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Model for stochastic-resonance-type behavior in sensory perception
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~Received 1 June 2001; published 11 February 2002!

Recently it was found that noise could help improve human detection of sensory stimuli via stochastic-
resonance-type behavior. Specifically, the ability of an individual to detect a weak tactile stimulus could be
enhanced by adding a certain amount of noise. Here we propose, from the perspective of classical signal
detection theory, a simple and general model to elucidate the mechanism underlying this phenomenon. We
demonstrate that noise-mediated enhancements and decrements in human sensation can be well reproduced by
our model. The predicted upper bound of the performance improvement by adding noise is also consistent with
the experimental data. We suggest additional experiments to further test the model.
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The positive role played by noise in nonlinear systems
particular, stochastic resonance~SR! @1,2#, has been widely
identified in physical@3,4#, chemical@5,6#, and physiological
systems@7,8#. Recently it was found that noise could als
help improve human perception of sensory stimuli@9–11#.
Particularly, Collins and co-workers demonstrated throu
psychophysical experiments that the ability of an individu
to detect a weak tactile stimulus could be enhanced by a
ing a certain amount of noise@9,10#, via SR-type behavior.

A standard tool in the psychophysical literature for e
plaining sensory perception is signal detection theory@12#.
How SR-type behavior can arise in the framework of sig
detection theory has already been examined by Toug
@13#. A key assumption in his model is that the sensory
sponse used by the brain for perceptual judgment is de
mined by an energy mechanism that integrates the squ
stimulus amplitude. He assumed that this energy mechan
treats signal and noise equally, and as such, the mean se
responses to both noise and signal-plus-noise stimuli
crease quadratically with the noise level. While such a n
selective energy mechanism may be an adequate mode
peripheral receptors, cortical cells that are most likely
volved in perceptual judgment do not respond to noise ne
as strongly as to signal@14#. It appears more reasonable
assume that noise increases the variance, instead o
mean, of the cortical response related to perception.

In this paper, we show that SR-type behavior is s
present in signal detection theory when the problematic
ergy assumption is dropped. The new model is not only s
pler, but more importantly, it can explain the detailed fe
tures of the psychophysical data of Collinset al. @9,10#, and
can make additional, testable predictions. We also comp
two different versions of signal detection theory and sh
that only one of them is consistent with the experimen
data.

In the psychophysical experiments of Collinset al., a
standard two-alternative forced-choice paradigm was use
measure human performance under different noise level
each trial, either a noise stimulus alone~drawn from a zero-
mean Gaussian distribution! or a signal-plus-noise stimulu
was presented, and subjects had to indicate whether the
nal was present or not. The noise level was varied by cha
ing the standard deviation of the noise stimuli in differe
1063-651X/2002/65~3!/031904~5!/$20.00 65 0319
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blocks of trials. Subjects’ performance was measured by
percentage of correct responses~percent correct! over many
repeated trials at each noise level. The best performance
found at a nonzero noise level for most subjects.~Note that a
trial was called a ‘‘presentation’’ and a block of trials wa
called a ‘‘trial’’ in Refs. @9,10#.!

According to signal detection theory, the noise~N! stimuli
and the signal-plus-noise (SN) stimuli will generate corre-
sponding sensory responses in the brain. The distribution
the N and SN responses will be denoted byPN(x) and
PSN(x), respectively. For simplicity, such distributions a
usually assumed to be one-dimensional@12#, with x viewed
as the neuronal firing rate pooled across all relevant cell
the brain. Based on the central limit theorem, it is reasona
to assume that bothPN(x) andPSN(x) are normally distrib-
uted. Since theSN stimuli only differ from the correspond
ing N stimuli by a fixed, nonzero signal strength, the mea
of PN(x) and PSN(x) satisfymN,mSN. Furthermore, since
the signal has to be weak in the context of SR~see below!, it
is reasonable to assume thatPN(x) and PSN(x) have the
same standard deviations. Obviously, s depends both on
the internal noise in the sensory system and on the exte
stimulus noise. When the external noise level is increaseds
should increase accordingly. In the following, we will simp
uses as an indicator of the stimulus noise level while a
suming the internal noise level is fixed. In contrast to t
energy mechanism of Tougaard@13#, we further assume tha
the mean sensory responsesmN andmSN are determined by
the signal strength only, and remain the same whens is
changed, as shown schematically in Fig. 1.

