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Many psychophysical and physiological experiments indicate that visual motion analysis and
stereoscopic depth perception are processed together in the brain. However, little computational
effort has been devoted to combining these two visual modalities into a common framework based
on physiological mechanisms. We present such an integrated model in this paper. We have
previously developed a physiologically realistic model for binocular disparity computation (Qian,
1994). Here we demonstrate that under some general and physiological assumptions, our stereo
vision model can be combined naturally with motion energy models to achieve motion—stereo
integration. The integrated model may be used to explain a wide range of experimental
observations regarding motion—stereo interaction. As an example, we show that the model can
provide a unified account of the classical Pulfrich effect (Morgan & Thompson, 1975) and the
generalized Pulfrich phenomena to dynamic noise patterns (Tyler, 1974; Falk, 1980) and

stroboscopic stimuli (Burr & Ross, 1979). © 1997 Elsevier Science Ltd.
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INTRODUCTION

Visual motion analysis and stereoscopic depth perception
are among the most important and best studied of our
visual functions. There is increasing evidence indicating
that these two visual functions are closely related and are
probably processed together in the brain. In primates,
binocular convergence (and hence disparity tuning) and
directional selectivity first appear in area V1 (Hubel &
Wiesel, 1968; Poggio & Fischer, 1977). V1 cells project
to area MT, where almost all neurons are directionally
selective (Albright, 1984). Most MT cells are also tuned
to binocular disparity (Maunsell & Van Essen, 1983;
Bradley et al., 1995). In fact, many individual V1 and MT
neurons exhibit both motion and disparity tuning. These
physiological properties are clearly reflected at the
behavioral level: psychophysical experiments indicate
that strong interaction exists between motion and
stereoscopic depth perception. For example, the motion
aftereffect is found to be contingent upon binocular
disparity (Regan & Beverley, 1973; Anstis & Hassis,
1974). Disparity-specific motion adaptation has been
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shown to significantly reduce motion direction ambiguity
in rotating stimuli (Nawrot & Blake, 1989). Binocular
disparity has also been found to facilitate transparent
motion perception (Adelson & Movshon, 1982; Qian et
al., 1994a).

In view of the close relationship between motion and
stereo vision as revealed by both physiological and
psychophysical experiments, it is surprising that little
computational effort has been devoted to building unified
models for these two visual modalities. Many computa-
tional models for biological motion processing (Reich-
ardt, 1961; Hildreth, 1984; Watson & Ahumada, 1985;
van Santen & Sperling, 1985; Adelson & Bergen, 1985;
Heeger, 1987; Grzywacz & Yuille, 1990) and stereo
vision (Marr & Poggio, 1976; Marr & Poggio, 1979;
Prazdny, 1985; Pollard et al., 1985; Sanger, 1988; Qian &
Sejnowski, 1989; Yeshurun & Schwartz, 1989) have been
proposed, but few dealt with these two visual functions at
the same time. Although it is clear that at an abstract level
both motion and stereo vision can be formulated as
solving a correspondence problem (see Marr, 1982, for
example), this observation says little about how physio-
logically the two visual functions may be processed
together by a population of cells with both motion and
disparity tuning, and how the two modalities may interact
with each other. In fact, the very notion of an explicit
correspondence or matching is non-physiological (see the
Discussion).
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In this paper we present an integrated model of motion
and stereopsis based on the receptive field properties of
real visual cells. We have recently developed a
physiologically realistic model for binocular disparity
computation and, for the first time, demonstrated that
broadly disparity-tuned units, modeled accurately after
real binocular cells in the visual cortex, can effectively
solve random dot stereograms (Qian, 1994). Here, we
demonstrate that under physiological assumptions our
stereo vision model can be combined naturally with
motion energy models (Watson & Ahumada, 1985;
Adelson & Bergen, 1985; van Santen & Sperling,
1985) to achieve motion—stereo integration. As an
application of the integrated model, we will show that
the model can provide a unified explanation of the
classical Pulfrich effect (Morgan & Thompson, 1975)
and its more recent generalizations to dynamic noise
patterns (Tyler, 1974; Falk, 1980) and stroboscopic
stimuli (Burr & Ross, 1979). The explanation works
equally well whether one assumes a temporal delay
(Mansfield & Daugman, 1978; Lennie, 1981; Cynader et
al., 1978; Carney et al., 1989) or a temporal stretching
(Kaufman & Palmer, 1990) in the neuronal responses
accompanying a luminance reduction.

STEREO VISION

One possible strategy for constructing a unified model
of motion and stereo vision is to examine existing models
in these two categories and see if they can be combined
naturally. There are physiologically plausible models for
motion detection, namely the motion energy models*
(Adelson & Bergen, 1985; Watson & Ahumada, 198S;
van Santen & Sperling, 1985; Emerson et al., 1992).
Until recently, most models of stereopsis, on the other
hand, cannot be said to be truly biological. Some (Marr &
Poggio, 1976, 1979; Prazdny, 1985; Pollard et al., 1985;
Qian & Sejnowski, 1989) require very sharply disparity-
tuned units and use explicit matching of fine image
features (see the Discussion). Others (Sanger, 1988;
Yeshurun & Schwartz, 1989) contain certain mathema-
tical operations (such as the explicit extraction of
complex phases of stimuli) that are unlikely to be
physiological.

We have recently proposed a physiologically realistic
model for stereo vision (Qian, 1994). We briefly review
the model in this section. Our model is based on the
quantitative physiological studies of Freeman and cow-
orkers (Freeman & Ohzawa, 1990; Ohzawa et al., 1990;
DeAngelis et al., 1991). These investigators found that
the left and right spatial receptive field profiles of a
binocular simple cell in cat’s primary visual cortex can be
described by two Gabor functions with the same

*Motion energy models were originally proposed based on human
visual psychophysics (Adelson & Bergen, 1985; Watson &
Ahumada, 1985; van Santen & Sperling, 1985). They were later
found to describe the behavior of directionally selective cells in the
primary visual cortex quite well (Emerson et al., 1992; Reid et al.,
1987; Snowden et al., 1991).
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Gaussian envelopes but different phase parameters in
the sinusoidal modulations. For horizontal disparity
computation, only the horizontal dimension of cells’
receptive fields is relevant. The left and right receptive
field profiles of a simple cell centered at x = 0 are then
given by:

2

fi(x) = exp (— %73) cos (ng + ¢1) (1)

2
fi(x) = exp (— %) cos(wix + ¢y) (2)
where o and w? are the Gaussian width and the preferred
(angular) spatial frequency of the receptive fields; ¢; and
¢, are the left and right phase parameters.

Freeman and coworkers (Freeman & Ohzawa, 1990;
Ohzawa ef al., 1990) found that the response of a simple
cell can be determined by first filtering, for each eye, the
retinal image by the corresponding receptive field profile,
and then adding the two contributions from the two eyes.
They further showed that the response of a complex cell
can be modeled by summing the squared outputs of a
quadrature pair of such simple cells. Through mathema-
tical analysis we found that under the assumption that
stimulus disparity D is significantly smaller than the
Gaussian width ¢ of the receptive fields, the response of a
model complex cell to the disparity is given by (Qian,

1994):
0
re e () cos? (% - “’;D), 3)
where
A¢ = ¢l - ¢r (4)

is the phase parameter difference between the left and
right receptive fields, c is a constant, and |/ (w2)|2 is the
Fourier power of the stimulus patch (under the receptive
field) at the preferred spatial frequency of the cell.
According to equation (3), the cell’s preferred disparity is
determined by its receptive field parameters as:
Dipret ~ A/w). Using this relationship we were able to
compute disparity maps from random dot stereograms
using a population of model complex cells without
employing any non-physiological procedures, such as
explicit matching of fine stimulus features (Qian, 1994).
Note that the periodic function in equation (3) is an
approximation under small D; our simulations indicate
that the side peaks of the cell’s disparity tuning curves
decay to zero as D increases. Also note that equation (3)
was derived without assuming a specific functional form
of the stimulus pattern. With explicit assumptions about
the stimulus, accurate expressions of the complex cell
responses for all D values may be derived (Zhu & Qian,
1996).

