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Many models for stereo disparity computation have been proposed,
but few can be said to be truly biological. There is also a rich lit-
erature devoted to physiological studies of stereopsis. Cells sensitive
to binocular disparity have been found in the visual cortex, but it is
not clear whether these cells could be used to compute disparity maps
from stereograms. Here we propose a model for biological stereo vi-
sion based on known receptive field profiles of binocular cells in the
visual cortex and provide the first demonstration that these cells could
effectively solve random dot stereograms. Our model also allows a
natural integration of stereo vision and motion detection. This may
help explain the existence of units tuned to both disparity and motion
in the visual cortex.

1 Introduction

It is well known that binocular disparity forms the basis of stereoscopic
depth perception. There have been many physiological investigations
on the mechanisms of stereopsis (see Freeman and Ohzawa 1990 for a
recent review). The best known work is perhaps that of Poggio and
his co-workers (Poggio and Fischer 1977; Poggio et al. 1985), who found
that a large proportion of V1 and V2 cells in alert monkeys are disparity
sensitive. They classified their cells into several classes based on tuning
behavior. For example, “tuned excitatory” cells respond best to dispar-
ities near zero, while “near” or “far” cells prefer a range of crossed or
uncrossed disparities. Other investigators argued for a continuous dis-
tribution of disparity tuning instead of discrete classes (LeVay and Voigt
1988). More recently, Freeman and his collaborators have carried out
quantitative analysis of the receptive field structures of binocular cells
in cat primary visual cortex (Freeman and Ohzawa 1990; Ozhawa et al.
1990). All these studies indicate that most disparity sensitive cells are
broadly tuned. Even the most sharply tuned cells have tuning widths of
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about 0.1°-0.2°, comparable to 2—4 pixels in the stereogram in Fig. 3 of
this paper, when viewed at a distance of about 40 cm. It has been shown
that the broadly tuned disparity sensitive cells such as those found in the
brain can explain some psychophysical results of stereo vision (Lehky and
Sejnowski 1990). It remains to be demonstrated if these cells can be used
to compute disparity maps from stereograms.

Many models for disparity computation have been proposed over
the years (Marr and Poggio 1976, 1979; Quam 1984; Prazdny 1985; Pol-
lard et al. 1985; Qian and Sejnowski 1988; Sanger 1988; Yeshurun and
Schwartz 1989). Unfortunately, most of them are nonbiological, either
because they require sharply disparity-tuned units with preferred dispar-
ities covering a wide range of values, or because of certain mathematical
operations involved that are unlikely to be physiological or at least have
not been demonstrated physiologically. Some models are biologically in-
spired (Marr and Poggio 1979; Sanger 1988), but they are not solely based
on the properties of binocular cells in the brain.

Among the existing algorithms, the one that comes closest to physi-
ology is perhaps the model proposed by Sanger (1988), who used Gabor
filters for disparity computation. The model uses the fact that displace-
ment of a function generates a proportional phase shift in its Fourier
transformation. The binocular disparity at each location is therefore pro-
portional to the difference of the Fourier phases of the corresponding left
and the right image patches. A Gabor function is a product of a gaussian
envelope with a sinusoid and can be used to perform an approximate lo-
calized Fourier transformation. Sanger thus used sine and cosine Gabor
filters to estimate the local Fourier phases of left and right images, and
the phase difference at each location was used to find disparity.

Although Sanger’s model employs Gabor filters which are known to
describe simple cell receptive fields well (Marcelja 1980; Daugman 1985;
Jones and Palmer 1987), the filters are used only in a monocular fashion.
The binocular interaction in the model occurs only at the final step, when
the left and the right phases are compared. Before that, the left and
the right images are processed separately. No stage in the model uses
binocular receptive fields or disparity tuned cells resembling those found
in the visual cortex. Also, the explicit representations of the phases of
the left and the right images, and of the phase differences in the model
are not physiologically plausible. The simple cells in cortex are phase
sensitive, but their responses are not monotonic functions of the image
phases as implied by the model.

