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Abstract

Orientation adaptation and perceptual learning change orientation tuning curves of V1 cells. Adaptation shifts tuning
curve peaks away from the adapted orientation, reduces tuning curve slopes near the adapted orientation, and increases
the responses on the far flank of tuning curves. Learning an orientation discrimination task increases tuning curve slopes
near the trained orientation. These changes have been explained previously in a recurrent model (RM) of orientation
selectivity. However, the RM generates only complex cells when they are well tuned, so that there is currently no model
of orientation plasticity for simple cells. In addition, some feedforward models, such as the modified feedforward model

(MFM), also contain recurrent cortical excitation, and it is unknown whether they can explain plasticity. Here, we
compare plasticity in the MFM, which simulates simple cells, and a recent modification of the RM (MRM), which
displays a continuum of simple-to-complex characteristics. Both pre- and postsynaptic-based modifications of the
recurrent and feedforward connections in the models are investigated. The MRM can account for all the learning- and
adaptation-induced plasticity, for both simple and complex cells, while the MFM cannot. The key features from the
MRM required for explaining plasticity are broadly tuned feedforward inputs and sharpening by a Mexican hat
intracortical interaction profile. The mere presence of recurrent cortical interactions in feedforward models like the MFM
is insufficient; such models have more rigid tuning curves. We predict that the plastic properties must be absent for cells

whose orientation tuning arises from a feedforward mechanism.
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Introduction

Strong orientation selectivity first emerges in V1 (Hubel & Wiesel,
1962). V1 orientation tuning is not static but can be modified by
adaptation and perceptual learning. Specifically, for cells whose
preferred orientations are near the adapted orientation, adaptation
generates (1) a peak shift away from the adapted orientation, (2)
shallower slopes around the adapted orientation, and (3) increased
responses on the far side of the tuning curves that face away from the
adapted orientation (Dragoi et al., 2000, 2001; Felsen et al., 2002) (but
see Muller et al., 1999, and Kohn & Movshon, 2004). For cells whose
preferred orientations are far away from the adapted orientation, there
is (4) a modest sharpening of their tuning curves. Perceptual learning
of an orientation discrimination task also changes orientation tuning
curves but differently. Schoups et al. (2001) reported that for cells
near the trained orientation, there is (5) a sharpening of the tuning
curves around the trained orientation, and for cells further away from
the trained orientation, there is (6) a modest broadening of the tuning
curves (but see Ghose et al., 2002, and discussions in Teich & Qian,
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2003a). Similar learning-induced changes have been found in V4
(Yang & Maunsell, 2004; Raiguel et al., 2006).

We previously explained all the above six tuning curve changes
with a recurrent model (RM) of orientation selectivity (Teich &
Qian, 2003a). The RM assumes that feedforward input to a V1 cell
is broadly tuned for orientation and is then sharpened by recurrent
intracortical excitation and inhibition (Ben-Yishai et al., 1995;
Douglas et al., 1995; Somers et al., 1995; Carandini & Ringach,
1997). We simulated the adaptation- and the learning-induced
changes by depressing the connections in the RM in different ways
(Teich & Qian, 2003a). In fact, we predicted the learning-induced
changes of tuning curves (Qian & Matthews, 1999) before the
recorded data (Schoups et al., 1998) were reanalyzed in light of our
model to reveal the changes (Schoups et al., 2001).

We showed subsequently that the model cells in the RM are
complex when their orientation tuning is as sharp as typical V1
cells (Teich & Qian, 2006). Thus, our previous plasticity model is
for complex cells, and there is currently no model of orientation
plasticity for simple cells. In their physiological study of orientation
plasticity, Dragoi et al. (2000) recorded from a large number of cat
V1 cells, but they did not classify the cells into simple or complex.
However, they noted that they recorded cells from all layers of V1
and did not find a layer dependence of plasticity. Since the V1 input
layer is dominated by simple cells, it is likely that many of their
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recorded cells are simple, and these simple cells showed the same
orientation plasticity as complex cells (but see Muller et al.’s, 1999,
study of monkey V1). There is thus a need to explain orientation
plasticity in a simple cell model. This is particularly important when
the origin of orientation selectivity of the input-layer simple cells is
concerned (see Discussion).