Signal detection theory postulates that in order to dec
whether the signal is present or not in a given trial, the br
has to compare the sensory response in that trial@drawn from
PN(x) or PSN(x)# with a relatively stable internal criterion
cr , marked by the vertical line in Fig. 1. If the response
larger thancr , the answer will be ‘‘yes’’; otherwise it will be
‘‘no.’’

With these assumptions, the percent-correct measur
simply the percentage of trials for which a subject answ
‘‘yes’’ when the signal is present~hits! or answers ‘‘no’’
when the signal is absent~correct rejections!. It is easy to see
from Fig. 1 that for experiments@such as those of Collins
et al.# with an equal number ofN andSN trials at each noise
©2002 The American Physical Society04-1
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level, the percent correct,p, is given by

p550E
cr

1`

PSN~x!dx150E
2`

cr
PN~x!dx ~1!

550125FerfS cr2mN

sA2
D 2erfS cr2mSN

sA2
D G , ~2!

where erf(•) is the error function. By letting]p/]s50, we
find that the percent correct is maximum at the noise le
given by

s5A~2cr2mSN2mN!~mSN2mN!

2 ln@~cr2mN!/~cr2mSN!#
. ~3!

SincemSN.mN , this expression has a real positive soluti
if and only if

cr.mSN. ~4!

FIG. 1. Probability distributions of sensory responses~in arbi-
trary units! to N andSN stimuli at three noise levelss. Note that
different vertical scales are used in the three panels. The criteriocr

is indicated by a vertical line. Within theSN distribution the area
shaded by solid lines to the right of the criterion represents
proportion of hits, and within theN distribution, the area shaded b
dashed lines to the left of the criterion represents the proportio
correct rejections. The parameters for the plots arecr52.0, mSN

51.95, mN51.5, and~a! s50.05; ~b! s50.2; ~c! s50.6.
03190
l

That is, the system can show SR-type behavior if and onl
a subject’s decision criterion is larger than the mean sens
response to signal-plus-noise, as indicated in Fig. 1. Thi
easy to understand intuitively. Under the conditioncr
.mSN, when the noise level is low, correct responses mai
come from correct rejections@Fig. 1~a! and Fig. 2~a!#. With
somewhat higher noise levels, though the proportion of c
rect rejections drops slightly, the proportion of hits grow
more rapidly @Fig. 1~b! and Fig. 2~a!#, resulting in a net
increase of the total correct responses. If the noise level c
tinues to increase, however, the proportion of hits will sa
rate and that of correct rejections will start to fall off quick
@Fig. 1~c! and Fig. 2~a!#. As a result, the correct respons
will decrease overall. Taken together, the percent-cor
measure as a function of the noise level has a peak, as sh
in Fig. 2~b!, which is characteristic of SR-type behavior. Th
fast rise and slower fall of the curve closely resemble
actual experimental data@9,10#.

It is well known that the percent correct also depends
the decision criterioncr @12#. By letting ]p/]cr50, we find
that the performance reaches a maximum at acr given by

cr5
mN1mSN

2
. ~5!