It can also be shown that our stereo algorithm can be
extended to a more general class of receptive field
profiles than the Gabor functions (Qian & Zhu, 1995).
Specifically, we found that equation (3) can be derived
under the general assumption that the frequency tuning of
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the receptive field profiles is much sharper than the
frequency spectrum of the input stimulus, and that there
is a phase difference A¢ between the left and right
receptive field profiles.

MOTION-STEREO INTEGRATION

Since the quadrature pair construction of model
binocular complex cells (Ohzawa et al., 1990; Qian,
1994) is rather similar to that used previously in motion
energy models (Adelson & Bergen, 1985; Watson &
Ahumada, 1985; van Santen & Sperling, 1985), our
stereo algorithm can be combined naturally with motion
energy models into a unified framework. We have
previously demonstrated that such an integration can be
achieved by using the following binocular three-dimen-
sional (3D) spatiotemporal Gabor filters* (Qian, 1994):

2 2
x y t
filx,y, Fe’“’(‘ﬁ‘ﬁ‘ﬁ)

cos(wx+wy+wt+¢1) (5)

2 22
frlx,y,1) _eXp<—F_Tc§_F
cos (ng + wgy + w?t + gzb,). (6)

where os and ws determine the sizes and the preferred
frequencies along the spatial and temporal dimensions of
the receptive fields, and ¢, and ¢, are again the phase
parameters. Note that without the dependence on the
vertical spatial coordinate y and time ¢, these equations
will be reduced to equations (1) and (2) for disparity
computation discussed in the previous section. If, on the
other hand, the phase parameters are omitted, the filters
will become the standard Gabor functions with an
orientation in the spatiotemporal space that has been
used for motion computation (Adelson & Bergen, 1985;
Heeger, 1987; Grzywacz & Yuille, 1990). One therefore
expects that when these two elements are put together in
these equations as simple cell receptive field profiles,
they can be used to construct model complex cells with

*More generally, the os in the Gaussian may be replaced by a 3x3
covariance matrix.

+Real temporal response functions are typically skewed with an
envelope having a longer decay time than rise time, while the
envelopes of Gabor functions are symmetrical Gaussian functions.
Also, unlike Gabor functions, zero-crossing intervals of real
temporal responses are not equally spaced.

tHere is an intuitive explanation of why the last term in equation (7)
gives the cell motion selectivity. Since we assume that the receptlve
fields are well tuned to spatiotemporal frequencies (w w ,u?), the
Fourier transform of the left receptive field, fi(«?, wg, w?), has
significant power only in a window centered around the point
(%v 2, w?) in the frequency space. The magnitude of the last term
in equation (7) depends on whether the motion constraint plane
defined by equation (8) goes through this window. As the image
velocity (V,, V,) changes, the constraint plane will be tilted in
different orientations, thus changing the value of the last term in
equation (7).
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simultaneous disparity and motion selectivity. Our
previous analysis (Qian, 1994) and simulations (Qian et
al., 1994b) confirm that this is indeed the case.

There is, however, one major problem with this
formulation: while the spatial receptive fields of cortical
simple cells can be modeled accurately by Gabor
functions (Marcelja, 1980; Daugman, 1985; Jones &
Palmer, 1987; Freeman & Ohzawa, 1990), the temporal
responses of the cells are clearly not Gabor-like¥
(DeAngelis er al., 1993). The integrated model we
developed using spatiotemporal Gabor filters is, there-
fore, not completely physiologically realistic. We now
present a more general result demonstrating that our
previous approach can be readily extended to encompass
the realistic spatiotemporal receptive field properties
found in the brain.

Let the left and the right receptive field profiles of a
binocular simple cell be denoted by f; (x, y, {) and f, (x, v,
£). Under the assumptions that both of these receptive
fields are well tuned around the same spatial frequencies
(«?, w)), and that the main difference between the two
receptive field profiles is a phase difference A¢, it can be
shown that the complex cell response, constructed from a
quadrature pair of such simple cells, to a moving stimulus
of disparity D and image velocity (V,, V,) is given by (see
the Appendix):

< Ao D
2
Fe R ¢? |I(w2,w3)| cos’ (T — 3 )

00 2
// |fl (wxa Wy, W;) |dwxdwy )
0

—wVy (8)

(7)

where

W = —wyVy
is the familiar motion constraint (Watson & Ahumada,
1983), |f (wy, wy, w;)] is the Fourler amplitude of the left
receptive field profile, and |I(w? y)fz is simply the
Fourier power of the stimulus patch at the cell’s preferred
frequencies.

Equation (7) indicates that a single step of quadrature
pair construction generates a model complex cell tuned to
both motion and binocular disparity. The A¢ dependent
cosine term determines the cell’s disparity tuning just as
in equation (3); it reaches maximum when D is equal to
Ag¢/u0. The last term determines the cell’s motion
sensitivity via spatiotemporal frequency selectivity just
as in motion energy models} (Adelson & Bergen, 1985;
Watson & Ahumada, 1985; Heeger, 1987; Grzywacz &
Yuille, 1990). Note that the response of an individual
complex cell confounds motion and stereo information.
However, a population of cells with a wide range of
parameters can form a distributed coding of both types of
information simultaneously. For disparity computation,
we can look at the responses of a family of cells with
identical w?, w9, and w? but different A¢ (Qian, 1994).
Similarly, for veloc1ty ﬁeld computation we can use a
family of cells with constant A¢, but different
W?, 0, andw? (Watson & Ahumada, 1985; Heeger,
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Pulfrich's Pendulum
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FIGURE 1. A schematic drawing of the classical Pulfrich effect (top

view). A pendulum is oscillating back and forth in the frontoparallel

plane indicated by the solid line. When a neutral density filter is placed

in front of the right eye, the pendulum appears to move in an elliptical

path in depth, as indicated by the dashed line. The direction of rotation

in depth, marked by the arrows in the figure, will reverse if the neutral
density filter is placed in front of the left eye.

1987; Grzywacz & Yuille, 1990). By holding A¢ at
different values, one could estimate velocity fields at
different depth planes.

We conclude that our rather general assumptions about
a cell’s frequency tuning and the phase relationship
between the left and right receptive fields ensure that the
cell is tuned to both disparity and motion. These
assumptions are satisfied by the receptive field profiles
of real cells in the visual cortex (Freeman & Ohzawa,
1990; Ohzawa et al., 1990; DeAngelis et al., 1993).
Furthermore, our analysis shows how a population of
these cells may be used to extract both motion and
disparity information in the stimulus. We have previously
applied a special version of the above general model to
explain our psychophysical and physiological observa-
tions of disparity-specific motion suppression (Qian et
al., 1994a,b; Qian & Andersen, 1994; Bradley et al.,
1995). We now show that the model can be used to
account for a family of psychophysical observations
related to the Pulfrich effect (Morgan & Thompson,
1975).

THE PULFRICH EFFECTS

The classical Pulfrich effect refers to the observation
that a pendulum oscillating back and forth in the frontal
parallel plane appears to move along an elliptical path in
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depth when a neutral density filter is placed in front of
one of the two eyes (Morgan & Thompson, 1975) (see
Fig. 1). It is known that by reducing the amount of light
reaching the covered retina, the filter causes a temporal
delay in the neuronal transmission from that retina to the
cortex (Mansfield & Daugman, 1978; Lennie, 1981;
Cynader et al., 1978; Carney et al., 1989). The standard
explanation of this effect is that since the pendulum is
moving, the temporal delay for the covered eye
corresponds to a spatial displacement of the pendulum,
which produces a disparity between the two eyes and,
therefore, a shift in depth. This interpretation becomes
problematic, however, when it is observed that the
Pulfrich depth effect is present even with dynamic noise
patterns (Tyler, 1974; Falk, 1980), since there is no
coherent motion in these patterns to convert a temporal
delay into a spatial disparity. It was further discovered
that the effect is still present when a stroboscopic
stimulus is used, such that the two eyes never see an
apparently moving target at the same time (Burr & Ross,
1979) and therefore no conventionally defined spatial
disparity exists. It has been suggested that more than one
mechanism may be responsible for these phenomena
(Ross, 1974; Poggio & Poggio, 1984). Our mathematical
analyses and computer simulations indicate that all of the
above observations can be explained in a unified way by
our integrated model.

