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Numerous studies suggest that the visual system uses both phase- and
position-shift receptive field (RF) mechanisms for the processing of binoc-
ular disparity. Although the difference between these two mechanisms
has been analyzed before, previous work mainly focused on disparity
tuning curves instead of population responses. However, tuning curve
and population response can exhibit different characteristics, and it is the
latter that determines disparity estimation. Here we demonstrate, in the
framework of the disparity energy model, that for relatively small dispar-
ities, the population response generated by the phase-shift mechanism is
more reliable than that generated by the position-shift mechanism. This
is true over a wide range of parameters, including the RF orientation.
Since the phase model has its own drawbacks of underestimating large
stimulus disparity and covering only a restricted range of disparity at a
given scale, we propose a coarse-to-fine algorithm for disparity computa-
tion with a hybrid of phase-shift and position-shift components. In this
algorithm, disparity at each scale is always estimated by the phase-shift
mechanism to take advantage of its higher reliability. Since the phase-
based estimation is most accurate at the smallest scale when the disparity
is correspondingly small, the algorithm iteratively reduces the input dis-
parity from coarse to fine scales by introducing a constant position-shift
component to all cells for a given location in order to offset the stimulus
disparity at that location. The model also incorporates orientation pool-
ing and spatial pooling to further enhance reliability. We have tested the
algorithm on both synthetic and natural stereo images and found that it
often performs better than a simple scale-averaging procedure.

1 Introduction

Position-shift and phase-shift (or phase-difference) models are two distinct
mechanisms that have been proposed for describing reception field (RF)
profiles and disparity sensitivity of V1 binocular cells (Bishop & Pettigrew,
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1986; Ohzawa, DeAngelis, & Freeman, 1990; see Qian, 1997, for a review).
The position-shift model assumes that the left and right RFs of a simple cell
are always identical in shape but can be centered at different spatial loca-
tions, while according to the phase-shift model, the two RFs of a cell can have
different shapes but are always tuned to the same spatial location. Recent
studies indicate that both the phase- and position-shift models contribute
to the representation of binocular disparity in the brain (Zhu & Qian, 1996;
Ohzawa, DeAngelis, & Freeman, 1997; Anzai, Ohzawa, & Freeman, 1997,
1999a; Livingstone & Tsao, 1999; Prince, Cumming, & Parker, 2000) and
that the phase-shift model appears to be more prominent although position
shift may also play a significant role at high spatial frequencies (Ohzawa
et al., 1997; Anzai et al., 1997, 1999a). These findings are consistent with
earlier psychophysical observations that there is a correlation between the
perceived disparity limit and spatial frequency as predicted by the phase
model, but the disparity range at high spatial frequencies is larger than
what a purely phase-shift model allows (Schor & Wood, 1983; Smallman &
MacLeod, 1994).

These studies raise at least two questions: What are the relative strengths
and weaknesses of the phase- and the position-shift mechanisms in dispar-
ity computation, and what is the advantage, if any, of having both mecha-
nisms? We (Zhu & Qian, 1996; Qian & Zhu, 1997) and others (Smallman &
MacLeod, 1994; Fleet, Wagner, & Heeger, 1996) have previously analyzed
the similarities and the differences between the two RF models. However,
that work mainly focused on the disparity tuning properties of a given cell.
For the task of disparity estimation faced by the brain, it is the population re-
sponses of many cells to a given (unknown) disparity that is most relevant.1

Tuning curves and population response curves have different shapes and
properties in general; they are identical only under some special conditions
(Teich & Qian, 2003). Qian and Zhu (1997) did compare the disparity maps
computed from the population responses of the phase- and position-shift
RF models, but the study did not examine the properties of the population
responses in detail and was done under the condition where the difference
between the two RF models is minimal (see section 2.1). In addition, pre-
vious studies have not explored how to properly combine the phase- and
position-shift mechanisms in a stereo algorithm to achieve better results
than either mechanism alone.

Another limitation of most previous studies on disparity computation is
the exclusion of orientation tuning. Indeed, with a few exceptions (Mikaelian

1 As we will detail in section 2, for a set of cells with a range of preferred disparity, a
population response curve is obtained by plotting each cell’s response to a fixed stimulus
disparity against the cell’s preferred disparity. The stimulus disparity can be estimated
from either the peak or the mean of a population response curve. In this article, we use the
peak location. In contrast, one cannot estimate stimulus disparity directly from a disparity
tuning curve (Qian, 1997).
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& Qian, 1997, 2000; Matthews, Meng, Xu, & Qian, 2003), most previous com-
putational studies of the disparity energy model employed one-dimensional
(1D) Gabor filters (Qian, 1994; Zhu & Qian, 1996; Fleet et al., 1996; Qian &
Zhu, 1997; Tsai & Victor, 2003) instead of two-dimensional (2D), oriented
filters found in the visual cortex.2 Of course, a 1D algorithm can be read-
ily extended to 2D by replacing 1D Gabor filters with 2D Gabor filters.
However, without the additional refinements presented in this article, the
performance of the resulting 2D algorithm is much worse than that of the
corresponding 1D algorithm. The reason is that at depth boundaries, 2D
filters tend to mix up regions of different disparities more than 1D filters do
(Chen & Qian, unpublished observations).

In this article, we analyze the differences between the phase-shift and
position-shift RF models in terms of both disparity tuning curves and pop-
ulation responses. We consider stimuli with and without orientations, and
examine various offsets between the preferred orientation of the cells and
the stimulus orientation. We find that although the two RF models generate
disparity tuning curves of similar qualities, the phase-shift mechanism pro-
vides more reliable population responses than the position-shift mechanism
does for relatively small stimulus disparity. Here, the reliability is measured
by the standard deviation of the peak location of the tuning curve or popu-
lation response curve when certain stimulus details unrelated to disparity
(such as the lateral position of a bar or the dot distribution in a random dot
pattern) are varied. Based on these and other considerations and our pre-
vious finding that the phase-shift-based disparity computation is accurate
only when the stimulus disparity is considerably smaller than the RF sizes
(Qian, 1994; Qian & Zhu, 1997), we propose an iterative algorithm that em-
ploys both the phase- and position-shift mechanisms in a specific way and
demonstrate that the hybrid mechanism is more reliable and accurate than
either mechanism alone. After incorporating pooling across spatial location,
orientation, and spatial scale, we present a coarse-to-fine model for dispar-
ity computation and demonstrate its effectiveness on both synthetic and
natural stereograms. We also compare this coarse-to-fine algorithm with a
simple scale-averaging procedure applied to the population responses of
the position-shift mechanism.

2 Analyses and Simulations

2.1 Phase-Shift vs. Position-Shift RF Models. The details of the dis-
parity energy model used in this work have been described previously
(Ohzawa et al., 1990; Qian, 1994). Briefly, according to quantitative physio-
logical studies, spatial RFs of a binocular simple cell can be well described

2 Some studies mentioned orientation pooling, but did not really address the issue due
to the 1D filters used.
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by 2D Gabor functions (Daugman, 1985; Jones & Palmer, 1987; Ohzawa et
al., 1990). The position-shift and phase-shift RF models can be expressed as
an overall positional difference between the left eye and right eye Gabor
functions and as a phase difference between the sinusoidal modulations
of the Gabor functions, respectively. We first consider a vertically oriented
Gabor function centered at origin:

g(x, y, φ) = 1
2πσxσy

exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
cos(ωx + φ), (2.1)

where ω is the preferred spatial frequency, σx and σy determine the x and y RF
dimensions, and φ is the phase parameter for the sinusoidal modulation.
(Other preferred orientations and RF centers can be obtained by rotating
and translating this function, respectively.) The phase-shift model (Ohzawa
et al., 1990; DeAngelis, Ohzawa, & Freeman, 1991; Ohzawa, DeAngelis, &
Freeman, 1996) posits that the left and right RFs of a simple cell are expressed
as

gpha
l (x, y) = g(x, y, φ) (2.2)

gpha
r (x, y) = g(x, y, φ + �φ). (2.3)

Thus, the two RFs have the same position (both centered at origin), but there
is a phase difference �φ between their sinusoidal modulations. In contrast,
the position-shift model assumes that the left and right RFs take the form

gpos
l (x, y) = g(x, y, φ) (2.4)

gpos
r (x, y) = g(x + d, y, φ). (2.5)

These two RFs have identical shape, but there is an overall shift d between
their horizontal positions.

