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Abstract

Recent psychophysical experiments suggest that humans can recover only relief structure from motion (SFM); i.e., an object’s 3D

shape can only be determined up to a stretching transformation along the line of sight. Here we propose a physiologically plausible

model for the computation of relief SFM, which is also applicable to the related problem of motion parallax. We assume that the

perception of depth from motion is related to the firing of a subset of MT neurons tuned to both velocity and disparity. The model

MT neurons are connected to each other laterally to form modulatory interactions. The overall connectivity is such that when a

zero-disparity velocity pattern is fed into the system, the most responsive neurons are not those tuned to zero disparity, but instead

are those having preferred disparities consistent with the relief structure of the velocity pattern. The model computes the correct

relief structure under a wide range of parameters and can also reproduce the SFM illusions involving coaxial cylinders. It is

consistent with the psychophysical observation that subjects with stereo impairment are also deficient in perceiving motion parallax,

and with the physiological data that the responses of direction- and disparity-tuned MT cells covary with the perceived surface order

of bistable SFM stimuli. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We can perceive vivid depth from appropriate retinal
motion patterns. This phenomenon is known as the ki-
netic depth effect (Wallach & O’Connell, 1953) or
structure from motion (SFM) (Ullman, 1979). Many
models for computing SFM have been proposed. The
best known are the class of models based on Ullman’s
theorem (and its variations) that under orthographic
projection, three views of four non-coplanar points from
a rigid object are sufficient for uniquely determining the
3D structure of the points (up to a mirror reflection)
(Ullman, 1979). Ullman later proposed an ‘‘incremental
rigidity algorithm’’ for recovering structure from input
data over time (Ullman, 1984). While these studies are

extremely interesting in their own right, they do not tell
us how neurons in the brain could solve the problem. In
fact, there is no evidence that visual neurons could ex-
plicitly track positions of fine image features over time,
as implied by the input representation of these models.
More recent psychophysical experiments indicate that

humans seem to use velocity information instead of
positional locations of image features for surface inter-
polation in SFM tasks (Treue, Andersen, Ando, &
Hildreth, 1995). This result has led to a major modifi-
cation of the incremental rigidity algorithm (Hildreth,
Ando, Andersen, & Treue, 1995). While the new method
is consistent with a wide range of psychophysical data, it
relies on an explicit velocity representation as the input.
In reality, the velocity information is only coded in a
distributed fashion by a population of cells with broad
tuning curves.
In addition to the input representation, another

problem with most of the existing models is that they
compute the Euclidean metric structure of the object as
the output (Ullman, 1979, 1984; Hildreth et al., 1995).
Psychophysical evidence indicates that while observers
are able to accurately judge an object’s topological or
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ordinal properties, they have considerably more diffi-
culty on tasks that require an accurate perception of
Euclidean metric structure (Todd, 1998; Todd & Perotti,
1999). For instance, observers required to make judg-
ments about lengths or angles of visible objects in 3D
space resort to using ad hoc heuristics, which typically
produce low levels of accuracy and reliability, and which
can vary unpredictably among different individuals or
for different stimulus configurations (Todd & Perotti,
1999). These experiments suggest that humans can only
recover relief SFM, i.e. an object’s shape can only be
determined up to a stretching transformation along the
line of sight (Todd & Perotti, 1999).
There have also been some suggestions in the litera-

ture on how SFM may be computed with physiologi-
cally plausible mechanisms, but these suggestions
remain largely descriptive. For example, Nawrot and
Blake (1991) argued that SFM is processed by a network
of disparity and motion selective units, but they only
simulated the transition between bistable percepts
and did not consider how to compute the perceived
structure. Buracas and Albright (1996) modeled MT
receptive field surrounds and found that their proper-
ties resemble those of differential motion operators
that could characterize the 3D shape of a smooth
moving surface (Droulez & Cornilleau-Perez, 1990;
Koenderink & van Doorn, 1992); however, they did not
show how to use those MT receptive fields to compute
SFM.
In this paper, we propose a specific model for com-

puting relief SFM using a subset of area MT/V5 neu-
rons. MT seems to play an important role in SFM:
Neurons in this area are tuned to velocity gradients
typically found in SFM stimuli (Treue & Andersen,
1996; Xiao, Marcar, Raiguel, & Orban, 1997a), and a
selective lesion of this area can impair SFM perception
in monkeys (Andersen & Siegel, 1990). In addition, the
responses of MT cells covary with the reversal of the
perceived surface-order in bistable SFM stimuli, in such
way that is consistent with the disparity and direction
tuning of the cells (Bradley, Chang, & Andersen, 1998).
This last finding supports the notion that stereo pro-
cessing and motion processing overlap in the brain, and
that SFM perception is mediated by cells tuned to both
disparity and motion (Rogers & Graham, 1982; Nawrot
& Blake, 1989, 1991; Qian, 1994; Qian & Andersen,
1997). Further support comes from the psychophysical
report that amblyopic subjects perform much worse
than normal subjects not only on depth discriminations
based on disparity, as expected, but also on depth dis-
criminations based on motion parallax (Thompson &
Nawrot, 1999). We have therefore constructed our SFM
model based on a subset of disparity- and motion-tuned
MT cells and the interactions among them. Some pre-
liminary results have been reported previously in ab-
stract form (Fern�aandez & Qian, 2000).

2. Methods

For simplicity, we assume that the motion patterns
are generated by an object rotating about an axis per-
pendicular to the line of sight (but not necessarily ver-
tical), or by a relative translational motion between the
observer and the object (i.e., motion parallax). We also
assume that the viewing distance is large compared with
the object size so that the retinal image can be approx-
imated as a scaled orthographic projection. This last
assumption is justified since human observers do not
appear to take advantage of the additional information
in the perspective projection during perceptual analysis
of 3D structure (Todd, 1984, 1998). Under these as-
sumptions, the image velocity vectors are all parallel to
each other, and we only need to consider the speed of
motion (with the sign of the speed indicating the direc-
tion of motion). We will denote the common motion
axis as the x-axis.
For each retinal location, we consider a population of

model MT neurons tuned to various combinations of
speed and disparity. For the convenience of mathemat-
ical analysis, we assume Gaussian tuning curves for the
classical receptive fields (but we have also verified our
model with log-normal speed tuning curves through
simulations; see Section 3). At location i, the firing rate
A of a neuron preferring speed v0i and disparity d0i in
response to image speed vi and disparity di is thus given
by:

Aði; v0i ; d0i Þ ¼ A0 exp �ðv0i � viÞ2

2r2v

 !
exp �ðd0i � diÞ2

2r2d

 !