The work described in this paper is mainly based on the physiolog:
ical and computational studies by Freeman and Ohzawa (1990), and by
Ohzawa ef al. (1990). These investigators measured the receptive field
structures of simple and complex binocular cells in the cat primary vi
sual cortex. They found that simple cells do not reliably signal binocula:
disparity because they are also sensitive to the contrast and the positior
of the stimulus. They then showed that a subpopulation of complex cell
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is well suited as disparity detectors. Finally, they demonstrated, through
computer simulations, that left and right receptive fields of a simple cell
can be described by two Gabor functions with a certain phase difference
between them and that disparity-selective complex cells can be modeled
by combining the outputs of a quadrature pair of simple cells, similar to
the procedure for motion energy computation (Adelson and Bergen 1985;
Watson and Ahumada 1985). While their work represents a major step
toward an understanding of biological stereopsis, it is incomplete from
the computational point of view. The work is limited to specific simula-
tions of a few simple and complex cells’ responses. They did not explore
the explicit relationship between the parameters of the cells and their tun-
ing behavior. More importantly, they did not provide a computational
theory (Marr 1982) for computing disparity maps from stereograms.

We propose such a theory in this paper by generalizing and formal-
izing the model of Ohzawa et al. (1990). Specifically, we show through
mathematical analysis that disparity tuning curves of model simple cells
depend strongly on the Fourier phase of the stimulus used to measure
the curve. The expression we derived for simple cell response leads nat-
urally to the quadrature pair method of combining simple cell outputs
to form model complex cells that have reliable disparity tuning. A fam-
ily of such complex cells then constitutes a distributed representation of
disparity and the actual disparity values of the stimuli can be easily es-
timated from such a distribution. We demonstrate the effectiveness of
our model by applying it to random dot stereograms. We finally show
that our formulation of disparity computation can be combined naturally
with the energy models of motion detection (Adelson and Bergen 1985;
Watson and Ahumada 1985) into a unified framework.

2 Theory and Simulation

Through single unit recording from cat’s primary visual cortex, Free-
man and his colleagues (Freeman and Ohzawa 1990; Ohzawa ef al. 1990;
DeAngelis et al. 1991) found that a typical binocular simple cell can be
described by two Gabor functions, one for each of its receptive fields in
the left and the right retinas. A mathematical description of such a pair
of receptive fields is given by Normura et al. (1990):

2
filx) = exp (—%) cos(wx + ¢y) 2.1

2

fr(x) = exp (—i%) cos(wx + ¢,) (2.2)

where ¢ and w determine the size and the preferred (angular) spatial
frequency of the receptive fields. ¢ and ¢, are the phase parameters for
the left and the right receptive fields, respectively. It has been shown
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(Nomura et al. 1990) that the different disparity tuning types found in
the visual cortex, including those described by Poggio et al. (1985), can
be generated with appropriate combinations of parameters in equations
2.1 and 2.2.

The response of the simple cell to a stimulus is given by

= [ GG + Lol @3)

where I)(x) and I,(x) are the left and the right retinal images of the stimu-
lus. That is, the cell sums the contributions from the two receptive fields
linearly (Freeman and Ohzawa 1990; Nomura et al. 1990; Ozhawa ef al.
1990). For a stimulus with a binocular disparity D we can write

Li(x) = I(x), (24)
IL(x) = I(x+D) 2.5)

Under the assumption that the receptive field widths are much larger
than the image disparity, the gaussian envelope of the receptive fields
can be ignored. It can be shown that the response of a cell with a pair
of receptive fields given by equations 2.1 and 2.2, is approximately

1y & plcos(0 + ¢1) + cos(6 + ¢, — wD)) (2.6,

or equivalently
~ ¢1 + QSV _ @ ¢l - ¢r 812 )
Ts & 2p COS (9 + 5 5 > cos ( ) + > 2.7

where p and 6 are the amplitude and phase of the Fourier transformatior
of the image I(x) at frequency w, the preferred spatial frequency of the
cell.

Equation 2.7 indicates that the disparity tuning of a binocular simpls
cell is dependent on the Fourier phases § of the input stimuli. A specia
case of this phase dependency has been reported by Ohzawa et al. (1990
who found that the disparity tuning of simple cells varies with stimulu
position and sign of contrast. Our result is more general because Fourie
phase can be affected by other variables besides the position and con
trast of the stimulus. Any change to a pattern, other than a constar
baseline shift or scaling of brightness, alters the Fourier phase, whic
in turn affects the disparity tuning. For example, independently gene:
ated random dot patterns contain different Fourier phases even whe
they occupy the same retinal position and have the same overall texture
appearance.