That is, the optimal criterion is midway between the me
noise response and the mean signal-plus-noise respo
Since mN,mSN, Eq. ~5! contradicts the SR conditioncr
.mSN. Therefore, SR could not occur if subjects were
ways able to choose an optimal decision criterion@13#. How-
ever, whilemN andmSN can be reduced to arbitrarily sma
values by choosing arbitrarily weakN and SN stimuli, it
seems reasonable to assume that there is a lower bound fcr
that a subject can set in his/her decision process due to
finite precision of biological systems. Therefore, Eq.~5!

e

of

FIG. 2. SR-type behavior in sensory detection. The parame
of the plots are the same as in Fig. 1.~a! The percentage of hits an
correct rejections, and~b! the percentage of total correct respons
~hits plus correct rejections!.
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MODEL FOR STOCHASTIC-RESONANCE-TYPE . . . PHYSICAL REVIEW E 65 031904
should fail and the SR conditioncr.mSN is most likely to
hold under weak external stimulation, which was the con
tion in the actual experiments@9,10#. A related point is that
subjects’ criteria are usually different from the optimal crit
ria although there is a correlation between the two@12#.

A specific prediction we can make is that when SR
observed in experiments with an equal number ofN andSN
trials, the percent correct performance measure cannot
ceed 75%. This is because whencr.mSN, the arguments of
the two error functions in Eq.~2! are both positive, and
therefore the functions lie in the range of@0,1). Conse-
quently, their difference cannot exceed 1, and the whole
pression cannot exceed 75. The maximum value 75 is
proached whencr approachesmSN, and is much larger than
mN . Remarkably, this prediction is consistent with the
ported psychophysical data@9,10#. Tougaard’s theory@13#
does not make this prediction; indeed, Fig. 2~c! of his paper
showed a peak percent correct well above 80%. The rea
can be traced to his energy assumption which makes bothmN
andmSN increase with noise. Consequently, a given criter
can become an optimal criterion in his model at a particu
noise level@see his Fig. 1~d!, which corresponds to the pea
in his Fig. 2~c!#.

Collins et al. also varied the signal strength in their e
periments@10#. We assume that the mean sensory respons
signal plus noise (mSN) is a monotonically increasing func
tion of the signal strength, and in Fig. 3 we plot Eq.~2! as a
function of s for variousmSN while fixing the other param-
eters. It is clear from the figure that as long ascr.mSN, the
system shows robust SR-type behavior. In contrast, when
signal is strong enough such thatcr<mSN, SR does not oc-
cur as noise can only hinder performance. This result is c
sistent with the experimental finding that at higher sig
strength, the performance decreases monotonically with
creasing noise@10#. For the borderline casecr5mSN ~dashed
line in Fig. 3!, Eq. ~2! indicates that the performance reach

FIG. 3. The percent-correct measure as a function of the n
level at different signal strengthsmSN. All other parameters of the
plot are the same as in Fig. 1. The dashed curve represent
borderline casemSN5cr52.0 for SR-type behavior.
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a maximum of 75% ats→0. Since we showed above tha
with SR, the performance cannot exceed 75%, SR canno
observed when the performance is 75% or higher before a
ing noise. In the psychophysical literature, a threshold is
ten defined as the stimulus strength needed for reachin
75% correct level. With this definition, we can conclude th
SR cannot be observed with suprathreshold stimuli. This i
good agreement with classical SR theory where SR is
fined as a noise-induced enhancement of weak, subthres
input signals@1,2#.

Different subjects usually set different internal criter
when performing psychophysical experiments. We theref
also plot Eq.~2! as a function ofs for variouscr in Fig. 4. It
is clear from the figure that whencr is set just abovemSN,
the SR-type behavior is more pronounced while higher v
ues ofcr tend to diminish the peak size. This result is co
sistent with the observed variability among subjects, a
may explain why for a given signal strength some subje
showed a significant peak in the performance curve wh
others did not@9,10#. It is also known that subjects’ criteria
can be induced to change by giving them proper instructi
@12#. For example, the criteria can be lowered if subjects
told that hits are more important than correct rejections. F
ure 4 then suggests that under identical stimulus conditio
the noise level necessary to reach maximum performa
should vary when subjects’ criteria are manipulated throu
instructions.

