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Modeling stereo transparency with physiologically plausible mecha-
nisms is challenging because in such frameworks, large receptive fields
mix up overlapping disparities, whereas small receptive fields can re-
liably compute only small disparities. It seems necessary to combine
information across scales. A coarse-to-fine disparity energy model, with
both position- and phase-shift receptive fields, has already been pro-
posed. However, because each scale decodes only one disparity for each
location and uses the decoded disparity to select cells at the next scale,
this model cannot represent overlapping surfaces at different depths. We
have extended the model to solve stereo transparency. First, we introduce
multiplicative connections from cells at one scale to the next to imple-
ment coarse-to-fine computation. The connection is the strongest when
the presynaptic cell’s preferred disparity matches the postsynaptic cell’s
position-shift parameter, encouraging the next scale to encode residual
disparities with the more reliable phase-shift mechanism. This modifi-
cation not only eliminates the artificial decoding and selection steps of
the original model but also enables maintenance of complete population
responses throughout the coarse-to-fine process. Second, because of this
modification, explicit decoding is no longer necessary but rather is for
visualization only. We use a simple threshold criterion to decode mul-
tiple disparities from population energy responses instead of a single
disparity in the original model. We demonstrate our model using simu-
lations on a variety of transparent and nontransparent stereograms. The
model also reproduces psychophysically observed disparity interactions
(averaging, thickening, attraction, and repulsion) as the depth separation
between two overlapping planes varies.
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1 Introduction

We can see overlapping surfaces at different depths in transparent random-
dot stereograms (Julesz, 1971; Prazdny, 1985). Computationally, however,
this so-called stereo transparency problem is difficult to solve with physi-
ologically plausible methods such as the disparity energy model (Ohzawa,
DeAngelis, & Freeman, 1990; Qian, 1994, 1997). On one hand, cells with
large receptive fields (RFs) cover dots carrying different disparities, mixing
them in the cells’ responses. On the other hand, cells with small RFs can re-
liably compute only small disparities; this is true even for position-shift RFs
(Chen & Qian, 2004; also see section 4). Consequently, a model has to use
RFs that are much smaller than distances between adjacent dots in a stere-
ogream but much larger than the disparities involved. This requires that
the disparities be much smaller than the distances between adjacent dots.
The transparent random-dot stereogram in Figure 1, for example, violates
this requirement, yet we can still perceive two transparent surfaces.

Models of stereo transparency often include nonbiological procedures to
get around the above problem. For example, a large class of models follows
Marr and Poggio (1976) by starting with a compatibility map that contains
all possible matches between features in the two eyes and then introducing
constraints to eliminate false matches (Prazdny, 1985; Pollard, Mayhew,
& Frisby, 1985; Qian & Sejnowski, 1989; Zhaoping, 2002). Such models are
nonphysiological because they do not use any reasonable RFs, and each unit
of a compatibility map responds to only one potential match (Qian, 1997). If
the compatibility map is replaced by disparity energy responses produced
by realistic RFs, the Marr-Poggio style constraints cannot be applied because
the energy responses are broadly distributed with multiple peaks (Qian,
1994; Chen & Qian, 2004; Assee & Qian, 2007).

In this study, we solve stereo transparency in the framework of the dis-
parity energy model (Ohzawa et al., 1990; Qian, 1994). Since a single RF scale
appears to be inadequate, it seems natural to combine information across
scales. Intuitively, although a large scale may average overlapping stimulus
disparities, the average could still be a good starting point for smaller scales
to resolve multiple disparities. Conversely, a small scale alone cannot reli-
ably compute large disparities but can use larger scales’ guidance to offset
stimulus disparities with the position-shift component of RFs and compute
the residual disparity of each surface with the more reliable phase-shift
component (Chen & Qian, 2004). A coarse-to-fine version of the disparity
energy model, with both position- and phase-shift RFs, has already been
proposed (Chen & Qian, 2004) and successfully applied to nontransparent
stereograms. However, each scale of this model decodes only a single dis-
parity for each location and uses the decoded disparity to select cells in the
next scale. Consequently, it cannot represent multiple, transparent surfaces
at a location. We have now extended this model to solve stereo transparency
and at the same time make it more biologically plausible by eliminating



1060 Z. Li and N. Qian

explicit decoding and selection during computation. Preliminary results
have been presented in abstract form (Li & Qian, 2014).

2 Method

2.1 Coarse-to-Fine Disparity Energy Model. We first briefly describe
Chen and Qian’s coarse-to-fine disparity energy model and then explain our
extensions. The model employs hybrid binocular cells with both position
and phase shifts between the two eyes’ RFs (Zhu & Qian, 1996; Ohzawa,
DeAngelis, & Freeman, 1997; Anzai, Ohzawa, & Freeman, 1997, 1999; Liv-
ingstone & Tsao, 1999; Prince, Cumming, & Parker, 2002). For convenience,
we first define Gabor function with orientation θ (measured from horizon-
tal) as

G(x, y; σ, θ, φ) = 1
2πσ⊥σ‖
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where (x′, y′) is (x, y) rotated by angle θ , σ⊥ ≡ σ characterizes the spatial
scale, σ‖ = kσ⊥ determines the RF aspect ratio k (set to 2 in our simulations),
and ω = π

σ
is the preferred spatial frequency. We keep
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across scales to ensure scale-invariant RF shapes.