Moreover, it is unclear whether the other major class of ori-
entation models, namely the feedforward models, can also explain
all the plastic properties listed above or not. Unlike the RM, the
feedforward models posit that V1 orientation tuning arises exclu-
sively from the alignment of feedforward inputs. For a strictly
feedforward model without intracortical interactions (Hubel &
Wiesel, 1962), a cell’s preferred orientation is anatomically de-
termined by the alignment axis of feedforward inputs. Therefore, the
model cannot explain, for example, the postadaptation peak shift
unless adaptation is assumed to alter the axis. However, Troyer et al.
(1998) proposed a modified feedforward model (MFM) in which
they introduced cortical antiphase inhibition to achieve contrast
invariance and recurrent cortical excitation to boost responses.
Although it is generally recognized that recurrent cortical connec-
tions are necessary to explain plasticity (Dragoi et al., 2000; Felsen
et al., 2002; Teich & Qian, 2003a), it is not clear whether their
presence in the MFM is sufficient for this feedforward model to
show plasticity too. Felsen et al. (2002) previously examined
plasticity of the MFM, but they did not implement the recurrent
excitation in the original MFM. In addition, they only considered
one of the six plastic properties (adaptation-induced peak shift)
mentioned above.

Since the MFM shows simple cell characteristics (Troyer et al.,
1998; Teich & Qian, 2006), in this study, we examine whether it
provides a viable plasticity model for simple cells. For comparison,
we also investigate plastic properties of the modified recurrent
model (MRM), a new model we proposed recently that extends the
RM to display a continuum of simple-to-complex characteristics
(Teich & Qian, 2006). In our previous study of plasticity in the RM
(Teich & Qian, 2003a), we only considered modifying connection
strengths based on the activity of postsynaptic cells. Here, we
consider both the pre- and the postsynaptic rules of modification.
We demonstrate that orientation plasticity provides a powerful tool
for differentiating feedforward and recurrent mechanisms of orien-
tation selectivity. Finally, we provide an intuitive understanding of
what features of a model are essential to account for the observed
plasticity. As new models for orientation tuning are still being
proposed, such an intuitive understanding will provide guidance on
whether a new model is consistent with the plasticity data. Pre-
liminary results have been published in abstract form (Teich & Qian,
2007).

Materials and methods

The MFM and MRM are identical to those described in Teich and
Qian (2006). Both models start with a field of lateral geniculate
nucleus (LGN) cells, and the LGN response to a stimulus is then fed to
a cortical network of V1 cells. The LGN cells are the same in each
model; the main difference between the models is found in the aspect
ratio of the thalamocortical connections and at the connectivity
patterns among the V1 cells. We first outline both models. For further
details, please see the methods section of Teich and Qian (2006) and
Appendix 1. We then describe how the connections in the models
were modified to simulate learning and adaptation. All simulations
were performed with Matlab (Mathworks, Natick, MA) on either
a Linux or a PC computer.

Teich & Qian
Basic features common to both models

LGN responses to stimuli

The LGN cells in both models closely follow the design of
Troyer et al. (1998) but have a simplified temporal kernel, taken
from Chen et al. (2001). We consider 240 ON-center and 240 OFF-
center cells arranged in a grid. Each cell’s spatial receptive field is
center—surround, modeled with a difference of Gaussians:

2/ 2/
F(r) = (17/6% o )e "/ Tenes — (1662, ouna)e "/ oo (1)

where r is the radial distance from the center of the receptive field,
Ocenter — 15" and Osurround — 60"

We use stationary light bars as stimuli. The bars have a width of
30 min and a length spanning the entire receptive field for all
model cells. The LGN responses to a given stimulus are first
determined through a spatiotemporal convolution of the stimulus
with the cell’s spatial receptive field and temporal kernel and then
scaled using a contrast response curve (Teich & Qian, 2006). We
assume a stimulus contrast of 50%.