In the above derivations, we have assumed an equal n
ber of N and SN trials, as in the actual experiments@9,10#.
However, the results can be easily extended to the gen
case where the proportion ofN and SN trials at each noise
level arepN andpSN512pN , respectively. Specifically, Eq
~2! should then be written as

p550150F pNerfS cr2mN

sA2
D 2pSNerfS cr2mSN

sA2
D G , ~6!

se

the

FIG. 4. The percent-correct measure as a function of the n
level at different criteriacr . All other parameters of the plot are th
same as in Fig. 1. The dashed curve represents the borderline
cr5mSN51.95 for SR-type behavior.
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and the optimal conditions specified by Eqs.~3! and ~5!
should be replaced by

s5A ~2cr2mSN2mN!~mSN2mN!

2 ln@pN~cr2mN!/pSN~cr2mSN!#
, ~7!

and

cr5
mN1mSN

2
1

s2ln~pN /pSN!

mSN2mN
. ~8!

From Eq.~7!, the optimal noise level now depends onpN and
pSN, and the condition for SR becomes

cr.mSN, ~9!

~pN2pSN!cr.pNmN2pSNmSN. ~10!

The first inequality is the same as before, and the sec
inequality can either set an upper or lower bound oncr ,
depending on the sign ofpN2pSN. The best performance
under SR cannot exceed 50(11pN) percent. Equation~8!
indicates that the optimalcr is no longer equal to the mean o
mN andmSN, but instead, it depends on the noise level a
can take any value by properly choosingpN andpSN.

So far we have used a version of signal detection the
in which subjects are assumed to make decisions by setti
criterion cr along the sensory response~x! axis @12,13#. An
alternative version is to assume that a subject’s decisio
based on a likelihood ratio, defined as@12#:

l ~x!5PSN~x!/PN~x!, ~11!

for each sensory responsex. In other words, the brain is
assumed to first transform a raw sensory responsex into a
likelihood ratiol (x). Accordingly, a likelihood-ratio criterion
cl(>0) is assumed to be set by the brain such that ifl (x)
.cl in a given trial, a subject answers ‘‘yes, there is a s
nal,’’ and answers ‘‘no’’ otherwise. This version of the theo
is conceptually identical to the previous one except that h
the decision criterion is assumed to be set along
likelihood-ratio axis, while previously, the criterion was s
along the raw sensory response axis.

With our earlier assumption thatPSN(x) and PN(x) are
Gaussian distributions of the same standard deviation
different means, it is easy to show thatl (x) is a monotoni-
cally increasing, exponential function ofx, andcl is related
to cr according to

cr5
s2ln cl

mSN2mN
1

mSN1mN

2
. ~12!

Were the above expression independent of the noise leves,
the two versions of the theory would have produced the sa
noise dependence for the percent-correct measure, and
the same SR-type behavior. Instead, for a givencl , the
equivalentcr is in general a function of the noise levels
according to Eq.~12!. Consequently, a fixedcl criterion im-
plies a variablecr criterion ass varies, and vice versa
03190
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Therefore, the two versions of the theory are expected
have different SR-type behavior.

Inserting Eq.~12! into Eq. ~6!, and then letting]p/]s
50, we find that the optimal noise level under a fixe
likelihood-ratio criterion is given by

s5A~pN1clpSN!~mSN2mN!2

2~pN2clpSN!ln cl
. ~13!

Since the numerator is always positive, the condition for S
type behavior~i.e., a real, positive solution for optimals) is

~pN2clpSN!ln cl.0. ~14!

In Collins et al.’s experiments@9,10#, pN5pSN50.5 and this
inequality reduces to (12cl)ln cl.0, which cannot be satis
fied for any cl . Therefore, the SR-type behavior observ
experimentally is consistent with fixing the criterion on th
response axis, but not on the likelihood-ratio axis. Furth
more, whenpN5pSN50.5, it is easy to show that the sign o
]p/]s with fixed cl is determined by

]p

]s
}2~12cl !ln cl2

~mSN2mN!2~11cl !

s2
, ~15!

which is always negative for anymSN.mN andcl>0. This
means that under the fixed likelihood-ratio criterion, the p
cent correct as a function of noise can only decrease mo
tonically in experiments with an equal number ofN andSN
trials. This is contradicted by the actual data of Collinset al.
It is not meaningful to conclude, however, that the subje
in their experiments used the response criterion (cr) instead
of the likelihood-ratio criterion (cl), since for eachcr , there
is always an equivalentcl ~and vise versa! according to Eq.
~12!. Rather, the conclusion should be that the subjects m
have used afixed cr instead of afixed cl under different noise
levels.