The left and right RFs of a simple cell are then given by
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where d and �φ are the position- and phase-shift parameters, respectively.
Another simple cell forming a quadrature pair with this cell has RFs given
by
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The responses of these simple cells at position (x, y) to the left and right
images, IL(x, y) and IR(x, y), are

r1(x, y; σ, θ, d,�φ) =
∫

dx′dy′IL(x + x′, y + y′)FL1(x
′, y′)

+
∫

dx′dy′IR(x + x′, y + y′)FR1(x
′, y′), (2.6)
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r2(x, y; σ, θ, d,�φ) =
∫

dx′dy′IL(x + x′, y + y′)FL2(x
′, y′)

+
∫

dx′dy′IR(x + x′, y + y′)FR2(x
′, y′). (2.7)

The energy response of the complex cell receiving inputs from this
quadrature pair of simple cells is then

rc(x, y; σ, θ, d,�φ) = r2
1(x, y; σ, θ, d,�φ) + r2

2(x, y; σ, θ, d,�φ). (2.8)

For a stimulus with disparity D evenly divided between the two eyes, the
response is approximately (when |D − d| � σ⊥

sin θ
; see the appendix)

rc ≈ 4A2 cos2
(

ω

2

[
D −

(
d + �φ

ω sin θ

)])
, (2.9)

where A is the Fourier amplitude of local image patch. Thus, the cell’s
preferred disparity is approximately

D∗ ≈ d + �φ

ω sin θ
. (2.10)

To improve performance, Chen and Qian (2004) pooled energy responses
across orientation and space according to

r(d,�φ; x, y, σ ) =
5∑

i=1

rc(x, y; σ, θi, d,�φi) ∗ Fsp(x, y; σ ), (2.11)

where the five orientations are

θi = iπ
6

(i = 1, 2, . . . , 5), (2.12)

�φi = �φ sin θi ensures that the pooled cells of different orientations have
the same preferred disparity, and the spatial pooling kernel for scale σ is

Fsp(x, y; σ ) = 1
2πσ 2 exp

(
−x2 + y2

2σ 2

)
. (2.13)

At each scale and image location, we will index the pooled responses by
d and �φ without mentioning �φi and θi of differently oriented cells.
Note that the orientation pooling occurs after the disparity energy re-
sponses are calculated in each orientation-specific channel. Therefore, the
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pooling scheme does not violate Mansfield and Parker’s (1993) finding of
an orientation-specific component in noise masking of stereo detection.
Specifically, when the masking noise and the disparity signal are in the
same orientation channel, the noise will greatly reduce the (quadratic) dis-
parity energy responses, and consequently the pooled responses, and im-
pair signal detection. However, when the noise and signal are in different
orientation channels, the signal will produce large energy responses in one
orientation channel, whereas the noise will produce small responses in a dif-
ferent orientation channel. Since the pooling is weighted by the responses,
the impact of the noise will be smaller in this case.

Chen and Qian (2004) computed disparity at each location iteratively
from large to small RF scales. Each scale selects cells whose position
shift d’s are all equal to the disparity estimated in the previous scale and
whose phase-shift �φ’s span the whole range of [−π, π]. Consequently, the
position-shift RF component offsets stimulus disparity based on the cur-
rent estimate, whereas the phase-shift RF component estimates any residual
stimulus disparity. Therefore, at the end of the iteration, the most respon-
sive cells have position shifts close to stimulus disparity and phase shifts
close to 0. This strategy is adopted because the phase-shift RF component
estimates stimulus disparity more reliably than the position-shift compo-
nent when the disparity is made small by offsetting (Chen & Qian, 2004).
Unlike the first coarse-to-fine stereo model of Marr and Poggio (1979) that
offsets stimulus disparity globally with vergence, this model offsets stim-
ulus disparity locally with the position-shift component of RFs (see Chen
& Qian, 2004, for further details). The process is consistent with Menz and
Freeman’s (2003) finding that when cells’ RF scales reduce, their preferred
disparities do not change. Since the disparity range of the phase-shift com-
ponent reduces with the scale, the cells must use a position-shift component
to offset stimulus disparities and maintain the preferred disparities.

As mentioned above, despite its successful application to various stere-
ograms, Chen and Qian’s (2004) model cannot solve stereo transparency
because each scale estimates only a single disparity at each location by
finding the response peak of a population of disparity energy units and
uses this disparity to select cells of the next scale. Figure 1 shows the simu-
lation result of applying this model to a transparent random dot stereogram
with two overlapping planes. The model can recover only one of the two
disparities at each location rather than two overlapping planes that we per-
ceive. It is also unclear how the selection procedure in the model could be
implemented physiologically.