Using these RF profiles, one can compute simple and complex cell re-
sponses based on the disparity energy model (Ohzawa et al., 1990; Qian,
1994). We focus on complex cell responses here because simple cell re-
sponses are much less reliable due to their stronger dependence on the
Fourier phases of the stimuli (Ohzawa et al., 1990; Qian, 1994; Zhu & Qian,
1996; Qian & Zhu, 1997; Chen, Wang, & Qian, 2001). It can be shown (see the
appendix) that the response of a complex cell (constructed from a quadra-
ture pair of simple cells) to a stereo image patch of disparity D can be written
as

rpha
q ≈ 4A2 cos2

(
ωD − �φ

2

)
+ D

σx
4AB cos

(
ωD − �φ

2

)

× cos
(

α − β + ωD − �φ

2

)
(2.6)
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rpos
q ≈ 4A2 cos2

(
ω(D − d)

2

)
+ D − d

σx
4AB cos

(
ω(D − d)

2

)

× cos
(

α − β + ω(D − d)

2

)
(2.7)

for the phase- and position-shift RF models, respectively. Here A and α

are the local Fourier amplitude and phase (evaluated at the RF’s preferred
frequency) of the stimulus patch filtered by the RF gaussian envelope; B and
β are the similar amplitude and phase of the stimulus patch filtered by the
first-order derivative of the RF gaussian envelope (see the appendix). The
phases α and β are more dependent on the detailed luminance distribution
of the stimulus than the amplitudes A and B. The two terms in each of
equations 2.6 and 2.7 are, respectively, the zeroth and the first-order terms
in D/σx or (D − d)/σx.

Before exploring the implications of the above expressions, we need to
define disparity tuning curve and population response curve explicitly. For
a given cell with fixed RF parameters, if we vary the stimulus disparity D
and plot the response of the cell as a function of D, we obtain a disparity tun-
ing curve. The preferred disparity of the cell is the stimulus disparity that
generates the peak response in the tuning curve. For a fixed stimulus dis-
parity D, we can consider a set of cells that prefer different disparities (e.g.,
have different �φ or d parameters; see below) but are otherwise identical.
If we plot the responses of these cells to the same D against their preferred
disparities, we get a population response curve.

A complication is that a cell’s preferred disparity depends not only on
its intrinsic RF parameters but also on the stimulus to some degree (Pog-
gio, Gonzalez, & Krause, 1988; Zhu & Qian, 1996; Chen et al., 2001). The
abscissa of the population response curve, however, should not depend on
any stimulus parameters as these parameters are assumed to be unknown
during disparity computation. In other words, the abscissa should be only
a function of the intrinsic RF parameters that uniquely label each cell in the
population. We will therefore use an intrinsic parameter (or a combination
of intrinsic parameters) as the abscissa that approximates the preferred dis-
parity of each cell. To do so, note that in equations 2.6 and 2.7, the first term
(zeroth order) is usually larger than the second term (first order). If we keep
only the first term, as we did in some of our previous work (Qian, 1994;
Zhu & Qian, 1996; Qian & Zhu, 1997), the preferred disparity of a cell is a
function of its intrinsic RF parameters only, given by:

Dpha
pref ≈ �φ

ω
(2.8)

Dpos
pref ≈ d (2.9)

for the phase- and position-shift models, respectively. We will therefore use
�φ/ω or d to label different cells along the abscissa of population response
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curves. Also note that if we keep only the first terms, the stimulus disparity
D can be estimated from the preferred disparity of the most active cell
(denoted by ∗) of the population response curve according to

Dpha
est ≈ �φ∗

ω
(2.10)

Dpos
est ≈ d∗ (2.11)

for the phase- and position-shift models, respectively (Qian, 1994; Zhu &
Qian, 1996; Qian & Zhu, 1997). We will use the same equations for disparity
estimation in this article as we did previously. However, the more accurate
analyses done here (the second terms in equations 2.6 and 2.7) will allow
us to determine the conditions under which equations 2.8 to 2.11 are good
approximations, and will lead to a better hybrid model with both phase-
and position-shift mechanisms.3

We can now consider the properties of disparity tuning curves and pop-
ulation response curves generated with the phase- and position-shift RF
models. We are particularly interested in whether and how much these
curves depend on the stimulus details other than disparity (such as the
lateral position of a bar or the dot distribution in a random dot pattern).
Obviously, such dependence is undesirable, as it will make disparity esti-
mation unreliable. We first consider disparity tuning curves. According to
the definitions in the appendix, α and β in equations 2.6 and 2.7 strongly de-
pend on the detailed luminance profile of the stimulus. If the second terms
in the equations can be neglected, then the first term will be scaled only by
A. Consequently, the shape of the tuning curves will be largely indepen-
dent of the stimulus details, and the peak locations will accurately follow
equations 2.8 and 2.9 for the phase- and position-shift models, respectively.
If the second terms are not very small, however, the tuning curves of a cell
will change with stimulus details, and the peak locations may deviate sig-
nificantly from equations 2.8 and 2.9. Since the stimulus disparity D has
to vary over a wide range to generate a tuning curve, D/σx or (D − d)/σx
cannot always be small, and thus the second terms cannot always be ne-
glected. Therefore, complex cell tuning curves based on either position-shift
or phase-shift RF model must be somewhat unreliable, albeit much more
reliable than simple-cell tuning curves (Qian, 1994; Zhu & Qian, 1996; Chen
et al., 2001).

The situation is different for population responses, however. Here stim-
ulus disparity D is fixed while the cell parameter �φ or d varies over a wide
range. For the phase-shift model, if D is fixed at a value much smaller than
σx, then the second term is negligible over the entire range of �φ because �φ

3 Alternatively, one could solve D from equation 2.6 or 2.7, or use those equations as
templates to estimate D. The resulting method, however, will involve complex procedures
that are unlikely to be implemented by the visual cells.
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appears only inside the bounded cosine functions. In this case, equation 2.10
is well satisfied at the peak location of the population response curve and
can be used to estimate D accurately regardless of the other details of the
stimulus. Therefore, population responses generated with the phase-shift
RF model should be highly reliable when the stimulus disparity is small
compared with the RF size. In contrast, population responses generated
with the position-shift model can never be very reliable. The reason is that
the cells’ position-shift parameter d is present both inside and outside the
cosine functions in equation 2.7. As d varies over a wide range, the second
term cannot always be small for any fixed values of D. Intuitively, when
d is significantly different from D, the image patches covered by the left
and right RFs will be very different, and this difference will introduce large
variability into the population response curve.

We therefore conclude that among the four cases of disparity tuning curve
and population response curve generated with the phase- and position-shift
RF mechanisms, only the population response curves from the phase-shift
mechanism have highly reliable peak locations for small stimulus dispari-
ties. In all other cases, the results in general will vary with stimulus details
unrelated to disparity. We have performed extensive computer simulations
to confirm this conclusion. Two examples are shown in Figures 1 and 2 for
bar and random dot stimuli, respectively. We did not include spatial pooling
(Zhu & Qian, 1996; Qian & Zhu, 1997) in these simulations in order to see the
difference between the two RF models more clearly. The difference will be
reduced (but not vanish) when spatial or orientation pooling is introduced.