Although bothcr andcl are commonly used in theoretica
considerations, there is only a standard psychophysical
cedure for estimating the dimensionlesscl ~often calledb)
@12#. Rewrite Eq.~12! as

cl5expF 1

s2 S cr2
mSN1mN

2 D ~mSN2mN!G , ~16!

and note that under the SR condition of a fixedcr.mSN, the
terms in both parentheses are positive. We can there
make the prediction that when SR-type behavior is obser
in experiments with equal number ofN and SN trials, cl
measured under increasing noise levels should decr
monotonically.

If pNÞpSN, then it is possible to have SR-type behavi
with a fixed likelihood-ratio criterion. Specifically, when

pN.pSN and 1,cl,pN /pSN, ~17!

or when

pN,pSN and pN /pSN,cl,1, ~18!
4-4
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an optimal noise level exists according to Eq.~14!.
By letting ]p/]cl50, we can also find that the optima

likelihood-ratio criterion is given by@12#

cl5pN /pSN. ~19!

Under this condition, there is no solution to the optimal no
level in Eq. ~13! regardless of whetherpN5pSN or not.
Therefore, similar to the case with the response criter
SR-type behavior could never occur if the likelihood-ra
criterion were always optimal.

Since the percent-correct measure depends on the c
rion type and value, psychophysicists sometimes prefe
use detectability, defined asd85(mSN2mN)/s, as a
criterion-free measure of the performance.d8 can be esti-
mated by counting hits and correct rejections in an exp
ment @12#. It is obvious from the definition thatd8 can only
decrease monotonically with the increasing noise levels, as
shown in Fig. 5. This conclusion was also reached by T
gaard previously under his energy assumption@13#.

It is worth noting that although we have focused on d
tinguishing signal from noise, our theory can obviously
extended to the situation of differentiating two different s
nals. In addition, our theory is independent of any spec

FIG. 5. The detectabilityd8 plotted as a function of the nois
level. The parameters are the same as in Fig. 1.
e
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sensory modality, and should be applicable to SR-type
havior of sensory perception in general. Finally, our theo
can be further extended to the case wherePN(x) andPSN(x)
are not assumed to have equal standard deviations alth
the expressions will become more complex.

In summary, we have proposed a general model, in
framework of signal detection theory, to elucidate the mec
nism underlying the SR-type behavior recently found in h
man sensory perception. We have demonstrated that the
chophysical data@9,10# can be explained by the fixe
response criterion under different noise levels in signal
tection theory but not by the fixed likelihood-ratio criterio
Our model is simpler than that of Tougaard@13# as we have
used straightforward sensory response distributions
eliminated the need to assume a nonselective energy me
nism. Both the noise-mediated enhancements and de
ments, and the characteristics of the performance curves
function of the noise level found experimentally@9,10# can
be well reproduced by our model. In agreement with clas
cal SR theory and the experimental conditions, the mo
shows that SR-type behavior in sensory perception is pre
only for weak, subthreshold input stimuli. The predicted p
formance upper bound for SR is also consistent with ext
psychophysical data@9,10#. The model further predicts tha
when SR-type behavior is observed in experiments with
equal number ofN and SN trials, the likelihood-ratio crite-
rion measured under increasing noise level should decr
monotonically, and that the noise level necessary to re
maximum performance should vary if subjects’ criteria a
changed by giving them different instructions in differe
blocks of trials. Finally, the model predicts that thed8 mea-
sure should always decrease with increasing noise eve
those experiments where the percent-correct measure s
SR-type behavior. Experimental tests of these predicti
should help determine the adequacy of the model.

This work was supported by the National Institutes
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