 2001; Bonds 1989; Martinez et al.
2002; Monier et al. 2003; Shapley et al. 2003). More studies on
the fractions of inhibitory cells of various physiological prop-
erties and their connectivity to other cells are obviously needed
for differentiating the models.

Carandini and Ringach (1997) considered how the RM
responds when the stimulus contains two different orientations.
They found that for two orientations differing by as much as
30° in the stimulus, the population response has only one peak.
This result might be viewed as evidence against the RM
because the model fails to produce two peaks under the
condition where we easily perceive two orientations. However,
it has been shown in the case of motion direction that real MT
cells have only one peak in their response to composite motion
stimuli that generate a perception of two motion directions
(Treue et al. 2000). Thus the number of perceived orientations

may not correspond to the number of peaks in neural re-
sponses. Besides, it is unlikely that the MFM responses will
always have two peaks for stimuli that generate a perception of
two orientations.

We have mentioned above that the RM (or the more general
MRM) is much better suited for explaining the observed plastic
properties of orientation tuning than the MFM with or without
complex inhibition. Because not all V1 cells show significant
orientation plasticity, we cannot rule out the MFM as a mech-
anism for V1 orientation tuning. However, we can at least say
that the MFM by itself is insufficient to explain all the observed
properties of V1 orientation selectivity.

Our discussions above suggest that overall, the MRM, which
combines the main features of the RM and MFM, appears to be
the most general model for describing V1 orientation tuning.
The MRM is not only consistent with orientation plasticity
data, but can also explain the simple- to complex-cell contin-
uum all well tuned to orientation. Furthermore, the MRM is
consistent with experiments showing that the net effect of

TABLE 1. Summary of main features of the different models
Hubel-Wiesel Modified MFM With Modified
Feedforward Recurrent Model Feedforward Inhibition- Complex Recurrent Model
Model (RM) Model (MFM)?* Dominant RM Inhibition (MRM)
Subregion aspect Large Small Large A range® from Large Small
ratio of small to large
feedforward input
Tuned component® Sharp Broad Sharp A range from Sharp Broad
of feedforward broad to sharp
input
Cortical excitation None Phase-independent Phase-dependent Phase-independent Phase-dependent Phase-independent
Cortical inhibition None Phase-independent Phase-dependent Phase-independent Both phase- Both phase-
dependent and dependent and
-independent -independent
Net inhibition at None Yes, through Yes, through DC Yes, through Yes, through DC Yes, through
nonoptimal broader range component of broader tuning component of broader range
orientations of inhibitory inhibitory cells of inhibitory simple and of inhibitory
connections cells broader tuning connections
of complex
inhibitory cells
Intracortical No Yes Yes overall, no Yes Yes overall no for Yes
sharpening of for the tuned the tuned
tuning component component
Contrast invariance No Yes Yes Yes Yes Yes
of tuning
Cortical inactivation N/A Yes Yes Yes Yes Yes
destroys contrast
invariance
Cortical inactivation No Yes No Yes and no No Yes
broadens tuned depending on a
components cell’s aspect
ratio
Effect of cortical None Decreased Decreased Increased response Decreased Decreased
inactivation at response response for simple cells response response
preferred
orientation
Receptive-field type Simple Complex Simple Simple to Simple Simple to
complex complex
Plasticity of tuning No Yes, but with No Yes for cells No Yes

as observed?

some
instability®

similar to those
in the RM, no
for other cells

* A detailed comparison between the RM and the MFM can be found in the subsection Differences between the MFM and the RM in METHODS. ® Obviously,
other models could also incorporate a range of aspect ratios to increase richness of properties. © A definition of the tuned component can be found in the subsection
Differences between the MFM and the RM in METHODS. ¢ Based on Teich and Qian (2003) and unpublished results. © We are considering the multiphase RM in
this column because the single-phase RM has an incorrect peak shift shown in Fig. 4B. The instability occurs only when large changes to connections are
introduced to model plasticity. The no-phase RM used by Teich and Qian (2003) does not have instability.
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cortical interactions in cats is to boost simple-cell responses to
stimuli at the preferred orientation.

A summary of the main features of the different models
discussed in this paper is presented in Table 1.

Our discussion also suggests that in the recurrent/feedfor-
ward debate, it is important to distinguish between different
cells types and species and avoid overgeneralization from one
cell type or species to another before the relevant data become
available. It is also important to know the exact predictions of
the models and exact scope of the available data before
reaching a conclusion. Only through such careful comparisons
can we identify those experiments that can best discriminate
the models in the future.