Figure 1 shows simulated disparity tuning curves (of a given complex
cell in response to a range of stimulus disparities) and population response
curves (of an array of model complex cells to a given stimulus disparity)
for both phase- and position-shift RF mechanisms. The orientation of both
the RFs and the stimuli (bars) was vertical in these simulations. To measure
reliability in each case, we simulated 1000 disparity tuning curves or 1000
population response curves by randomly varying the lateral bar position
while keeping all the other parameters constant (see the figure caption for
details). For each bar position, a given stimulus disparity was introduced
by shifting the left and right eyes’ images in opposite directions by half the
disparity value. For clarity, only 30 tuning curves and 30 population curves
are shown in panels a and b, respectively, but the peak location histograms
in panels c and d are compiled from all 1000 simulations. The numbers
inside each histogram panel are the mean (m) and standard deviation (s)
of the distribution. The vertical lines in the tuning curve panels indicate
the cell’s preferred disparity as determined by its parameters according to
equation 2.8 (for phase shift) or equation 2.9 (for position shift). The vertical
lines in the population response panels indicate the stimulus disparity. For
tuning curves, small or large disparity refers to the cell’s preferred disparity
(1 or 5 pixels). For population response curves, small or large disparity refers
to the stimulus disparity (also 1 or 5 pixels).
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It should be clear from the figure that the disparity tuning curves (panels
a and c) are not very reliable in all cases: the peak location distributions
all show significant spread, indicating some dependence of the preferred
disparity on the lateral bar position. For the population responses, the same
unreliability holds for the position-shift model (panels b and d in Figures 1B
and 1D). In contrast, the population response curves of the phase-shift model
to small stimulus disparity (panels b and d in Figure 1A) are both reliable
(the peaks from 1000 simulations are well aligned) and accurate (the peak
location agrees with the actual stimulus disparity). These results are con-
sistent with our analysis above. The population response of the phase-shift
model to large stimulus disparity (panels b and d in case Figure 1C) is also
reliable. As we will show in Figure 2, this is not generally true, but happens
to be so for the bar stimuli because the α and β parameters in equation 2.6
approximately cancel each other (see the appendix) and the two terms of
the equation can be combined. Note, however, that in this case, the peak
location is not accurate as it underestimates the stimulus disparity. This
underestimation is due to a zero-disparity bias of the phase-shift model
demonstrated previously (Qian & Zhu, 1997), and it grows with stimulus
disparity size. If equation 2.6 is expanded up to the second-order term, then
the zero disparity bias of the phase-shift model will become apparent (re-
sults not shown). Also note that the curves in Figure 1 usually have side
peaks (Qian, 1994; Zhu & Qian, 1996) outside the range plotted here.
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We also repeated the above simulations with random dot stereograms,
and the results are shown in Figure 2 with the same format as Figure 1. The
disparity tuning curves and population response curves were simulated
with 1000 sets of random dot stereograms that all contain the same dispar-
ity values but different dot patterns. These curves are more variable than
those in Figure 1, as reflected by the larger standard deviations of all the his-
tograms, due to the stochastic nature of random dots. Nevertheless, Figure 2
clearly shows that the population response of the phase-shift model to small
disparity (panels b and d in Figure 2A) is much more reliable and accurate
than all the other cases, consistent with the results for bars in Figure 1 and
with the prediction of our analysis. Note that in the large disparity case,
both phase-shift and position-shift mechanisms show similarly unreliable
population responses. This explains why Qian and Zhu (1997) found that
the two RF mechanisms generate similar results; that study was done under
the large disparity condition (D/σx ≥ 0.5).

Figure 1: Facing page. Disparity tuning and population response curves of model
complex cells with the phase- and position-shift RFs in response to bar stere-
ograms. Four cases are considered: (A) small disparity with the phase-shift RFs;
(B) small disparity with the position-shift RFs; (C) large disparity with the phase-
shift RFs; and (D) large disparity with the position-shift RFs. For the tuning
curves of a given cell to a range of stimulus disparities, small or large disparity
refers to the cell’s preferred disparity of 1 or 5 pixels (indicated by the vertical
lines). For population response curves from an array of cells to a given stim-
ulus disparity, small or large disparities refers to a stimulus disparity of 1 or 5
pixels (also indicated by the vertical lines). We use �φ/ω and d as approximate
measures of the cells’ preferred disparities in the population response plots (see
equations 2.8 and 2.9). To test the reliability of tuning curve and population
response, 1000 curves were obtained for each case by randomly varying the
bar’s lateral position in the cells’ RF with subpixel interpolation. For the tuning
curves, the bar’s disparity varied from −8 to 8 pixels in a step of 1 pixel. For the
population response curves, a group of model complex cells whose preferred
disparities varied from −8 to 8 pixels in a step of 1 pixel were used. For clarity,
only 30 tuning or population response curves are shown in panels a or b, and
they are normalized by the strongest response. The peak location distribution
histogram in panels c or d was compiled from all 1000 curves. Each peak location
was computed by a parabolic fit of three points around the peak. The numbers in
the histograms represent the mean peak location m and the standard deviation
s, respectively. Parameters: In each stereogram, the bar’s lateral position was
confined within ±8 pixels from the center of RF. The width and height of bar
were 8 and 97 pixels, respectively. Both RFs and bars were oriented vertically.
The RF parameters of model complex cells were ω/2π = 1/16 cycle per pixel,
σx = 8 pixels, σy = 16 pixels. The RFs were computed in a 2D region of 49 × 97
pixels. The bin size in each histogram was 0.5 pixel.
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Figure 2: Disparity tuning and population response curves of model complex
cells with the phase- and position-shift RFs in response to random dot stere-
ograms. The size of the random dot stereograms is 49 × 97 pixels. The dot size
and density are 2 × 2 pixels and 50%, respectively. All RF parameters and the
presentation format are identical to those in Figure 1.

2.2 An Iterative Hybrid Algorithm for Disparity Estimation . We have
shown above that for the phase-shift model and small stimulus disparity
(relative to the cells’ RF size), the peak location of the population response
curve provides both reliable and accurate estimation of the stimulus dispar-
ities, while the position-shift model is always less reliable in comparison.
However, the phase-shift model has its own limitations. First, for cells with
preferred horizontal spatial frequency ω, the range of disparity they can de-
tect is confined between −π/ω and π/ω (Qian, 1994) due to the periodicity
of the population response as a function of �φ, which in turn is due to the
periodicity of the Gabor RFs as a function of φ. Any disparity beyond this
range cannot be correctly detected. Second, for stimulus disparity within the
range, the reliability of the population responses gets worse as the disparity
approaches the limits of the range (compare Figure 2Cd with Figure 2Ad).
The accuracy also decreases with increasing disparity magnitude because
the underestimation caused by the zero disparity bias increases.
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Since there is ample evidence indicating that both the phase- and posi-
tion-shift mechanisms are involved in disparity processing (Schor & Wood,
1983; Smallman & MacLeod, 1994; Zhu & Qian, 1996; Anzai et al., 1997,
1999a; Livingstone & Tsao, 1999; Prince et al., 2000), it is natural to consider
whether a hybrid of the two RF models could provide a better solution.
Similar to the derivations of equations 2.6 and 2.7, the response of a complex
cell with both position shift d and phase shift �φ between the two eyes can
be written approximately as

rhyb
q ≈ 4A2 cos2

(
ω(D − d) − �φ

2

)

+ (D − d)

σx
4AB cos

(
ω(D − d) − �φ

2

)

× cos
(

α − β + ω(D − d) − �φ

2

)
(2.12)

If we only consider the first term in equation 2.12, the preferred disparity
of the cell is given by

Dhyb
pref ≈ �φ

ω
+ d. (2.13)

Since (D − d) appears outside the cosine functions in the second term of
equation 2.12 just as in equation 2.7, whenever the position-shift parameter
d is varied over a range for a population response curve, the computed
disparity will not be reliable. Therefore, one should always rely on the phase
difference �φ for disparity computation, and d should be kept a constant
close to D for all cells used in a given population response curve. The best
scenario occurs if d happens to be equal to D since the second term of
equation 2.12 will vanish, and the residual disparity (D − d) for the phase
mechanism to estimate will be zero, and this is when the phase model is
most accurate.