Pulfrich’s pendulum

We first consider the original Pulfrich effect on an
oscillating pendulum. Unlike the standard explanation
discussed above, we believe that the central issue is how a
population of neurons with both motion and disparity
selectivity would treat a temporal delay along one of the
two ocular pathways as a binocular disparity. Consider
the case where a neutral density filter is placed in front of
the right eye and it introduces a temporal delay of At in
the response of the right receptive field of binocular cells
in area V1 (Carney et al., 1989; Gardner et al., 1985). For
a pendulum with velocity (Vy, V) and with zero disparity,
the complex cell response, constructed from a quadrature
pair of simple cells well tuned to spatiotemporal
frequencies (w), &), ;) and with a phase parameter
difference A¢ between the left and right receptive fields,
can be shown to be (see the Appendix):

2 2
2

0
rere |l (w,? ; w;)) [Pcos? (ﬁ Y At)

]7 |fi (“’x’ Wy, ‘*’;) |dwsduwy (9)

0

where w, is a function of the pendulum velocity (V,, V,)
and is given by the motion constraint equation (8). As we
discussed above, the A¢ dependent cosine term deter-
mines the disparity tuning of the cell. We conclude, by
comparing equation (9) with equation (7), that for a
complex cell with preferred horizontal spatial frequency
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(a) x position of the pendulum
as a function of time t
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FIGURE 2. (a) The horizontal position of the pendulum as a function
of time for one full cycle of oscillation. The pendulum first swings to
the right (positive x direction), it then reverses direction and moves to
the left, and finally it moves to the right again. The maximum speed is 1
space pixel per time pixel. (b) The computed equivalent disparity as a
function of horizontal position and time {see (a)]. The data points from
the simulation are shown as small solid circles. Lines are drawn from
the data points to the x—¢ plane in order to indicate the spatiotemporal
location of each data point. A time delay of 4 pixels is assumed for the
right receptive fields of all the model cells. The pendulum has negative
equivalent disparity (and therefore is seen as closer to the observer)
when it is moving to the right and has positive equivalent disparity
(further away from the observer) when it is moving to the left. The
projection of the 3D plot onto the d—x plane forms a closed path similar
to the ellipse in Fig. 1.

«? and temporal frequency w?, the effect of an interocular
time delay At is equivalent to a binocular disparity of*

0
w
d %—’OAt.

X

(10)

In other words, the complex cell will respond to a
interocular time delay as if there were a real binocular
disparity in the input stimulus. For the family of cells
with different A¢ that code the disparity of a stimulus
(Qian, 1994), they would not be able to tell whether their
pattern of activity is caused by an actual binocular
disparity or an interocular time delay. The ratio of the two
preferred frequencies in equation (10) is approximately
equal to the preferred horizontal velocity of the cell
(Watson & Ahumada, 1983). Cells with different
preferred velocity will therefore treat a given time delay
as different equivalent disparities. It is reasonable to
assume that the perception is determined by the

*Note that equation (10) can be obtained very easily under the special
case of using 3D spatiotemporal Gabor filters [equations (5) and
(6)] as receptive field profiles. Our derivation shown here is much
more general.
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equivalent disparities of the most responsive cells in the
population. As the oscillating pendulum is going through
different velocities, different groups of cells with
appropriate preferred temporal to spatial frequency ratios
will be maximally activated, generating different per-
ceived depths according to equation (10). In particular,
for the two opposite directions of motion of the
pendulum, cells tuned to the opposite directions (and
thus with opposite signs of w’) will be optimally
activated, generating disparities of opposite signs.
Finally, when the neutral density filter is used to cover
the left eye instead of the right eye, the left ocular input to
a binocular cell will be lagged behind the right input and
this is equivalent to having a negative time delay At in
equation (10). Consequently, the pendulum will appear to
rotate in the opposite direction in depth. These results
explain the observed behavior of Pulfrich’s pendulum.
We have also performed some computer simulations
for verifying our mathematical analyses. We ignore the
unimportant vertical spatial dimension and consider only
the horizontal spatial dimension and time dimension in
the simulations. An example of our simulation is shown
in Fig. 2, where an oscillating pendulum with trajectory

(11)

is considered. The units of both space x and time ¢ are
pixels. The maximum velocity of the pendulum is
therefore 1 space pixel per time pixel. The spatiotemporal
representation of the pendulum in one full cycle is shown
in Fig. 2(a). The pendulum first swings to the right
(positive x direction), it then reverses direction and
moves to the left, and finally it moves to the right again. A
periodic boundary condition is used along the time axis
(i.e., the x— plot of a full stimulus period wraps around in
time so that the stimulus is equivalent to one that extends
to infinite times) in the simulation to eliminate the “edge”
effect. The left and right retinal images of the pendulum
are identical. The neutral density filter in front of the right
eye is assumed to introduce a time delay of 4 pixels in the
temporal responses of the model cells’ right receptive
fields. The computed equivalent disparity d at each
spatiotemporal location of the pendulum is shown in Fig.
2(b). It can be seen from the figure that when the
pendulum is moving to the right (left), the computed
equivalent disparity is negative (positive), indicating that
the pendulum appears closer to (further away from) the
observer, in agreement with the perception. The projec-
tion of the 3D plot onto the d—x plane forms a closed path
similar to the ellipse in depth in Fig. 1 (notice that 4 and x
are plotted with different scales in Fig. 2).

The details of our simulations are as follows. Since our
theoretical results [equations (7), (9) and (10)] demon-
strate that the exact forms of receptive field profiles are
not important so long as they satisfy some general
properties, we used spatiotemporal Gabor filters for
receptive field profiles in our simulations for conveni-
ence. For each pendulum position, the equivalent
disparity was computed with 24 model binocular
complex cells with their receptive fields centered at that
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position and with their A¢ parameter evenly distributed
in [—m,7]. The maximum response of the cell population
was located through a parabolic interpolation and the
interpolated A¢ parameter was divided by w? to obtain
the equivalent disparity (Qian, 1994). The total preferred
frequency of all cells, defined as

(W0)® + (W?)?,

was fixed at 7v/2/16 radian/pixel, and the preferred
temporal to spatial frequency ratio was set to the
instantaneous velocity of the pendulum. The Gaussian
widths o, and o, of all cells’ receptive fields were equal to
16 pixels. The simulation results were not very sensitive
to the parameters of the model cells; the only essential
requirement is that the preferred spatial frequency w?
should be small enough such that the expected equivalent
disparity falls in the range of [—m/w?, 7/u] (Qian, 1994;
Zhu & Qian, 1996). For example, we obtained nearly
identical results when the total preferred frequency was
scaled up and the receptive field size scaled down by a
factor of 4. All simulations were performed on a Sun
SPARCstation 10.

The generalized Pulfrich effect to arbitrary spatiotem-
poral patterns

The result in equation (10) can be generalized to an
arbitrary spatiotemporal stimulus, which may or may not
contain any coherent motion. Again, assume that a
neutral density filter introduces a temporal delay of Az in
the response of the right receptive field of binocular cells.
The complex cell response, constructed from a quad-
rature pair of simple cells well tuned to spatiotemporal
frequencies (w), o), wy) and with a phase difference A¢g
between the left and right receptive fields, to the stimulus
is approximately (see the Appendix):

~ Ao LAt
re & ¢? [I(wg,wg,w?) *cos? (7 — t2 )

2

// m(wx, wy, wy) [dwydwydw; | (12)
0

This expression is identical to equation (9), except that
here the integration in the last term is carried over both
spatial and temporal frequencies and the motion
constraint equation (8) is not required, since we do not
assume any coherent motion in the stimulus. The
equivalent disparity for this cell, which is determined
by the A¢ dependent cosine term in the above expression,
is therefore also given by equation (10). Thus, for any
stimulus that can significantly excite cells tuned to
frequencies (wg,wg,wﬁ)), an interocular time delay is
equivalent to a binocular disparity given by equation (10)
from the cells’ point of view.