Equation 2.7 gives an explicit expression of how disparity tuning c
a simple cell depends on the Fourier phase of a stimulus and the cell
parameters. To test this equation, we carried out computer simulatior
using a model cell with o = 4 pixels, w/2m = 0.125 cycles/pixel, an
¢ = ¢, = 0. Based on the modeling work of Nomura et al. (1990), th
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Figure 1: Disparity tuning curves of a simple binocular cell to a vertical line
stimulus at three retinal positions. Different position generates different tun-
ing behavior. The solid line is tuned to zero disparity while the dotted and
the dashed lines prefer near or far disparities of 2 pixels, respectively. In this
simulation, o = 4 pixels, w/2m = 0.125 cycles/pixel, and ¢; = ¢, = 0.

cell should show tuned excitatory behavior. The results of our simulation
using a vertical line are shown in Figure 1. When the left image of the
line is centered in the left receptive field while the right line position
is varied to cover a range of disparity values, the cell is indeed tuned
excitatory as shown in Figure 1 (solid line). When the left line position is
shifted in one direction or the other and the right line position is varied
to cover the same disparity range, however, there is a corresponding
shift in the cell’s tuning curve and the cell behaves like a near or far cell
(Fig. 1, dotted and dashed lines). The amount of shift and the shape of
the tuning curves are well predicted by equation 2.7. This is easier to
see using the equivalent equation 2.6. The second term in equation 2.6
determines the horizontal shift and the shape of the tuning curves while
the first term determines the vertical shift.

For the same model cell we also performed simulations to obtain its
disparity tuning curves using independently generated random dot pat-
terns with the same dot density, contrast, and overall position. Each
pattern is used to generate a series of random dot stereograms with dif-
ferent disparities for establishing the tuning curve. Three tuning curves
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Figure 2: Disparity tuning curves of a simple binocular cell to independently
generated random dot patterns. Each pattern is used to generate a series of
random dot stereograms for measuring disparity tuning. The model parameters
are the same as those in Figure 1.

from the cell are shown in Figure 2. Once again, the cell can be classified
as either tuned excitatory, near, or far depending on the patterns used.

The conclusion is that simple cells as described by equations 2.1 and
2.2 do not have reliable disparity tuning and thus cannot be used directly
to compute disparity maps from stereograms. We can, however, combine
the outputs of the simple cells to form model complex cells that do not
depend on the Fourier phase of stimulus. To achieve this, we note that
equation 2.7 consists of two cosine terms. The Fourier phase of the stim-
ulus only appears in the first term, which also contains (¢; + ¢,)/2. This
observation suggests that we can construct a phase-independent complex
binocular cell from two simple cells with equal o,w, and (¢ — ¢,)/2 but
with their (¢ + ¢,)/2 having a 90° phase difference. If the outputs of
these two cells are squared and then summed up, the resulting complex
response will be

re & 4p° cos’ (—¢l ; g %) (2.8)

which is no longer dependent on the Fourier phases of the input patterns.
Since the square of cosine is a periodic function of period 7, the range of
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wD/2 in equation 2.8 should be restricted to , or equivalently, the range
of disparity for the cell to detect should be restricted to 2 /w, in order to
avoid ambiguity. It is easy to show that the preferred disparity of such
a complex cell is given by

Dpref = @ (29)

and its width of tuning (defined at the half peak amplitude) is equal to
AD=" (2.10)
w

Note that our construction of the complex cell above is equivalent to us-
ing two simple cells with both their ¢;’s and ¢,’s in quadrature relation-
ship. We prefer to use the linear combinations (¢; — ¢,)/2 and (¢; + ¢,)/2
because they are more relevant to disparity computation (see equations
2.8, 2.11, and 2.13).

The method described above is very similar to the quadrature pair
method developed for motion energy computation (Adelson and Bergen
1985; Watson and Ahumada 1985). It was first used by Ohzawa et al.
(1990) to model the disparity selectivity of real complex cells. Their
work, however, was limited to computer simulations, and was not based
on the theoretical analysis we outlined above. Our equations 2.8, 2.9,
and 2.10 are more general and they provide an explicit relationship be-
tween the parameters of complex cells and their disparity tuning curves.
This relationship forms the basis of a computational theory for solving
stereograms to be described next.