ð1Þ

where A0 is the maximum firing rate, and rv and rd

determine the speed and disparity tuning widths, re-
spectively. The preferred speed (v0i ) and disparity (d

0
i ) are

constants for a fixed cell, but varies among different cells
at location i. We next consider modulatory influences to
a cell from L other cells tuned to different retinal loca-
tions. Specifically, we assume the overall firing rate of a
cell is computed as:

f ðaÞ ¼ GAðaÞ
"
1þ

XL
b 6¼a

�abAðbÞ
#

ð2Þ

where we have defined a � ði; v0i ; d0i Þ to denote the triplet
of parameters that identify each cell in Eq. (1), and b
denotes the triplet of parameters indexing another cell.
�ab represents the strength of the modulatory connection
between cells a and b. G is a gain-control factor for
normalizing excessive activity (Heeger, 1992), and is
defined as:

G ¼ gPm
a f ðaÞ ð3Þ
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where g is a constant, and the summation is local, over
m neurons tuned to the same retinal position i but dif-
ferent v0i and d0i . When there is no stimulation in the
classical receptive field of a cell (i.e., AðaÞ ¼ 0), the
modulatory connections from other cells in Eq. (2) do
not contribute.
It should be noted that as a simplification, here we

start with response tuning curves (Eq. (1)) instead of
with detailed receptive field profiles. Therefore, we will
only specify the center locations (index by i) of the re-
ceptive fields but not the other aspects. For this reason,
vi and di should really be viewed as the mean stimulus
speed and disparity sensed by the cells’ classical recep-
tive fields. It should be possible to construct a more
detailed model in the future by using appropriate spa-
tiotemporal receptive field profiles that can indeed gen-
erate responses tuned to both disparity and speed (Qian
& Andersen, 1997; Chen, Wang, & Qian, 2001).
We would like to choose the pattern of connectivity

�ab among the speed- and disparity-tuned cells in such a
way that when a zero-disparity motion pattern is fed
into the system, cells with preferred disparities consis-
tent with the relief depth structure of the velocity pattern
are maximally activated. To determine the connectivity,
we first examine how the image speed and disparity are
related to each other. For an object rotating with an-
gular speed X about an axis perpendicular to the line of
sight, it can be shown that the projected speed of a point
on the object is given by (see Appendix A):

v ’ �X
ðZ � Z0Þ

Z0
ð4Þ

where Z is the distance of the point along the line of
sight, and Z0 is the distance of the axis of rotation. Thus,
for two arbitrary points on the object with a relative
depth DZ, their relative image speed is:

Dv ’ �X
DZ
Z0

ð5Þ

If the object is viewed stereoscopically, with a fixation
distance approximately equal to Z0, the relative disparity
between any two points is related to their relative depth
DZ according to:

Dd ’ a
DZ
Z20

ð6Þ

where a is the inter-ocular distance (see, e.g., Howard &
Rogers, 1995). Combining Eqs. (6) and (5) to eliminate
DZ we obtain:

Dv ’ �XZ0
a

Dd ð7Þ

That is, the relative image-speed and relative image-
disparity between any two points on an rotating object
are proportional to each other.

In the case of a relative translation between the ob-
server and the object, an expression similar to Eq. (7)
can be derived (see Appendix A):

Dv ’ � T
a

Dd ð8Þ

where T is the component of translational velocity in the
frontoparallel plane. In the following, we will mainly
discuss the rotation case, but keep in mind that equiv-
alent results also hold for motion parallax; one only
needs to replace the product of the angular speed X and
viewing distance Z0 by the relative motion speed T.
To better visualize connectivity, we arrange the MT

cells tuned to a given retinal position on a plane, with
the horizontal axis representing preferred disparity and
the vertical axis representing preferred speed (Fig. 1).
For example, a neuron positioned in the upper-right
corner represents a cell tuned to a large positive speed
and a large positive disparity. Eq. (7) suggests that we
should introduce connections (i.e., �ab 6¼ 0) between cells
for different retinal locations only if the difference be-
tween their preferred disparities and the difference be-
tween their preferred speeds are proportional to each
other:

Dv0 ¼ �KDd0 ð9Þ

To see the implication of this connectivity intuitively,
consider a zero-disparity input stimulus with different
speeds at two different locations. The stimulus will best
activate cells with different preferred speeds at the two
locations, i.e., Dv0 6¼ 0. The connection pattern specified
by Eq. (9) then ensures Dd0 6¼ 0, i.e., the most activated
cells will also have different preferred disparities.
Therefore, although the stimulus has the same, zero
disparity everywhere, the most activated cells will not all
prefer the same disparity. In other words, the connec-
tivity pattern can convert a speed gradient into a dis-
parity gradient. A more quantitative analysis will be
presented in Section 3 below.

Fig. 1. A schematic illustration of the modulatory connections among

MT cells tuned to three adjacent retinal locations i� 1, i, and iþ 1. At
each location, cells preferring different disparity d0 and speed v0 are
arranged into a 2D array for better visualization. Each cell is repre-

sented as a small square. Only the connections from a cell at i� 1 to
cells at i and iþ 1 are shown in the figure. The cells whose d0 and v0

parameters are related through Eq. (9) are connected. Therefore, the

connectivity pattern follows a straight line with slope �K and passing
through the corresponding cells (marked gray) at different locations

with the same speed and disparity preference.
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In Fig. 1, Eq. (9) means that a cell at a given location
is only connected to cells at another location that fall
along a straight line with slope �K and passing through
the corresponding cell (marked gray) with the same
speed and disparity preference. We will also consider in
our simulations the cases where the connection strength
falls off gradually around this straight line, and where
the connection strength decays with the retinal distance
between cells’ receptive field locations. To account for
the bistability of SFM perception, we further assume
that there are actually two sets of connections corre-
sponding to K ¼ 	K0, for the two opposite senses of
object rotation, and that they compete with each other
through mutual inhibition so that only one set of con-
nections (i.e., one K value) is functional at a given time
(see Bistable Ambiguous Percepts).
The connectivity defined above gives rise to syner-

gistic surrounds because �ab is always positive (i.e., ex-
citatory). Both synergistic and antagonistic surrounds
exist in MT (Born & Tootell, 1992; Born, 2000). Our
model only makes use of the synergistic surrounds. We
will also show later, in connection with Eq. (15), that
antagonistic surrounds may be an emergent property of
the model.
We can fix the value of K in Eq. (9) instead of letting

it depend on X and Z0 since we are only interested in
encoding the relief structure by our model MT cells; if
K 6¼ XZ0=a for a given stimulus, the computed structure
will be related to the true structure by a stretching
transformation along the line of sight. Other MT cells or
other brain areas such as MST might be involved in
estimating the scale factor along the line of sight, based
on retinal or extra-retinal cues. It is also possible for the
modulatory connections specified by Eq. (9) to be dy-
namically remapped (Anderson & Van Essen, 1987) for
each viewing distance such that K is proportional to the
viewing distance; such a remapping could be performed
by the feedback connections from MST to MT. (In the
case of motion parallax, the remapping should be based
on the translational motion of the observer.) Since
human subjects are very poor at judging 3D distances in
SFM tasks (Todd, 1998; Todd & Perotti, 1999), the
estimation of the scale factor and the remapping of
the connections must be crude. We will not deal with the
scaling or remapping problem in this paper. For the
purpose of showing the simulation results, we simply
chose a scaling factor such that rotating circular cylin-
ders are computed near veridically. This is mathe-
matically equivalent to setting K to the value (see
Appendix A):

K ¼ 3phjvjiZ0
4ah

ð10Þ

where hjvji ¼
PN

i jvij=N is the averaged absolute value
of speed over the stimulus, and h is the angular size of
the cylinder. We will use angled brackets to denote an

average over a stimulus on the retina throughout the
paper.
Therefore, for a given input motion field, we can

apply Eqs. (1)–(3) and the connectivity pattern specified
by Eq. (9) to determine, for each retinal location i, the
population activity f ði; v0i ; d0i Þ of all cells tuned to dif-
ferent speed v0i and disparity d