2.2 Connectivity Pattern. We therefore extended Chen and Qian’s
(2004) model to resolve the above problems. The first extension is to re-
place the artificial selection procedure by multiplicative connections from
large to small scales. Let the position- and phase-shift parameters of



Coarse-to-Fine Energy Model for Stereo Transparency 1063

Figure 1: Chen and Qian’s (2004) model applied to a transparent random dot
stereogram (top row) with two overlapping planes of 3 and −2 pixels of dispar-
ities, respectively. The model can decode only one disparity at each position,
resulting in a patch-wise map (bottom row) of the two actual disparities.

pre- and postsynaptic cells be dpre, �φpre, dpost, and �φpost, respectively.
The connection strength is set to

W(dpost, dpre,�φpre) = exp

⎛
⎜⎜⎜⎝−

[
dpost −

(
dpre + �φpre

ωpre

)]2

σ 2
d

⎞
⎟⎟⎟⎠ , (2.14)

where ωpre is the preferred spatial frequency of presynaptic cell. Thus, the
connection is the strongest when the presynaptic cell’s overall preferred
disparity (as determined by its both position and phase shifts) equals the
postsynaptic cell’s position shift. This is illustrated in Figure 2. σd controls
the spread of connections around the strongest connections. We used σd =
0.1 pixel in our simulations, but other values work well too (see Figure 12).
Note that the connections are local as equation 2.14 applies to cells tuned
to each location (x, y). For simplicity, the above description uses the pooled
responses indexed by d and �φ. However, an equivalent description can
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Figure 2: (Left) Schematic drawing of the multiplicative connections from cells
of a larger scale to cells of the next smaller scale (see equation 2.14). For each
scale and image location, the cells are indexed by their position-shift and phase-
shift parameters. To avoid clutter, only the strongest connections from three
presynaptic cells to three postsynaptic cells are shown. The three presynaptic
cells lie on a negative diagonal line and thus have the same total preferred
disparity (see equation 2.10). The three postsynaptic cells have the same position
shift equal to the presynaptic cells’ total preferred disparity. Each cell’s RFs also
receive inputs from stimuli (not shown) to compute energy responses. (Right)
The actual connection weights from all cells of the fourth scale to a cell of the
fifth scale with zero position-shift parameter. Therefore, the presynaptic cells
with a total preferred disparity of zero have the strongest connections. In this
example, we let σd = 0.1 pixel in equation 2.14, but other values work well too
(see Figure 12).

be made with responses before pooling, which effectively combines the
pooling and multiplication steps into one.

The final response of a cell is a multiplication of its energy response to the
stimulus and the total gain it receives from the previous scale. Similar to the
iteration in Chen and Qian (2004), the response is locally determined. For
each position (x, y), denote the energy response after spatial and orientation
pooling as r(σ, d,�φ; x, y) as in equation 2.11 and the activity of each cell
after the gain multiplication as r̃(σ, d,�φ; x, y), then,

r̃(σ, dpost,�φpost; x, y) ≡ r(σ, dpost,�φpost; x, y)

·
∑

dpre,�φpre

W(dpost, dpre,�φpre)r̃(βσ, dpre,�φpre; x, y), (2.15)
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Figure 3: The energy responses (top) and the responses multiplied by the
coarse-to-fine gains (bottom) at a fixed position in the transparent random dot
stereogram of Figure 1. Different columns show results from different scales.
In each panel, the horizontal axis represents the cells’ phase-shift parameter
�φ (divided by ω to covert to disparity) and the vertical axis represents their
position-shift parameter d. Dotted lines indicate combinations of phase and
position shifts that equal the true disparities of the stimulus.

where β is a constant specifying the ratio of two adjacent scales. As in Chen
and Qian (2004), we let β = √

2 and used five scales with σ equal to 8,
5.7, 4, 2.8, and 2 pixels, respectively. For the largest scale, r̃(σ, d,�φ; x, y) ≡
rc(σ, d,�φ; x, y).

This pattern of connectivity encourages the next scale to use the position-
shift RF component to offset the disparities estimated in the previous scale
and to use the phase-shift RF component to estimate residual disparities
(i.e., the differences between the actual disparities and their current es-
timates). It thus provides a physiologically plausible implementation of
the coarse-to-fine computation in Chen and Qian (2004). Figure 3 shows
an example of population responses without (top row) and with (bottom
row) multiplicative gains for a fixed position in the transparent random
dot stereogram of Figure 1. The two left-most panels (for the largest scale)
are identical. However, at the finest scale, the responses with and without
the coarse-to-fine connections are different. Specifically, the connections
help reduce false peaks and enhance the correct peaks in the population



1066 Z. Li and N. Qian

responses. Moreover, the response peaks are more focused around �φ = 0,
as intended in Chen and Qian (2004)’s coarse-to-fine model.