These considerations lead us to the following iterative algorithm with
a hybrid of both phase- and position-shift RFs. For each image location,
we start (iteration 0) with a population of cells all with d = 0 and with �φ

covering the full range from −π to π , and apply the phase mechanism to get
an estimation D0 of the stimulus disparity D as we did before (Qian, 1994).
Next, we use a set of cells all with the fixed d = D0 and the full range of �φ,
and apply the phase mechanism again to get a new estimate D1 (iteration
1). Since the original stimulus disparity D has been offset by the constant
position shift d = D0 of all the cells, D1 is a measure of the residual disparity
D − d = D − D0. Thus, the estimated stimulus disparity Dest from the first
iteration is D0+D1. This process can be repeated such that at the nth iteration,
cells will all have the same position-shift d = D0 + D1 + · · · + Dn−1 and the
newly computed Dn from the phase mechanism can be added to d to form
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Figure 3: Iterative hybrid algorithm. (A) Flowchart of the algorithm. For a given
stimulus, first initialize the position shift d to zero, and compute the population
responses of a set of complex cells all with the same d but the full range of
the phase shift �φ from −π to π . The peak location of population responses is
extracted as the estimated disparity Dest according to equation 2.13. Then reset
the position shift d = Dest, and repeat the above procedure until a stable disparity
value is obtained. (B) The performance histograms for the first five iterations of
the algorithm, compiled from the same 1000 random dot stereograms used in
Figure 2Cd. The format of the histograms is the same as that of Figure 2Cd except
that here, the maximum value of each distribution is shown above the peak in
each panel. All parameters but d are the same as those used in Figure 2Cd. To
simply the simulations, we generated in advance 17 populations of cells with
fixed d’s from −8 to 8 pixels in steps of 1 pixel. At each iteration, we selected
the population whose fixed d was closest to the estimated disparity Dest in the
previous iteration.

the current estimation of disparity Dest = D0+D1+· · ·+Dn. This algorithm is
shown schematically in Figure 3A. Note that at each iteration, the (residual)
disparity is always computed with the phase mechanism. The position-
shift parameter d is simply introduced to offset the stimulus disparity D so
that the phase mechanism will operate on a progressively smaller (residual)
disparity and will therefore become more and more reliable and accurate.

A demonstration of this algorithm is presented in Figure 3B. We applied
the method to the same 1000 random dot stereograms (all with D = 5 pixels)
as in Figure 2C. Figure 3B shows the distribution histograms of estimated
disparity up to the fourth iterations; little change occurs afterward. Since
d equals 0 in the 0th iteration (far left panel), its histogram is identical to
that in Figure 2Cd, with a broad distribution of estimated disparity around
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the true disparity (vertical line). The situation quickly improved with a few
iterations. The fraction of estimations falling within a bin of 0.5 pixel width
around the true disparity increased from 19% to 85% in four iterations. This
result suggests that the iterative hybrid algorithm converges quickly and
that the estimation is much more accurate and reliable than a pure phase-
or position-shift mechanism alone.

It should be noted in Figure 3B that at each iteration, the estimated dis-
parity always has some very small probability of being far away from the
true stimulus disparity (note the negative disparity tail barely visible in the
histograms). A closer examination reveals that if an estimation is far from
the true disparity at the start (e.g., a wrong sign), subsequent iterations usu-
ally cannot correct the error. The reason is that if the estimated disparity is
very wrong, the fixed d introduced in the next step may make the residual
disparity larger than the original disparity and the phase mechanism will
become less reliable and harder to recover from the error. We will show
that one way to reduce the occurrence of such runaway behavior is to pool
across space, orientation, and scale.

2.3 Pooling. Pooling information from different sources can often im-
prove performance. We (Zhu & Qian, 1996; Qian & Zhu, 1997) have previ-
ously demonstrated that spatial pooling of quadrature pair responses within
a small neighborhood can significantly improve the quality of computed dis-
parity maps. Here we focus on orientation pooling and spatial frequency
(i.e., scale) pooling.

2.3.1 Orientation Pooling. Before considering orientation pooling, we
first examine how the disparity population responses of model complex
cells depend on their preferred orientations. To generate RFs with orien-
tation θ (measured from the positive horizontal axis), one can rotate the
corresponding vertically oriented RF (equation 2.1) by θ − 90◦ with respect
to the RF center (positive angle means counterclockwise rotation). For the
phase-shift RF model, the left and right RF centers are the same. Therefore,
the response of a complex cell with preferred orientation θ to any stimulus
is equal to the response of the corresponding vertically oriented complex
cell to the stimulus rotated by an angle of 90◦−θ . If the original stimulus has
a horizontal disparity D, the rotated stimulus then has components D sin θ

and D cos θ orthogonal and parallel to the RF orientation, respectively. Since
the RF profile along the preferred orientation changes much more slowly
than that along the orthogonal axis, the parallel component D cos θ can be
ignored, and the complex cell response with the phase-shift mechanism
and preferred orientation θ can be obtained approximately by replacing D
in equation 2.6 by D sin θ :

rpha
q (θ) ≈ 4A

′2 cos2
(

ωD sin θ − �φ

2

)
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+ D sin θ

σ⊥
4A′B′ cos

(
ωD sin θ − �φ

2

)

× cos
(

α′ − β ′ + ωD sin θ − �φ

2

)
, (2.14)

where A′, B′, α′, and β ′ are similar to A, B, α and β in equations 2.6 and 2.7
except that they refer to the stimulus rotated an angle of 90◦ − θ . Here, σ⊥
represents the gaussian width of the RF in the direction perpendicular to
the cell’s preferred axis; it equals σx for vertically oriented RFs.

For the position-shift mechanism, the left and right RF centers are not
the same in general. Therefore, the rotational equivalence mentioned above
has to be applied to the left and right RF responses separately before binoc-
ular combination. The final result is that the complex cell response with
the position-shift mechanism and preferred orientation θ can be obtained
approximately by replacing D − d in equation 2.7 by (D − d) sin θ :

rpos
q (θ) ≈ 4A

′2 cos2
(

ω(D − d) sin θ

2

)

+ (D − d) sin θ

σ⊥
4A′B′ cos

(
ω(D − d) sin θ

2

)

× cos
(

α′ − β ′ + ω(D − d) sin θ

2

)
. (2.15)

This result depends on the assumption that the parallel component (D −
d) cos(θ) can be ignored. Since d has to vary over a large range for a pop-
ulation response curve, equation 2.15 is not as good an approximation as
equation 2.14. For vertical RF orientation, θ equals 90 degrees, and equa-
tions 2.14 and 2.15 reduce to equations 2.6 and 2.7, respectively.

Similar to the discussion following equations 2.6 and 2.7, equations 2.14
and 2.15 also indicate that only the population response of the phase-shift
mechanism to small stimulus disparity D (compared with the RF size) can
be reliable and accurate. A new feature is that the sin θ factor will make the
tuning curves and population response curves broader as the RF orientation
θ deviates further from vertical. In the extreme case of horizontal orientation
(θ = 0), the curves will be flat with infinite width. For phase-shift RFs with
orientation θ , the preferred disparity expression should be generalized from
equation 2.8 to:

Dpha
pref ≈ �φ

ω sin θ
≡ �φ

ωx
, (2.16)

and the detectable disparity range becomes (−π/ω sin θ, π/ω sin θ) or
(−π/ωx, π/ωx) where ωx = ω sin θ (Qian, 1994; Mikaelian & Qian, 2000;
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Matthews, Meng, Zu, & Qian, 2003). This range is smallest for the vertically
oriented RFs and increases when the RF orientation θ deviates from verti-
cal. Here ω is the preferred spatial frequency along the axis perpendicular
to the RF orientation, and ωx is the preferred spatial frequency along the
horizontal axis; they equal each other when the RF is vertically oriented.
For the position-shift RFs, equation 2.9 remains the same since d is assumed
to be a horizontal shift regardless of the RF orientation. (If d is assumed to
be the shift orthogonal to the RF orientation, then equation 2.9 will become
Dpos

pref ≈ d/ sin θ .)
The simulated disparity population responses and the peak-location his-

tograms of complex cells are shown in Figure 4 for a bar with a small hor-
izontal disparity of 1 pixel (marked by the vertical line in each panel) and
an orientation of 67.5 degrees. Eight RF orientations evenly distributed in
the entire 180 degree range were considered. Since the complex cells with
horizontal orientation are not sensitive to horizontal disparity and generate
flat curves, we present only simulations from the seven nonhorizontal pre-
ferred orientations. The results for the phase- and position-shift RF models
are shown in Figures 4A and 4B of the figure, respectively. For all seven pre-
ferred orientations, the population responses with the phase-shift mecha-
nism are more reliable than those with the position-shift mechanism. For the
phase-shift mechanism (see Figure 4A), the peak location of the population
response depends on the difference between the RF and bar orientations.
Only when the RF orientation matches the bar orientation (67.5 degrees),
does the peak location agree with the actual stimulus disparity. Otherwise,
the peak location underestimates the stimulus disparity magnitude. In par-
ticular, when the preferred orientation is 157.5 degrees, orthogonal to the
bar orientation, the peak locates at zero disparity. As predicted by the anal-
ysis, the width of the curves in Figure 4 varies with the RF orientation.4 The
maximum response in each panel (max) is shown at the top of the panel. Not
surprisingly, the largest response occurs when the RF orientation matches
the bar orientation.

We have also done similar simulations with a random dot stereogram.
The results (not shown) are similar except that since the stimulus is nonori-
ented, the maximum responses across all RF orientations do not differ
much, and there is no orientation-dependent underestimation of the small
disparity.

We now consider pooling across cells with different orientations. The
above results suggest that one should first average together the population
response curves from all orientations and then use the peak location of the

4 However, for the position-shift RF model (see Figure 4B), the sharpest response curves
occur when the cells’ orientation matches the bar orientation (67.5 degrees) instead of when
it is vertical (90 degrees). This is not predicted by the approximate result of equation 2.15.
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Figure 4: Population responses to bar stereograms from model complex cells
with different preferred orientations and with (A) the phase-shift and (B) the
position-shift RF mechanisms. The bar stereograms have a fixed disparity of
1 pixel and a fixed orientation of 67.5 degrees. The preferred orientations of
the cells are indicated above the first row of the curves, and the case where
the preferred orientation matches the bar orientation is marked by an asterisk.
All simulation parameters (except orientation) and presentation format are the
same as those for the population responses in Figures 1A and 1B. The number
over the curves in each panel represents the maximum response to the 1000
stimuli with an arbitrary unit. Although the disparity range covered by a family
of cells increases when the preferred orientation is closer to horizontal (see text),
for the ease of presentation and comparison, we confined the disparity range of
all cell families to that of the vertically oriented cells.

averaged curve to estimate disparity.5 For oriented stimuli such as bars,
the response from cells with the matched orientation is the most accurate,
and it will dominate the average because it is also the strongest. For nonori-
ented stimuli such as random dots, cells with different orientations respond
similarly, and the averaging helps reduce noise. An alternative method is
to average the estimated disparities from all orientations weighted by the

5 This procedure is analogous to what we did previously with spatial pooling (Zhu &
Qian, 1996; Qian & Zhu, 1997).
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Figure 5: Distribution histograms of the estimated disparity after orientation
pooling. Both phase- and position-shift mechanisms were applied to bar and
random dot stimuli. The bar stimuli are same as in Figure 4, and the random dot
stimuli are identical to those for panel Ad or Bd of Figure 2. The seven preferred
orientations in Figure 4 were used in the pooling.

corresponding peak responses. We found that this method is usually not as
good and will report simulation results only with the first method.

Figure 5 shows the distribution histograms of the estimated disparity
with orientation pooling applied to bar and random-dot stimuli. The bar
stimuli are same as in Figure 4. As expected, the distribution for the phase-
shift mechanism in Figure 5A is as good as the case where the RF orientation
matches the bar orientation (67.5 degrees) in Figure 4A. The random dot
stimuli are identical to those for Figure 2Ad, and the distribution in Fig-
ure 5C is much more reliable due the pooling. In contrast, the orientation
pooling is much less effective for the position-shift RF model (Figures 5B
and 5D). Note that we used a relatively small stimulus disparity D; if D is
increased to about half of the maximum value allowed by the phase-shift
model, the difference between the two RF models will disappear (results
not shown).
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2.3.2 Scale Pooling and a Coarse-to-Fine Algorithm. In addition to orien-
tation, disparity-selective cells are also tuned to spatial frequency. Cells in
each frequency band (or scale) can be used to compute disparity (Marr &
Poggio, 1979; Sanger, 1988; Qian, 1994), and an important question is how
to combine information from different scales. Obviously, the scale pooling
can be done according to the same methods for orientation pooling. The
first method is to average all the population response curves from differ-
ent scales and then estimate the disparity.6 Alternatively, one could esti-
mate one disparity from each scale and then average the estimates with
proper weighting factors (Sanger, 1988; Qian & Zhu, 1997; Mikaelian &
Qian, 2000). However, although these approaches work reasonably well for
orientation pooling, they may not be adequate for scale pooling because
the large and small scales have different problems that are unlikely to can-
cel each other through averaging. Cells at large scales have large RFs, and
they tend to mix together different disparities in the image area covered by
the RFs. This will make transitions at disparity boundaries less sharp than
our perception (Qian & Zhu, 1997) and render disparities in small image
regions difficult to detect. At small scales, the detectable disparity range by
the cells is correspondingly smaller (Sanger, 1988; Qian, 1994), and large
disparities in a stereogram may lead to completely wrong estimations. If
one simply averages across the scales, the resulting disparity map will not
be accurate unless the majority of the scales included perform reasonably
well. With too many large scales included, the computed disparity map
will lose sharp details, and with too many small scales included, disparity
estimations at some locations may be totally wrong. If one knew the true
stimulus disparities beforehand, one could pick a few appropriate scales
and average across them only. However, the purpose of a stereo algorithm
is to compute disparity maps from arbitrary stereograms with unknown
disparities.

A method known to alleviate these problems is coarse-to-fine tracking
across scales. This method has been applied to stereovision previously (Marr
& Poggio, 1979), but to our knowledge, its role in the disparity energy model
with the phase- and position-shift RF mechanisms has not been explored. It
is most natural to introduce the coarse-to-fine technique into our iterative
algorithm presented in section 2.2. The only modification is to start at a large
scale and then reduce the scale of the RFs through the iterations. By starting
at a large scale, the algorithm can cover a large range of disparities. With
each iteration, the disparity will be reduced by a constant position shift,
and the residual disparity can thus be estimated by the phase mechanism
at a smaller scale that sharpens the disparity boundaries. This procedure
can be continued until a fine disparity map is obtained at the smallest scale.

6 This approach has been applied to disparity tuning curves (Fleet et al., 1996) and can
be extended to population responses for disparity computation.
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Coarse-to-fine Algorithm

Start at the largest scale

Initialize the position shift d = 0 at each location

Compute disparity population responses of complex cells

with the fixed d, but full range of ∆φ and θ

Apply spatial pooling and orientation pooling, and estimate

the disparity D
est

 from the pooled population responses

Move to the next smaller scale, and reset d = D
est

Figure 6: The coarse-to-fine algorithm with both phase- and position-shift RFs.

The full algorithm, with the spatial pooling and orientation pooling proce-
dures incorporated, is shown schematically in Figure 6. At each iteration,
the spatial pooling step combines quadrature pair responses in a local area
to improve the reliability of the population responses (Zhu & Qian, 1996;
Qian & Zhu, 1997), and the orientation pooling further improves the quality
of the estimated disparity as described in section 2.3.1.