0
i at that location. We can

then take the population average of the preferred dis-
parity (weighted by the firing rate) at location i as the
‘‘perceived’’ disparity reported by our model:

di ¼
R1
�1
R1
�1 d0i f i; v0i ; d

0
i

� 	
dðd0i Þdðv0i ÞR1

�1
R1
�1 f ði; v0i ; d0i Þdðd0i Þdðv0i Þ

ð11Þ

To simplify the calculations, we will reduce the above
expression by cutting a slice through f ði; v0i ; d0i Þ at v0i
equal to stimulus speed vi, and then taking a one-di-
mensional average on the slice according to:

di ¼
R1
�1 d0i f i; vi; d0i

� 	
dðd0i ÞR1

�1 f ði; vi; d0i Þdðd0i Þ
ð12Þ

Here f ði; vi; d0i Þ denotes f ði; v0i ¼ vi; d0i Þ, i.e., f ði; v0i ; d0i Þ
evaluated at v0i ¼ vi. Our simulations show that there is
practically no difference between the results produced by
Eqs. (11) and (12). We will use an over-line to denote an
average over a population of cells for a given retinal
location throughout the paper.
In the simulations involving transparent cylinders

with a front surface and a back surface, we assume that
at a given location, the responses of classical receptive
fields are determined by velocity vectors from only one
surface, and that receptive fields for different locations
represent velocity vectors belonging to different surfaces.
This assumption is consistent with our previous finding
that transparent motion appears to be detected through
locally unbalanced motion signals (Qian, Andersen, &
Adelson, 1994a,b; Qian & Andersen, 1994), and allows
us to avoid the problem of interference between opposite
velocity vectors (from the front and back surfaces) at
each location.

3. Results

We now present our analytical and simulation results.
We first consider the simple case where rv ! 0 (i.e,
model MT cells have infinitely sharp speed tuning), and
the modulatory connection between two cells is non-
zero only when their preferred parameters satisfy Eq. (9)
exactly. (These assumptions will be relaxed below.)
Thus, at each retinal position i only the cells with pre-
ferred speed v0i equal to stimulus speed vi will be active,
and the total number (L) of cells modulating a given cell
at i is equal to the number (N) of sampled retinal posi-
tions that send modulatory connections to position i.
The overall firing rate of an MT cell defined in Eq. (2) to
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a zero-disparity motion pattern is then given by (see
Appendix A):

f i; vi; d0i
� 	

¼ A0G exp �fd0i g
2

2r2d

 !

� 1þ
XN
j6¼i

A0�ij exp �ðd0i þ vij=KÞ2

2r2d

 !" #

ð13Þ

where vij � vi � vj is the difference of image speeds at
locations i and j, and f ði; vi; d0i Þ � f ði; v0i ¼ vi; d0i Þ. The
strength of the modulatory connections between neu-
rons is denoted �ij because its value in this case only
depends on the preferred speeds v0i ¼ vi and v0j ¼ vj of
the two cells under consideration.
Without the modulatory connections (i.e., �ij ¼ 0),

the above population response as a function of d0i will
simply be a Gaussian peaked at zero, and the ‘‘per-
ceived’’ disparity according to Eq. (12) will be zero, as
expected. With the modulatory connections, however,
the peak location of the population response will be
shifted. As we show in Appendix A, if we make the
specific choice of

�ij ¼ � exp
v0i � v0j
2Krd

 !22
4

3
5 ¼ � exp

vij
2Krd

� �2" #
ð14Þ

then a simple analytical result can be obtained for the
‘‘perceived’’ disparity (Eq. (12)):

di ¼
1

K̂K
hvið � viÞ ð15Þ

where

K̂K ¼
2K

ffiffiffi
2

p
þ ðN � 1ÞA0�

� 	
NA0�

ð16Þ

and hvi is the stimulus speed averaged over the N sam-
pled retinal positions that have connections to position i
and include position i. Eq. (15) means that the computed
equivalent disparity at a location is proportional to the
difference between the stimulus speed vi at that location
(which, as we mentioned in Section 2, should really be
viewed as the mean speed in the cells’ classical receptive
field at that location) and the average speed hvi of the
stimulus over a larger area including both the classical
receptive field and the modulatory surround. The model
can therefore compute the relief structure of the input
motion pattern (cf. Eq. (7)). For the special case where
the input motion field is constant everywhere the mean
speed vi sensed by the cells’ classical receptive fields will
be equal to the mean speed hvi pooled over the larger
area, and the ‘‘perceived’’ disparity will be zero ac-
cording to Eq. (15). For input patterns with a spatial
speed gradient, on the other hand, the ‘‘perceived’’ dis-
parity will not be zero in general. In particular, for a
transparent cylinder with opposite front and back mo-

tion fields, vi sensed by the classical receptive fields will
be dominated by only one of the two motion fields at a
given position (see Section 2) while hvi will be zero be-
cause it pools over many positions, with half of them
dominated by the front motion fields, and the other half
dominated by the back motion fields. Therefore, the
‘‘perceived’’ disparity will simply follow vi. For an
opaque cylinder with only the front motion field visible,
hvi will not be zero, but it will be smaller than vi at
positions near the center of the cylinder and larger than
vi at positions near the edges.
Note that although we have computed the ‘‘per-

ceived’’ disparity di from the population activity in Eq.
(15) to make sure that the model works, the brain may
not have to do so explicitly because the distributed
representation in the population activity might directly
correspond to the perception of di. On the other hand, if
there are cells in area MT that represents di explicitly,
then according to Eq. (15) these cells should show cen-
ter-surround antagonism because the stimulus speed vi
in the cells’ classical receptive fields at a given location i
is subtracted from the average stimulus speed hvi over a
larger region containing i. The implication is that cells
with antagonistic surrounds should be at a later stage of
processing than cells with synergistic surrounds. Both
symmetric and asymmetric surrounds have been hy-
pothesized (Buracas & Albright, 1994, 1996) and found
(Xiao, Raiguel, Marcar, Koenderink, & Orban, 1995;
Xiao, Raiguel, Marcar, & Orban, 1997b) in area MT. In
our model, the surround area is determined by all the
other locations that send modulatory connections to
location i; its exact shape is not important because the
spatial sampling used for computing hvi is not critical.
Also note that the proportionality constant K̂K in Eq.

(15) is not equal to K in Eq. (9) for specifying connec-
tivity. This does not represent a problem since we are
only interested in relief structure. If NA0� � 1, which is
the case for the parameters used in our simulations, then
we have:

K̂K=K ¼ 2 ð17Þ
This means that the computed disparity is half of the
value specified by the connectivity pattern. This makes
sense because the input stimulus has zero disparity and
thus excite cells tuned to zero-disparity best, while the
connectivity pattern favors cells tuned to a non-zero
disparity determined by the K parameter. Therefore, the
peak location of the population activity is halfway be-
tween that specified by the input and that specified by
the connectivity.
We have made extensive numerical simulations to

confirm the above analytical result. An example of our
simulation is shown in Fig. 2. Here, the input pattern is
the projected motion of a transparent rotating cylinder,
and the input disparity is zero everywhere. Fig. 2a shows
the population activity profile of the model cells tuned
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to different disparities and retinal locations. For clarity,
only the results representing the near half of the cylinder
are shown. (The activity representing the far half of the
cylinder is a mirror reflection of Fig. 2a with respect to
the zero-disparity plane.) The activity profiles from the
two halves of the cylinder do not interfere with each
other in our model because we assume (see Section 2)
that only the velocity vector from a single surface is
represented by a given classical receptive field (Qian
et al., 1994a,b; Qian & Andersen, 1994). The section of
the activity in Fig. 2a at a fixed position is plotted in Fig.
2b. It is clear that although the input stimulus has zero
disparity, the most active cell is tuned to a non-zero
disparity. Fig. 2c shows that the computed disparities
(Eq. (12)) at different retinal positions resemble the
cylinder’s cross-section. We also plotted the computed
disparity as a function of the input speed (Fig. 2d). The
straight line confirms that the relief structure is indeed
computed according to Eq. (7).
Very similar results can be obtained if we relax the

