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We previously proposed a physiologically realistic model for stereo vision based on the quantitative
binocular receptive field profiles mapped by Freeman and coworkers. Here we present several new
results about the model that shed light on the physiological processes involved in disparity
computation. First, we show that our model can be extended to a much more general class of
receptive field profiles than the commonly used Gabor functions. Second, we demonstrate that there
is, however, an advantage of using the Gabor filters: similar to our perception, the stereo algorithm
with the Gabor filters has a small bias towards zero disparity. Third, we prove that the complex
cells as described by Freeman et al. compute disparity by effectively summing up two related cross
products between the band-pass filtered left and right retinal image patches. This operation is
related to cross-correlation but it overcomes some major problems with the standard correlator.
Fourth, we demonstrate that as few as two complex cells at each spatial location are sufficient for a
reasonable estimation of binocular disparity. Fifth, we find that our model can be significantly
improved by considering the fact that complex cell receptive fields are, on average, larger than
those of simple cells. This fact is incorporated into the model by averaging over several quadrature
pairs of simple cells with nearby and overlapping receptive fields to construct a model complex cell.
The disparity tuning curve of the resulting complex cell is much more reliable than that constructed
from a single quadrature pair of simple cells used previously, and the computed disparity maps for
random dot stereograms with the new algorithm are very similar to human perception, with sharp
transitions at disparity boundaries. Finally, we show that under most circumstances our algorithm
works equally well with either of the two well-known receptive field models in the literature. © 1997
Elsevier Science Ltd.
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INTRODUCTION 1990; DeAngelis et al., 1991). Here we provide some
further analyses of our model along with computer
simulations. These results, we believe, give us a better
understanding of the physiological process involved in
computing binocular disparity. In particular, we demon-
strate that by incorporating an additional piece of
physiological data into our model, we can greatly
improve the quality of the computed disparity maps.
The results reported here have been presented previously

in abstract form (Qian & Zhu, 1995).

We see the world as three-dimensional even though the
input to our visual system, the light intensity distributions
on our retinas, has only two spatial dimensions. It is well
known that the third dimension, the relative depth of
objects in the world, can usually be inferred from a
variety of visual cues present in the retinal images. One
such cue is binocular disparity, defined as the difference
between the locations (relative to the corresponding
foveas) of the two retinal projections of a given point in
space. How the brain computes this disparity, and thus
achieves stereoscopic depth perception, has been the
subject of many studies, and numerous computational
models for stereo vision have been proposed in the past.
We recently proposed a new algorithm for computing
disparity maps from stereograms (Qian, 1994a) which
differs from previous models in that it is solely based on
known physiological properties of real binocular cells in
the brain (Ohzawa et al., 1990; Freeman & Ohzawa,

THE MODEL

We briefly review our stereo model (Qian, 1994a) in
this section. Our model is based on the physiological and
modeling studies of Freeman and coworkers (Freeman &
Ohzawa, 1990; Ohzawa et al., 1990; DeAngelis et al.,
1991). These investigators found that the left and right
spatial receptive field profiles of a binocular simple cell
in cat’s primary visual cortex can be described by two
Gabor functions with the same Gaussian envelopes but
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different phase parameters in the sinusoidal modulations.
For horizontal disparity computation, only the horizontal
dimension of cells’ receptive fields is relevant. The left

1811



1812

Compute simple cell responses

'

Compute complex cell responses,
each from a single quadrature pair
of simple cells

Estimate disparity using the
parameters of the most responsive
complex cell at each location

!

Convolve the computed disparity
map with a spatial weighting
function to smooth out noise

FIGURE 1. Steps used in our original algorithm (Qian, 1994a) for
computing disparity maps from stereograms. For a given stereogram,
we first compute, at each location, the responses of a family of simple
cells with appropriately chosen parameters. We then compute complex
cell responses, each from a single quadrature pair of the simple cell
responses. After that the parameters of the complex cell with maximum
responses are found through a parabolic interpolation, and are then
used to estimate the disparity according to Eq. (7). Finally, because the
disparity map so obtained is usually noisy, a smoothing step has to be
applied to average out noise. We will show later in this paper that this
ad hoc final step can be removed if the complex cell responses are
obtained by pooling several, instead of a single, quadrature pairs. Note
that the parabolic interpolation is used in order to reduce the number of
model complex cells needed in our simulations. It is not meant to be a
step used in the brain, which does not need this step because it has a
targe number of cells tuned to various disparities.

and right receptive field profiles of a simple cell centered
at x = ( are then given by:

2

filx) = exp (——) cos (wox + ¢;) (1)
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f(x) = exp (— 202> cos (wyx + ¢y) (2)

where ¢ and wy, are the Gaussian width and the preferred
spatial frequency* of the receptive fields; ¢, and ¢, are
the left and right phase parameters.

Freeman and coworkers (Freeman & Ohzawa, 1990;
Ohzawa et al., 1990) found that to a good approximation
the response of a simple cell can be determined by first
filtering, for each eye, the retinal image by the
corresponding receptive field profile, and then adding
the two contributions from the two eyes:

o= | e e + pwnw) ®)

o =

where /;(x) and I,(x) are the left and right retinal images
of the stimulus. They further showed that the response of

*Note that « is an angular spatial frequency with the units radians per
degree. It is related to the ordinary spatial frequency f (in cycles per
degree) by w = 2nf. We prefer to use w for notational simplicity.
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a complex cell can be modeled by summing the squared
outputs of a quadrature pair (Adelson & Bergen, 1985;
Watson & Ahumada, 1985; Ohzawa et al., 1990; Qian,
1994a) of such simple cells:

rg = (rs.l)z + (rs.Z)z- (4)

Through mathematical analysis we found that under the
assumption that stimulus disparity D is significantly
smaller than the width of the receptive fields (about 20),
the response of a model complex cell to the disparity is
given by (Qian, 1994a):

b % 2 o] A ’ W D
rq = |l (wp)|” cos” (TQ) - %) 5)
where
A(P = Qb[ - ¢r (6)

is the phase parameter difference between the left and
right receptive fields, ¢ is a constant, and |I (wp)|” is the
Fourier power of the stimulus patch (under the receptive
field) at the preferred spatial frequency of the cell.
According to Eq. (5), a complex cell’s preferred disparity
is determined by its receptive field parameters according

to:
Ag¢
Dpref ~—,
wo

™)

which is the relative shift between the sinusoidal
modulations of the left and right receptive fields of the
constituent simple cells. Using this relationship we were
able to compute disparity maps from random dot
stereograms using a population of model complex cells
without employing any non-physiological procedures
such as explicit matching of fine stimulus features (Qian,
1994a). The stimulus disparity is identified with the
preferred disparity of the most responsive complex cells
in the population. The steps used in the computation are
summarized in Fig. 1.

Note that the periodic function of D in Eq. (5) is an
approximation. A more accurate derivation of the
complex cell response to broad-band stimuli (Zhu &
Qian, 1996) reveals that the side peaks in the disparity
tuning curve rapidly decay to zero and that the main peak
(the preferred disparity) of the complex cell with
preferred spatial frequency wy is always located within
the range [—7n/wy, m/wp). An intuitive explanation of this
constraint on preferred disparities is given in Fig. 2.
Because of this restriction, the family of complex cells
with spatial frequency w, can only code disparities in the
range [—n/wy, w/we] (Qian, 1994a; Zhu & Qian, 1996;
Smallman & MacLeod, 1994). It is, however, incorrect to
conclude that our algorithm can only compute small
disparities (Fleet et al., 1996) because cells in the visual
cortex are tuned to a wide range of spatial frequencies
(DeValois et al., 1982; Shapley & Lennie, 1985), and
those cells with small preferred frequencies can compute
large stimulus disparities. A prediction is that a stimulus
with a sharp frequency spectrum centered at € can only
generate perceived disparity within the range [—n/Q,
n/Q2] because it predominantly activates cells with the



PHYSIOLOGICAL COMPUTATION OF BINOCULAR DISPARITY

Ap=mn

1813

Ap=m+ 5

FIGURE 2. An intuitive explanation of why the preferred disparity of a complex cell with preterred frequency «y is limited
within the range [—n/wy, n/w] under the phase-difference model for receptive fields (Ohzawa er al., 1990). Three binocular
receptive field profiles with the phase difference A¢ equal to n/2, m and 7 + 7/2 are shown. In all three panels, the left receptive
field profiles are shown by solid lines and the right profiles by dashed lines. The Gaussian envelopes of the receptive fields are
indicated by thin dashed lines. When A¢ is less then x (left panel), the resulting complex cell will be tuned to a disparity equal to
the distance between the two positive peaks (Ag/w,). When A¢ is over n (right panel), however, the two negative peaks become
more similar to each other and the cell has an effective A¢ smaller than n. The maximum peak separation occurs when A¢
equals 7 (middle panel). Therefore, the preferred disparity of the complex cell is always smaller than m/cw,. Similarly, the
preferred disparity of the cell is also always larger than —m/wy.

preferred frequency w, = Q2. This so-called size—disparity
correlation has been observed psychophysically (Small-
man & MacLeod, 1994; Schor & Wood, 1983).