Based on the above considerations, the largest scale should be chosen
according to the largest disparity the system should be able to extract, and
the smallest scale should correspond to the finest details of disparity the
system should be able to recover. For the simulations reported below, we
employed a set of scales whose σ ’s follow a geometric series with a ratio
of

√
2. To keep the cells’ frequency bandwidth constant at different scales,

we fixed the product ωσ⊥ = π for all scales, where σ⊥ is again the gaussian
width in the direction orthogonal to the RF orientation. At each scale, there
are several sets of cell populations, each with a constant position shift d
and the full range of �φ. Only the population whose d is closest to the
estimated disparity in the previous scale will actually be used. We simply
let the range of d’s be the same across all scales and equal to the disparity
range of the phase-shift mechanism at the largest scale. For spatial pooling,
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we used a 2D gaussian function to combine the responses of quadrature
pairs around each location (Zhu & Qian, 1996; Qian & Zhu, 1997). Finally,
to reduce computational time, we used five RF orientations (30, 60, 90, 120,
and 150 degrees from horizontal) to perform orientation pooling instead of
the seven orientations in Figure 5.

Figure 7C is an example of applying our coarse-to-fine algorithm to a
random dot stereogram. To test the model’s performance for both large
and small stimulus disparities, we picked a far disparity of 5 pixels for the
central region and a near disparity of −1 pixel for the surround. The panels in
Figure 7C show the estimated disparity maps at each of the five iterations or
scales (with one iteration per scale). At the largest scale, the transition at the
disparity boundaries is poor, and the disparity magnitude of both the center
and the surround are underestimated due to the zero disparity bias of the
phase mechanism (Qian & Zhu, 1997).7 However, since this disparity map
is generally in the right direction, the subsequent smaller scales were able to
refine it. At the smallest scale, the map has sharp transition boundaries and
accurate disparity values for both center and surround regions. The final
map is much better than those computed from any individual scale with
either phase- or position-shift mechanism.

We also compared the coarse-to-fine algorithm with the simple method
of averaging population responses across scales mentioned above. Since at
small scales, the phase-shift RF model can cover only very small ranges of
stimulus disparity, we used the position-shift model with the scale averag-
ing method. The results of applying the method to the same random dot
stereogram are shown in Figure 7D. The spatial pooling and orientation
pooling were applied as in Figure 7C. In Figure 7D, the panels from left
to right show the computed disparity maps by gradually including more
scales in the averaging process, with the left-most panel showing the result
from the largest scale alone and the right-most panel the result of averaging
all five scales. As expected, in the left two panels where the scales are large,
the disparity map is fuzzy at the transition boundaries. With more smaller
scales included, the estimated disparity at some locations is totally wrong
(the black and white spots in the right panels of Figure 7D).

In the simulations of different scales, we fixed the stimuli and generated
the RFs of different sizes. Alternatively, we could fix the RFs and scale the
stimuli appropriately. With this approach, both the coarse-to-fine and the
scale-averaging methods generate results similar to that in Figure 7C. This
suggests that the scale-averaging method is more sensitive to implementa-
tion details. Also note that for the simulations in Figure 7, at each scale, only
eight complex cells were used for the coarse-to-fine simulation but 33 cells

7 As we noted earlier, without scale pooling, the single-scale disparity maps computed
with 2D filters in this article are much worse than those computed with 1D filters reported
previously (Qian, 1994; Qian & Zhu, 1997) because 2D filters tend to mix up disparities in
a larger region.
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Figure 7: The coarse-to-fine and scale-averaging algorithms applied to a ran-
dom dot stereogram. (A) A 200×200 random dot stereogram with a dot density
of 50% and dot size of 1 pixel. The central 100 × 100 area has a disparity of 5
pixels, while the surround has a disparity of −1 pixel. (B) True disparity map.
The white and black colors represent near and far disparities, respectively. (C)
Estimated disparity maps at five scales and iterations obtained with the coarse-
to-fine algorithm. The spatial pooling function was a 2D gaussian with both
standard deviations equal to σ⊥ in each scale. Orientation pooling covered five
orientations from 30 to 150 degrees in steps of 30 degrees. The other parameters
for the RFs in the left-most panel were the same as those in Figure 3. The scales
of other panels were successively reduced from left to right by a factor of

√
2, as

indicated by the σ⊥ value under each panel. Note that for all five scales, ωσ⊥ = π ;
thus, the frequency bandwidths of all scales were fixed at 1.14 octaves. For each
scale, the position shift d always varied from −8 pixels to 8 pixels in a step of
0.5 pixel, while the phase shift �φ covered a period from −π to π with a step of
π/4. (D) Estimated disparity maps with the scale-averaging procedure and the
position-shift mechanism. From left to right, a smaller scale with the indicated
σ⊥ was added to the average at each panel. Thus, the left-most panel shows
the result from the largest scale alone, while the right-most panel is the average
result of all five scales. The spatial pooling and orientation pooling were also
applied as in C. The RF parameters were same as those in C, except that �φ was
kept at 0.
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were used for the scale-averaging simulation. The coarse-to-fine method re-
quires fewer cells because at each finer scale, the cells used are more focused
around the stimulus disparity. No such adjustment is present in the scale-
averaging method, and if Figure 7D used only eight cells, the results (not
shown) would be much worse. The scale-averaging method is also more
sensitive to the frequency contents of a stereogram; it performs worse for
narrowband stimuli (results not shown). In summary, the scale-averaging
method is not as robust as the coarse-to-fine method.

2.4 Application of the Coarse-to-Fine Algorithm to More Complex
Stereograms. We also applied the coarse-to-fine algorithm to more com-
plex synthetic stereograms and to real-world stereograms. Figure 8 shows
the results for a disparity ramp and a Gabor disparity profile. The stere-
ograms were created by starting with a reference random dot image and
then shifting each dot horizontally in opposite directions for the left and
right images by half of the disparity value prescribed to the dot. Gray-level
interpolation was used to represent subpixel disparities. Figures 8C and 8F
demonstrate that the coarse-to-fine algorithm works well on these stere-
ograms. Except for the slightly blurred disparity boundaries, the estimated
disparity maps closely match the true disparity maps for both stereograms,
with most errors within ±0.25 pixel (true for 89% and 93% of the total pix-
els for the ramp and Gabor stereograms, respectively). For comparison, we
also show in Figure 8 the results from the scale-averaging method used for
Figure 7D; again, the estimated disparities at some locations are completely
wrong.

Figure 9 shows three real-world stereograms and the estimated dispar-
ity maps with our coarse-to-fine algorithm and the scale-averaging algo-
rithm. Since the true disparity maps are unknown, we can access the per-
formance only qualitatively. The results computed with our coarse-to-fine
algorithm seem to be quite reasonable for the Pentagon and Tree stere-
ograms, but less accurate for the Shrub stereogram. In general, the method
works well on image areas with relatively high-contrast textures (e.g., the
grass ground of the Tree stereogram), but fails at low-contrast regions (the
foreground pavement of the Shrub stereogram). This problem is not sur-
prising as the low-contrast areas generate only weak complex-cell responses
that are more prone to noise. Another problem is exemplified by the small
black spot in the Pentagon disparity map: if a large scale reports a very
wrong disparity, the smaller scales usually cannot correct it. Solving these
problems may require more global but selective interactions of dispar-
ity information at different locations and a bidirectional information flow
among the scales (see section 3). With the scale-averaging method, the prob-
lem of spots with wrong disparities is more pronounced, similar to Fig-
ures 7 and 8. Moreover, the estimated disparity maps appear more blurred
than those obtained with the coarse-to-fine algorithm (e.g., the signpost in
Shrub).
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Figure 8: More complex synthetic stereograms. (A) A ramp stereogram with a
size of 200×200 pixels. In the central 160×160 area, the disparity varies linearly
from −5 pixels to 5 pixels, while the surround has a zero disparity. The gray
level of a pixel is randomly chosen between 0 and 1. (B) True disparity map for
the ramp stereogram. The white and black colors represent near and far dispari-
ties, respectively. (C) Estimated disparity map with the coarse-to-fine algorithm
(left panel) and the scale-averaging algorithm (right panel). (D) Gabor stere-
ogram with the same size as the ramp stereogram. The disparity map is created

according to a Gabor function: D(x, y) = Dmax exp(− x2+y2

2σ 2
D

) cos(ωD sin(θD)x +
ωD cos(θD)y + φD). The parameters of the Gabor function are: Dmax = 5 pixels,
ωD/2π = 1/80 cyc/pixel, σD = 40 pixels, φD = 1.39, and disparity orientation
θD = 30◦. (E) True disparity maps for the Gabor stereogram. (F) Estimated dis-
parity map with the coarse-to-fine algorithm (left panel) and the scale-averaging
algorithm (right panel). All the RF parameters applied to both ramp and Gabor
stereograms are same as those in Figure 7.