The above result can explain the observation that the
Pulfrich effect is still present when viewing flickering
dynamic random noise patterns on a monitor screen
instead of an oscillating pendulum (Tyler, 1974; Falk,
1980). There are two aspects in this phenomenon that
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need to be explained: when a time delay is introduced by
a neutral density filter placed in front of the right eye, (1)
the original flat noise pattern appears to have depths both
in front of and behind the monitor screen; and (2) the
front surface appears to move to the right and the back
surface appears to move to the left, even though the
original noise pattern does not have any clear motion in
either direction. The first aspect can be explained by the
fact that the noise pattern has a broad spatial and temporal
frequency spectrum. It can thus drive a wide range of
cells, including those tuned to either positive or negative
ternporal frequencies. Consequently, the pattern appears
to have depths both behind and in front of the screen,
according to equation (10). In addition, since the cells
with positive and negative temporal frequency prefer-
ences, which are responsible for the perception of the
back and front surfaces, are tuned to the left and right
directions of motion, respectively, the back surface
should therefore appear to move to the left and the front
surface to the right. This explains the second aspect of the
phenomenon.

An example of our computer simulations with the
dynamic noise patterns is shown in Fig. 3. The
spatiotemporal representation of the noise pattern at a
fixed y position is given in Fig. 3(a). The two eyes see the
same pattern and a time delay of 4 pixels is assumed for
the right receptive fields of the model cells. Because there
is no coherent motion trajectory in the dynamic noise
pattern, we cannot use the same format as in Fig. 2(b) to
display the simulation results. Instead, we consider a
given spatiotemporal location and compute the equiva-
lent disparities at this location using several different
families of complex cells. Cells in the same family have
identical spatiotemporal frequency tuning (and therefore
preferred horizontal velocity) but with their phase
parameter differences uniformly distributed in [—n,n].
Different cell families are tuned to different horizontal
velocities. An equivalent disparity is computed from each
cell family* and the results from 11 different families are
shown in Fig. 3(b). In this figure, the preferred horizontal
velocity of each cell family is represented by an arrow,
and the corresponding equivalent disparity reported by
the family is indicated by the vertical position of the
arrow. It is clear from the figure that cell families tuned to
different preferred horizontal velocities report different
equivalent disparities, as predicted by equation (10).

In our simulation of the oscillating pendulum con-
sidered in the previous subsection, we assumed that at a

*The simulation procedure is the same as that for the pendulum, except
that a spatial pooling step is added when computing complex cell
responses (Zhu & Qian, 1996). This pooling step does not make any
difference for simple input stimuli such as the pendulum, while it
greatly improves the reliability of disparity tuning to stimuli such as
the noise pattern, whose Fourier phase is not a smooth function of
the frequencies [see the Appendix of Zhu & Qian (1996)]. The
inclusion of the pooling step in computing complex cell responses
is well justified by the physiological observation that the receptive
field sizes of complex cells are somewhat larger than that of simple
cells at the same eccentricity (Zhu & Qian, 1996).



MOTION-STEREO INTEGRATION AND THE PULFRICH EFFECTS

(b) d
7'y
4o +—
A
<——-—
0 — .
i
-4 — b —>

FIGURE 3. (a) The spatiotemporal representation of a dynamic noise
pattern. Each dot has a size of 1 spatial pixel and remains for 1 time
pixel before its polarity is randomly reassigned with 0.5 probability.
(b) The computed equivalent disparities with 11 families of complex
cells. A time delay of 4 pixels is assumed for the right receptive fields
of all the model cells. The preferred horizontal velocity of each cell
family is indicated by an arrow and the corresponding equivalent
disparity reported by that family is represented by the vertical distance
from the zero disparity point. The longest arrows in the figure represent
a speed of 1 space pixel per time pixel.

given instant, the perceived disparity is given by the cell
family whose preferred velocity matches that of the
pendulum. This is a reasonable assumption because the
cells in this family are maximally activated. On the other
hand, the dynamic noise pattern considered here has a
very broad frequency spectrum and consequently, cells
tuned to different spatiotemporal frequencies (velocities)
are about equally activated. One therefore cannot easily
determine the equivalent disparity reported by which cell
family dominates the perception, and the different
disparities reported by different cell families must be
simultaneously present in our perception. This is
consistent with our informal observation that the Pulfrich
effect with the dynamic noise stimulus is not as clear as
that with a pendulum, and that the noise appears to
revolve in a volume rather than on a thin surface.
However, a bias toward a particular disparity may be
generated by the distribution of the numbers of cells in
the cortex tuned to different velocities.

It is also important to note that even without the
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temporal delay, the original dynamic noise pattern has a
broad spatial and temporal frequency spectrum and
therefore should activate cells tuned to all directions of
motion. The pattern, however, does not appear to move in
any direction because there is a suppression stage in the
motion pathway at which motion energies from different
directions locally inhibit each other (Qian & Andersen,
1994; Snowden et al., 1991). The introduction of a time
delay causes motion signals for the left and right
directions to appear in different disparity channels (as
defined by the A¢ parameter). Since the inhibition
between opposite directions of motion is disparity
specific (Qian er al., 1994a; Qian & Andersen, 1994;
Bradley et al., 1995), the left and right motion signals at
the front and back surfaces no longer cancel each other
and net motion on each surface is therefore perceived.

The Pulfrich effect with stroboscopic stimuli

Our model can explain another interesting variation of
the Pulfrich effect reported by Burr & Ross (1979) (see
also Morgan, 1975; and Ross & Hogben, 1975). In their
experiments, a spot of light is shown stroboscopically on
a sequence of horizontal locations at regular time
intervals (z). The two eyes see the same sequence of
the light spot undergoing apparent motion, except the left
eye’s version is delayed with respect to the right eye by a
small amount (0¢). Since the delay ¢ is smaller than the
time interval 7, the two eyes never see any spot of light at
the same time. There is therefore no spatial disparity,
defined in the usual sense, present in the stimulus at any
time. However, the Pulfrich depth is perceived as if the
light spot were moving continuously instead of strobo-
scopically. It has been suggested that the missing
intermediate positions of the light spot are first
reconstructed by the brain and then the stereo mechanism
works on the reconstructed version of the display (Poggio
& Poggio, 1984; Burr, 1979). The observed effect can be
explained naturally and almost trivially by our model
without introduction of any additional assumptions. Our
model does not assume an explicit spatial disparity in the
stimulus at any given time but relies on responses of cells
with spatiotemporal receptive fields. Since the temporal
response functions of the primary visual cortical cells
have a width of about 100-200 msec, much larger than
the time delay &t (less than 2 msec) used in the
experiments, there is a substantial overlap between the
temporal responses of the left and right receptive fields
and equation (12) remains valid for the stroboscopic
stimuli.

It is also interesting to note that Burr & Ross (1979)
reported that with their experimental paradigm, the
Pulfrich depth effect is clearly observed only when the
time interval (1) of the apparent motion is smaller than
200 msec. This can be explained by the fact that a
significant portion of the temporal response profiles of V1
cells is typically less than 200 msec (Hamilton et al.,
1989; DeAngelis et al., 1993). When t is larger than
200 msec, these cells are no longer sensitive to the
apparent motion of the stimulus, although the observer as
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a whole may still see the motion using some higher level
long-range motion mechanisms. Consequently, similar to
the case with the noise patterns discussed in the previous
subsection, cells tuned to different velocities report
different equivalent disparities and no particular disparity
dominates the perception. The Pulfrich effect should thus
be much weaker when 7 is larger than 200 msec or the
effect may not even be observable because in the
paradigm used by Burr & Ross (1979) there is only a
single dot present intermittently instead of many dots in
the noise pattern.

We have performed computer simulations with the
stroboscopic stimuli. An example is shown in Fig. 4.
Figure 4(a) is the spatiotemporal representation of the
stroboscopic dot patterns presented to the left and right
eyes. Each dot lasts for 1 time pixel, the time interval (7)
of the apparent motion is 50 pixels, and the time delay
between the two eyes’ views is 4 pixels. Note that here
the interocular time delay is generated electronically in
the patterns presented to the two eyes (Burr & Ross,
1979) instead of by a neutral density filter. As can be seen
from the figure, at any instant of time, only one of the two
eyes sees a dot. The computed equivalent disparity is
shown in Fig. 4(b). The result is rather similar to the case
of continuous motion in Fig. 2. The simulation procedure
is same as that used in Fig. 2. Again, the results are not
very sensitive to the cell parameters used. However, here
one should use model cells with large enough spatio-
temporal receptive fields so that they are sensitive to the
apparent motion in the stimulus.