GENERALIZATION

The complex cell response expression [Eq. (5)] was
previously derived with the specific assumption of using
the Gabor filters as the simple cell receptive field profiles
(Qian, 1994a). We have now shown that the same
equation can be derived under some very general
assumptions. Specifically, if the left and right receptive
field profiles f(x) and f(x) of a simple cell differ by a
phase difference A¢ and if the frequency tuning of the
receptive field profiles is significantly sharper than the
frequency spectrum of the input stimulus, the complex
cell response constructed from such simple cells to
stimulus disparity D is approximately given by:

215 2 2 A¢' ‘
mclafe(2-22), @

where constant ¢ is defined as:

c=4 rc dwlfi (w)). 9)

0

and wyq is the preferred spatial frequency of the cell. The
details of the derivation are presented in the Appendix.
We conclude that our stereo algorithm works with a
rather general class of receptive field profiles, including
the Gabor functions (see also Qian & Andersen (1997)).
The general derivation of Eq. (8) also enables an easy
estimation of the error term associated with the equation.
The error is found to be proportional to the variance
(width) of the frequency tuning function of the receptive
fields (see the Appendix).

The above assumption that the frequency tuning of the
receptive fields are significantly sharper than the Fourier
spectra of the retinal stimulus is usually a good one
because most visual cortical cells are well tuned to spatial
frequencies (DeValois et al., 1982; Shapley & Lennie,
1985) while the natural environment is rich in complex
textures and sharp boundaries and therefore tends to

produce images with broad spectra. However, in the rare
case when the visual system is looking at a sine wave
grating this assumption is clearly violated. In general, if
the retinal image has a Fourier spectrum sharper than the
frequency tuning of the cells, then the preferred
frequency of the cell (w) in Egs (5), (7) and (8) should
be replaced by the dominant spatial frequency €2 of the
image (Zhu & Qian, 1996; Qian & Andersen, 1997). The
preferred disparity of a given cell [Eq. (7)] will then
become A¢p/Q, which is different for different stimulus
frequencies. Consequently, if one uses a single family of
cells with a fixed preferred frequency w, to estimate
stimulus disparity according to Eq. (7), the results will
not be accurate unless the dominant stimulus frequency
matches the preferred frequency of the cells. This,
however, does not pose a serious problem for the real
visual system, except for the stimulus with very high or
low frequencies, because the brain contains cells tuned to
a wide range of frequencies and the cells with the highest
responses are those whose preferred frequencies do
match those of the stimuli.

ZERO DISPARITY BIAS

Although the result in the previous section shows that
one does not have to use the Gabor functions as the front
end filters in our stereo vision model, there are good
reasons to do so. The main reason, of course, is that the
Gabor filters have been found to describe the spatial
receptive field profiles of real primary visual cortical cells
very well (Marcelja, 1980; Jones & Palmer, 1987;
Ohzawa et al., 1990; Freeman & Ohzawa, 1990;
DeAngelis et al., 1991) [but see Stork & Wilson (1990)
for a different point of view]. There is, however, a
hitherto unrecognized advantage of using Gabor filters as
simple cell receptive field profiles in disparity computa-
tion: within the framework of our stereo model, the DC
components of the Gabor filters generate a small bias
towards zero disparity. This bias is considered desirable
because it naturally explains the perceptual observation
that when we are looking at a degenerate pattern with
uniform luminance along the horizontal dimension, we
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see zero disparity.* Without the DC components and the
associated bias, the results would be indeterminant as the
responses of all filters would be zero and any disparity
values would be equally valid.

Specifically, it can be shown that for a binocular
stimulus with a horizontally uniform light intensity
distribution

hi(x) = I,(x) = a, (10)

the response of the simple cell with binocular receptive
fields given by Eqs (1) and (2) is:

ra=a| i) + )

= aV2r02e™ 7 (cos ¢y + cos &,),  (11)

the response of the simple cell forming a quadrature pair
with the cell in Eq. (11) is:

rs2 = av2mote i 2(sin ¢y + sin ¢,), (12)
and the complex cell response constructed from the
quadrature pair of the simple cells is therefore given by:

22
*u,”G"

r, = a’8no’e cos’ % (13)
Note that no approximations are used in deriving the
above three equations. Since Eq. (13) predicts that among
the population of complex cells, the one with A¢p =0
gives the maximum response, the disparity reported by
the cells is zero, consistent with our perception. The
reason that the bias is at zero disparity is because the cell
tuned to zero disparity has the largest DC component.
The bias also makes the computed disparity maps from
stimuli with unambiguous disparities slightly less
accurate. The error introduced depends on how the
strength of the disparity signal in the stimulus [the
amplitude of the cosine function in Eq. (8)] compares
with the strength of the bias [the amplitude of the cosine
function in Eq. (13)]. In our computer simulations on
random dot stereograms, the bias is always less than the
small fluctuations in the computed disparity surfaces
caused by the stochastic nature of the stereograms.

HOW DO BINOCULAR CELLS COMPUTE
DISPARITY?

Since binocular disparity is defined as a relative shift
between the corresponding left and right image patches,
one may expect intuitively that a cross correlation type of
operation should be a natural choice for solving the
problem. Indeed, correlation-based stereo algorithms
have been proposed previously in the machine vision
community (Hannah, 1974; Panton, 1978). On the

*One can easily convince him/herself of this claim by looking at a
horizontally uniform pattern generated on a computer monitor or a
uniformly painted wall (at an appropriate distance so that the fine
features on the wall are not detectable). If a uniform pattern is
presented within a dark boundary region, the patch may sometimes
appear slightly behind the boundary. However, this depth effect is
most likely caused by occlusion instead of stereo vision per se.
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surface, however, it is not clear how the cells in our
model compute disparity and whether our physiological
algorithm is related to cross-correlation. We investigate
this issue in this section. Since the simple cells in the
algorithm simply add the contributions from their left and
right receptive fields (Ohzawa et al., 1990; Qian, 1994a)
instead of multiplying them, they are clearly not related
to cross-correlation. The complex cells in our algorithm,
on the other hand, are modeled by summing the squared
outputs of a quadrature pair of simple cells (Ohzawa et
al., 1990; Qian, 1994a). If the disparity tuning behavior
of the complex cells is largely determined by the cross
terms of the squaring operation, then these cells are doing
something similar to a cross-correlation. We now show
that this is indeed the case.