3 Discussion

We have demonstrated through analyses and simulations that in the frame-
work of the disparity energy model, the phase-shift RF mechanism is bet-
ter suited for disparity computation than the position-shift mechanism.
Although the two RF mechanisms generate similar tuning curve proper-
ties, the phase-shift mechanism provides more reliable population response
curves than the position-shift mechanism does. The phase-shift model, how-
ever, has its own limitations, such as the restricted range of detectable dispar-
ity (Qian, 1994) and a zero-disparity bias (Qian & Zhu, 1997). To overcome
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Figure 9: Real-world stereograms and the estimated disparity maps with the
coarse-to-fine and the scale-averaging algorithms. (A) Pentagon stereogram.
The size of the stereogram is 256 × 256 pixels. (B) Shrub stereogram. The size is
256×240 pixels. (C) Tree stereogram. The size is 256×233 pixels. The stereograms
have all been scaled to the same size in the figure for ease of presentation. All the
RF parameters are the same as those in Figure 8. For attenuating the interference
of the DC component in the stimuli, we deducted the mean luminance from each
stereogram before applying the filters. All three stereograms are obtained from
the Carnegie Mellon University Image Database.

these problems, we have proposed an iterative procedure in which dispar-
ity is always estimated with the phase-shift mechanism but the magnitude
of disparity is gradually reduced by introducing a constant position-shift
parameter to all cells at each iteration. We then considered integrating in-
formation across different RF orientations and spatial scales and found that
although a simple averaging procedure (used previously for spatial pooling;
Zhu & Qian, 1996; Qian & Zhu, 1997) seems sensible for orientation pooling,
it may not be a good approach for scale pooling. Instead, it is better to treat
the scale pooling as a coarse-to-fine process. Such a coarse-to-fine process
can be easily combined with the iterative procedure with a smaller scale
used at each new iteration. The final algorithm is an iterative coarse-to-fine
procedure with spatial and orientation pooling incorporated and with both
position-shift and phase-shift RF components.
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We have applied the algorithm to a variety of stereograms. Our sim-
ulations demonstrate that the algorithm can recover both sharp disparity
boundaries and gradual disparity changes in the stimuli. However, a couple
of problems of the algorithm are also revealed by real-world stereograms.
Unlike synthetic patterns, real-world images tend to have regions of very
low contrast. Model cells whose RFs cover only a low-contrast area will not
respond well, and the results will tend to be very unreliable. The solution
to the problem might involve introducing long-range spatial interactions
to allow disparity information to propagate from high-contrast regions to
low-contrast regions. The challenge is that the interactions should also be
selective in order not to smear out real disparity boundaries. It is not clear
how to introduce such interactions in a physiologically plausible manner
without resorting to a list of ad hoc rules. Another problem with the cur-
rent algorithm is that if a large scale gives a completely wrong estimation
of stimulus disparity, it is impossible for the subsequent smaller scales to
correct it. This does not happen often due to the inclusion of spatial and
orientation pooling, which greatly improves the reliability of estimation at
any scale, but when it does happen, the estimated disparity can be far from
the true value. This problem may be solved by a bidirectional information
flow across the scales instead of the current unidirectional flow from large
to small scales. Indeed, there is psychophysical evidence suggesting that
scale interaction is bidirectional (Wilson, Blake, & Halpern, 1991; Smallman
& MacLeod, 1994). The scale-averaging approach may be viewed as bidi-
rectional. However, it does not appear to be adequate because the wrong-
disparity problem becomes worse with such a method. In general, we found
that the coarse-to-fine algorithm is superior to the scale-averaging method,
particularly with complex or natural stereograms. But the scale averaging
is much easier to implement and may be useful when the precision of the
disparity map is not critical.

It is interesting to compare the effects of varying RF orientation and vary-
ing RF scale to disparity computation. When the RF orientation is farther
away from the vertical, the cells’ detectable disparity range increases. This is
similar to an increase of the RF scale. However, as the orientation gets closer
to horizontal, there will be fewer cycles of RF modulation along the horizon-
tal dimension, tuning curves and population response curves will become
broader, and the disparity computation will become less meaningful. This
problem does not occur when one uses vertically oriented cells at larger
scales to cover a wider disparity range, as long as the spatial-frequency
bandwidth (and thus the number of RF modulation cycles) is kept constant
across scales. At a fixed scale, cells with different orientations cover the same
stimulus area, whereas cells with different scales cover very different stim-
ulus areas. These differences suggest that the orientation pooling and scale
pooling should be treated differently, as we did in this article. In particular,
since cells with different orientations at a given scale all cover the same
image patch, their responses can be averaged together to represent the total
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disparity energy of that patch. In contrast, cells with different scales cover
different image sizes, and it appears more sensible to use a coarse-to-fine
algorithm that can gradually recover disparity details. Also note that the
averaging procedure of orientation pooling appears to be more effective for
the phase-shift model than for the position-shift model, at least for small
disparities (see Figure 5).

We finally discuss the physiological relevance of our model. Our algo-
rithm is based on the disparity energy model, which has been found to pro-
vide a good approximation of real complex-cell responses although some
discrepancies have also been noted (Freeman & Ohzawa, 1990; Ohzawa et
al., 1990, 1997; DeAngelis et al., 1991; Anzai, Ohzawa, & Freeman, 1999b,
1999c; Chen et al., 2001; Livingstone & Tsao, 1999; Cumming, 2002). In addi-
tion, experimental evidence indicates that both the phase- and position-shift
RF mechanisms are employed by the binocular cells for disparity repre-
sentation (Hubel & Wiesel, 1962; Bishop & Pettigrew, 1986; Poggio, Mot-
ter, Squatrito, & Trotter, 1985; Ohzawa et al., 1990, 1997; DeAngelis et al.,
1991; Anzai et al., 1999a; Prince et al., 2000). We (Zhu & Qian, 1996; Qian
& Zhu, 1997) have pointed out previously that spatial pooling of quadra-
ture pair responses to construct complex-cell responses is consistent with
the fact that the RFs of complex cells are, on average, larger than those
of simple cells (Hubel & Wiesel, 1962; Schiller, Finlay, & Volman, 1976).
It is also reasonable to incorporate orientation pooling since physiological
studies have demonstrated that obliquely oriented cells are tuned to dis-
parity (Poggio & Fischer, 1977; Ohzawa et al., 1996, 1997) and thus must
contribute to disparity estimation. This is further supported by the psy-
chophysical finding that binocular correspondence appears to be solved
by oriented filters along the contours in a stimulus (Farell, 1998) and does
not follow the epipolar constraint (Stevenson & Schor, 1997). On the other
hand, there is no evidence for (or against) our specific proposal of using
the phase- and position-shift mechanisms in an iterative, coarse-to-fine pro-
cess. In particular, we do not know if real binocular cells rely on the phase-
shift mechanism to estimate disparity and use the position-shift mecha-
nism to reduce the disparity magnitude that the phase mechanism has to
process.