Additivity of time delay and real disparity

There is yet another aspect of the Pulfrich effect that
can be explained by our model. It has been found that the
perceived depth caused by temporal delay combines
additively with actual disparity in the experimental
paradigm of Burr & Ross [see also Julez & White
(1969) for similar results with a different paradigm]. It
can be shown that when there is both a real disparity D
and a temporal delay Ar present, the cosine term in
equation (12) will become:

Ap LD LAt
2 X 3
ot - sl S 13
cos ( 3 5 5 ) (13)
and the equivalent disparity is thus given by:
w?
d~D+ <At 14
+ (14)

X

Therefore, the effects of real disparity D and of the
interocular time delay At enhance or cancel each other
additively depending on their signs.

An intuitive explanation of the Pulfrich effects

The central idea in our above explanations of the
various Pulfrich-like phenomena is the equivalence
between an interocular time delay and a binocular
disparity from the visual cortical cells’ point of view.
The details of our formal mathematical demonstration of
this equivalence is given in the Appendix. Here we
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(a) x position of the pendulum
as a function of time t
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FIGURE 4. (a) The spatiotemporal representation of a stroboscopic
pendulum. The two sets of dots are the left and right eyes’ views,
respectively. The time delay between the two sets of dots (4 time
pixels) and the duration of each dot (1 time pixel) are exaggerated in
the drawing for the purpose of illustration. (b) The computed
equivalent disparity at each dot location, presented in the same format
as in Fig. 2. The result is very similar to the continuous case shown in
Fig. 2.

provide an intuitive explanation. Figure 5 shows
schematically the left and right receptive field profiles
of three simple cells. The left receptive fields of all three
cells are exactly the same while their right receptive
fields differ. The right receptive field of the cell in Fig.
5(a) is identical to its left receptive field (notice the
reference crosses are centered on the grey areas of both
receptive fields). Therefore, a complex cell constructed
from a quadrature pair of such simple cells should prefer
zero disparity. In contrast, the right receptive field of the
cell in Fig. 5(b) is phase shifted with respect to the left
receptive field, and this generates a horizontal displace-
ment of the right receptive field (notice the different
relative position of the grey area with respect to the
cross). The corresponding complex cell should therefore
prefer a non-zero disparity. Finally, the cell in Fig. 5(c) is
the same cell shown in Fig. 5(b) except that its right
receptive field has now been delayed in time (i.e., shifted
upwards) due to a neutral density filter placed in front of
the right eye. The important thing to notice is that, due to
the space-time slant, this time delay also creates an
apparent horizontal shift of the excitatory and inhibitory
regions of the right receptive field at a given time which
cancels the effeet of the phase shift in Fig. 5(b) (notice
now the cross is again centered on the grey area). Since
the disparity tuning of a cell is determined by the
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FIGURE 5. Schematic drawings of three simple cells’ left and right
spatiotemporal receptive field profiles, illustrating the approximate
equivalence of an interocular temporal delay to a binocular disparity.
The grey and white lobes represent excitatory and inhibitory subfields,
respectively. The rectangular frames and the crosses inside are drawn
for facilitating comparisons between different profiles. (a) The left and
right receptive profiles are exactly identical. (b) The left profile is
identical to that in (a), while the right profile has been phase shifted
(notice the relative position of the grey area to the cross). The phase
shift generates a horizontal offset between the left and right receptive
field modulations. (c) The left profile is identical to that in (b) while the
right profile has been delayed (shifted upwards) in time. The time delay
also generates an apparent horizontal offset between the left and right
receptive field modulations, which cancels the effect of the phase shift
in (b).

horizontal relationship between the left and right
receptive fields, the corresponding complex cell in Fig.
5(c) should be tuned to zero disparity just like the cell in
Fig. 5(a). We therefore conclude that a complex cell
originally tuned to a non-zero disparity may prefer zero
disparity when an appropriate interocular time delay is
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introduced. When such a cell is activated it does not
“know” whether (1) the stimulus has a non-zero disparity
or (2) the stimulus has zero disparity and there is an
interocular time delay.

To determine the how much horizontal shift is
generated by a given temporal delay, we first draw
auxiliary lines through the center of the excitatory and
inhibitory subregions of a given receptive field profile
[see Fig. 6(a)]. The horizontal and vertical distances
between two adjacent lines (indicated by the two thin
short lines) are approximately equal to the preferred
spatial period A(= 27/u?) and temporal period
A(= 2m/u?) of the cell. Now suppose a time delay of
At is introduced such that the new receptive field profile is
matked by the dashed lines, as in Fig. 6(b). It is obvious
that the horizontal shift d generated by the time delay is
given by

A

0
d=2"2At¢ :%At.
At W

This is exactly what we derived in equation (10).

Positional shift vs phase-parameter difference

The binocular cell model proposed by Freeman et al.
(Ohzawa et al., 1990; Freeman & Ohzawa, 1990;
DeAngelis et al., 1991) assumes that the left and right
receptive field profiles of a given cell have the same
envelopes (on the corresponding left and right retinal
locations) but different phase parameters for the
excitatory/inhibitory modulations within the envelopes.
An alternative is that there may be an overall shift (for
both the envelopes and modulations) between the two
profiles (Bishop et al., 1971; Maske et al., 1984; Wagner
& Frost, 1993). The third and most general model
assumes that the two profiles differ by both an overall
positional shift and a phase-parameter difference for the
modulations (DeAngelis et al., 1995; Zhu & Qian, 1996).
Although there are subtle differences between them (Zhu
& Qian, 1996), we have shown previously (Zhu & Qian,
1996) that our stereo vision model (Qian, 1994) works
equally well under all three possibilities. In this
subsection we show that the main conclusions in this
paper are not affected by the different choices of
receptive field models either.

It is sufficient to consider the most general case where
the left and right receptive field profiles of a simple cell
differ by both an overall horizontal positional shift Ax and
a phase parameter difference A¢. It can be shown (see the
Appendix) that equation (7) (the response of a complex
cell constructed from a quadrature pair of simple célls to
a stimulus with both motion and disparity) should now be
written as:

re et |l (wg,w;’) & cosz(

Ag+uwAx  WwiD
2 2 ) .
2

B (15)
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0

J'us}‘,likfe.: equation (7), the cell is tuned to both disparity
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FIGURE 6. A geometric explanation of equation (10). (a) Lines are
drawn through the central ridges of the excitatory and inhibitory
regions of a receptive field profile. The horizontal and vertical
distances between these lines (indicated by the short thin lines in the
figure) are approximately equal to the preferred spatial and temporal
periods of the cell. (b) If the receptive field profile is now delayed by At
in time (i.e., shifted upwards) as indicated by the dotted lines, an
apparent horizontal shift of d is also introduced.

and motion. The disparity tuning of the cell is now
- determined by both Ax and A¢, and the preferred
-~ disparity is given by Dyet = Ax + A¢/wf. The motion
selectivity of the cell is still determined by its
spatiotemporal frequency tuning. Thus, our previous
conclusion of using a population of complex cells to
recover stimulus motion and disparity simultaneously
remains valid.

It can also be shown that with the hybrid receptive field
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(a) x position of the pendulum
as a function of time t

right

left

(b) Computed equivalent disparity
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FIGURE 7. (a) The spatiotemporal representation of an oscillating
pendulum same as in Fig. 2(a). (b) The computed equivalent disparity,
presented in the same format as in Fig. 2, when a temporal stretch
factor k= 1.1 is introduced for the right receptive fields of all the
model cells. The results are very similar to those generated by a

temporal delay of 4 pixels in Fig. 2(b).

model, equation (9) for the Pulfrich effect becomes:

N 0 0
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2

//lﬁ (wx7 Wy, w;) Idwxdwy

0

(16)

Again, by comparing equations (15) and (16) we find that
an interocular time delay At is equivalent to a binocular
disparity as indicated by equation (10). Similar argu-
ments apply to the generalized Pulfrich effects with the
noise patterns and the stroboscopic stimuli. Our conclu-
sions on the Pulfrich effects thus remain the same.