To simplify the following presentation, let us first
rewrite simple cell response expression Eq. (3) as:

ro=L+R (14)

where
L= J_x dxfi (x);(x) (15)
R=| " apwnw (16)

are the filtered left and right retinal images (by the
corresponding receptive fields), respectively. With these
definitions, the response of the complex cell constructed
from a quadrature pair of simple cells can then be written
as

rg=(rs1)” + (rs2)’ (17)

=(L; + R)* + (L, + Ry’ (18)

=L%+L§+R%+R§+2L1XR]+2L2XR2
(19)

where the subscripts 1 and 2 refer to the two simple cells
in the quadrature pair. It can be shown (see the Appendix)
that under the same general assumptions for deriving Eq.
(8) in “Generalization”, the four square terms in the
above equation approximately sum to a constant and the
disparity tuning behavior of the cell is determined by the
last two cross terms. Equation (19) can thus be written as:

rg~const. + 2L; x Ry + 2L, x Ry. (20)

Therefore, the complex cell essentially sums up two
related cross-products between the band-pass filtered left
and right retinal images, resembling cross-correlation
type of operation. In this sense, our model is related to a
class of stereo algorithms using complex image phases
(Sanger, 1988; Fleet et al., 1991) since those algorithms
are also in some ways related to cross-correlation.
However, we would like to emphasize that although
the complex cells are doing something similar to cross-
correlation, they are quite different from the standard
cross-correlators. The standard cross-correlation opera-
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FIGURE 3. Normalized disparity tuning curves to line stimuli with (a)
a single cross product term in Eq. (20); and (b) with both cross terms in
Eq. (20). Note that there are negative responses at some disparities
because we have omitted the unimportant constant term in Eq. (20).
For each case, two sets of line stimuli covering the same disparity
range but with different lateral locations (—0.125 and 0.125 deg) with
respect to the cells’ receptive field center were used to obtain two
different tuning curves. The main peak locations of the tuning curves
using a single cross term depend on the line positions (or equivalently,
the Fourier phases), while those using both cross terms do not. The
expected location of the main peak according to Eq. (7) is indicated by
the vertical lines. The following set of simple cell parameters was used
in the simulations: wy/2n = 1 cycle/degree, o = 0.25 deg, and A¢ = 7/
2. Sixteen pixels were used to represent 1 deg in the simulations.

tion between the left and right images of a stereogram is
defined as:

r(d) = J+x dxl;(x)I,(x + d). (21)

-0

This expression differs from Eq. (20) in a few important
aspects. First, the left and right images in Eq. (20), but not
in Eq. (21), are band-pass filtered by the cell’s receptive
fields before being multiplied. Second, there are two
cross-terms in Eq. (20) while only one in Eq. (21).
Finally, there is an integration in Eq. (21) across the
whole image patches while it is just a product in each
cross-term in Eq. (20). We believe that these differences
are essential for the complex cells to overcome some of
the major problems with the standard cross-correlator.
The main problem with the standard cross-correlator is
that it is very sensitive to small distortions of the images
since distortions will misalign corresponding image
pixels. A closely related problem is that one has to use
a large number of correlators with different d values in
Eq. (21) for disparity computation. This problem
becomes worse when one wants to have an algorithm
with hyperacuity as 4 will then have to take sub-pixel
increments. Both of these problems can be solved by
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band-pass filtering, which smoothes the images at a given
spatial scale. The smoothing makes the algorithm
insensitive to small image distortions so long as the
distortions are smaller than the spatial extent of the
smoothing operation. As we will show in the next section,
as a consequence of the band-pass filtering, as few as two
complex cells at each location are sufficient for a
reasonable estimation of binocular disparity at that
location. Of course, one can also modify the standard
cross-correlator by using the band-pass filtered version of
the left and right retinal images in Eq. (21). However, the
integration in Eq. (21) is computationally far more
expensive than the simple products in Eq. (20).
Although band-pass filtering solves the above-men-
tioned problems with the standard cross-correlation, it
also introduces a new problem not present before: the
response of a single cross-term in Eq. (20) is sensitive to
Fourier phases of input stimulus as well as to disparity.
That is why two related cross-terms from a quadrature
pair of simple cells need to be added in Eq. (20) to
remove the stimulus phase dependence (see the Appen-
dix). The computer simulations demonstrating the
importance of adding the two cross-terms in Eq. (20)
are presented in Fig. 3. This figure shows that a single
cross-product between the filtered left and right retinal
images is not sufficient for reliable disparity coding
because the peak location of its disparity tuning curve
strongly depends on the stimulus Fourier phase.

COMPUTING DISPARITY WITH TWO COMPLEX
CELLS

It is easy to show with Eq. (8) that as few as two
independent complex cells at each spatial location are
sufficient for estimating the disparity at that location.
Assume that the two complex cells are constructed from
simple cells with their phase parameter differences equal
to Ad, and A¢», respectively. If the responses of these
two cells are | and r,, then the disparity at the location is
given by (see the Appendix):

-1 ry—ri ;

D=~ W—Oarcsm\/—a?——b2 ~ o (22)
where

a = ry cos Agy — ry cos A¢y, (23)

b =rysin Agy — rq sin Agy, (24)

6 = arctan %. (25)

We have performed some computer simulations with
two complex cells at each location to compute binocular
disparity using the above equations. The procedure is
similar to that outlined in Fig. 1 except that we now only
need two quadrature pairs of simple cells and Eq. (22) is
used in the third step for disparity estimation. An
example of our simulations is shown in Fig. 4 together
with a simulation with eight complex cells at each
location used previously (Qian, 1994a). There is no
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FIGURE 4. (a) A 110 x 110 random dot stereogram with a dot density of 50% and dot size of 1 pixel. The central 50 x 50 area
and the surround have disparities of 2 and 2 pixels, respectively. When fused with uncrossed eyes the central square appears
further away than the surround. (b) The disparity map of the stereogram computed with eight complex cells at each location
using the method outlined in Fig. 1. For all cells, wy/2n = 0.125 cycle/pixel and ¢ = 4 pixels, giving a frequency bandwidth
(defined at half peak amplitude) of 1.14 octave (Qian et al., 1994). The eight complex celis had their A¢ parameters uniformly
distributed in [—7, +7] starting at —7. They were constructed from 16 simple cells, eight of which had their (¢,, ¢,) parameters
equal to (—67/8, 2n/8), (—5n/8, n/8), (—4n/8, 0), (—37/8, —n/8), (—2n/8, —2n/8), (—n/8, —3n/8), (0, —4n/8) and (n/8, —5n/8),
respectively. The remaining eight simple cells formed quadrature pairs with the first eight and their (¢, ¢,) parameters were
(—2n/8, 61/8), (—n/8, 51/8), (0, 4n/8), (17/8, 3n/8), (27/8, 2n/8), (3n/8, n/8), (4n/8, 0) and (57n/8, —n/8), respectively. The
resulting eight complex cells were tuned to disparities —4, —3, —2, —1, 0, 1, 2, and 3 pixels, respectively. With the current set of
parameters, the cells tuned to —4 and +4 pixels were identical, and because of the parabolic interpolation used in locating the
peaks of responses, the actual disparity range covered by the cells was [—4 pixels, +4 pixels]. (c) The disparity map of the same
stereogram computed with two complex cells at each location. The two cells were picked from the eight cells used in (a) that
were tuned to —1 and +1 pixel of disparity. The method is the same as that shown in Fig. 1, except that the third step is replaced
by Eq. (22). The distance between two adjacent sampling lines in (b) and (c) represents a distance of 2 pixels in (a). Negative and
positive values indicate near and far disparities, respectively.

significant difference between the two simulation results. result does demonstrate how efficiently complex cells
Although it is not known whether the real visual system encode binocular disparity.

uses only two complex cells at each location and It can be seen from the general derivation of Eq. (8)
frequency band to compute binocular disparity, this that the reason that only two complex cells are needed for
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disparity computation is the band-pass filtering. Intui-
tively, after filtering the images through the filters with
preferred frequency g, the outputs contain Fourier
power mainly at @, and can therefore be approximately
represented by only two samples based on Shanon’s
sampling theorem. This gain of efficiency is accompa-
nied by the occurrence of side peaks around the main
peak in a cell’s disparity tuning curve, which in turn,
requires that the cells with preferred frequency wg only
code disparity within the range [—n/wy, n/wo] to avoid
ambiguity (Qian, 1994a).

IMPROVING THE MODEL WITH SPATIAL POOLING
FOR COMPLEX CELL RESPONSES

Our stereo vision algorithm can be significantly
improved by taking into account the additional physio-
logical fact that the receptive field sizes of real complex
cells are, on average, larger than those of the simple cells
at the same eccentricity (Hubel & Wiesel, 1962; Schiller
et al., 1976). We proposed recently (Qian & Zhu, 1995;
Zhu & Qian, 1996) that this fact can be incorporated into
the model by averaging several quadrature pairs of simple
cells with nearby and overlapping receptive fields (and
with otherwise identical parameters) to construct a model
complex cell. Mathematically, this spatial pooling pro-
cess for obtaining the complex cell response is given by:

(26)

where r, is the response of a single quadrature pair given
by Eq. (4), w is a spatial weighting function, and =
denotes the spatial convolution operation. In our simula-
tions, the weighting function w was chosen to be a
symmetric two-dimensional (2D) Gaussian. We show
below that the disparity tuning curve of the resulting
complex cell (r.) is much more reliable than that
constructed from a single quadrature pair (r,) of simple
cells used previously. This in turn improves the quality of
the computed disparity maps from stereograms.