Our coarse-to-fine procedure is similar to that proposed by Marr and
Poggio (1979), but with one important difference. Marr and Poggio assumed
that the large disparity is reduced by vergence eye movement before being
processed by smaller scales. Since vergence eye movement shifts stimulus
disparity globally, a particular vergence state will not be able to reduce
stimulus disparities at all spatial locations, and different vergence state will
have to be assumed for each image location. Our model requires only a sin-
gle vergence state that brings stimulus disparity within a reasonable range;
further disparity reduction during the estimation process is carried out by
the position-shift mechanism locally at each point. This is consistent with
the psychophysical observation that the scale interaction does not depend
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on eye movement (Rohaly & Wilson, 1993).8 In addition, the model is con-
sistent with the finding that with vergence minimized, the fusional range
decreases with spatial frequency (Schor, Wood, & Ogawa, 1984) because
higher-frequency stimuli benefit less from the guidance of the larger scales.
A recent report indicates that individual V1 cells may undergo a coarse-to-
fine process over time independent of eye movement (Menz & Freeman,
2003). Therefore, it may not be necessary to implement our coarse-to-fine
algorithm with several different populations of cells as we did in our simu-
lations; instead, a single cell population progressively reducing their scale
over time might be sufficient.

Appendix: Derivation of Equations 2.6 and 2.7

Based on the disparity energy model, the response of simple cell to a stereo
image pair I(x, y) and I(x + D, y) can be written as (Ohzawa et al., 1990;
DeAngelis, Ohzawa, & Freeman, 1993; Qian, 1994; Anzai et al., 1999b; Chen
et al., 2001):

rs =
⎡
⎣∫ ∞∫

−∞
{gl(x, y)I(x, y) + gr(x, y)I(x + D, y)}dxdy

⎤
⎦

2

=
⎡
⎣∫ ∞∫

−∞
{gl(x, y)I(x, y) + gr(x − D, y)I(x, y)}dxdy

⎤
⎦

2

, (A.1)

where D is the stimulus disparity, and gl(x, y) and gr(x, y) are the left and
right RFs of simple cell. Note that the full squaring used here is equivalent
to a push-pull pair of half-squaring simple cells.

We define the linear filtering of the left and right images as

rsl =
∫ ∞∫
−∞

gl(x, y)I(x, y)dxdy (A.2)

rsr =
∫ ∞∫
−∞

gr(x − D, y)I(x, y)dxdy, (A.3)

8 The model may also be consistent with the finding that the stereo threshold eleva-
tion with base disparity is not eliminated by the addition of a low-frequency component
(Rohaly & Wilson, 1993) because the low-frequency component itself has an elevated
threshold with base disparity and thus becomes unreliable at large base disparity.
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so that rs = (rsl + rsr)
2. The left RF of a simple cell has the same form for the

phase- and position-shift models, and we rewrite equations 2.2 and 2.4 as

gl(x, y) = cos(φ)gcos(x, y) − sin(φ)gsin(x, y), (A.4)

where

gcos(x, y) = 1
2πσxσy

exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
cos(ωx)

gsin(x, y) = 1
2πσxσy

exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
sin(ωx).

Then, rsl for both phase- and position-shift RF models becomes

rsl = cos(φ)

∫ ∞∫
−∞

gcos(x, y)I(x, y)dxdy − sin(φ)

∫ ∞∫
−∞

gsin(x, y)I(x, y)dxdy

= A cos(α + φ), (A.5)

where

A =
√

A2
1 + A2

2 , α = arctan(A2/A1) (A.6)

A1 =
∫ ∞∫
−∞

gcos(x, y)I(x, y)dxdy

A2 =
∫ ∞∫
−∞

gsin(x, y)I(x, y)dxdy.

Since the right RF of a simple cell has different forms for the two RF
models, we consider them separately. In equation A.3, gr(x − D, y) can be
written as

gpha
r (x − D, y) = 1

2πσxσy
exp

(
− (x − D)2

2σ 2
x

− y2

2σ 2
y

)

× cos(ω(x − D) + φ + �φ) (A.7)

gpos
r (x − D, y) = 1

2πσxσy
exp

(
− (x − (D − d))2

2σ 2
x

− y2

2σ 2
y

)

× cos(ω(x − (D − d)) + φ) (A.8)

for the phase- and position-shift mechanisms, respectively. In the previous
modeling analyses (Qian, 1994; Zhu & Qian, 1996; Fleet et al., 1996; Qian
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& Zhu, 1997; Chen et al., 2001), a simplifying assumption is that the hori-
zontal envelope shifts (D in the gaussian term of equation A.7 and D − d
in the gaussian term of equation A.8) are small enough to be ignored. For
the phase-shift mechanism, the assumption can be satisfied as long as the
stimulus disparity D is small enough. However, for the position-shift mech-
anism, the above assumption requires the stimulus disparity D close to the
position shift d. This is obviously a more stringent requirement. To compare
the two mechanisms, the envelope shifts should be considered. Here, we
take the first-order Taylor expansion in D/σx and (D − d)/σx for the two
mechanisms, respectively:

exp
(

− (x − D)2

2σ 2
x

)
≈ exp

(
− x2

2σ 2
x

)
+ xD

σ 2
x

exp
(

− x2

2σ 2
x

)
(A.9)

exp
(

− (x − (D − d))2

2σ 2
x

)
≈ exp

(
− x2

2σ 2
x

)
+ x(D − d)

σ 2
x

× exp
(

− x2

2σ 2
x

)
. (A.10)

Under these approximations, the right RFs in equiations A.7 and A.8 can be
written as

gpha
r (x − D, y) ≈ 1

2πσxσy
exp

(
− (x − D)2

2σ 2
x

− y2

2σ 2
y

)

× cos(ω(x − D) + φ + �φ)

(
1 + xD

σ 2
x

)
(A.11)

gpos
r (x − D, y) ≈ 1

2πσxσy
exp

(
− (x − (D − d))2

2σ 2
x

− y2

2σ 2
y

)

× cos(ω(x − (D − d)) + φ)

(
1 + x(D − d)

σ 2
x

)
. (A.12)

Then, similar to the derivation for equation A.5, we have

rpha
sr ≈ A cos(α + φ + �φ − ωD) + D

σx
B cos(β + φ + �φ − ωD) (A.13)

rpos
sr ≈ A cos(α + φ − ω(D − d))

+ D − d
σx

B cos(β + φ − ω(D − d)) (A.14)

for the phase- and position-shift models, respectively, with

B =
√

B2
1 + B2

2 , β = arctan(B2/B1) (A.15)
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B1 =
∫ ∞∫
−∞

x
σx

gcos(x, y)I(x, y)dxdy

B2 =
∫ ∞∫
−∞

x
σx

gsin(x, y)I(x, y)dxdy.

The final expressions for simple cell response are:

rpha
s ≈

[
2A cos

(
α + φ + �φ − ωD

2

)
cos

(
�φ − ωD

2

)

+ D
σx

B cos(β + φ + �φ − ωD)

]2

(A.16)

rpos
s ≈

[
2A cos

(
α + φ − ω(D − d)

2

)
cos

(
ω(D − d)

2

)

+D − d
σx

B cos(β + φ − ω(D − d))

]2

. (A.17)

Based on the well-known quadrature pair method for the energy models
(Adelson & Bergen, 1985; Watson & Ahumada, 1985; Pollen, 1981; Ohzawa
et al., 1990; Emerson, Bergen, & Adelson, 1992; Qian, 1994), the complex cell
receives the inputs from two simple cells, both with identical �φ, but their
φ differing by π/2. The resulting complex-cell responses to the first-order
approximation are:

rpha
q ≈ 4A2 cos2

(
ωD − �φ

2

)
+ D

σx
4AB cos

(
ωD − �φ

2

)

× cos
(

α − β + ωD − �φ

2

)
(A.18)

rpos
q ≈ 4A2 cos2

(
ω(D − d)

2

)
+ D − d

σx
4AB cos

(
ω(D − d)

2

)

× cos
(

α − β + ω(D − d)

2

)
(A.19)

These are equations 2.6 and 2.7.
For a relatively thin bar at xo, I(x, y) ≈ δ(x − xo, y), and equations A.6

and A.15 show α ≈ β.
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