Equation 2.8 suggests a simple way of computing stereo disparity
using complex binocular cells. If we have a family of complex cells at
a spatial location with their (¢; — ¢,)/2 covering the range from —m/2
to m/2, these cells will then constitute a distributed representation of the
stereo disparity present at that location in the input images. Such a repre-
sentation could be sufficient from a biological point of view. For example,
it could be used as input for the control of vergent eye movements. To
compute the actual image disparity explicitly, we note that according to
equation 2.8 the cell in the family with the strongest response satisfies
the condition

p= %4 @.11)

w

where the starred parameters refer to those of the most responsive cell.
Thus, by identifying the most responsive cell in the family of complex
cells centered at a given location, we can compute the image disparity at
that location from the parameters of the cell. Alternatively, we could pick
the cell with the highest slope in the distribution instead of the maximum
response for better discriminability (Lehky and Sejnowski 1990). In this
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case, equation 2.11 should be modified to

p-fdi, T 212
w* 2w*

where the starred parameters are now the parameters of the cell with the
highest slope.

It is interesting to note that superficially, equation 2.11 is similar to
the one used by Sanger (1988) for disparity computation. The two ap-
proaches are actually different. In Sanger’s method, ¢; and ¢ refer to
the Fourier phases of the corresponding left and the right input image
patches. The current approach, on the other hand, uses quadrature pairs
to deliberately eliminate the image Fourier phase dependence in the sim-
ple cell responses. ¢; and ¢ in our equation 2.11 are the left and the
right phase parameters of the maximally responsive complex cell in the
family. They are not the Fourier phases of the input images. Besides,
equation 2.11 is not an essential part of our model, and may not cor-
respond to a real step of computation in the brain. It is merely used
to demonstrate that an explicit disparity map can be constructed from
the distributed representation based on equation 2.8. As we mentioned
above, the distributed representation, which is absent in Sanger’s model,
might be sufficient from the biological point of view.

We have applied our method to random dot stereograms (Julesz 1971).
Figure 3 shows an example. The random dot stereogram in Figure 3a
has a —2 pixel disparity for the surround, and +2 for the center. The dot
density is 0.5 and the dot size is 1 pixel. We used 8 complex cells with
their (¢; — ¢,)/2 distributed evenly in the range [—7/2,7/2]. The ¢’s and
(w/27)’s are 4 pixels and 0.125 cycle/ pixel, respectively, for all cells. The
response of the 8 complex cells at each spatial location is computed by
first convolving the stereograms with the corresponding 16 simple cells
(one quadrature pair of simple cells for each complex cell) and combining
the results into complex responses. At each spatial location the highest
of the 8 responses is found and equation 2.11 is used to compute the
disparity. The disparity map computed this way is then smoothed with
a gaussian weighting function with ¢ = 4 pixels. The final disparity
map is shown in Figure 3b, which agrees well with the correct map. The
top and the bottom surfaces have disparities around 2 and —2 pixels,
respectively. The error mainly occurs at the transition, which is not as
sharp as the perception. To our knowledge, this is the first demonstration
that filters with properties similar to real binocular cells in the brain can
be used to compute disparity maps from stereograms. Note that the
result is obtained with filters of a single spatial scale (i.e., a single set
of values for ¢ and w). Further improvements could be achieved by
combining outputs from several different scales. We could also improve
the result by first fitting a smooth curve to the distribution of responses
at each location and then identify the maximum.

Our algorithm requires a family of binocular simple cells with various
(¢ — ¢,)/2. The computation can be made much more efficient if we
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Figure 3: (a) A random dot stereogram with dot density equal to 50% and dot
size 1 pixel. The center and the surround have disparities of 2 and —2 pixels
respectively. (b) The computed disparity map. See text for the parameters used
in the computation.

use the fact that the convolution of a binocular simple cell of arbitrary
(1 — ¢r)/2 can be expressed as a linear combination of convolutions at
two independent and fixed (¢; — ¢,)/2. This is a direct consequence of
a trigonometric identity, and is also related to the steerability property
discussed by Freeman and Adelson (1991).