To understand the effect of the spatial pooling, we need
a more accurate expression for the response of a single
quadrature pair. As we have shown elsewhere (Zhu &
Qian, 1996), with Eqs (1) and (2) as the simple cell
receptive field profiles, the quadrature pair response to a
stimulus with Fourier transform |1 (w)|e® ) and disparity
D is exactly given by

Fe =Fg %W

rg = 8nc? JJ dwdw |i (w)] {i(w')l
0

« e-(w_wﬂ)zal /2o~ —un) e’ /2

s [91 (W) = Ow) | (W= w’)D]

2 2

X oS E (Ag — wD)] cos B (Ag — w’D)} . (27)

According to this expression, the response of a
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quadrature pair depend on the difference of the Fourier
phases of the input stimulus measured at two different
frequencies (0{w")—0/{w)). The integrand contains two
Gaussian factors that are significantly large only when
both w and ' are close to wg. If we approximate the
Gaussian functions as the Dirac delta functions centered
at wy and carry out the integrations, Eq. (27) then reduces
to the approximate complex cell response expression in
Eq. (5), which is independent of stimulus Fourier phases.

This means that the complex cell constructed from a
single quadrature pair is only approximately independent
of the stimulus Fourier phase. The approximation is a
good one for simple patterns such as lines, bars or
gratings. For these patterns, their Fourier phases are
continuous functions of frequency. Since the two
Gaussian terms effectively make o' — o very small, they
also make 0 {w") — 0(w) close to zero. We can therefore
neglect the 6 dependence in Eq. (27) for these stimuli by
assuming

6 (W) — 6 (w) + (w—u)D

~z const.
2 2

cos (28)
However, 8,(w) is not a smooth function of  for stimuli
such as random dot patterns, and this is when the pooling
step for computing complex cell responses becomes
important. In this pooling step the responses of several
quadrature pairs with nearby receptive fields (and with
otherwise identical parameters) are averaged. The
response expressions [Eq. (27)] for the different quad-
rature pairs are identical except for the 0{(w) functions,

Normalized Response (%)

1 1.5
Disparity (degree)

FIGURE 5. Normalized disparity tuning curves to line stimuli of the
model complex cells (a) without spatial pooling; and (b) with spatial
pooling. For each model cell, two sets of line stimuli covering the same
disparity range but with different locations on the cell’s receptive fields
were used to obtain two different tuning curves. The peak locations of
the tuning curves to the two sets of lines are very similar regardless of
whether the spatial pooling is used. The expected location of the main
peak according to Eq. (7) is indicated by the vertical lines. The
parameters used in this simulation were identical to those used in Fig.
3. The a,, of the spatial weighting function used in the pooling step of
(b) was 4 pixels.



1818

Normalized Response (%)
2
o

80

60

40

20

0.5 1 1.5
Disparity (degree)

FIGURE 6. Disparity tuning curves to random dot stimuli of the model
complex cells (a) without spatial pooling; and (b) with spatial pooling.
For each model cell, two sets of independently generated random dot
stimuli covering the same disparity range were used to obtain two
different tuning curves. For the cell without spatial pooling the peak
locations of the tuning curves to the two sets of random dots may often
be very different, as is the case in (a). For the cell with spatial pooling
the main peak locations of the two tuning curves are always very
similar. The expected location of the main peak according to Eq. (7) is
indicated by the vertical lines. The parameters used in this simulation
were identical to those used in Fig. 5.

which are different for different pairs because they are
centered on somewhat different parts of the stimulus.
Therefore, the pooling step simply averages over the 6
dependent cosine term in Eq. (27), and makes it
approximately constant. The approximation in Eq. (28)
is thus also valid for random dot type of stimuli after the
pooling. We therefore expect that the pooling should
significantly improve the reliability of disparity tuning to
those patterns whose Fourier phases are not smooth
functions of the frequency.

We have confirmed the above analysis through
computer simulations. Two model complex cells are
considered in our simulations, one with the spatial
pooling and the other without. We first examined the

Compute simple cell responses

Compute complex cell responses,
each from a weighted average of
several quadrature pairs

Estimate disparity using the
parameters of the most responsive
complex cell at each location

! ,
v s

N\ | function

N. QIAN and Y. ZHU

sensitivity of these cells to the Fourier phases of line
stimuli. For this purpose, we computed, for each complex
cell, two disparity tuning curves using two sets of line
stimulus covering the same disparity range but with
different lateral locations. The results are shown in Fig. 5.
As we expected, the pooling does not make much
difference in this case: even without the pooling the peak
locations of the disparity tuning curves are about the
same for the different lateral positions (or equivalently,
the Fourier phases) of the line stimuli. We next examined
the sensitivity of the same two complex cells to the
Fourier phases of random dot patterns. We first generated
two independent random dot patterns and then used each
of them to create a set of binocular stimuli of various
uniform disparities. We then measured the disparity
tuning curves of the two model complex cells to these
two independent sets of random dot stimuli which
contain the same set of disparity values but different
Fourier phases. The results are shown in Fig. 6. It is clear
that in this case, the pooling greatly improved the
reliability of the disparity tuning by reducing the phase
dependence. Indeed, without the pooling, the main peaks
of the tuning curves are sometimes far away from the
expected locations given by Eq. (7), as is the case in Fig.
6(a).

Based on the above results, we have modified our
previous procedure for computing disparity maps shown
in Fig. 1 to the one in Fig. 7. The second step of the new
procedure computes complex cell responses by averaging
over several quadrature pair responses. Mathematically,
this step can be broken down into the two steps shown to
the right in Fig. 7, the first of which computes responses
of single quadrature pairs (just like step 2 of the old
procedure), and the second applies spatial pooling. The
final smoothing step in the old procedure has been
removed in the new method because it is no longer
necessary (see below). Therefore, both the new and old
procedures contain four steps in them, and the only
difference between them is that the order of the last two
steps has been switched.

We have performed computer simulations with the
new procedure and an example for the stereogram in Fig.
4(a) is shown in Fig. 8(a). For comparison, the disparity
map computed from the same stereogram with our

Compute single quadrature pair
responses from simple cells

!

Convolve the quadrature pair
response with a spatial weighting

FIGURE 7. The modified algorithm from computing disparity maps from stereograms. The second step can be viewed as being
composed of the two steps shown to the right so that there is also a total of four steps in the new algorithm. The only difference
between this procedure and the old one shown in Fig. 1 is that the two final steps have been switched.



PHYSIOLOGICAL COMPUTATION OF BINOCULAR DISPARITY

(b)
um gy i
uu',',’"u N
l""' "l"" "I,'..‘\ a0
i Iy .. 0‘\‘\
"" l' 'th
(c)

L
[’ tl[. )

"r
o 0
' ’ 'uq

n""
0.
"h m m)

el
}\"i\w"ﬂl I "m"lll "um ‘ l‘" | 1 i il

) N
“ ’I ll} ,i
“'I' [ /
'll‘. Ww

il
."".”'0 "_ hl:v.,'}" m
"0» A ) LI '17‘
\; ' ‘ 2

ln)

FIGURE 8. Disparity maps of the random dot stereogram in Fig. 4(a)
computed with (a) the new algorithm shown in Fig. 7; (b) the old
algorithm shown in Fig. 1; and (c) the old algorithm with the final
smoothing step omitted. Disparity boundaries computed with the new
algorithm are much sharper than those with the old algorithm. Eight
complex cells were used at each spatial location. The plot in (b) is
copied from Fig. 4(b) and is shown here for comparison. The receptive
field parameters used in computing the three disparity maps were
identical. The o, of the spatial weighting function was 4 pixels. The
distance between two adjacent sampling lines in these plots represents
a distance of 2 pixels in the stercogram.

previous algorithm is also shown in Fig. 8(b). The
disparity map obtained with the new method is
significantly better than that with the old method,
especially around the disparity transition boundaries:
while the transition occurs gradually over a distance of
about 15 pixels in the old map, it takes only about 4 pixels
in the new map. To our knowledge, Fig. 8(a) is the first
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demonstration that sharp disparity transition boundaries
can be obtained with a physiologically realistic mechan-
ism.

