Predicting the secondary structure of globular proteins using neural network models

Ning Qian and Terrence J. Sejnowski, J. Mol. Biol. 1988, 202:865-884. Download the full paper (PDF file)

Abstract

We present a new method for predicting the secondary structure of globular proteins based on non-linear neural network models. Network models learn from existing protein structures how to predict the secondary structure of local sequences of amino acids. The average success rate of our method on a testing set of proteins non-homologous with the corresponding training set was 64.3% on three types of secondary structure (alpha-helix, beta-sheet, and coil), with correlation coefficients of C_alpha = 0.41, C_beta = 0.31 and C_coil = 0.41. These quality indices are all higher than those of previous methods. The prediction accuracy for the first 25 residues of the N-terminal sequence was significantly better. We conclude from computational experiments on real and artificial structures that no method based solely on local information in the protein sequence is likely to produce significantly better results for non-homologous proteins. The performance of our method of homologous proteins is much better than for non-homologous proteins, but is not as good as simply assuming that homologous sequences have identical structures.

Back to Qian Lab Home Page