It is well known that we can still perceive stereoscopic depth even
when the contrast of one image in a stereo pair is different from that of
the other (Julesz 1971). The response of our model complex cell under
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this condition can be shown to be

re = (1 — )2 p* + 4yp* cos? <—¢l i + Q)
2 2

where 7 is the contrast ratio of the two images in a pair. The expression
is different from equation 2.8 by only a dc component and a scale factor,
both independent of the disparity D. The actual stimulus disparity can
be computed explicitly with the same equation 2.11. We repeated our
computer simulation on the stereogram in Figure 3a with the contrast of
the right image reduced to half that of the left. The resulting disparity
map (not shown) is indistinguishable from Figure 3b.

(2.13)

3 Integrating Motion with Stereo

Our method of combining simple cell outputs for achieving phase in-
dependent disparity responses is rather similar to that used in motion
energy models (Adelson and Bergen 1985; Watson and Ahumada 1985).
This similarity allows a natural integration of motion and stereo vi-
sion into a common computational framework. The integration can be

achieved by using binocular simple cells with following left and right
receptive field structures:

2y 2
filx,y,t) = exp (—@ g1 T 27“2) cos(wyX +wyy +wit +¢p)  (B.1)

x y
xZ y2 t2
fr(x,y,t) = exp (—27% - 27‘5 - 27”2) Cos(wyX +wyy + wit + ¢,)  (3.2)

where 0’s and w’s determine the sizes of the receptive fields and the pre-
ferred (angular) frequencies along the spatial and temporal dimensions,
and ¢ and ¢, are again the phase parameters. We assume that these
phase parameters are constants independent of x, y, and t. The cell is
consequently more sensitive to motion in a constant disparity plane while
relatively insensitive to the motion in depth. This is consistent with the
physiological finding that few cells in area MT are tuned to motion in
depth (Maunsell and Van Essen 1983) and with the psychophysical obser-
vation that human subjects are poor at detecting motion in depth based
on disparity cues alone (Westheimer 1990).

The filters described by equations 3.1 and 3.2 are nonzero on the neg-
ative time axis. They are thus noncausal. This is, however, not a major
problem because these filters decay to zero exponentially due to the gaus-
sian envelopes. We could practically make the filters causal by shifting
them toward the positive time direction by, for example, 30;. The follow-
ing results will not be affected by such a shift. A more serious problem
with using temporal Gabor filters is that the temporal response of real
simple cells is skewed, with its envelope having a longer decay time than
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rise time. Also, zero-crossing intervals in the temporal dimension are not
equally spaced (DeAngelis ef al. 1993). We will use temporal Gabor fil-
ters in the following analysis for their mathematical simplicity. Similar
results can be obtained with more realistic temporal filters and will be
presented elsewhere.

Consider a stimulus with a constant disparity D and moving at the
speed v, and v, along the horizontal and vertical directions, respectively.
The left and the right images of such a stimulus is given by

L(x,y,t) = I(x —vit,y —vyt) (3.3)
L(x,y,1) I(x — vyt + D,y — vyt) (3.4)

Let us assume again that the widths of the gaussians in equations 3.1

and 3.2 are large. The response of the simple cell described above to the
stimulus is then

Il

re & 2p6(wr + Wiy + wy0y) cos (9 Lot -|2- o _ w;D )
¢l - ¢r wxD
e ( 2 "2 (3.5)

where 6( ) is the delta function, and p and 6 are the amplitude and phase
of the Fourier transformation of I(x,y). The dependence on the stimulus
phase can be removed using the same quadrature pair method discussed
before. The resulting complex response is then given by

¢I - ¢r wxD>

-

> 2 (3.6)

re & 4p%6% (wr + wyx + wyvy) cos? (
This equation indicates that the cell is indeed sensitive to both motion
and stereo disparity. Moreover, the dependencies to motion and stereo
are separated into two terms in the product. This is desirable for it allows
separate estimation of stereo and motion parameters by using different
populations of cells. For disparity computation, we can look at the re-
sponses of the family of cells with identical w;, wy, and wy, but different
(¢1 — #r)/2 as we did in the previous section. Similarly, for velocity field
computation we can use a family of cells with constant (¢; — ¢,)/2, but
different w;, w,, and wy (Heeger 1987; Grzywacz and Yuille 1990). By
holding (¢ — ¢/)/2 at different values, we could estimate velocity fields
at different depth levels.