It should be noted that the slow transition with the old
method is mainly caused by the final smoothing step (see
Fig. 1) which has to be used in order to remove large
noisy fluctuations in the disparity maps obtained in the
previous step. To see this more clearly, we show in Fig.
8(c) the result from the old method with the final
smoothing step omitted. Although the transition bound-
aries appear sharp, the map is too noisy to be useful. With
the new method the final smoothing step is no longer
necessary due to the improved reliability of the disparity
tuning of the model complex cells. We conclude that the
spatial pooling for computing complex cell responses in
the new method does not directly “sharpen” the disparity
transition boundaries; rather, it helps eliminate the final
smoothing step in the old method which destroys the
sharp boundaries.

To compare the three disparity maps in Fig. 8 more
quantitatively, we plot in Fig. 9 the error distributions for
these maps. The errors were obtained by subtracting an
idealized disparity map from the computed maps. The
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FIGURE 9. The error distributions for the three disparity maps shown
in Fig. 8. The errors were obtained by subtracting an idealized disparity
map from the computed maps (see text). The error distribution for the
new method (a) is more closely centered around O than those for the old
method with or without the final smoothing step (b and c).
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idealized map has disparities of 2 and —2 pixels for the
central square region and the surround, respectively, and
the transition across the disparity boundaries occurs over
1 pixel. * Fig. 9 indicates that the error distribution for the
new method [Fig. 9(a)] is more closely centered around
zero than those for the old method with or without the
final smoothing step [Fig. 9(b and c)]. The proportions of
points with an absolute error less than 0.1 pixel are 78%,
40% and 20% for the three distributions, respectively,
and the mean absolute errorst are 0.16, 0.35 and 0.59
pixel, respectively. Although the final smoothing step in
the old method also greatly reduces error, it is not as
effective as the pooling step at the complex cell level in
the new method, and it is not as physiologically justified.

A key parameter in the new method is the width of the
Gaussian weighting function (s,,) for computing complex
cell responses through spatial pooling. We noted in a
previous publication (Zhu & Qian, 1996) that any 4, > 1
can greatly improve the reliability of the complex cells’
disparity tuning curves. To see how o, affects the
performance of the algorithm we plot in Fig. 10 the mean
absolute error of the computed disparity map as a
function of ¢,. The maps in Fig. 8(c) and Fig. 8(a)
correspond to a,, equal to 0 (no pooling) and 4 pixels in
Fig. 10, respectively. The solid, dashed, and dotted
curves are the results for all points, points near disparity
boundaries, and interior points away from the disparity
boundaries in the disparity maps, respectively. It is clear
from Fig. 10 that the errors from the boundary regions are
much larger than those from the rest of the maps, that the
spatial pooling significantly reduces errors in all three
curves, and that the effect of the spatial pooling is not
very sensitive to o,, so long as it is larger than 1 pixel. The
exact form of the weighting function for spatial pooling is
also not important (Zhu & Qian, 1996). Indeed we found
that very similar results can be obtained by using a
rectangular weighting function covering a line of five
consecutive vertical positions. This indicates that it is
sufficient for a complex cell to contain about five
quadrature-pair subunits to achieve reliable disparity
tuning. The spatial pooling step improves the interior
points most, with an over 10-fold error reduction. The
resulting error for these points is as small as 0.05 pixel. If
we identify the widths of the model simple cells (about
20 = 8 pixels) used in our simulation with the monkey
foveal receptive field sizes [0.1-0.2 deg; see Dow ef al.
(1981)] then a 0.05 pixel resolution is equivalent to 2.3—
45sec of visual angle, comparable to the human

*Note that the actual human perception on a random dot stereogram
may not be as perfect as the idealized disparity map. In particular
there are two 4-pixel-wide stripes on each side of the central square
region along the x-axis whose disparities are undefined because the
dots in these stripes do not correspond between the left and right
images. The calculated errors are thus somewhat exaggerated
around the disparity boundaries.

+TWe did not use the more standard root-mean-square error in this paper
because it tends to over-represent the outliers in the error
distributions that mainly come from the disparity boundary regions
where the errors are somewhat exaggerated (see the previous
footnote).

N. QIAN and Y. ZHU
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FIGURE 10. The mean absolute error of the computed disparity map is
plotted as a function of the width of the Gaussian weighting function
(0.,) used in the spatial pooling step of the new method. The maps in
Fig. 8(c and 8a) correspond to a,, equal to 0 (no pooling) and 4 pixels in
Fig. 10, respectively. The solid, dashed, and dotted curves are the
results for all points, subset of points within 5 pixels around disparity
boundaries, and subset of interior points more than 10 pixels away
from the disparity boundaries in the maps, respectively.

stereoacuity (Ogle, 1952; Blackmore, 1970; Westheimer,
1979; Schumer & Julesz, 1984).

We showed in a previous section that stimulus
disparity can be computed with only two complex cells
at each location. Interestingly, the spatial pooling step for
computing complex cell responses does not help improve
the two-cell algorithm. The result (not shown) from the
new two-cell algorithm is essentially the same as that
obtained with the old method shown in Fig. 4(c), with
slow transition at disparity boundaries. This is probably
due to the fact that the two-cell algorithm depends on the
response magnitudes while with more cells only the peak
location of the responses among the cell population is
important. The response magnitudes are more likely to be
affected by the presence of two different disparities at the
transition boundaries than the response peak location.

MULTIPLE SPATIAL SCALES

The results reported so far are all based on a set of
front-end filters (binocular receptive fields) at a single
spatial scale (i.e., a single set of values for the Gaussian
width ¢ and preferred frequency g in Egs (1) and (2)).
Since the cells in the visual cortex cover a wide range of ¢
and wy (DeValois erf al., 1982; Shapley & Lennie, 1985)
and since the visual system are known to analyze stimuli
through multiple frequency channels (Campbell &
Robson, 1968; Graham & Nachmias, 1971), it is
interesting to compare disparity maps computed by cells
at different spatial scales and to consider how these maps
may be combined into a unitary percept. Figure 11(a—)
shows the disparity maps of a random dot stereogram
computed with filters at three different spatial scales. The
parameters for computing Fig. 11(b) are identical to those
used in Fig. 4(b). The parameters for Figs 4(a) and 4(c)
are scaled down and up by a factor of 1.5 in the spatial
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FIGURE 11. The disparity maps of a random dot stereogram (not shown) computed with cells at three different spatial scales (a—

¢) and the average across the scales (d). The receptive field parameters for (b) are identical to those used in Fig. 4(b). The

parameters for (2) and (c) are scaled down and up by a factor of 1.5 in their spatial dimension (or equivalently, scaled up and

down in the frequency domain), respectively. The frequency bandwidths of the filters in all three scales are equal to 1.14
octaves.

dimension (or equivalently, scaled up and down in the
frequency domain), respectively. The frequency band-
widths of all filters in the three scales are equal to 1.14
octaves. It can be seen from Fig. 11(a—c) that cells at each
scale can compute the disparity map independently. As
the spatial scale increases, the sharpness of transition at
disparity boundaries gradually deteriorates [the transition
distances are about 2, 4 and 8 pixels for Fig. 11(a—c),
respectively]. The mean absolute errors for the three
maps are 0.16, 0.15 and 0.24, respectively. However,
larger scales have the advantage of being able to compute
a wider range of disparities (see “The Model”).

Psychophysical evidence indicates that disparity sig-
nals from different frequency channels interact with each
other (Wilson et al., 1991; Rohaly & Wilson, 1993, 1994,
Smallman, 1995; Mallot er al., 1996). Computational
studies have also suggested possible ways of pooling
across different scales (Marr & Poggio, 1979; Sanger,
1988; Grzywacz & Yuille, 1990; Fleet ef al., 1996). The
exact mechanism used by the brain for combining scales,
however, remains unknown. The simplest method is to
average across the disparity maps computed by different
scales (Sanger, 1988). Such an average for Fig. 11(a—) is
shown in Fig. 11(d). The mean absolute error of the
whole map is 0.12 pixel, better than those of the
individual maps. The transition over disparity boundaries
occurs over a distance of about 4 pixels. Obviously, the
sharpness of disparity boundaries in the averaged map
depends on how many small and large spatial scales are
included in the average. An over-representation of large
spatial scales in the average will clearly destroy the sharp
boundaries.