2.3 Decoding Multiple Disparities from Population Responses. Our
second extension is to replace the single-disparity decoding in Chen and
Qian (2004) by multidisparity decoding. For each scale and location, the de-
coding finds all reliable peaks in the population responses of cells with var-
ious position- and phase-shift parameters. Denote the population response
at scale σ and position (x, y) as r̃(d,�φ; σ, x, y). Since the coarse-to-fine
computation aims to use RF position shifts to offset stimulus disparities
computed by the RF phase shifts so that at the end, the most responsive
cells have �φ near 0 (Chen & Qian, 2004), the decoding method should find
all D̂s that satisfy

∂ r̃(d,�φ; σ, x, y)

∂d

∣∣∣∣
d=D̂,�φ=0

= 0 (2.16)

∂ r̃(d,�φ; σ, x, y)

∂�φ

∣∣∣∣
d=D̂,�φ=0

= 0. (2.17)

To eliminate noisy small peaks, we require

r̃(D̂, 0) > α max
d

r̃(d, 0), (2.18)

where 0 < α < 1 is a relative threshold for the peaks as a fraction of the high-
est peak. We let α = 0.3, but its exact value is not important (see Figure 12).
In our implementation, we used parabolic interpolation to determine D̂.
(More details are described in the appendix.)

We also tried another decoding method, first integrating responses of
the cells with the same preferred disparity D∗ (see equation 2.10),

r̃sum(D∗) =
∫ π

−π

d�φr̃
(

D∗ − �φ

ω
,�φ

)
, (2.19)

and then finding local maxima of r̃sum as the decoded disparity D̂. We
applied 2D interpolation in the d-�φ space to perform the integration. A
relative threshold α as in equation 2.18 is also used to remove small noisy
peaks.

Although this method integrates responses to reduce noise, it performs
slightly worse than the first method. This is likely because the first method
takes advantage of the fact that the energy units encode disparity most ac-
curately when the RF position shifts correctly offset the stimulus disparities
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Figure 4: Model performance on the same transparent random-dot stereogram
as in Figure 1 with two overlapping fronto-parallel planes. (Top) The stere-
ogram. (Bottom) The true disparity map and computed maps at the five scales.

and thus the phase shifts of the most responsive cell are around �φ = 0
(Chen & Qian, 2004).

3 Results

We applied our extended model to a variety of stereograms using exactly
the same set of parameters. Since the ground truth of the natural-image
stereogram in Figure 9 represents near and far disparities as positive and
negative, respectively, we use the same convention for all stereograms for
consistency.

3.1 A Transparent Stereogram with Two Overlapping Fronto-Parallel
Planes. We first applied the model to the same transparent random-dot
stereogram as in Figure 1 (copied to top panel of Figure 4). The true disparity
map and the decoded disparity maps at each scale are shown in the bottom
of Figure 4.

Note that 98.3% of all image positions have two decoded disparities,
whereas 1.5% positions have one decoded disparity and the 0.2% position
has more than two decoded disparities. Thus, the model correctly repre-
sented the two transparent planes in most positions. The decoded disparity
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Figure 5: Model performance on a standard nontransparent stereogram with a
floating square.

values are also close to the true values: the root mean square (RMS) error is
0.2 pixel, compared with the 5-pixel separation between the two planes.

The small fluctuations of the decoded disparity values are likely at-
tributable to the fact that our model is completely local, with separate
estimation of disparities at each location. Interactions among different po-
sitions in higher-level surface representations would likely smooth out the
fluctuations.

3.2 A Nontransparent Stereogram with a Floating Square. To ensure
that our model works on nontransparent stereograms, we applied it to
a standard random dot stereogram with a floating square. The result is
shown in Figure 5. At the finest scale, our model correctly decoded the
floating square.

3.3 A Transparent Stereogram with a Floating Square. Next, we tested
a transparent version of the standard stereogram in the previous example:
we added an overlapping background for the central floating square. This
is an interesting test because unlike the uniform transparent stereogram in
Figure 4, this stereogram has depth boundaries in addition to transparency.
Additionally, the dot density in the central square region is twice that in the
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Figure 6: Model performance on a transparent stereogram with a floating
square.

surround region. Nevertheless, the model with the fixed set of parameters
works well. The results are shown in Figure 6.

3.4 A Nontransparent Stereogram with a Slanted Plane. A problem
with Marr and Poggio’s (1976) model and related models is that they have
difficulty with slanted planes because they consider a small number of
fronto-parallel planes and include strong interactions within each plane.
In contrast, Chen and Qian’s (2004) coarse-to-fine disparity energy model
can compute disparity maps from nontransparent stereograms with slated
planes. We therefore also tested our extension on a nontransparent stere-
ogram with a slated plane. The result is shown in Figure 7.

3.5 A Transparent Stereogram with Overlapping Slanted Planes. We
tested a transparent version of the previous stereogram, namely, a transpar-
ent stereogram with two overlapping slanted planes. The result is shown
in Figure 8.