condition rv ¼ 0. As we show analytically in the Ap-

pendix A, Eq. (15) is still valid although the expression
for K̂K has to be modified. With a non-zero rv, the active
neurons for a given retinal position i are not limited to
those tuned exactly to input speed vi. Instead, cells tuned
to nearby speeds will also respond, albeit to a lesser
extent. Therefore, unlike Fig. 2b for the zero-rv case,
now the population activity of all cells for a given lo-
cation is not only a graded function of the preferred
disparity but also a graded function of the preferred
speed. This population activity computed at one posi-
tion is shown in Fig. 3. To show such population activity
for all positions would require a four dimensional figure.
To simplify the matter and to facilitate comparison with
the zero-rv case in Fig. 2 we eliminated the preferred-
speed (v0i ) dimension by cutting a slice through v0i ¼ vi,
the most responsive cell along that dimension, and the
reduced population response as a function of the pre-
ferred disparity for all positions is shown in Fig. 4a. This
figure, and the rest of the simulation results in Fig. 4, are
very similar to those in Fig. 2, demonstrating the proper
computation of the relief structure.

Fig. 2. Simulation results for a transparent rotating cylinder. (a) Population activity profile of the model cells tuned to different disparities and retinal

locations (x) perpendicular to the axis of rotation. For clarity, only the results for the near half of the cylinder are shown. The contour of the most

active cells resembles the relief structure of a cylinder. (b) The section through the population activity profile at a fixed position 2:7� from the center of
the cylinder. The figure shows that although the input stimulus has zero disparity, the most active cell is tuned to a non-zero disparity. (c) Computed

disparities (Eq. (12)) at different retinal positions resemble the cylinder’s shape. (d) Computed disparity (same as in (c)) as a function of the input

speed. The straight line confirms that the correct relief structure is computed by our model (see Eq. (7)). For this simulation, the cylinder had a radius

of 6�, and the maximal retinal speed at the center of the projection was vmax ¼ 6�=s. The model parameters used were rd ¼ 1�, rv ¼ 0, A0 ¼ 50 spikes/
s, � ¼ 1, K ¼ 5=s, and g ¼ 500. We considered m ¼ 41 neurons at each retinal position tuned to disparities between �3� and 3�, and sampled the
cylinder at N ¼ 41 retinal positions perpendicular to the axis of rotation.
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The main difference between the the case of rv ¼ 0
and the case of rv 6¼ 0 is the width of the population
response as a function of the cells’ preferred disparity
(cf. Figs. 2b and 4b). Analytical (see Appendix A) and
numerical results both show that in the limit of
NA0� � 1, the standard deviation of the population ac-
tivity along the disparity dimension averaged over all
retinal positions is

r2 ’ r2d
2
þ r2vel þ r2v

4K2
ð18Þ

where rvel is the standard deviation of the input speed
distribution profile. Thus, the effect of adding a finite
tuning in speed (rv 6¼ 0) is to broaden the population
activity. However, the peak locations which deter-
mine the computed disparity do not change significantly
(cf. Figs. 2c and 4c).
We used Gaussian disparity and speed tuning curves

above for their analytical convenience. However, the
qualitative features of our model are insensitive to the
details of the tuning curve shape. This is because for any
population response, the connectivity pattern in the
model will tend to convert an appropriate motion field
into an equivalent disparity representation by shifting
the response along the disparity dimension. Since the
speed tuning of visual cortical cells is often skewed to-
wards lower speed (Maunsell & Van Essen, 1983), we
have performed additional simulations with a log-nor-
mal speed tuning function, and obtained very similar
results (not shown). The only difference is that the
equivalent disparity computed with the log-normal
function is somewhat smaller than that computed with
the corresponding normal function. The reason is that

Fig. 3. The computed population activity profile of all cells tuned to

different disparities and speeds for a given retinal location 2:7� from
the center of the cylinder. The simulation parameters were the same as

in Fig 2, except that rv ¼ 0 was replaced by rv ¼ vmax, the maximal
retinal speed in the stimulus.

Fig. 4. Same as Fig 2, except that rv ¼ 0 was replaced by rv ¼ vmax. The main effect is a broadening of the population responses (cf. Fig. 2b). The
computed structure is nearly identical to that of Fig. 2. For each retinal position i we used a population of 29 cells tuned around the input speed vi
between vi 	 rv. We also made a more physiologically plausible simulation in which rv is proportional to v0i instead of a constant for all cells, and
nearly identical results (not shown) were obtained.
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with the log-normal tuning function, a cell’s response is
stronger on the right side of the peak (the preferred
speed) than on the left side. Therefore, for a given
stimulus speed, cells preferring lower speed contribute
more than cells preferring higher speed. Since cells pre-
ferring lower speeds connect to cells preferring lower
disparities as well, according to the connectivity pattern,
the computed equivalent disparity is smaller. Of course,
the relief structure is not affected by the smaller disparity
values.
We assumed above a sharp pattern of modulatory

connections according to Eq. (9) exactly. We have also
made more realistic simulations by using a graded
connectivity pattern around the straight-line pattern
determined by Eq. (9) (see Fig. 1). Specifically, we used a
Gaussian connection strength distribution centered on
the straight-line and with a rc ¼ 1� along the preferred-
disparity dimension; we sampled 41 different preferred-
disparity values within 	2rc of each central value. The
results (not shown) are nearly identical to those in
Fig. 2.
In the above simulations, we assumed that the con-

nection strength is independent of the difference between
receptive field locations of the cells. It may be more
plausible to let the connection strength decay as a
function of the distance between the cells’ receptive field
locations. We therefore considered the following func-
tion for the connection strength:

�ij ¼ � exp
vij
2Krd

� �2" #
exp

�Dx2

2r2x

� �
exp

�Dy2

2r2y

 !
ð19Þ

where � is a constant and x; y are retinal position coor-
dinates. Again, our simulations produced nearly iden-
tical results (not shown) to those in Fig. 2. In addition,
the results are not sensitive to the values of rx and ry .
It should be clear from the above that our model is

quite robust against parameter variations. In fact, if Eq.
(14) is used for �ij, practically any parameter set can be
used. The main difference among different sets of pa-
rameters is in the widths and heights of the population
activity, but the correct relief structure is always ob-

tained. Our simulations also demonstrate that Eq. (14),
which is for simplifying the analysis, is not critical. In-
deed, we can obtain very similar results (not shown) by
simply letting �ij be a constant so long as the product
Krd is large enough such that the expression on the right
hand side of Eq. (14) does not vary much over the
stimuli. It is also worth noting that although we simu-
lated a cylinder above, our analytical result (Eq. (15))
does not depend on a particular object shape.
Finally, we would like to note that our model is

highly robust against noise. This is because unlike
models using differential operators that may amplify
noise, our model mainly rely on summation of activities
from many cells, thus effectively smoothing out the noise
in individual responses. For this reason, noise added to
the responses inside the summation in Eq. (2) will have
negligible effects to the final responses. Obviously, noise
should have the greatest impact when it is added to the
final responses (left hand side of Eq. (2)) directly. We
considered this worst case scenario by assuming that the
final responses used in the calculation of equivalent
disparity are drawn from a Gaussian distribution with a
mean given by Eq. (2) and a variance equal to two times
the mean. The simulation results corresponding to Fig.
2b and c is shown in Fig. 5a and b. It is clear from the
Fig. 5b that the relief structure is only degraded some-
what by the noise, but not destroyed. Note that here the
equivalent disparity was computed with only a total of
41 sampled retinal positions. If we increase the number
of sampled positions to 201, the effect of noise is much
reduced (Fig. 5c), as expected.