ACKNOWLEDGMENTS

We thank Drs. A. Das, M. Goldberg, J. Gottlieb, K. Miller, and R. Shapley
and anonymous reviewers for many helpful discussions and comments. In
addition, we are very grateful to Dr. Miller for providing a great deal of help
in building our version of the modified feedforward model. We also used some
code from Drs. M. Carandini and D. Ringach’s version of the recurrent model,
and thank them for making source code available.

GRANTS

This work was supported by National Eye Institute Grants RO1 EY-016270
(formerly MH-54125) and T32 EY-13933.

REFERENCES

Ahmed B, Anderson JC, Douglas RJ, Martin KA, and Nelson JC. Poly-
neuronal innervation of spiny stellate neurons in cat visual cortex. J Comp
Neurol 341: 39-49, 1994.

Allison JD, Smith KR, and Bonds AB. Temporal-frequency tuning of
cross-orientation suppression in the cat striate cortex. Vis Neurosci 18:
941-948, 2001.

Anderson JS, Carandini M, and Ferster D. Orientation tuning of input
conductance, excitation, and inhibition in cat primary visual cortex. J Neu-
rophysiol 84: 909-926, 2000b.

Anderson JS, Lampl I, Gillespie DC, and Ferster D. The contribution of
noise to contrast invariance of orientation tuning in cat visual cortex. Science
290: 1968-1972, 2000a.

Ben-Yishai R, Bar-Or RL, and Sompolinsky H. Theory of orientation tuning
in visual cortex. Proc Natl Acad Sci USA 92: 3844-3848, 1995.

Bonds AB. Role of inhibition in the specification of orientation selectivity of
cells in the cat striate cortex. Vis Neurosci 2: 41-55, 1989.

Carandini M and Ringach DL. Predictions of a recurrent model of orienta-
tion selectivity. Vision Res 37: 3061-3071, 1997.

Celebrini S, Thorpe S, Trotter Y, and Imbert M. Dynamics of orientation
coding in area V1 of the awake primate. Vis Neurosci 10: 811-825, 1993.

Chance FS, Nelson SB, and Abbott LF. Complex cells as cortically amplified
simple cells. Nat Neurosci 2: 277-282, 1999.

Chapman B, Zahs KR, and Stryker MP. Relation of cortical cell orientation
selectivity to alignment of receptive fields of the geniculocortical afferents
that arborize within a single orientation column in ferret visual cortex.
J Neurosci 11: 1347-1358, 1991.

Chen Y, Wang Y, and Qian N. Modeling V1 disparity tuning to time-varying
stimuli. J Neurophysiol 86: 143—155, 2001.

Chung S and Ferster D. Strength and orientation tuning of the thalamic input
to simple cells revealed by electrically evoked cortical suppression. Neuron
20: 1177-1189, 1998.

Douglas RJ, Koch C, Mahowald M, Martin KA, and Suarez HH. Recurrent
excitation in neocortical circuits. Science 269: 981-985, 1995.

Douglas RJ, and Martin KA. Neuronal circuits of the neocortex. Annu Rev
Neurosci 27: 419-451, 2004.

Dragoi V, Sharma J, Miller EK, and Sur M. Dynamics of neuronal
sensitivity in visual cortex and local feature discrimination. Nat Neurosci 5:
883-891, 2002.

Dragoi V, Sharma J, and Sur M. Adaptation-induced plasticity of orientation
tuning in adult visual cortex. Neuron 28: 287-298, 2000.

Felsen G, Shen YS, Yao H, Spor G, Li C, and Dan Y. Dynamic modification
of cortical orientation tuning mediated by recurrent connections. Neuron 36:
945-954, 2002.

Ferster D. Orientation selectivity of synaptic potentials in neurons of cat
primary visual cortex. J Neurosci 6: 1284—1301, 1986.

Ferster D. Spatially opponent excitation and inhibition in simple cells of the
cat visual cortex. J Neurosci 8: 1172—-1180, 1988.

Ferster D, Chung S, and Wheat H. Orientation selectivity of thalamic input
to simple cells of cat visual cortex. Nature 380: 249-252, 1996.

Ferster D and Miller KD. Neural mechanisms of orientation selectivity in the
visual cortex. Annu Rev Neurosci 23: 441-471, 2000.

Gabbott PL and Somogyi P. Quantitative distribution of GABA-immunore-
active neurons in the visual cortex (area 17) of the cat. Exp Brain Res 61:
323-331, 1986.

Gielen CC, van Gisbergen JA, and Vendrik AJ. Characterization of spatial
and temporal properties of monkey LGN Y-cells. Biol Cybern 40: 157-170,
1981.

Gillespie DC, Lampl I, Anderson JS, and Ferster D. Dynamics of the
orientation-tuned membrane potential response in cat primary visual cortex.
Nat Neurosci 4: 10141019, 2001.