3.6 A Natural Image Stereogram. Finally, since Chen and Qian’s (2004)
model was applied to natural image stereograms, we have also tested our
extension on a natural image stereogram in which disparity and contrast
covary; the result is shown in Figure 9.
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Figure 7: Model performance on a nontransparent stereogram with a slanted
plane.

Figure 8: Model performance on a transparent stereogram with overlapping
slanted planes.
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Figure 9: Model performance on a natural image stereogram. (Top) The image
pair of Cloth4 stereogram from Middlebury Stereo Datasets (Hirschmuller &
Scharstein, 2007; Scharstein & Pal, 2007). (Bottom) The ground truth and the
model performance. The original image pairs were shifted by 125 pixels and
downsampled by a factor of 10 so that the disparities are within the range
covered by the model cells.

3.7 Disparity Attraction and Repulsion in Transparent Stereograms.
Disparities of a few isolated features appear to attract or repel each other de-
pending on the features’ lateral separations (Westheimer, 1986; Westheimer
& Levi, 1987). Mikaelian and Qian (2000) applied the disparity energy model
to explain this observation. A similar phenomenon occurs for transparent
stereograms: disparities of two overlapping planes appear to attract or repel
each other depending on the depth separation between the planes (Parker
& Yang, 1989; Stevenson, Cormack, & Schor, 1989). Specifically, when the
depth separation is small, the two planes appear to merge as a single plane
with the average disparity. With increasing separation, the stimulus looks
like a thickened slab, a perception termed pyknostereopsis. Further depth
separation produces two transparent planes with an exaggerated depth
separation between them. Finally, at even greater depth separations, the
perceived separation between the two planes becomes veridical.

Our model reproduces these observations as shown in Figure 10. We
applied our model to a transparent random dot stereogram with various
disparity separations between two overlapping planes. The disparities of
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Figure 10: Disparity interactions in stereo transparency. (Top) Each column
shows a decoded-disparity histogram for each actual disparity separation be-
tween the two planes in a transparent random-dot stereogram. Brighter colors
indicate more frequently decoded values. The two actual disparities are rep-
resented by the two black dashed lines. The model explains three observed
perceptual regimes with increasing disparity separation: depth averaging (one
plane), pyknostereopsis (thickening), and transparency (two planes). (Bottom)
The decoded disparity separation, according to the peaks of the histograms,
against the actual disparity separation. The dashed line marks equality be-
tween the computed and actual disparity separations. The computed separa-
tions show attraction (below the dashed line) and repulsion (above the dashed
line) depending on the actual disparity separation.

the two planes always have the same magnitude but opposite signs. In
the top panel of Figure 10, each column is a gray-scale histogram (compiled
from all positions of the stereogram) of the decoded disparity values for each
actual disparity separation between the planes. Brighter colors represent
more frequently decoded values. The two actual disparities are indicated
by the two dashed black lines. Similar to our perception, the model requires
a minimum disparity separation (threshold) between the planes to decode
two disparities. This threshold depends on the model’s finest RF scale. Also
similar to our perception, the model produces a thickened slab during the
transition from decoding one plane to two planes.

Averaging two disparities into one may be viewed as an extreme case
of attraction between the two disparities. To examine disparity interactions
generally, we plot in the bottom panel of Figure 10 the decoded disparity
separation against the actual disparity separation between the two planes
(open circles). This was done by searching for the peaks in the histogram
of the top panel around the actual disparity values and then subtracting
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Figure 11: Disparity averaging weighted by dot contrasts and dot density. We
applied our model to a transparent random dot stereogram with two planes
at ±0.5 pixel of disparities and varied the contrast (left) and density (right) of
the dots of the two planes. Each panel plots the computed disparity against the
average disparity weighted by the contrast (left) or density (right).

the two peak disparities. The dashed line in the bottom panel marks the
equality between the computed and estimated disparity separations. The
model predicts smaller-than-actual separations, larger-than-actual separa-
tions, and veridical separations as the actual separation increases, in agree-
ment with the observation of Stevenson, Cormack, and Schor (1991).

We also investigated how, at small disparity separations, the averaged
disparity of two overlapping planes is weighted by the contrasts of the
dots for the planes. We applied our model to a transparent random dot
stereogram with two planes having ±0.5 pixel of disparities but various
contrast ratios between the dots of the two planes. The decoded disparity
is close to the average disparity weighted by the contrasts but with an
S-shaped bias (see Figure 11, left), in agreement with the observation in a
related experiment (Rogers & Anstis, 1975).

In addition to contrasts, we also varied the dot density ratio between the
two planes. The decoded disparity is very close to the average disparity
weighted by the dot densities (see Figure 11, right). This is a prediction that
could be tested psychophysically.

3.8 Dependence on Two Key Parameters. Our extension introduced
two new parameters, and we examined how the model performance de-
pends on them. They are the spread of the connectivity pattern character-
ized by σd in equation 2.14 and the relative threshold α for eliminating noisy
small peaks in decoding in equation 2.18.