Temporal stretching vs temporal delay

In our above explanations of the Pulfrich-like phenom-
ena, we have assumed that the effect of a neutral density
filter placed in front of one eye is to introduce a time
delay in neuronal responses of the cells’ receptive fields
in that eye. There is considerable experimental evidence
supporting this assumption (Mansfield & Daugman,
1978; Lennie, 1981; Cynader et al., 1978; Carney et
al., 1989). However, a recent study by Kaufman &
Palmer (1990) suggests that this assumption may be an
oversimplification. Specifically, these investigators found
that attenuating the luminance of the input stimulus
causes a temporal “stretching”, not a pure delay, of the
spatiotemporal receptive fields of simple cells. Thus,
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although the peak response is delayed, the effect of the
filter cannot be simply characterized by shifting the cells’
temporal response profiles. We show here that the
Pulfrich effects can also be explained by the temporal
stretching.

Let the left and the right receptive field profiles of a
binocular simple cell be denoted by f{x, y, f) and f.(x, y,
). Assume that the effect of the neutral density filter
placed in front of the right eye is to stretch the right
receptive field with respect to the t = 0 point by a factor
of k£ > 1 along the time axis. It can then be shown (see the
Appendix) that the complex cell response to a moving
stimulus with disparity D is given by:

where
B fl(w w wo/k)
r=o W (18)
and
Aa = arg [fl (wﬁ,wﬁ,w?)] —arg [fl (wx,wy,wo/k)]
(19)

The arg function represents the phase angle of a complex
quantity. As before, the A¢ dependent cosine term
determines the disparity tuning of the cell. Even when
there is no real disparity in the stimulus (D = 0), the
temporal stretching (k> 1) produces an equivalent
disparity of

(20)

This relation provides the theoretical basis of the Pulfrich
effect under the assumption of temporal stretching.
Equation (20) also holds for the generalized Pulfrich
effects to the random noise patterns and the stroboscopic
stimuli. Obviously, when there is no temporal stretching
(k=1), we have r =1 and Ax =0, and the equivalent
disparity is zero.

It can be shown that for the Gabor filters, equation (20)
can be reduced to a form similar to equation (10):

w?/kK

0
Wy

d=~ (21)

where At is the difference between the Gaussian center
locations of the left and the (stretched) right receptive
fields along the time axis. For the Gabor filters with their
Gaussian envelopes centered at ¢ = 0, stretching with
respect to ¢ = 0 will not change the center location, and
therefore these filters will not generate the Pulfrich
effects. However, these filters are non-causal and they
never exist in the real brain.

We have also performed computer simulations similar
to that shown in Fig. 2, but with the temporal delay

A D A
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1693

replaced by the temporal stretching. An example is
shown in Fig. 7, where the neutral density filter placed in
front of the right eye is assumed to introduce a stretching
factor of k= 1.1. The stretching is relative to the t =0
point which is set at 2.5¢ to the left of the Gaussian
center. This particular value of k£ was chosen because it
generates a shift of 4 time pixels between the Gaussian
centers of the left and right receptive fields and, therefore,
its effect is likely to match that of the 4 pixel temporal
delay in Fig. 2. All the other parameters in the two
simulations are identical. We conclude, based on the
similarity of the two figures, that the temporal stretching
can explain the Pulfrich effects just as well as the

2
(17)

temporal delay. When all the other parameters are fixed,
larger values of k generate larger equivalent disparities.
For large k, however, the curve in Fig. 7(b) will become
somewhat less smooth than the corresponding curve in
Fig. 2(b) (results not shown) because the stretching of the
right receptive field causes a mismatch of the preferred
spatial frequencies of the left and right receptive fields,
which in turn makes the model complex cells somewhat
less independent of the stimulus Fourier phases.

DISCUSSION

In this paper, we have developed an integrated model
of motion and stereo vision using physiological proper-
ties of real binocular cells. Specifically, we have shown
that under the general assumption that the left and right
receptive fields of a binocular simple cell are well tuned
to the same spatiotemporal frequencies, and that the main
difference between the two receptive fields is a phase
difference and/or a positional shift, the model complex
cell constructed from a quadrature pair of such simple
cells are tuned to both motion and binocular disparity.
We have derived an explicit expression for the complex
cell responses as a function of the cell parameters [see
equation (7)]. The expression shows that the cell’s
preferred spatiotemporal frequencies determine its mo-
tion selectivity, while the phase difference (and/or
positional shift) and the preferred horizontal spatial
frequency determine its disparity tuning. Therefore, by
using a population of cells with their preferred frequen-
cies and phase differences (and/or positional shift)
covering a wide range, one could estimate the stimulus
velocity and disparity simultaneously.

To our knowledge, our model is among the first
integrated models of motion and stereopsis based solely
on physiological mechanisms. On the other hand, there
have been many psychophysicad observations on motion—
stereo interaction. It is, therefore, interesting to apply our
model to explain these observations. We have previously
employed a special version of the model to explain the
disparity facilitation of transparent motion perception in
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paired dot patterns (Qian et al., 1994a,b). In this paper we
applied the model to explain a family of the Pulfrich-like
phenomena. The depth illusion in these phenomena are
all created by an interocular time delay produced either
electronically or through a neutral density filter. The
visual patterns used, however, are quite different in
different experiments. It has been suggested previously
that different neural mechanisms might be responsible for
these phenomena. Our analysis demonstrates that they
can all be explained in a unified way by our motion—
stereo model. We also considered the possibility that the
effect of the neutral density filter may be a temporal
stretching instead of a pure delay and showed that the
Pulfrich effects can be explained just as well.

There is a fundamental difference between our
explanation and the standard explanation of the Pulfrich
effect. The standard explanation asserts that the motion of
the pendulum converts an interocular time delay into a
real binocular disparity in the stimulus. According to this
view, the Pulfrich effect is a stereo problem in disguise,
and any purely stereo vision algorithm can explain the
illusion. No temporal aspects need to be included in the
algorithm. Indeed, if there were only stereo mechanisms
but no motion mechanisms in the brain, or if the motion
and stereo were processed in completely separate neural
pathways, the Pulfrich illusion would still be predicted by
the standard explanation. Our explanation, on the other
hand, does not assume any physical disparity in the
stimulus, but instead makes the equivalence between an
interocular time delay and a binocular disparity at the
level of neuronal responses. Because of this, it is
necessary that our model includes the temporal aspect
of neuronal responses. The model relies on the fact that,
based on the known spatiotemporal properties of real
binocular cells in the brain, these cells cannot distinguish
an interocular time delay from a binocular disparity. The
two explanations are equivalent for the classical Pulfrich
pendulum effect. However, the standard explanation fails
to explain the generalized Pulfrich effects to dynamic
noise patterns and stroboscopic stimuli, while our model
can explain these variations almost trivially. For the
dynamic noise patterns the standard explanation does not
work because there is simply no coherent motion to
convert a time delay into a real disparity in the stimuli.
One might argue that random correspondence in the noise
pattern may provide the required motion signal. This
argument is non-physiological, however, since a typical
cell will contain in its receptive fields many noisy dots
and cannot be said to detect a particular random
correspondence while ignoring many others (see below).
Our model explains this phenomenon naturally without
any additional assumptions because the model is built on
units with spatiotemporal frequency tuning. Dynamic
noise patterns have a broad spatiotemporal spectrum and
can excite these units, and, therefore, the effect should
still be present. For the stroboscopic stimuli, the standard
explanation fails because at any given time, only one of
the two eyes sees a stimulus and therefore there is
absolutely no disparity present in the stimulus at any
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time. A purely stereo vision algorithm would predict no
depth in this case. Again, our model explains this
phenomenon naturally without any additional assump-
tions because the temporal response properties of the
units automatically “fill in” the time gaps in the stimuli.