Hirsch JA, Alonso JM, Reid RC, and Martinez LM. Synaptic integration in
striate cortical simple cells. J Neurosci 18: 9517-9528, 1998.

Hirsch JA, Martinez LM, Pillai C, Alonso JM, Wang Q, and Sommer FT.
Functionally distinct inhibitory neurons at the first stage of visual cortical
processing. Nat Neurosci 6: 1300—1308, 2003.

Horton JC and Sherk H. Receptive field properties in the cat’s lateral
geniculate nucleus in the absence of on-center retinal input. J Neurosci 4:
374-380, 1984.

Hubel DH and Wiesel TN. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. J Physiol 160: 106—154, 1962.

Hubel DH and Wiesel TN. Receptive fields and functional architecture of
monkey striate cortex. J Physiol 195: 215-243, 1968.

Jones JP and Palmer LA. The two-dimensional spatial structure of simple
receptive fields in cat striate cortex. J Neurophysiol 58: 1187-1211, 1987.

Kayser A, Priebe NJ, and Miller KD. Contrast-dependent nonlinearities arise
locally in a model of contrast-invariant orientation tuning. J Neurophysiol
85: 2130-2149, 2001.

Krukowski AE and Miller KD. Thalamocortical NMDA conductances and
intracortical inhibition can explain cortical temporal tuning. Nat Neurosci 4:
424-430, 2001.

Lauritzen TZ and Miller KD. Different roles for simple-cell and complex-
cell inhibition in V1. J Neurosci 23: 10201-10213, 2003.

Martinez LM, Alonso JM, Reid RC, and Hirsch JA. Laminar processing of
stimulus orientation in cat visual cortex. J Physiol 540: 321-333, 2002.
Mazer JA, Vinje WE, McDermott J, Schiller PH, and Gallant JL. Spatial
frequency and orientation tuning dynamics in area V1. Proc Natl Acad Sci

USA 99: 1645-1650, 2002.

McLaughlin D, Shapley R, Shelley M, and Wielaard DJ. A neuronal
network model of macaque primary visual cortex (V1): orientation selec-
tivity and dynamics in the input layer 4Calpha. Proc Natl Acad Sci USA 97:
8087-8092, 2000.

Mechler F and Ringach DL. On the classification of simple and complex
cells. Vision Res 42: 1017-1033, 2002.

Monier C, Chavane F, Baudot P, Graham LJ, and Fregnac Y. Orientation
and direction selectivity of synaptic inputs in visual cortical neurons: a
diversity of combinations produces spike tuning. Neuron 37: 663-680,
2003.

Movshon JA, Thompson ID, and Tolhurst DJ. Receptive field organization
of complex cells in the cat’s striate cortex. J Physiol 283: 79-99, 1978a.
Movshon JA, Thompson ID, and Tolhurst DJ. Spatial and temporal contrast
sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. J Physiol

283: 101-120, 1978b.

Movshon JA, Thompson ID, and Tolhurst DJ. Spatial summation in the
receptive fields of simple cells in the cat’s striate cortex. J Physiol 283:
53-77, 1978c.

Pei X, Vidyasagar TR, Volgushev M, and Creutzfeldt OD. Receptive field
analysis and orientation selectivity of postsynaptic potentials of simple cells
in cat visual cortex. J Neurosci 14: 7130-7140, 1994.

Peters A and Payne BR. Numerical relationships between geniculocortical
afferents and pyramidal cell modules in cat primary visual cortex. Cereb
Cortex 3: 6978, 1993.

Reid RC and Alonso JM. Specificity of monosynaptic connections from
thalamus to visual cortex. Nature 378: 281-284, 1995.

Ringach DL, Hawken MJ, and Shapley R. Dynamics of orientation tuning
in macaque primary visual cortex. Nature 387: 281-284, 1997.

J Neurophysiol « VOL 96 « JULY 2006 « WWW.jn.org

9002 ‘¥’T aunr uo Bio AbBojoisAyd-ul woly papeojumoq



http://jn.physiology.org

MODELS OF V1 ORIENTATION TUNING 419

Ringach DL, Hawken MJ, and Shapley R. Dynamics of orientation tuning
in macaque V1: the role of global and tuned suppression. J Neurophysiol 90:
342-352, 2003.

Ringach DL, Shapley RM, and Hawken MJ. Orientation selectivity in
macaque V1: diversity and laminar dependence. J Neurosci 22: 5639-5651,
2002.

Saul AB and Humphrey AL. Spatial and temporal response properties of
lagged and nonlagged cells in cat lateral geniculate nucleus. J Neurophysiol
64: 206-224, 1990.

Schiller PH. Central connections of the retinal ON and OFF pathways. Nature
297: 580583, 1982.