For the transparent stereogram with two fronto-parallel planes in Fig-
ure 4, the right panel of Figure 12 shows the proportion of positions with
two decoded disparities as a function of α and σd. The curve in the den-
sity plot indicates the optimal combination of the two parameters. When
σd > 2 pixel, optimal α increases quickly as σd increases. This suggests that
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Figure 12: Dependence of the model performance on parameters σd and α.
We used the same transparent random dot stereogram as in Figure 4 with two
overlapping planes of disparities −2 and 3 pixels. (Left) The proportion of image
positions with exactly two decoded disparities as a function of both σd and α.
Brighter colors indicate higher proportions. The black curve marks the optimal
α for each σd. The star marks the standard parameters used in all the simulations
of this letter. The right panel shows the decoding RMS error as a function of σd.
α is chosen to be optimal for each σd. The two lines are the decoding RMS errors
for the two planes. The shaded areas indicate the standard deviations of the
errors estimated from 10 different stereograms, and the darker areas indicate
overlaps of the shades. The σd axis is in log scale for both panels.

as the connections for coarse-to-fine computation are more spread out from
the intended ones, the ratio of noisy small peaks to real peaks in population
responses become larger. For small σd, a broad range of α produces simi-
larly good performances. The standard σd and α used in our simulations
are 0.1 pixel and 0.3 (indicated by a star in the figure.)

The right panel of Figure 12 shows the decoding RMS error as a function
of σd (with the optimal α for each σd). The model performance does not
vary much as long as σd is smaller than σ⊥ of the finest scale (2 pixels in our
simulations). These results explain why a single parameter set works well
for all stereograms in this letter.

4 Discussion

We extended Chen and Qian’s (2004) coarse-to-fine disparity energy model
to solve the difficult problem of stereo transparency with biologically plau-
sible mechanisms. In the original model, a given scale decodes a single dis-
parity for each location and uses this disparity to select a set of cells for the
next scale. We replaced this artificial selection procedure with multiplicative
connections from one scale to the next. The connectivity pattern provides
a biologically plausible mechanism to achieve the original model’s goal of
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using cells’ position-shift RF component to offset stimulus disparities and
the more reliable phase-shift RF component to estimate residual disparities.
More important, whereas each scale of the original model commits to a sin-
gle decoded disparity at each location, the new model maintains the entire
population responses during the coarse-to-fine computation. Consequently,
unlike the original model, explicit disparity decoding at each scale is unnec-
essary for the new model. We can still decode the population responses at
each scale for the sole purpose of visualization as we did in this letter. This
leads to our second extension: we used a simple threshold criterion capable
of decoding multiple disparities instead of single-disparity decoding in the
original model. We demonstrated through computer simulations, with a
single parameter set, that these extensions allow our model to solve vari-
ous transparent and nontransparent stereograms in a biologically plausible
way. Finally, our model explains disparity interactions (averaging, thicken-
ing, attraction, and repulsion) as the separation between two overlapping
planes varies.

Both Chen and Qian’s (2004) model and our current extension use the
position-shift RF component to offset estimated stimulus disparities and the
phase-shift component to estimate the residual disparities. Consequently,
at the end of computation, the most responsive cells have position shifts
near stimulus disparities and phase shifts near 0. As we noted, this strategy
is based on the finding that the phase-shift population response is more reli-
able than the position-shift population response for disparity computation
(Chen & Qian, 2004; Tsang & Shi, 2004). The analysis in the appendix shows
that this remains true when stimulus disparity is divided evenly between
the two eyes. Position shifts are needed to properly place the limited dispar-
ity range of phase shifts. Also note that Read and Cumming (2007) follow
Chen and Qian (2004) in searching for the cells whose position shift offsets
stimulus disparity and whose phase shift is near 0, albeit with a different
algorithm.

It is easy to understand why position-shift RFs are generally less reliable
than the phase-shift RFs. Consider disparity encoding at a given location
by a set of energy units with a range of preferred disparities. If the units
have phase-shift RFs, then the RFs of all the units cover the same left and
right image patches. Consequently, variations in the units’ responses are
attributable to their different tuning properties. In contrast, if the units
have position-shift RFs, then different units cover different left and right
image patches, which introduce additional variability in the population
responses.

We mentioned in section 1 that cells with small RFs can reliably com-
pute only small disparities. This is easy to understand for phase-shift RFs
because phase shift is periodic, and disparity representation is unambigu-
ous only for phase shifts within the [−π, π ) range (Qian, 1994). One might
argue that because position shift is not periodic, position-shift RFs could
represent arbitrarily large disparities. However, this is not the case for the
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reason discussed. Specifically, by definition, cells with different position
shifts are located at different positions. When their RFs are small, they more
likely cover completely different image regions. Thus, spatial variations
of image properties (e.g., contrast, frequency content, local features such
as orientation) may overwhelm the disparity-related signals in population
responses.