We would like to emphasize the generality of our
results as our derivations (see the Appendix) do not rely
on any specific functional forms of the cell’s receptive
field profiles. Instead, we only made some rather general
assumptions about cells’ properties. We discuss two of
these assumptions here in more detail. The first is the
quadrature pair method for constructing complex cells
from simple cells. This method was first used in motion
energy models (Adelson & Bergen, 1985; Watson &
Ahumada, 1985; van Santen & Sperling, 1985). It was
later adopted to model disparity sensitive complex cells
by Ohzawa et al. (1990). The mathematical justification
of using the quadrature pair construction as a method of
getting phase-independent disparity tuning was given by
Qian (1994). Although there is no direct evidence
supporting this construction, Freeman and coworkers
(Ohzawa et al., 1990; Freeman & Ohzawa, 1990) found
that this method models the responses of binocular
complex cells quite well. Therefore, even if the brain
does not literally use the method for constructing
complex cells, it is valid as a phenomenological
description of complex cell responses. We would like
to point out that just as in the case of stereo vision (Qian,
1994), the quadrature pair method is not an indispensable
part of our motion—stereo model either. To go from the
simple cell response [equation (A19)] to the complex cell
response [equation (A23)] in the Appendix, one can
simply sum up the squared responses of many simple cells
with their receptive field Fourier phases (#) uniformly
covering the entire range of 2. One can even replace
some of these simple cells with a set of properly aligned
LGN center—surround cells so that the resulting complex
cellis constructed from a mixture of simple and LGN cells.

The second assumption that warrants further discus-
sion is that the frequency tuning of simple cells are much
sharper than the Fourier spectra of the retinal images.
This assumption is used when we go from equation (A18)
to equation (A19). This is usually a good assumption
because the natural environment is rich in complex
textures and sharp boundaries. However, in the rare case
when the visual system is looking at a sine wave grating
this assumption is clearly violated. In general, if the
retinal image has a Fourier spectrum much sharper than
the frequency tuning of the cells, the equations we
derived [equations (3, 7, 9, 10, 12, 13, 14, 15, 16, 17 and
20)] still maintain their forms but w?, w) and w in these
equations should now represent the dominant spatiotem-
poral frequencies of the image instead of the preferred
frequencies of the cells. The preferred disparity and
velocity of a given cell will thus be different for different
stimulus frequencies. Consequently, if one uses a single
family of cells at a fixed frequency scale to estimate
stimulus disparity and velocity, the results will not be
accurate unless the dominant stimulus frequencies match
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the preferred frequencies of the cells. This, however, does
not pose a serious problem for the real visual system,
except for the stimulus with very high or low frequencies
(see the next paragraph), because the brain contains cells
tuned to a wide range of frequencies and the cells with the
highest responses are those whose preferred frequencies
do match those of the stimuli.

Based on the above discussion, we can also determine
how the predicted disparity by the model deviates from
the actual values for sinusoidal stimuli with very high or
low spatial frequencies. We consider the model with
either the phase-parameter based or the position-shift
based receptive field profiles (Zhu & Qian, 1996). If the
phase-parameter based receptive field description is used,
the model predicts that the disparities of those gratings with
very high spatial frequencies will be underestimated, while
those with very low frequencies will be overestimated.
The deviation will be more significant for the gratings
with spatial frequencies further away from the main
tuning range of the visual cortical cells. On the other
hand, the position-shift based algorithm should always
give the actual disparity value of the stimuli (within one
spatial period of the gratings) because their preferred
disparity is given by the shift parameter Ax, independent
of the stimulus frequencies. This result provides an
opportunity for distinguishing the two types of receptive
field descriptions via visual psychophysical experiments.

Two additional testable predictions can be made, based
on our theoretical results. First, we predict that the
response of a binocular cell to an interocular time delay
can be approximately matched by a binocular disparity
according to equation (10). To test this prediction, one
can first measure a cell’s tuning curves to binocular
disparity and to interocular time delay, then measure the
preferred spatial frequency (wg) and temporal frequency
(«?) of the same cell, and finally examine if the two
tuning curves are related to each other by the scaling
factor w?/w? along the horizontal axis. The second
prediction is also based on equation (10). The equation
predicts that cells with different preferred spatial to
temporal frequency ratios will, by themselves, “report”
different apparent Pulfrich depths for a given temporal
delay. If we assume that the perceived depth corresponds
to the disparities reported by the most responsive cells in
a population (or by the population average of all cells
weighted by their responses), then the perceived Pulfrich
depth should vary according to equation (10) as we
selectively excite different populations of cells by using
stimuli with different spatial and temporal frequency
contents. This prediction is particularly interesting when
stimuli without coherent motion are used. Note that both
predictions cannot be readily made by the standard
explanation of the Pulfrich effect because it says nothing
about the neurons in the brain.

Both motion detection and stereo vision have been
formulated as solving a correspondence problem in the
past. Algorithms based on this view often rely on explicit
matching of fine image features in successive frames (for
motion) or in the left and right images (for stereopsis).
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This explicit matching procedure, however, is unlikely to
be physiological because the receptive field sizes of
typical cells in the visual cortex are larger than the fine
image features, such as a dot or a zero-crossing in a
random dot stereogram. Indeed, even the cells in monkey
foveal striate cortex have a receptive field size of about
0.1 deg (Dow et al., 1981). A cell simply integrates
contributions of all image features in its receptive fields.
It is difficult to imagine that a cell could selectively mark
out a certain feature among many other similar ones
within its receptive field and try to match it with another
feature in the next time frame or in the other retina. Qur
motion-stereo model does not suffer from this problem as
it is based on the spatiotemporal receptive field properties
of real cells, and like other energy based models (Adelson
& Bergen, 1985; Watson & Ahumada, 1985; Heeger,
1987; Qian, 1994), it does not assume any explicit feature
extraction or matching and the correspondence problem
is solved in an implicit way through correlation-like
operations (Qian & Zhu, 1995).

In conclusion, we have derived a unified model of
motion and stereo vision using physiological mechanisms
and have provided a comprehensive and quantitative
explanation of a family of Pulfrich-like phenomena. We
also made specific predictions for further experimental
tests of the model. We are currently exploring applica-
tions of the model to other phenomena of motion—stereo
interaction. Our work demonstrates how computational
modeling can help bridge the gap between physiology
and perception. It also suggests that it may be more
fruitful to construct computational theories of vision
based on neurophysiology than to treat theories as
abstract concepts independent of physiological imple-
mentations (Marr, 1982).
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APPENDIX

In this appendix we derive the complex cell response expressions
under various conditions discussed in the text.

Derivation of equation (7) (motion—stereo integration)

Since a complex cell is constructed from a pair of simple cells, we
first derive simple cell responses. For a binocular simple cell with left
and right spatiotemporal receptive fields fix,y.t) and f(x,y.0), its
response to a stimulus with left and right retinal images I(x.y,) and
L(x,y,f) is given by (Freeman & Ohzawa, 1990; Ohzawa et al., 1990;
Qian, 1994):

+00
r(f) = / / dxdydf[fix,, ¢ — DLGoy )+ filwy,d — D6y 0)

(A1)

Although formally the integration is carried over the entire
spatiotemporal space, the actual domain is limited by the extent of
the receptive fields. Note that the convolution operation is applied to
the temporal dimension but not to the two spatial dimensions because
we only need to consider neurons at a given spatial location. Apply the
Fourier power theorem and use tilde to denote the Fourier transform of
a function and we have:

+00
rs(t) = /_ZO dwy dwy dw,[ﬁ(wx,wy,w,)il*(wx,wy,w,) (A2)

+i;(wx7 wyv wt)ir* (wxy wyv wt]e_iw’ty

where ., oy, and w, are the Fourier frequencies along the x, y and ¢
dimensions, respectively, and * denotes complex conjugate. We have
used the fact that the Fourier transforms of fi(x,y,#'—t) and f{x,y,t’) are
related by:

Ffilx,y,t = 1) = e F(filx,y,1)) (A3)

in equation (A2).