It should be noted that we are not assuming that the
scale averaging is a step for modeling the responses of
primary visual cortical cells. Such an operation would
render the cells insensitive to spatial frequency (Zhu &
Qian, 1996), contradictory to experimental facts. Instead,
the population activity of many families of cells at
different scales in the primary visual cortex might
directly correspond to an overall percept determined by
the averaging process. Alternatively, the averaging could
be explicitly performed at a stage beyond the striate
cortex, such as area MT (Grzywacz & Yuille, 1990).

POSITION-SHIFT RECEPTIVE FIELD MODEL

The binocular receptive field model proposed by
Freeman et al. (Ohzawa et al., 1990; Freeman & Ohzawa,
1990; DeAngelis et al., 1991) assumes that the left and
right receptive field profiles of a simple cell have the
same envelopes (on the corresponding left and right
retinal locations) but different phase parameters for the
excitatory/inhibitory modulations within the envelopes.
An alternative assumption preceding this phase-differ-
ence model is that there may be an overall positional shift
(for both the envelopes and modulations) between the
two profiles (Bishop et al., 1971; Maske et al., 1984;
Wagner & Frost, 1993). The third possibility is a hybrid
which assumes that the two profiles differ by both an
overall positional shift and a phase difference (Jacobson
et al., 1993; Zhu & Qian, 1996; Fleet et al., 1996). We
have previously investigated the subtle but important
differences between these receptive field models and
suggested methods for correctly distinguishing them
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FIGURE 12. (a) Computed disparity map of the random dot
stereogram shown in Fig. 4(a) using the position-shift based receptive
field models with the new algorithm in Fig. 7. The result is similar to
Fig. 8(b) which was computed with the phase-parameter based
receptive field model on the same stereogram. Eight complex cells
were used at each spatial location. The parameters of the cells were
identical to those in Fig. 8(b), except that the phase-parameter
differences were replaced by the equivalent positional shift parameters.
(b) Error distribution for the map in (a).

experimentally (Qian, 1994b; Zhu & Qian, 1996; see also
Fleet et al., 1996).

So far in this paper we have been using the phase-
difference based receptive field model in our analyses and
simulations. We now demonstrate that our algorithm for
disparity computation also works with the position-shift
based receptive field models. It is easy to show that if we
assume an overall horizontal positional shift Ax between
the left and right receptive fields of a simple cell, the
complex cell response Eq. (8) should then be replaced by:

rg & | (wp)? cos? (— (29)

The preferred disparity of the complex cell is therefore
equal to the shift Ax (Zhu & Qian, 1996; Qian &
Andersen, 1997). This equation indicates that a popula-
tion of complex cells with the different position-shift
parameter Ax can also form a distributed representation
of stimulus disparity, and the same procedure outlined in

*When the patch size is reduced to that of a single dot, the implicit
version becomes identical to the explicit version of the correspon-
dence problem. At this limit, the cross-correlation response from a
correct match and that from a false match are equally strong and
that is where the complication of distinguishing correct matches
from false ones occurs.

N. QIAN and Y. ZHU

Fig. 7 can be used to compute disparity maps from
stereograms. An example of our computer simulations on
the random dot stereogram in Fig. 4(a) is shown in Fig.
12. Both the computed map and the error distribution are
very similar to those obtained with the phase-difference
receptive field model on the same stereogram [see Fig.
8(a) and Fig. 9(a)]. The proportion of points with an
absolute error less than 0.1 pixel is 86%, better than the
78% for the phase-difference algorithm. The mean
absolute error, however, is slightly higher at 0.18 pixel
(0.16 pixel for the phase algorithm) due to the larger
number of outliers in the error distribution.

The results in the previous sections regarding relation-
ship to cross-correlation, two-complex-cell algorithm and
spatial pooling also apply to the position-shift based
algorithm. However, the position-shift based algorithm
does not naturally predict a zero disparity bias because
the receptive field shapes of cells tuned to different
disparities can all be identical and therefore all have the
same DC component. In addition, it does not naturally
predict the observed size—disparity correlation (Small-
man & MacLeod, 1994; Schor & Wood, 1983) because
unlike the phase-difference based algorithm, the pre-
ferred disparity of a complex cell is always equal to the
shift parameter Ax, regardless of its preferred spatial
frequency (wp) or the dominant spatial frequency in the
stimulus (€2) (Zhu & Qian, 1996).

SUMMARY AND DISCUSSION

The central question of the stereoscopic depth percep-
tion is how the visual system determines which parts on
the two retinal images come from the same object in the
real world, the so-called correspondence problem. In the
case of seeing depth in random dot stereograms the
correspondence problem is usually stated as finding
explicitly which dot (or other features such as edge of
dot) in the left image matches which in the right image.
Since all dots in the two images of a random dot
stereogram are of identical shape, it is often argued that
any two dots, one from each image, could potentially
match and that the visual system is faced with an
enormously difficult problem of sorting out the right
matches from a huge number of false ones. On the other
hand, if one considers an implicit version of the
correspondence problem by using image patches instead
of the fine features for matching, finding disparity in a
random dot stereogram becomes a conceptually simple
task: it can be solved by computing cross-correlations
between the left and right image patches at various
relative shifts between them, and then determining which
shift produces the largest response.* Since the receptive
fields of real visual cortical cells are not point-like, the
stereo algorithm used by the brain must also operate on
image patches rather than on individual fine features. As
we have demonstrated previously (Qian, 1994a) and in
this paper, model complex cells with realistic physiolo-
gical properties can indeed be used to compute disparity
maps from random dot stereograms through an operation
related to but much more sophisticated than the standard
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cross-correlation, without facing an explicit correspon-
dence problem. We therefore conclude that random dot
stereograms probably do not really pose a computational
challenge to the visual system. The explicit version of the
correspondence problem may not exist in the brain.

Although many of the existing stereo vision algorithms
also avoid the explicit correspondence problem by
operating on image patches, most of them cannot be
said to be truly physiological because of certain
mathematical operations used in them. Our stereo model,
on the other hand, is entirely based on known
physiological facts. The main goal in this paper is to
provide a better and more intuitive understanding of how
the model works. We first showed that although we
originally derived our algorithm using the Gabor
functions as the cells’ receptive field profiles, the model
works under some very general assumptions about the
receptive field properties of binocular cells, and it works
for both the phase-difference and the position-shift types
of receptive field descriptions. The details of the
receptive field profiles are thus not very important in
most circumstances. We then showed that if the Gabor
functions are used as the receptive field profiles, our
stereo algorithm has a small bias towards zero disparity
because of the DC components in the Gabor functions.
This bias naturally explains the fact that we see zero
disparity in horizontally uniform patterns, which by
themselves are physically consistent with any disparity
values. This result is particularly interesting because
there is good evidence indicating that the spatial
receptive field profiles of real visual cortical cells can
indeed by modeled by the Gabor functions (Jones &
Palmer, 1987; Ohzawa et al., 1990).

The DC component of a filter is usually considered as
undesirable precisely because of the bias it introduces.
Here we have shown that the bias can actually be a useful
feature: it allows the visual system to pick the smallest
(zero) of the disparity values that are physically
consistent with ambiguous stereo stimuli. A similar
perceptual bias also exists in motion perception under the
name of the “aperture” problem: when we see an oriented
pattern moving behind an aperture, we only see the
velocity component perpendicular to the orientation of
the pattern. Equivalently, one can say that our perception
is biased towards seeing the smallest possible speeds that
are consistent with ambiguous motion stimuli. It would
be interesting to see if the spatiotemporal receptive field
profiles of real visual cortical cells could also allow a
natural explanation of the motion “aperture” problem just
as we showed in this paper for the zero disparity bias in
stereo vision.