Schoups A, Vogels R, Qian N, and Orban G. Practising orientation identi-
fication improves orientation coding in V1 neurons. Nature 412: 549-553,
2001.

Sclar G and Freeman RD. Orientation selectivity in the cat’s striate cortex is
invariant with stimulus contrast. Exp Brain Res 46: 457-461, 1982.

Series P, Latham PE, and Pouget A. Tuning curve sharpening for orientation
selectivity: coding efficiency and the impact of correlations. Nat Neurosci 7:
1129-1135, 2004.

Shapley R, Hawken M, and Ringach D. Dynamics of orientation selectivity
in the primary visual cortex and the importance of cortical inhibition.
Neuron 38: 689-699, 2003.

Sharon D and Grinvald A. Dynamics and constancy in cortical spatiotem-
poral patterns of orientation processing. Science 295: 512-515, 2002.

Sherk H and Horton JC. Receptive field properties in the cat’s area 17 in the
absence of on-center geniculate input. J Neurosci 4: 381-393, 1984.

Shevelev IA, Eysel UT, Lazareva NA, and Sharaev GA. The contribution of
intracortical inhibition to dynamics of orientation tuning in cat striate cortex
neurons. Neuroscience 84: 11-23, 1998.

Shevelev IA, Sharaev GA, Lazareva NA, Novikova RV, and Tikhomirov
AS. Dynamics of orientation tuning in the cat striate cortex neurons.
Neuroscience 56: 865-876, 1993.

Sillito AM. The contribution of inhibitory mechanisms to the receptive field
properties of neurones in the striate cortex of the cat. J Physiol 250:
305-329, 1975.

Sillito AM, Kemp JA, Milson JA, and Berardi N. A re-evaluation of the
mechanisms underlying simple cell orientation selectivity. Brain Res 194:
517-520, 1980.

Skottun BC, Bradley A, Sclar G, Ohzawa I, and Freeman RD. The effects
of contrast on visual orientation and spatial frequency discrimination: a
comparison of single cells and behavior. J Neurophysiol 57: 773786, 1987.

Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, and
Bonds AB. Classifying simple and complex cells on the basis of response
modulation. Vision Res 31: 1079-1086, 1991.

Somers DC, Nelson SB, and Sur M. An emergent model of orientation
selectivity in cat visual cortical simple cells. J Neurosci 15: 5448 -5465,
199s.

Sompolinsky H and Shapley R. New perspectives on the mechanisms for
orientation selectivity. Curr Opin Neurobiol 7: 514-522, 1997.

Stratford KJ, Tarczy-Hornoch K, Martin KA, Bannister NJ, and Jack JJ.
Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature
382: 258261, 1996.

Tanaka K. Cross-correlation analysis of geniculostriate neuronal relationships
in cats. J Neurophysiol 49: 1303-1318, 1983.

Tao L, Shelley M, McLaughlin D, and Shapley R. An egalitarian network
model for the emergence of simple and complex cells in visual cortex. Proc
Natl Acad Sci USA 101: 366-371, 2004.

Teich AF and Qian N. Learning and adaptation in a recurrent model of V1
orientation selectivity. J Neurophysiol 89: 2086-2100, 2003.

Teich AF and Qian N. The modified feedforward model and the recurrent
model are better suited for explaining the emergence of orientation tuning in
simple and complex cells respectively. Program No. 370.8. 2004 Abstract
Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience,
2004, Online.

Treue S, Hol K, and Rauber HJ. Seeing multiple directions of motion-
physiology and psychophysics. Nat Neurosci 3: 270-276, 2000.

Troyer TW, Krukowski AE, and Miller KD. LGN input to simple cells and
contrast-invariant orientation tuning: an analysis. J Neurophysiol 87: 2741—
2752, 2002.

Troyer TW, Krukowski AE, Priebe NJ, and Miller KD. Contrast-invariant
orientation tuning in cat visual cortex: thalamocortical input tuning and
correlation-based intracortical connectivity. J Neurosci 18: 5908-5927,
1998.

Tsumoto T, Eckart W, and Creutzfeldt OD. Modification of orientation
sensitivity of cat visual cortex neurons by removal of GABA-mediated
inhibition. Exp Brain Res 34: 351-363, 1979.

Vidyasagar TR and Siguenza JA. Relationship between orientation tuning
and spatial frequency in neurones of cat area 17. Exp Brain Res 57:
628-631, 1985.

Wielaard DJ, Shelley M, McLaughlin D, and Shapley R. How simple cells
are made in a nonlinear network model of the visual cortex. J Neurosci 21:
5203-5211, 2001.

J Neurophysiol « VOL 96 « JULY 2006 - WWW.jn.org

9002 ‘¥’T aunr uo Bio AbBojoisAyd-ul woly papeojumoq



http://jn.physiology.org