3.1. Some illusions

Ramachandran, Cobb, and Rogers-Ramachandran
(1988) reported some interesting SFM illusions using
projections of two rotating coaxial cylinders. In the first
demonstration, the two cylinders have the same radius
so that their surfaces occupy the same locations in the
3D space, but one cylinder is rotated at twice the speed
of the other. Perceptually, however, human observers

Fig. 5. Same as Fig. 2, except that Gaussian noise with a variance proportional to the mean has been added to the final neuronal responses. (a)

Noise-added population activity at a fixed position 2:7� from the center of the cylinder (cf. Fig. 2b). (b) Computed disparities at different retinal
positions with N ¼ 41 sampled retinal positions (cf. Fig. 2c). (c) Computed disparities at different retinal positions with N ¼ 201 sampled retinal
positions.
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see two surfaces that are separated in depth. Our model
reproduces this illusion, as shown in Fig. 6a. This is a
simple consequence of imposing the same K in Eq. (9)
for the two objects. The parameters for the faster cyl-
inder are the same as those in Fig 2, and vmax for the
slower cylinder is half the value of the faster one.
In the second demonstration, one of the cylinders has

half the radius of the other, but its rotation is twice as
fast. Therefore, the projected image speed is the same for
the points in the center of both surfaces. In this case,
human observers perceive two surfaces as merging to-
gether in the center. Again, our model is able to repro-
duce this illusion by imposing the same value of K in Eq.
(9) to both surfaces. This is shown in Fig. 6b. The pa-
rameter values are the same as in Fig. 2 for each surface
except that the smaller cylinder has half the radius. Al-
though the model of Hildreth et al. (1995) can also ex-
plain these perceptual illusions, our model is
significantly simpler and physiologically more plausible.

3.2. Integration of stereo and motion shape cues

We have assumed above that the input stimuli have
zero disparity. We now show that our model also works
for stimuli in which both motion and disparity cues are
present. When the input disparity field is different from
zero, the overall firing rate of a cell at location i becomes
(see Appendix A)

f i; v0i
�

¼ vi; d0i
	
¼ A0 exp �ðd0i � diÞ2

2r2d

! 

� 1þ
XN
j 6¼i

A0�ij exp �
d0i � dj þ vij=K
� 	2

2r2d

! #"

ð20Þ
where di and dj are the stimulus disparities at retinal
positions i and j, respectively. Define Ks according to:

vi � vj ¼ �Ksðdi � djÞ ð21Þ

For the stimuli we consider in this paper, Ks is equal to
either XZ0=a or T=a (see Eqs. (7) and (8)), and does not
depend on the positional indices i and j. We demonstrate
in the Appendix A that for the special case of Ks ¼ K the
following analytical solution for the computed disparity
is obtained:

di ¼
v0 � vi
K

ð22Þ

where v0 is the retinal speed at a reference point with
zero disparity. The condition Ks ¼ K simply means that
the structure specified by the stimulus disparity happens
to be consistent with that specified by the connectivity
pattern. It is therefore not surprising that under this
condition, the proportionality constant in Eq. (22) is K
instead of K̂K for the zero stimulus disparity case in Eqs.
(16) and (17). We have confirmed Eq. (22) through
simulations (results not shown).
Since K is a fixed constant that determines the con-

nectivity pattern, and does not change with the stimulus,
the condition Ks ¼ K obviously cannot hold in general.
We have performed extensive numerical simulations for
the general case of Ks 6¼ K using Eq. (20), and found
that the computed disparity still satisfy the relief-struc-
ture relationship:

di ¼
v0 � vi
K̂K

ð23Þ

but now the proportionality constant is K̂K that can be
approximated by

1

K̂K
’ 1
2

1

K

�
þ 1

Ks

�
ð24Þ

That is, the computed disparity is the average of the
structure specified by the input stimulus disparity
and that specified by the connectivity pattern. Eq. (17)

Fig. 6. Simulations of illusions of coaxial cylinders. (a) The rotation speed of one cylinder is twice as fast as that of the other. When this stimulus is

shown to human observers, the slower cylinder appears to have a lesser depth. As shown in the figure, our model can reproduce this illusion because

the connectivity pattern from a single K value is used for the whole stimulus. (b) The radius of one cylinder is twice as large as that of the other. The

smaller cylinder, however, rotates twice as fast as the larger one such that the maximum projected image speeds at the centers of the two cylinders are

the same. Human observers perceive two surfaces that merge together in the center. As shown in the figure, our model can reproduce this illusion

again because the connectivity pattern from a single K value is used for the whole stimulus.
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derived previously is a special case of Eq. (24) when the
input disparity is 0 (i.e., Ks ! 1).

3.3. Bistable ambiguous percepts

The depth order of the front and back surfaces of a
rotating transparent cylinder is ambiguous in the ab-
sence of real disparity cues, and our percept alternates
between the two possibilities. Although we did not
model this bistability explicitly, the phenomena could be
explained in the framework of our model by assuming
that there are two sets of connections corresponding to
K ¼ 	K0 for the two opposite senses of object rotation,
and that they compete with each other through mutual
inhibition so that only one set of connections (i.e., one K
value) is functional at a given time. The strength of the
dominant connections decreases with time due to ad-
aptation, and eventually the other set of connections
wins the competition (Nawrot & Blake, 1991). When the
switching between the two sets of connections happens,
there should also be a corresponding change in the
population activity of the model MT cells. Specifically, a
highly active cell should now become less active because
the new connection pattern no longer supports its ac-
tivity. Likewise, some weakly active cells should now
become more active because their preferred disparities
and velocities now match the new connection pattern.
This prediction is consistent with the physiological ob-
servations of Bradley et al. (1998). In their experiment,
monkeys were trained to fixate while viewing 2D pro-
jections of transparent revolving cylinders and reporting
spontaneous reversals of the perceived surface order.
For many of the MT neurons tested, there was a change
in the activity that coincided with the reversals of the
perceived surface order, even though the stimulus re-
mained identical. The enhancement or diminution of
activity was consistent with the disparity and direction
tuning of the cells and the perceived surface order (en-
hancement of the response if the cell was tuned to near
disparity and the surface was perceived at front, and vice
versa).
Our model is also consistent with the fact that when

there is a real disparity cue in the stimulus, the SFM
percept is biased toward the one that agrees with the cue
(Braunstein, Andersen, Rouse, & Tittle, 1986; Dosher,
Sperling, & Wurst, 1986). This is simply because the
stimulus disparity reinforces the activity generated by
the consistent set of connections and makes it less likely
for the other, inconsistent set of connections to win the
competition. After prolonged viewing of an SFM stimuli
with disparity, the subsequent perception of a SFM
stimuli without disparity is biased in the opposite di-
rection (Nawrot & Blake, 1989) because the consistent
set of connections has been strongly adapted.