The unified model presented above could account for several interest-
ing psychophysical observations about the interactions between motion
and stereo. For example, it allows representation of more than one ve-
locity vector at the same location if the two vectors have significantly
different stereo disparities (Qian ef al. 1993a). This is because the mo-
tion constraint plane determined by the §( ) function in equation 3.6
is weighted not only by the image Fourier power p* but also by the




Computing Stereo Disparity 401

disparity-dependent cosine term. When information from a local area is
combined to solve the motion aperture problem the cosine term reduces
the interference between the motion signals coming from different direc-
tions at different disparities. The detailed results of our psychophysical

and computational experiments will be presented elsewhere (Qian et al.
1993a,b).

4 Discussion

The main purpose of this paper is to show that the binocular receptive
field properties of real cortical cells can be used to compute disparity
maps from stereograms. As we mentioned in the text, some ingredients
of our model have been previously proposed by Ohzawa et al. (1990).
Our model, however, was derived through mathematical analysis of the
binocular system, instead of based on examples of computer simula-
tions. This distinction is an important one since our equations, which
describe the relationship between the parameters of cells and their dis-
parity tuning, cannot be easily obtained through computer simulations.
These equations are the essential part of our model because they consti-
tute a computational theory for solving stereograms.

Our analysis and computer simulations showed that simple cells do
not have reliable disparity tuning, because their responses are also depen-
dent on the Fourier phases of the stimuli. A unit that is tuned excitatory
under one condition can behave like a near or far cell under other con-
ditions. We suggest that the disparity tuning curves of simple cells are
incomplete as they are not uniquely defined for these cells and that the
best way to study disparity sensitivity of simple cells is by mapping their
binocular receptive field structures (Ohzawa et al. 1990).

In order to achieve reliable disparity computation, we combined the
outputs of simple cells to eliminate the Fourier phase dependence. This
can be realized by squaring and then summing the responses of two sim-
ple cells that have the same o, w, and (¢ — ¢,)/2 but have a 90° phase
difference in their (¢; + ¢,)/2 (Ohzawa et al. 1990; Adelson and Bergen
1985; Watson and Ahumada 1985). An alternative way to eliminate phase
dependence, and at the same time preserve disparity tuning, is by aver-
aging-over many simple cells with equal o,w, and (¢; — ¢,)/2 but various
(¢1+ ¢»)/2 (see equation 2.7). This approach is less demanding on the
specificity of connections between cells but requires more simple cells for
each complex cell. Given the fact that there are large numbers of cells in
the visual cortex with a wide range of phase parameters (DeAngelis ef al.
1993), the second approach may be biologically more plausible. The two
methods are equivalent from a computational point of view, however,
as they both generate the complex cell response given by equation 2.8.
They can thus model real complex cells equally well. We conclude that
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the energy method using quadrature pairs is just one way for achieving
phase independence and is not an indispensable part of the model.

Our model can explain an observation by Poggio ef al. (1985), who
reported that while both simple and complex cells are disparity tuned to
bars, only complex cells show disparity tuning to dynamic random dot
stereograms. Each of these stereograms maintains a constant disparity
over time but the actual arrangement of dots, and thus the Fourier phase,
changes randomly from frame to frame. Since simple cells are sensitive
to the Fourier phase as well as to the disparity of the stimulus, they lose
their disparity tuning as a result of averaging over the random phases
from frame to frame. Complex cells, on the other hand, are sensitive
to disparity but are independent of the stimulus Fourier phase. They
therefore respond consistently to the fixed disparity in a dynamic random
dot stereogram, regardless of the randomly changing Fourier phase.

Due to the similarity of our disparity model and the motion energy
models, we are able to combine motion and stereo into a common frame-
work. The resulting model allows a distributed and simultaneous repre-
sentation of velocity and disparity among a population of cells. This is
consistent with the fact that many V1 and MT cells are broadly tuned to
direction, speed, and disparity. By looking at different subpopulations
of these cells either velocity or disparity information can be extracted.
The resulting model is not only physiologically plausible, it also explains
several interesting psychophysical observations regarding the interaction
between motion and stereo.
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