Freeman and coworkers (DeAngelis ez al., 1991, 1995) proposed,
based on their quantitative physiological studies, that the left and right
receptive fields of a binocular simple cell have corresponding retinal
locations but different phase parameters for the excitatory/inhibitory
modulations within the receptive fields, as represented by equations (1)
and (2). It is easy to show that, in the Fourier domain, equations (1) and
(2) differ by e&"(>)2¢ for well-tuned receptive fields, where A¢ is the
phase parameter difference defined in equation (4), and the sign
function is equal to 1 when its argument is positive, and —1
otherwise.* We can therefore assume that in general the Fourier
transforms of the left and right receptive fields are related byt

fr(wx,wy,wt) z];I(wpWy,wt)eisign(mx)m&_ (A4)

We first derive equation (7). The left and right images of a stimulus
patch with constant disparity D and velocity (V,, V,) can be written as}

Il(x»)’7t) :I(x—th,y—Vyt)v (AS)

L(x,y,t) =I(x — Vit + D,y — Vy1). (A6)
Using the definition of Fourier transform, it is easy to show that
il(wxywyywt) = 6(WxVx + way + wt)i(“"wi)’) (A7)

i D

ir(wwivat) :il(wwiyywt)e (AS)
where &() is the Dirac delta function. Substituting equations (A4), (A7)

1697

and (A8) into equation (A1) and using the delta function to carry out
the integration over w,, we have:

+00
re= // dusy dwy T (wy, wy ) (we, wy, w)) [1 + eisign(wn)d—tuD ] P
(A9)
where

wy = —wi Vs —wyVy (A10)

is the motion constraint (Watson & Ahumada, 1983).
Since I(x, y) and fi(x,y,?) are real functions, their Fourier transforms
satisfy the following properties:

I(—wy, ~wy) = I* (wy, wy) (A11)

and

fl(—wx, —wy, —wr) =fl*(wx,wy,w,). (A12)

Change the integration variables w, and w, to —w, and —w, in
equation (A9) and apply the above identities, we have
oC
re= [/ duw, dwyi*(wxywy)fl* (wx,wy,w:)[l + e—isign(w,)A¢+iwxD]eiu/,t
—00
(A13)
Since the integrands of equations (A9) and (A13) are conjugate to
each other, we add the two equations to obtain:
o0

re = // dwy dwy Re {i (wr, wy)f, (wy, wy, w)) [1 + gilsignw)Ap—wD )] e_’u"}

—o0

(A14)

where Re denotes the real part of a complex quantity. The terms in the
integrand are in general complex, and each of them can be written as an
amplitude multiplied by a complex phase term:

T(we, wy) = [ (e, wy) | ) Al5
'y y
Fulwon, wy, 1) = [fi(we, wy, wr) e o) (A16)
1 + eitsignon)ad—wD) 2‘cos <—————Sign(§X)A¢ - &)522> ) (A17)
Equation (A14) can then be written as:
oo
ry = //de dwy [T (ws, wy)|fi (we, wy, )]
-0
i A D
'cos (&ﬂ(_gx_)_lb - wx_)> cos (67 + 6 + 6 — wit). (A18)

We did not explicitly write out the o dependence of the 6 in the above
equation for clarity. Most primary visual cortical cells are well tuned to
spatial frequencies. Assume that the cell in equation (A18) is tuned to
the frequencies (w?, w;)) and that its tuning is significantly sharper than
that of the other terms in the equation, we can then approximate

*Note that under the alternative assumption of an overall horizontal
positional shift (Ax) between the left and right receptive fields (Zhu
& Qian, 1996; Wagner & Frost, 1993; DeAngelis et al., 1995), the
two Fourier transforms will differ by ¢*~27. The consequence of
this assumption will be considered below.

+More generally, one can assume a spatiotemporal phase instead of
associating the phase with the x dimension. The sign function will
then depend on all three frequency variables. The essentially
identical results can be derived.

$The disparities and velocities of real world stimuli are, of course, not
constant. However, this is a good approximation within the
spatiotemporal windows of visual cortical cells.
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fi(wy, wy,w;) by two delta functions, one peaked at (wg,wg) and the
other at (—w?, —wg), and simplify equation (A18) into:

. A W'D
1y A 4‘1(%‘2,0;3) cos (Tqb - "T)> ‘

o0
cos (6; + 67 + 6 — ‘u‘:,t)//dw)r dwy Ifi (ws, wy, w)) |,
0

where (A19)

(A20)

Here we have let sign(w?) = 1 since, without loss of generality, we can
assume w > 0. We also used the fact that all three fs satisfy the
relation 8(—w?, —wf) = —6(wf, ). Equation (A19) is the expression
for the simple cell response.

We now compute complex cell responses using the quadrature pair
construction. It is easy to show that the response of the simple cell that
forms a quadrature pair with the simple cell in equation (A19) is given

by:
A¢ WD
cos (7 - ) ‘

rl 4|i (wo wo)
sin(f; + 6 + 6 — w:t)//dwx duwy |fi (we, wy, o) |-
0

A

x1 %y

(A21)

This is because the 8 of the two simple cells differ by 7/2 while all the
other parameters are the same. The response of a complex cell
constructed from this quadrature pair is then given by:

re = (rs)2 + (rf)z

2
N s 9]
A¢ D ;
COSZ( 2¢ _ wx2 ) -//dwx du{v m(wxiwva:N
0

(A23)

(A22)

Xy

~ 16}? (wo wo)

This completes the derivation of equation (7).

Derivation of equation (9) (Pulfrich’s pendulum)

To derive equation (9), f, (x, ¥, #) should now be replaced by f; (x,
y,t+Af) in equation (Al). Or equivalently, its Fourier transform
f,(wy, wy,w,) should be replaced by f; (wx, wy, w;)e !, Also, disparity
D in equation (A6) should be set to zero. Here we assume that the cells
are well tuned to spatiotemporal frequencies {u?, wg, w?). For the cells
to have good responses &; should be equal to w?. All the other steps of
derivation are the same as above.

Derivation of equation (12) (the generalized Pulfrich effects)

To derive equation (12), f, (x, y, £) should be replaced by f, (x, ¥,
t+Af) in equation (Al) and equations (AS5) and (A6) should be
replaced by

Ii(x,y,1) =I(x,y,1) =1(x,y,1), (A24)

because here we only assume a general spatiotemporal pattern, which
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may or may not contain any coherent motion. When we get to the stage
of equation (A19), we need to approximate fi{wy,wy,w;) by two delta
functions peaked at (wg, Wy, w‘S and ng, —f), =} ). All the other
steps of derivation are the samé as those for deriving équation (7).
Derivation of equations (15) and (16) (receptive fields with both
positional shift and phase difference)

When there is both a horizontal positional shift Ax and a phase
parameter difference A¢ between the left and right receptive fields of a
simple cell, equation (25) should be replaced by

F (W, wyy i) = filawy, wy,wy eSiEn(@e) Bt Ax A25
'y 'y

All the other steps for deriving equations (15) and (16) are the same as
those for deriving equations (7) and (9) above.

Derivation of equation (17) (the Pulfrich effects explained by a
temporal stretching)

When the right receptive field f, (x, y, £) is temporally stretched by a
factor of k with respect to the ¢ = 0 point, its mathematical description
becomes f, (x, y, kf). Equation (25) should therefore be modified as:

1+ w, 1. W\ i
jE’(fr (xzy’ kt)) = ;fr (wxv Wy, ?t) =~ %fl (wx» Wy, Tt) ezslgn(w,)Aqb.
(A26)

Using the procedures similar to that for deriving equation (A14) above,
we found that the simple cell’s response to a stimulus with motion and
disparity is given by:

o0
rs = // dw, dwy
—00

Re {17 (W, wy )fl (Wx: wy, w)) [1 +

T

Fulwsr @y, i/K) | isignton) 8D -t
Ky (0 iy )

(A27)
Let
i, y,8) = fltnswy e (5254) (A28)
and define
r(wy, wy, w), k) = %M, (A29)
. Fi(ws, wy,w7)
and
Aa(wx,wy,wi,k) = a(wx,wy,w;) — a(wx,wy,w;/k), (A30)
we have:
00
rs =//dwx duwy Re{i(wx, wy)f, (wy, wy, ).
“o

x [1 + rei(sign(w,)Aa&—w,DAAa):le—Mt}. (A31)

Applying the similar procedures that led us from equation (Al4) to
equation (A23), we obtain equation (17).