How does our extended coarse-to-fine disparity energy model solve the
stereo transparency problem? We define residual disparity as the difference
between an actual stimulus disparity and its current estimate. At the largest
scale, cells’ RFs cover many dots carrying different disparities, and thus the
most responsive cells are likely those tuned to the average of the stimulus
disparities (see Figures 3 and 4). Because of the connectivity pattern, these
cells will excite the cells in the next scale whose position-shift components
are close to the average disparity. With the offsetting of the average disparity
by the position shifts, the cells of the next scale with smaller RFs can better
represent the residual disparities with their phase shifts. This process is then
repeated to gradually offset more of the stimulus disparities and reduce the
residual disparities. At the smallest scale, the most active cells are the ones
whose position shifts are close to one of the actual stimulus disparities and
whose phase-shift components are near 0 (because the residual disparities
are close to 0).

Our model makes specific predictions. There are physiological and psy-
chophysical evidence for coarse-to-fine disparity processing in biological
vision (Menz & Freeman’s, 2003; Smallman & MacLeod, 1994; Wilson, Blake,
& Halpern, 1991; Rohaly & Wilson, 1993). Our model suggests a specific im-
plementation of this computation, namely, that the connections from cells
with larger RFs to those with smaller RFs are the strongest when a presy-
naptic cell’s overall preferred disparity (as determined by its both position
and phase shifts) matches the postsynaptic cell’s position shift. A second
prediction is that the smallest disparity separation between two transparent
surfaces that can be resolved perceptually is determined by the RF sizes of
the finest scale in the coarse-to-fine process. This could be tested by exam-
ining whether the smallest resolvable disparity separation increases with
retinal eccentricity. Our model also predicts that disparity averaging should
be weighted by dot densities (see Figure 11).

In conclusion, we have extended Chen and Qian’s (2004) coarse-to-fine
disparity energy model to solve the difficult problem of stereo transparency
with biologically plausible mechanisms. The model uses both position-shift
and phase-shift RF components and works well on a variety of transparent
and nontransparent stereograms. Although large-scale cells tend to average
stimulus disparities and small-scale cells cannot compute large stimulus
disparities, combining information through the coase-to-fine process solves
the transparency problem. Our model also makes specific predictions on
connectivity between disparity tuned cells of different scales and on our
perception of stereo transparency.
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Appendix: Deviation and Implementation

A.1 Quadrature Pair Responses and Preferred Disparities. The deriva-
tions here are similar to our previous derivations (Chen & Qian, 2004) but
with stimulus disparities evenly divided between the two eyes’ oriented
RFs with both position and phase shifts.

The RFs of simple cells in a quadrature pair are defined in equations 2.2,
2.3, 2.4, and 2.5 of the text. For a stimulus I(x, y) with disparity D, the images
for the two eyes are

IL(x, y) = I
(

x − D
2

, y
)

, (A.1)

IR(x, y) = I
(

x + D
2

, y
)

. (A.2)

Without loss of generality, for position (0, 0), equations 2.6 and 2.7 become

r1(0, 0) =
∫

dxdyI
(

x − D
2

, y
)

1
2πσ⊥σ‖

e
− x2

1
2σ2⊥

− y2
1

2σ2‖ cos
(

ωx1 − �φ

2

)
,

+
∫

dxdyI
(

x + D
2

, y
)

1
2πσ⊥σ‖

e
− x2

2
2σ2⊥

− y2
2

2σ2‖ cos
(

ωx2 + �φ

2

)
,

(A.3)

r2(0, 0) =
∫

dxdyI
(

x − D
2

, y
)

1
2πσ⊥σ‖

e
− x2

1
2σ2⊥

− y2
1

2σ2‖ sin
(

ωx1 − �φ

2

)
,

+
∫

dxdyI
(

x + D
2

, y
)

1
2πσ⊥σ‖

e
− x2

2
2σ2⊥

− y2
2

2σ2‖ sin
(

ωx2 + �φ

2

)
,

(A.4)

in which x1, y1, x2, y2 are rotated coordinates defined as

(
x1

y1

)
=

(
sin θ cos θ

− cos θ sin θ

) ⎛
⎜⎝ x − d

2

y

⎞
⎟⎠ , (A.5)

(
x2

y2

)
=

(
sin θ cos θ

− cos θ sin θ

) ⎛
⎜⎝ x + d

2

y

⎞
⎟⎠ . (A.6)
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Therefore, the quadrature-pair response is

rc = 1
2πσ⊥σ‖

∣∣∣∣
∫

dxdyI
(

x − D
2

, y
)

e
− x2

1
2σ2⊥

− y2
1

2σ2‖ ei(ωx1− �φ

2 )

+
∫

dxdyI
(

x + D
2

, y
)

e
− x2

2
2σ2⊥

− y2
2

2σ2‖ ei(ωx2+ �φ

2 )