4. Discussion

We have shown in this paper that model MT cells
with broad velocity- and disparity-tuning can interact
with each other through modulatory connections to
compute the relief depth structure from retinal motion
patterns. The connectivity among the cells in our model
is based on the simple observation that for an object
rotating about an axis perpendicular to the line of sight,
or translating relative to the observer with a velocity
component in a frontoparallel plane (i.e., motion par-
allax), the relative speed and the relative disparity be-
tween the projections of any two points on the object are
proportional to each other. In this sense, the relief
structure can be viewed as already contained in the input
motion field, and we have simply proposed a mechanism
for re-coding it as equivalent disparity responses. We
have demonstrated through both analyses and simula-
tions that our model can indeed compute the correct
relief SFM, and is highly robust. In addition, the model
can naturally explain the SFM illusions involving co-
axial cylinders. Our work indicates that if we reduce the
goal of SFM computation from the Euclidean metric
structure to the relief structure, as suggested by the
psychophysical evidence (Todd, 1998; Todd & Perotti,
1999), then the SFM problem can be solved with simple
and physiologically plausible mechanisms.
Most SFM models make some form of rigidity as-

sumption. The original motivation was mathematical,
namely that the 3D structure of an object cannot be
determined based on retinal images alone, and that ad-
ditional assumptions have to be introduced to constrain
the problem. To deal with motion patterns produced by
non-rigid objects, it has been suggested that image fea-
tures first be divided into rigid subsets through a testing
procedure, and then the structure for each subset be
computed (Ullman, 1979). Alternatively, one may sim-
ply require that the rigidity be maximized but not
strictly enforced (Ullman, 1984; Hildreth et al., 1995).
However, to either enforce or maximize rigidity among a
set of features, the brain has to measure the 3D distances
between the features accurately (Ullman, 1984; Hildreth
et al., 1995). As we mentioned in the Introduction,
psychophysical evidence suggests that humans are very
poor at judging 3D distances along the line of sight
(Todd, 1998; Todd & Perotti, 1999). It is thus doubtful
that a rigidity assumption is actually employed by the
human visual system during SFM computations. In our
model, although the derivation of Eqs. (7) and (8) also
depends on the rigidity of objects, once the fixed pa-
rameter K is chosen in Eq. (9) to determine the con-
nectivity pattern, there is no rigidity assumption during
the computation of relief structure. Indeed, no step in
our model requires the measurement of 3D distances
between the features of the objects.
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Although motion is a monocular depth cue and SFM
perception does not require binocular viewing, our
model relies on the link between motion and stereopsis
(Rogers & Graham, 1982; Nawrot & Blake, 1989). The
model cells are connected according to their relative
disparity and velocity tuning such that when a zero-
disparity stimulus with an appropriate velocity pattern is
fed into the system, the most responsive neurons are not
those tuned to zero disparity, but instead are those
having preferred disparities consistent with the relief
structure of the velocity pattern. In the framework of
our model, any input motion pattern, regardless of
whether it contains zero or non-zero disparity, is pro-
cessed by a population of binocular cells tuned to both
disparity and motion. Therefore, our model is consistent
with the psychophysical observation that subjects with
stereo impairments are also deficient in perceiving mo-
tion parallax (Thompson & Nawrot, 1999), and with the
physiological data that the responses of direction- and
disparity-tuned MT cells covary with the perceived
surface order of bistable SFM stimuli (Bradley et al.,
1998). To our knowledge, our model provides the first
SFM algorithm that relies on an interaction among
motion- and disparity-tuned units. Previous models on
motion-stereo integration (Nawrot & Blake, 1991; Qian,
1994; Qian et al., 1994b; Qian & Andersen, 1997) do not
involve SFM computation. The re-coding of motion as
equivalent binocular disparity through modulatory in-
teractions proposed here might be a generic mechanism
applicable to some of the other monocular depth cues.
Our model is symmetric with respect to disparity and

speed, and as such, it not only predicts that motion
should influence disparity (and thus depth perception)
but also predicts that disparity should influence motion
perception as well. However, although a zero-disparity
motion pattern can generate depth perception, as dem-
onstrated by typical SFM stimuli, a static disparity
pattern does not seem to generate any motion. This
problem can be solved by assuming that among the cells
connected according to Eq. (9), there are cells tuned to
zero disparity but no cells tuned to zero speed. Alter-
natively, we can break the symmetry by assuming that
there are two separate populations of cells, the first
population tuned to motion, and the second population
tuned to disparity. We can then assume there are con-
nections (again according to Eq. (9)) from the first
population to the second, but not from the second to the
first. This way, motion patterns could generate disparity
response but not vise versa.
When we considered the interactions among the cells,

the contributions from other cells to a given cell were
multiplied by the classical receptive field response of the
cell (Eq. (2)). We used this multiplicative interaction to
simulate the modulatory effects of the non-classical
surround of MT receptive fields. For completeness, we

also explored using additive interaction in the model.
Our computer simulations (results not shown) con-
firmed that the model works with the additive interac-
tion as well.
As we explained in the Methods section, our model

can compute relief structure from projections generated
by objects undergoing either rotational or translational
motions. A major limitation of our model, however, is
that in the rotational case, it assumes the axis of rotation
is in the image plane, i.e., perpendicular to the line of
sight. Extension of our model to the situation of an
arbitrary axis of rotation is not straightforward because
the simple relationship between relative speed and rela-
tive disparity does not hold in general, and a very
complex pattern of connectivity among the cells would
be required to convert a motion pattern into an appro-
priate disparity response. However, this problem may be
avoided since any object rotation can be decomposed
into a rotation about an axis perpendicular to the line of
sight, followed by a rotation about the line of sight.
Furthermore, Ullman (1983) has shown that for any
non-planar object under orthographic projection, the
rotation about the line of sight can be uniquely deter-
mined from the image velocity field itself, and therefore
can be removed to produce a pattern of parallel motion
vectors used by our current model. Since the rotation
about the line of sight only generates a concentric pat-
tern of image motion that probably does not contribute
to the perception of 3D structure, our visual system
might have learned to discard this component and only
use the parallel motion pattern for SFM computation as
suggested by our model. Much further experimental and
theoretical work is needed for resolving these issues in
the future.
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Appendix A.

A.1. Derivation of Eqs. (4) and (8)

Fig. 7a shows the viewing geometry of a rotating
object, with the axis of rotation perpendicular to the
page. U is the component of the 3D velocity vector in a
frontoparallel plane and is given by:

U ¼ XR cos a ¼ XðZ0 � ZÞ ðA:1Þ
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Assuming that the object is far enough so that Z ’ Z0,
and only keeping the first order term of Z0 � Z, we ob-
tain the projected velocity v as:

v ’ U
Z
¼ X

Z0 � Z
Z

’ X
Z0 � Z
Z0

ðA:2Þ

which is Eq. (4).
A similar situation for an object with a relative

translation to the observer is shown in Fig. 7b where T is
the component of the translation velocity in a fronto-
parallel plane. The projected retinal velocity is:

v ’ T
Z

ðA:3Þ

Differentiating this equation and again keeping only the
first order term of Z � Z0, we have:

Dv ¼ �T
DZ
Z20

ðA:4Þ

Combining this equation with Eq. (6), we obtain Eq. (8).