We also found through mathematical analysis that the
complex cell described by Freeman and coworkers
essentially sums up two related cross-product terms
between the band-pass filtered left and right retinal
images. This result is interesting because it provides an
intuitive understanding of how the complex -cells
compute binocular disparity. Indeed, it is difficult to see
in the original quadrature pair construction how the
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complex cells encode disparity. We further compared the
complex cells with the standard cross-correlator and
pointed out that they avoid several major problems of the
latter. In particular we showed that unlike the standard
cross-correlators, as few as two complex cells at each
spatial location are sufficient for a reasonable estimation
of the binocular disparity at that location.

Finally, we showed that our stereo vision algorithm can
be significantly improved by considering the additional
physiological fact that the receptive field sizes of real
complex cells are larger than those of the simple cells.
This is incorporated into the model by adding a spatial
pooling step for computing complex cells’ responses.
Owing to the improved reliability of the disparity tuning
behavior of the model complex cells, we no longer need
the final smoothing step used in our previous algorithm.
As a consequence, the disparity maps computed with the
new algorithm have sharp transitions at disparity
boundaries similar to our perception. In fact, one of the
main problems with many existing stereo algorithms is
the slow transition at disparity boundaries in the
computed disparity maps. Although there are engineering
type approaches to fixing the problem, we believe that
our algorithm is among the first that solves the problem
with a simple and physiologically plausible method. It
would also be interesting to experimentally test the idea
of the spatial pooling by studying the reliability of
complex cells’ disparity tuning to line and random dot
patterns (cf. Figs 5 and 6).

Psychophysical comparisons

There is a large body of psychophysical literature
documenting various aspects of the human stereoscopic
depth perception. How our stereo model compares with
the existing psychophysical data is the subject of ongoing
research. Here we briefly discuss several interesting
cases.

It is well known that we can still perceive depth when
the contrasts of the two images in a stereo pair are very
different so long as they have the same sign (Julesz,
1971). We have shown previously that our algorithm
shows the same behavior (Qian, 1994a). Specifically, if
the contrast ratio of the lower contrast image to the higher
one is y, the cosine function in Eq. (8) should be
multiplied by 7. Our algorithm still works so long as y is
positive (i.e., same contrast sign) but the amplitude of the
disparity tuning curves, and consequently the reliability
of disparity detection, decreases with decreasing 7 (i.e.,
increasing contrast difference).

Westheimer (1986) found that a few vertical line
segments at different disparities, separated laterally along
the horizontal fronto-parallel direction, influence each
other’s perceived depth in the following way: when the
lateral distance between the lines is small (less than about
5 min), the lines appear closer in depth as if they are
attracting each other. At larger distances, this effect
reverses and the lines appear further away from each
other (repulsion). When the distance is very large there is
no interaction between the lines. We recently analyzed
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how the responses of a population of model complex cells
centered on one line are influenced by the presence of
another line at various distances (Qian & Zhu, 1997). It
was found that by averaging across all cell families with
different bandwidths and preferred frequencies, the
model can naturally explain Westheimer’s observation
without introducing any ad hoc assumptions.

Our model is consistent with the observation that depth
in a stereogram can only be observed when there is
overlapping spatial frequency content between the two
images in a stereogram (Julesz, 1971). This property is
shared by all algorithms including ours that perform
matching in separate frequency channels. A related
observation is that stereopsis is not impaired by the
introduction of uncorrelated monocular noise if the noise
energy is two octaves or more from that specifying the
disparity (Julesz, 1975; Yang & Blake, 1991). To account
for this observation, one can simply assume that when
averaging results across different frequency channels, the
contribution from each channel should be weighted by its
disparity signal strength. A number of studies also
indicate that strong and sophisticated interactions exist
between different frequency channels (Wilson et al.,
1991; Rohaly & Wilson, 1993, 1994; Smallman, 1995;
Mallot et al,, 1996). How to combine outputs from
different frequency channels to account for these
observations remains an open question. The simple
averaging scheme used in Fig. 11(d) is unlikely to be
sufficient.

As mentioned in “The Model”, when the phase-
difference type of receptive field profiles (Ohzawa et
al., 1990) are used as the front-end filters, the algorithm
predicts a correlation between the perceived disparity
range and the dominant spatial frequency in the stimulus
(Smallman & MacLeod, 1994; DeAngelis et al., 1995;
Zhu & Qian, 1996). Such a correlation has been reported
psychophysically (Smallman & MacLeod, 1994; Schor &
Wood, 1983). However, the observed disparity range is
somewhat larger than that allowed by the algorithm with
purely phase-difference types of receptive fields. This
discrepancy can be remedied by using a hybrid receptive
field model containing contributions from both phase-
difference and positional shift (Smallman & MacLeod,
1994; DeAngelis ef al., 1995; Zhu & Qian, 1996; Fleet et
al., 1996).

The disparity boundaries computed with our algorithm
appear to be as sharp as the human perception although
we are not aware of any psychophysical studies in this
regard to make a quantitative comparison. The error of
the computed disparity values at locations away from the
disparity boundaries falls in the range of the human
stereoacuity (see the section “Improving the Model with
Spatial Pooling for Complex Cell Responses™). It is
known that the disparity discrimination threshold in-
creases rapidly with the magnitude of the base disparity
(Ogle, 1952; Blackmore, 1970; Westheimer, 1979;
Schumer & Julesz, 1984). Our model may also be able
to explain this observation for the following reason. As
we have already mentioned, a family of complex cells
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with preferred spatial frequency @y can only encode
disparity in the range [ —n/wy, 7/wg] (Qian, 1994a; Zhu &
Qian, 1996). Therefore, for a given stimulus disparity D,
only those cell families with preferred spatial frequency
wq smaller than n/D can encode the disparity. Conse-
quently, as the base disparity of the stimulus increases,
cell families with finer spatial scales will not be able to
contribute to the disparity computation, and the variance
of the model output will increase. This, in turn, will
require a larger disparity increment for reliable discrimi-
nation (i.e., a higher discrimination threshold). We are
currently investigating this possibility. Our algorithm is
also consistent with the observation that depth is
perceived in stercograms without localized image
features such as zero-crossings (Arndt ef al., 1995). This
is because the algorithm directly operates on image
patches without first extracting image features.

A number of studies (Ramachandran et al., 1973b; Sato
& Nishida, 1993; Hess & Wilcox, 1994; Wilcox & Hess,
1995) have suggested the existence of two different
stereoscopic mechanisms analogous to the Fourier and
non-Fourier systems of motion detection (Ramachandran
et al., 1973a; Derrington & Badcock, 1985; Chubb &
Sperling, 1988). The Fourier disparity is specified by the
relative displacement of luminance profiles (a first-order
image property) in the two retinal images, while the non-
Fourier disparity is defined by higher-order image
properties such as subjective contours, second-order
textures, or envelopes of luminance modulations. In a
non-Fourier stereogram, the luminance profiles of the two
images are either uncorrelated, or correlated but un-
related to the perceived disparity. Our stereo model in its
current form can only detect Fourier disparity since it
depends on the similarity of luminance profiles in the two
retinal images. A second parallel pathway with additional
non-linearities has to be added to the model for the
detection of the non-Fourier disparities (Wilson et al.,
1992). Similarly, our current model cannot explain the
perceived depth in stereograms with unmatched mono-
cular elements that simulate occlusions (Shimojo &
Nakayama, 1990; Nakayama & Shimojo, 1990; Liu et al.,
1994). Finally, the model is limited by only including
short-range interactions within the scope of the classical
receptive fields of primary visual cortical cells. Long-
range connections between these cells and influences
outside the classical receptive fields have been docu-
mented physiologically (Ts’o et al., 1986; Das & Gilbert,
1995; Allman et al., 1985). In addition, many cells in the
extrastriate visual areas, where the receptive fields are
much larger, are also disparity selective. How to
incorporate these experimental findings into the model
to account for perceptual phenomena involving long-
range interactions such as “depth capture” (Spillman- &
Werner, 1996) requires further investigation.
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APPENDIX

Derivation of Eq. (8)

In this section, we derive the complex cell response Eq. (8) under
the general assumption that the frequency tuning of the receptive field
profiles is much sharper than the frequency spectrum of the input
stimulus, and that there is a phase difference A¢ between the left and
right receptive field profiles. We will also estimate the error term
associated with the approximation method used in the derivation.