∣∣∣∣
2

= 1
2πσ⊥σ‖

∣∣∣∣ei ω sin θ (D−d)−�φ

2

∫
dxdyI(x, y)e

− x′
1

2

2σ2⊥
− y′

1
2

2σ2‖ eiω(sin θx+cos θy)

+ ei ω sin θ (−D+d)+�φ

2

∫
dxdyI(x, y)e

− x′
2

2

2σ2⊥
− y′

2
2

2σ2‖ eiω(sin θx+cos θy)

∣∣∣∣
2

, (A.7)

with

(
x′

1

y′
1

)
=

(
sin θ cos θ

− cos θ sin θ

) ⎛
⎜⎝ x − d − D

2

y

⎞
⎟⎠ , (A.8)

(
x′

2

y′
2

)
=

(
sin θ cos θ

− cos θ sin θ

) ⎛
⎜⎝ x + d − D

2

y

⎞
⎟⎠ . (A.9)

The first-order approximation of exp[− (x+�x)2

2σ 2 ] with respect to �x is

exp
[
− (x + �x)2

2σ 2

]
≈ exp

(
− x2

2σ 2

) (
1 − x�x

σ 2

)
. (A.10)

Define a gaussian envelope as

GGauss(x, y)

= 1
2πσ⊥σ‖

exp

(
− (sin θx + cos θy)2

2σ 2
⊥

− (− cos θx + sin θy)2

2σ 2
‖

)
, (A.11)

and define the original image filtered by this gaussian envelope and its
scaled first partial derivative with respect to x as

I1(x, y) = GGauss(x, y)I(x, y), (A.12)
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I2(x, y) = σ⊥
∂GGauss(x, y)

∂x
I(x, y)

=
(
−sin θ (sin θx + cos θy)

σ⊥
− − cos θ (− cos θx + sin θy)

k2σ⊥

)
I1(x, y),

(A.13)

where k = σ‖
σ⊥

is the RF aspect ratio. The Fourier component at frequency
(ω sin θ, ω cos θ ) of I1 and I2 is

A =
∫

dxdyei(ω sin θx+ω cos θy)I1(x, y), (A.14)

B =
∫

dxdyei(ω sin θx+ω cos θy)I2(x, y). (A.15)

With these notations, along with δ = ω sin θ (D−d)−�φ

2 , the complex cell re-
sponse is

rc ≈
∣∣∣∣eiδ

(
A − d − D

2σ⊥
B
)

+ e−iδ
(

A + d − D
2σ⊥

B
)∣∣∣∣

2

=
∣∣∣∣2A cos δ + i

D − d
σ⊥

B sin δ

∣∣∣∣
2

≈ 4|A|2 cos2 δ +
(

D − d
σ⊥

)2

|B|2 sin2 δ, (A.16)

an approximation to the second order of D−d
σ⊥

. If the stimulus disparity D is
largely offset by cells’ position shift d, then the second term is small, and
the cells’ preferred disparity is determined by the first term, resulting in
equation 2.10 in the text.

Equation A.16 also demonstrates that phase-shift population responses
(from cells with a fixed d but a full range of �φ) are more reliable than
position-shift population responses (from cells with a fixed �φ but a range
of d) even when disparity is evenly divided between the two eyes. Specifi-
cally, the second term of equation A.16 can be made small when D is largely
offset by a fixed d, and the cells with this d and the full range of �φ have a
reliable peak determined by the first term. In contrast, the second term can-
not always be small for a fixed �φ and a range of d, contaminating the first
term. Also note that when �φ = 0, the position-shift population response is
symmetric around d−D (Read & Cumming, 2007). However, this symmetry
holds only for the special case of uniform disparity.
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A.2 Disparity Decoding in Discrete Form. We explain the detailed
implementation of disparity decoding. As mentioned in section 2.3, we
aim to find D̂ satisfying equations 2.16 to 2.18. We can only approximately
achieve this goal since the population responses are sampled from cells
with a discrete set of parameters d and �φ.

For a given scale (σ ) and spatial location (x and y), local population
responses r̃(di,�φ j) are stored in a 2D array,

r̃i, j = r̃(di,�φ j),

in which di and �φ j indicate the position- and phase-shift parameters of
the cells. For convenience, we use j0 to index the cell whose �φ j0

= 0.
The algorithm first finds all i’s satisfying:

r̃i, j0
> r̃i−1, j0

, r̃i, j0
> r̃i+1, j0

and r̃i, j0
> α max

i
r̃i, j0

.

Then, for each di so determined, it is reasonable to assume that D̂ falls
within [di−1, di+1]. Define �d ≡ di − di−1 = di+1 − di. We search for j over
�φ j

ω
∈ [−�d,�d] according to r̃i, j > r̃i, j−1 and r̃i, j > r̃i, j+1. Apply parabolic

interpolation on r̃i, j−1, r̃i, j and r̃i, j+1, we find the peak position of �φ∗, and
let

D̂ = di + �φ∗

ω
.
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