A.2. Derivation of Eq. (10)

For a circular cylinder, the ratio between its depth
(Rz) and width (Rx) is 1. We have,

Rx ¼ hZ0 ðA:5Þ
and, according to Eq. (6):

Rz ¼
Z20ðDdÞmax

a
ðA:6Þ

where ðDdÞmax is the maximum relative disparity be-
tween the nearest and the furthest points on the cylinder.
According to Eq. (7),

ðDdÞmax ¼
2vmaxa
XZ0

ðA:7Þ

where vmax is the retinal speed of the nearest point on the
cylinder, and 2vmax is the maximum relative speed be-
tween the nearest and the furthest points on the cylinder.
Then, in order to obtain Rx=Rz ¼ 1, we have

X ¼ 2vmax
h

¼ 3phvi
2h

ðA:8Þ

where hvi ¼ 4vmax=3p is the mean absolute speed of
motion pattern. Thus, the corresponding K̂K is:

K̂K ¼ 3pZ0hvi
2ha

ðA:9Þ

Because of Eq. (17), we have

K ¼ 3pZ0hvi
4ha

ðA:10Þ

as the condition for a circular cylinder to be computed
as circular by the model.

A.3. Derivation of Eqs. (13) and (15)

The firing rate of a neuron tuned to velocity v0i and
disparity d0i is give by Eq. (1) in the absence of modu-
lation from other neurons. When there is no input dis-
parity, di ¼ 0, and Eq. (1) becomes:

A i; v0i ; d
0
i

� 	
¼ A0 exp �ðv0i � viÞ2

2r2v

 !
exp � d02i

2r2d

� �

ðA:11Þ

Now, consider the modulatory interactions between
neurons related by Eq. (9). Assume rv ! 0 (we will relax
this condition later), then at every retinal position i only
the cells with tuning parameter v0i ¼ vi will be firing, and
the total number (L) of cells modulating a given cell at i
is equal to the number (N) of sampled retinal positions
that send modulatory connections to position i. Eq. (9)
then becomes v0i � v0j ¼ vi � vj ¼ �Kðd0i � d0j Þ, or d0j ¼
d0i þ vij=K, where vij � vi � vj is the difference of image
speeds at locations i and j. The overall firing rate of a
neuron after considering the modulatory connections is
thus given by:

f i; vi; d0i
� 	

¼ A i; vi; d0i
� 	

1þ
XN
j 6¼i

�ijA
�
j; vj; d0i þ

vij
K

�" #

ðA:12Þ

where f ði; vi; d0i Þ � f ði; v0i ¼ vi; d0i Þ and Aði; vi; d0i Þ �
Aði; v0i ¼ vi; d0i Þ. We have omitted here the gain factor G
introduced in the text (see Eq. (3)) because it only scales
the population activity at each location and does not
affect any of the results presented here.
Combining Eqs. (A.11) and (A.12), we have

f i; vi; d0i
� 	

¼ A0 exp �fd0i g
2

2r2d

 !

� 1þ
XN
j 6¼i

A0�ij exp �
d0i þ vij=K
� 	2

2r2d

 !#"

ðA:13Þ

Fig. 7. (a) Viewing geometry of a rotating object. The axis of rotation

is perpendicular to the page through o. (b) Viewing geometry of an

object with a relative translational motion with respect to the observer.
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which is Eq. (13) in the text. Note that the speed terms
disappear from this expression because we only need to
consider cells with v0i ¼ vi. By choosing �ij according to
Eq. (14) we can rearrange terms to get:

f i; vi; d0i
� 	

¼ A0 exp �fd0i g
2

2r2d

 !

þ A20�
XN
j 6¼i

exp �
d0i þ vij=ð2KÞ
� 	2

r2d

 !

ðA:14Þ

It is worth mentioning that for the parameter used in
our simulations exp½ðvij=2KrdÞ2� is always very close to
one, and thus �ij can be replaced by a constant without
affecting the results.
The ‘‘perceived’’ disparity from the model is com-

puted as the population average according to Eq. (12).
Instead of a brute force calculation, we can make use of
a shortcut: Since Eq. (A.14) is a sum of Gaussians, the
mean d0i is simply the mean of the Gaussian centers,
each weighted by the total area under the corresponding
Gaussian:

di ¼
�
PN

j A20�
ffiffiffi
p

p
rd

vij
2K

A0rd

ffiffiffiffiffiffi
2p

p
þ ðN � 1ÞA20�

ffiffiffi
p

p
rd

¼ NA0�

2K
ffiffiffi
2

p
þ ðN � 1ÞA0�

� 	 hvið � viÞ ðA:15Þ

Here hvi ¼
PN

j vj=N is the averaged stimulus velocity
over all retinal positions that send modulatory connec-
tions to i (and include position i itself). We see that
di ¼ 0 for vi ¼ hvi and non-zero otherwise. This com-
pletes the derivation of Eq. (15).

A.4. Derivation of Eq. (15) for rv 6¼ 0

We now relax the condition of rv ! 0. When rv is
finite, we should add to the right hand side of Eq. (A.12)
those terms corresponding to the modulation from
neurons at positions j that are not exactly tuned to ve-
locity vj but that also fire:

f i; vi; d0i
� 	

¼ A i; vi; d0i
� 	

� 1þ
XN
j 6¼i

XM
k¼�M

�jikA j; vkj ; d
0
i þ

vkij
K

!# "

ðA:16Þ

Here we only considered cells at position i whose pre-
ferred speed v0i is equal to the stimuli speed vi. We have
included the influence of the 2M þ 1 most responsive
neurons from each position j, which are tuned around
stimulus speed vj. We have defined vkij ¼ vi � vkj , with
vkj ¼ vj þ kd (note that v0j ¼ vj), and d is a fixed velocity

sampling step. Combining Eqs. (A.11) and (A.16), we
have:

f i; vi; d0i
� 	

¼ A0 exp � d02i
2r2d

� �
1þ

XN
j6¼i

XM
k¼�M

A0�kij

"

� exp �
ðvkj � vjÞ2

2r2v

 !
exp �

ðd0i þ vkij=KÞ
2

2r2d

!# 

ðA:17Þ

By choosing:

�kij ¼ � exp
vkij
2Krd

 !22
4

3
5 ðA:18Þ

we can again rearrange and complete the squares for the
Gaussians, and then calculate di as the mean of the
weighted Gaussian centers to obtain:

di ¼ � 1

K 0

XN
j 6¼i

"
vij þ

XM
k¼1

ðvkij þ v�k
ij Þ exp �ðkdÞ2

2r2v

 !#

ðA:19Þ
where

K 0 ¼
2K

ffiffiffi
2

p
þ
PN

j 6¼i

PM
k¼�M A0� exp � ðkdÞ2

2r2v

� �h i
�A0

ðA:20Þ

Since vkij þ v�k
ij ¼ 2vij, we get:

di ¼ � 1

K 0

"
1þ 2

XM
k¼1
exp

 
� ðkdÞ2

2r2v

!#XN
j 6¼i

vij ðA:21Þ

or

di ¼
hvi � vi

K̂K
ðA:22Þ

where

K̂K ¼ K 0

N 1þ 2
PM

k¼1 exp � ðkdÞ2
2r2v

� �h i ðA:23Þ

Therefore, we find again a linear relationship between di

and vi as in Eq. (15) but with a different proportionality
constant K̂K.