The derivation method used here is similar to that used by (Qian &
Andersen, 1997). We start by calculating simple cell responses defined
in Eq. (3). Applying the Fourier power theorem and using tilde to
denote the Fourier transform of a function, Eq. (3) can be written as:

ro = / " Q)T (@) + F ) () (A1)

Since fi(x), f{x), I{x) and I(x) are real functions their Fourier
transforms all satisfy the relation: g(—w) = g*(w). Equation (A1) can
thus be written as

n=2 [ daRelf] (@) + ) ) (A2)
0
where Re represents the real part of a complex quantity.
Freeman and coworkers (DeAngelis et al., 1991, 1995) proposed
based on their quantitative physiological studies that the left and right

*Note that under the alternative assumption of an overall horizontal
positional shift (Ax) between the left and right receptive fields (Zhu
& Qian, 1996; Wagner & Frost, 1993; DeAngelis ef al., 1995), the
two Fourier transforms will differ by &> and a similar derivation
can be carried through to obtain Eq (29).

1The disparities of real world stimuli are, or course, not constant.
However, this is a good approximation within the spatial windows
of the primary visual cortical cells.
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receptive fields of a binocular simple cell have corresponding retinal
locations but different phase parameters for the excitatory/inhibitory
modulations within the receptive fields, as represented by Eqs (1) and
(2). It is easy to show that, in the Fourier domain, Eqs (1) and (2) differ
by B¢ for well-tuned receptive fields, where A¢ is the phase
parameter difference defined in Eq. (6), and the sign function is equal
to 1 when its argument is positive, and —1 otherwise.* We can
therefore assume that in general the Fourier transforms of the left and
right receptive fields are related by

Fiw) = filw)ebiense (A3)

Note that the sign function also ensures that upon inverse transform
fx) is a real function.

The left and right images of a stimulus patch with constant disparity
D can be written as:}

Iix) =1(x) (A4)
L(x) =1(x+D). (AS5)
Or equivalently, their Fourier transforms are related by:
L{(w) = L{w)e? (A6)
Substituting Eqgs (A3) and (A6) into Eq. (A2) we obtain:
ry = 2Re / decfi(w)I} (w)[1 + 2070 (A7)
0

We have dropped the sign function because the integration is carried
over the positive frequency only. The terms in the integrand are in
general complex, and each can be written as an amplitude multiplied
by a complex phase term:

I'(w) = [I{w)e”"™, (A8)
filw) = lfi(w)le®™, (A9)
1+ elifeeD) — 2|c05(% - %He’““”. (A10)
Equation (A7) can then be written as:
ry = 4/: el ()| () [cos (%? - %’3> lcos(6; + 6 +6). (A1)

For simplicity of notation, we did not explicitly write out the w
dependence of the fs in the above equation.

Most primary visual cortical cells are well tuned to spatial
frequencies. Assume that the cell in Eq. (Al1) is tuned to frequency
wo and that its tuning is significantly sharper than that of the other
terms in the equation, we can then approximate fj(w) by two delta
functions, one peaked at w, and the other at (—w,), and simplify Eq.
(All) into:

A¢ u.)(]D

rs & 4|1 (wp)||cos (7 - —2—) |cos(6; + 65 + ) /:C dwlfi(w)].

(A12)

We now compute complex cell responses using the quadrature
pair construction. It is easy to show that the response of the simple cell
that forms a quadrature pair with the simple cell in Eq. (A12) is given
by:

A o wyD

7! =2 4{I(wyp)]|cos (7 - T) |sin(8; + 6; + 9)/0 dwlfi(w)),

(A13)

because the s of the two simple cells differ by #/2 while all the other
parameters are the same (Adelson & Bergen, 1985; Watson &
Ahumada, 1985; Ohzawa er al., 1990; Qian, 1994a). The response
of a complex cell constructed from this quadrature pair is then given
by:

a

rg = () +(r) (A14)

Lo LA D
2 ¢*|f (wy)|*cos? (——? - fju—) , (A15)

2 2
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where constant ¢ is defined as:

€= 4Ax dwlfi(w))-

This completes the derivation of Eq. (8) in the text.

The above general derivation also allows an easy estimation of the
error term associated with Eq. (8). The only approximation we used is
treating |fi(w)| in the positive frequency domain as a delta function
when obtaining Eq. (A12) from Eq. (A11). To simplify the following
notation, let us define:

(A16)

fw) = [fiw)l, (A17)
g(w) = 4|I(w)||cos (% - %) |cos(8; + 65 + 6). (A18)

With these definitions, Eq. (A11) becomes:
r= [ dufog) (A19)

We assumed in the above derivation that f{w) has a sharp peak at wy,
while g(w) is a relatively slow-varying function of w, such that:

5 R . duwf (w).
o~ glen) [ dof (o (A20)
The error of this approximation is therefore:
ar, = [ duf lgte) = glen)
~ [T sl - a+ B o a

It is reasonable to assume that ), is the center-of-mass location of flw)
in the positive frequency domain:
o
oy = o df )
Jo© duf (w)
It is then easy to show that the first term in Eq. (A21) integrates to zero
and the error becomes:

(A22)

g (wo)

Arg = )

(Aw)* / N duwf (w) (A23)

where 0

fnx dwf (w)(w — w(,)z
Jodof (w)

is the variance of f{w) around ¢y, and is a measure of its width. The
relative error is therefore:

(Aw)’ =

(A24)

Ay g"(wy)(Aw)’
7 2g(wy)

We conclude that the relative error is proportional to the width of the
simple cell frequency tuning curves.

(A25)

Derivation of Eq. (20)
We now derive Eq. (20). Following the notations and the

approximation methods used in the previous section, we can calculate
the filtered left and right images (by a given simple cell) as follows:

L= j dofy () I ()

-

= 2J dw Re [[fi ()| (w) e )
0

2

= 2|1 (wo)| cos(fy + 6;) [ ' dwlfi(w)|. (A26)

0
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+oc - -
R :J dwfr (w)f (w)

-

— 2[ dwRe“fl(w)|ei€](u)eiA@’j(u))|ezﬁl(u)e—wl)]
0

~ 2 ieos(0 + 5 + 0, ~ o) | " i) (A27)
0

The left and right images filtered by the simple cell that forms a
quadrature pair with the cell above are then given by:

Ly = 2|I(wo)|sin(0; + 6;) /}x dwlfy ()], (A28)

Ry ~ 20 (wo)[sin(Ad + 6, + 6 — D) /0 W) (A29)

because the two cells have their 0y differ by n/2 according to the
quadrature pair construction method (Adelson & Bergen, 1985;
Waitson & Ahumada, 1985; Ohzawa et al., 1990; Qian, 1994a).
It is now easy to verify that
2 2 2 2 2

L1+L§+R1+R2’~V5|I(WO)‘ (A30)
is approximately a constant, where ¢ is defined in Eq. (9). Similarly, it
is easy to see that either L; x Ry or L, x R, has dependence on the
Fourier phases (6;) of the stimulus and therefore are not adequate for
coding disparity, while their sum:

2
Li xR +L, xR, = % [F(wo)|Pcos(Ag — weD) (A31)
is independent of ;. Adding Eqs (A30) and (A31) gives us back the

complex cell response expression Eq. (5) in the text.

Derivation of Eq. (22)

We derive Eq. (22) for computing disparity with two complex cells
in this section. Assume that the two complex cells are constructed from
simple cells with their phase parameter differences equal to A¢; and
Ag,, respectively. If the responses of these two cells are ; and r;, then
according to Eq. (8) we have:

- 5 A woD
ri = I (wy)[*cos? (ﬁ - L) (A32)
2 2
. A D
ry 2 I (wy)|*cos’ Adr_woD (A33)
2 2
Dividing the above two equations and rearranging, we obtain:
acoswoD + bsinwgD = ry — ry, (A34)

where a and b are defined in Eqs (23) and (24) in the text. If we further
define

a

tand = . A35
an b . ( )
we then have
a
sing = ——— A36
N (436)
cost = ——2_ (A37)
T Var
and Eq. (A34) becomes
Va2 +b2sin(é + D) =1 — 1y (A38)

Solving for D from this expression we obtain Eq. (22) in the text.