A.5. Derivation of Eq. (18)

We will use the following two conventions introduced
in the Section 2: (1) An over-line such as di means av-
erage over the population of cells with different pre-
ferred disparities d0i for a given location i, and (2)
Brackets such as hvi denote an average over the different
retinal positions i.
The standard deviation of disparity at a given posi-

tion i is:

r2i ¼ d02i � fd0i g
2 ðA:24Þ
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and the averaged standard deviation over the different
positions is:

r2 � hr2i i ¼ hd02i i � hd0i
2
i ðA:25Þ

From Eq. (A.22), we have:

d0i
2
¼ ðhvi2 þ v2i � 2vihviÞ=K̂K2 ðA:26Þ

Therefore

hd0i
2
i ¼ ðhv2i � hvi2Þ=K̂K2 ¼ r2vel=K̂K

2 ðA:27Þ
We now calculate hfd0i g

2i. First note that:Z 1

�1
x2 exp

 
� x� xð Þ2

2r2

!
dx ¼

ffiffiffiffiffiffi
2p

p
r r2
�

þ x2
	

ðA:28Þ

By definition, we have:

fd0i g
2 ¼

R1
�1fd0i g

2f i; vi; d0i
� 	

dðd0i ÞR1
�1 f ði; vi; d0i Þdðd0i Þ

ðA:29Þ

Since f ði; vi; d0i Þ is a sum of Gaussians, we can apply Eq.
(A.28) to the numerator of Eq. (A.29). The denominator
is calculated as before.
If rv ¼ 0, we have (see Eq. (A.14)):

fd0i g
2 ¼

A0r3d
ffiffiffiffiffiffi
2p

p
þ
PN

j A20�
ffiffiffi
p

p
rd

r2d
2
þ v2ij
4K2

� �
A0rd

ffiffiffiffiffiffi
2p

p
þ ðN � 1ÞA20�

ffiffiffi
p

p
rd

ðA:30Þ

Using the fact that:

XN
j

v2ij ¼
XN
j

ðvi � vjÞ2 ¼ Nðhv2i þ v2i � 2vihviÞ ðA:31Þ

we can rewrite Eq. (A.30) as:

d02i ¼ Aþ Bðhv2i þ v2i � 2vihviÞ ðA:32Þ

where

A ¼
r2dð1þ ðN � 1ÞA0�= 2

ffiffiffi
2

p� 	
Þ

1þ ðN � 1ÞA0�=
ffiffiffi
2

p ðA:33Þ

and

B ¼ NA0�

4
ffiffiffi
2

p
K2ð1þ ðN � 1ÞA0�=

ffiffiffi
2

p
Þ

ðA:34Þ

Averaging Eq. (A.32) over retinal positions, we obtain:

hfd0i g
2i ¼ Aþ 2Br2vel ðA:35Þ

Finally, by replacing Eqs. (A.27) and (A.35) in Eq.
(A.25) we obtain:

r2 ¼ Aþ r2velð2B� 1=K̂K2Þ ðA:36Þ

When A0�N � 1, we have A ’ r2d=2, B ’ 1=ð4K2Þ and
K̂K ’ 2K, then:

r2 ’ r2d
2
þ r2vel
4K2

ðA:37Þ

If rv 6¼ 0, we have (see Eq. (A.17)):
fd0i g

2 ¼

A0r3d
ffiffiffiffiffiffi
2p

p
þ
PN

j

PM
k¼�M A20�

ffiffiffi
p

p
rd exp � ðkdÞ2

2r2v

� �
r2d
2
þ ðvij�kdÞ2

4K2

� �
A0rd

ffiffiffiffiffiffi
2p

p
þ ðN � 1ÞA20�

ffiffiffi
p

p
rd
PM

k¼�M exp � ðkdÞ2
2r2v

� �
ðA:38Þ

Simplifying and separating terms we get:

fd0i g
2 ¼

r2d þ A0�=
ffiffiffi
2

p PN
j

r2d
2
þ v2ij
4K2

� �PM
k¼�M exp � ðkdÞ2

2r2v

� �
1þ ðN � 1ÞA0�=

ffiffiffi
2

p PM
k¼�M exp � ðkdÞ2

2r2v

� �

þ
A0�=

ffiffiffi
2

p PN
j

PM
k¼�M

ðkdÞ2
4K2 exp � ðkdÞ2

2r2v

� �
1þ ðN � 1ÞA0�=

ffiffiffi
2

p PM
k¼�M exp � ðkdÞ2

2r2v

� �

�
A0�=

ffiffiffi
2

p PN
j

PM
k¼�M

2vijkd
4K2 exp � ðkdÞ2

2r2v

� �
1þ ðN � 1ÞA0�=

ffiffiffi
2

p PM
k¼�M exp � ðkdÞ2

2r2v

� �
ðA:39Þ

It is easy to see that the last term vanishes because every
term in the sum is canceled by the corresponding one for
k of the opposite sign. The first term is almost identical
to Eq. (A.30), but instead of � we have �̂� ¼ �c with c ¼PM

k¼�M expð�ðkdÞ2=2r2vÞ. Thus, in the limit of A0�N � 1
the contribution of this term to r2 is identical to the
contribution of Eq. (A.30) just calculated.
Let us now study the contribution of the second term,

to be denoted as C. If A0�N � 1 we have:

C ’ 1

4K2

PM
k¼�MðkdÞ

2
exp � ðkdÞ2

2r2v

� �
PM

k¼�M exp � ðkdÞ2
2r2v

� � ðA:40Þ

We can approximate the sums by the corresponding
integrals, and obtain C ’ r2v=ð4K2Þ (see Eq. (A.28)).
Putting all contributions together we get:

r2 ’ r2d
2
þ r2vel þ r2v

4K2
ðA:41Þ

For our simulation parameters, the second term is
smaller than the first one. These results are confirmed by
the simulations.

A.6. Derivation of Eq. (22)

Now the input disparity field di is different from zero.
In such a case, Eq. (A.13) becomes:

f i; vi; d0i
� 	

¼ A0 exp �ðd0i � diÞ2

2r2d

 !

� 1þ
XN
j 6¼i

A0�ij exp

 
�

d0i � dj þ vij=K
� 	2

2r2d

!#"

ðA:42Þ
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Recall the definition of Ks in Eq. (21). If we take as
a reference some position i for which di ¼ 0 and vi ¼
v0, then we have dj ¼ ðv0 � vjÞ=Ks, and Eq. (A.42) be-
comes:

f i; vi; d0i
� 	

¼ A0 exp �
d0i �

v0�vi
Ks

� �2
2r2d

0
B@

1
CA

� 1þ
XN
j 6¼i

A0�ij exp �
d0i þ vi

K þ vj 1
Ks
� 1

K

� �
� v0

Ks

� �2
2r2d

0
B@

1
CA
3
75

2
64

ðA:43Þ

In the special case when Ks ¼ K, we have:

f i; vi; d0i
� 	

¼ A0 exp �
d0i �

v0�vi
K

� 	2
2r2d

 !

� 1þ
XN
j6¼i

A0�ij exp �
d0i þ

vi�v0
K

� 	2
2r2d

!# "

ðA:44Þ

If we compute di as before, we get:

di ¼
� A0rd

ffiffiffiffiffiffi
2p

p
vi�v0
K þ

PN
j A20�

ffiffiffi
p

p
rd

vi�v0
K exp

vi�vj
2Krd

� �2� �

A0rd

ffiffiffiffiffiffi
2p

p
þ
PN

j A20�
ffiffiffi
p

p
rd exp

vi�vj
2Krd

� �2
¼ v0 � vi

K
ðA:45Þ

and thus the correct depth structure is obtained.
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