Cortical receptive fields
The connection from an LGN cell at (x, y) to a vertically
oriented V1 cell is determined by a Gabor function of the form:

g(x,y) = exp[-(¥*/(207)) — (4*/(203))]X cos(wx + ¢),  (2)

where w/(2m) = 0.8 cycles/deg is the spatial frequency, ¢
determines the V1 receptive-field phase, and o, and g, determine
the receptive-field size. For V1 cells with orientation 6, the Gabor
connectivity function g(x, y, 6) is obtained from g(x, y) via proper
rotation. The Gabor function specifies both the orientation and the
phase of the VI cell’s receptive field, with positive values
representing connections from ON-center LGN cells and negative
values representing connections from OFF-center LGN cells. Thus,
the connection C(x, y; 0, ¢) from an ON-center (OFF-center) LGN
cell at (x, y) to a V1 cell indexed at preferred orientation 6 and spatial
phase ¢ is equal to the positive (negative) part of g(x, y, 0). The
aspect ratio is defined as the ratio of the Gaussian length (the 5%
points of the peak, along the long axes of the Gaussian) to the width
of a half-cycle of the sinusoid. A large aspect ratio equals a well-
tuned LGN input to V1 cells, and a smaller aspect ratio equals
a broadly tuned LGN input. For the MFM, we use the same aspect
ratio (4.54) as Troyer et al. (1998). For the MRM, we use an aspect
ratio of 2, which was used by Somers et al. (1995).

Intracortical circuitry

Both models have V1 excitatory cells and inhibitory cells at
eight evenly spaced spatial phases over 2m and 64 evenly
distributed orientations over 180 deg. The V1 cells are assumed to
represent the same area of visual space and draw feedforward input
from the same field of LGN cells. Each V1 cell also receives cortical
input from other V1 cells. For connections to a given V1 cell, we
first normalize all connections from LGN cells to one, all con-
nections from excitatory V1 cells to one, and all connections from
inhibitory V1 cells to one, and then apply different weighting factors
to different sets of connections to manipulate their strengths. For
example, the connections from excitatory to excitatory cells are
weighted by the factor w._,.. The MFM and MRM differ in how
cortical cells are connected, and the complete list of weighting
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factors between the different cell types is explained below and in
Appendix 1. The specific value of these weights matters less for
model performance than their relative ratios; in all the models we
present, the results are stable over a wide range of values.

The membrane potential of each cortical cell as a function of
time is calculated until a steady-state value is reached. The firing
rate is directly related to the membrane potential by applying
a threshold and then a gain factor (Carandini & Ringach, 1997;
Teich & Qian, 20035, 2006). In each model, we set our parameters
so that the LGN input contributes one half to one third of a V1 cell’s
firing response (Ferster & Miller, 2000), and V1 excitatory cells
have a maximal firing rate somewhere between 30 and 50 Hz
(inhibitory cells fire as high as 100 Hz in some simulations).

Intracortical circuitry for the MFM

Following Troyer et al. (1998), we determine the connection
between any two cortical cells a [indexed at (0', ¢')] and b [indexed
at (6, ¢)] by computing the normalized correlation between their
receptive fields:

c(a;b) =c'(a;b)/\/c'(a;a)c’ (b b), 3)

where ¢’(a;b) is the raw correlation computed by multiplying the
two receptive fields of cells a and b point by point and then summing
across all points. Two cortical cells with the exact same orientation
and spatial phase have a normalized correlation of 1 and thus have
the strongest positive (excitatory) connection; two cortical cells with
the exact same orientation and opposite spatial phase (antiphase)
have a normalized correlation of —1 and have the strongest negative
(inhibitory) connection. All other combinations are intermediate,
with the nature of the connection (excitatory or inhibitory) being
determined by the sign of the normalized correlation. The final
strength of the connection is determined by raising the power of the
correlation to a power Npow. Mathematically, the connection
strength C(a;b) from cell a to cell b is based on the normalized
correlation according to:

C(a;b) = [sgn(a)c(a; b)™, (4)

where sgn(a) = 1 if a is excitatory and —1 if a is inhibitory, and [x],
= xif x > 0 and 0 otherwise. Consequently, positive and negative c(a;
b) values set excitatory and inhibitory connection strengths, re-
spectively. Npow determines the strength of connectivity as a function
of correlation; larger values lead to less connectivity between cells
that are weakly correlated. We use an Npow value of 6 for our MFM
simulations, which is the default value used by Troyer et al. (1998).

Intracortical circuitry for the MRM

The MRM was introduced in Teich and Qian (2006). It is
essentially a RM with added antiphase inhibition. LGN-to-V1
connectivity with an aspect ratio of 2 is used to deliver broadly
tuned feedforward input to cortical excitatory and inhibitory cells
that are recurrently connected to one another, just like in the RM
(Ben-Yishai et al., 1995; Douglas et al., 1995; Somers et al., 1995;
Carandini & Ringach, 1997; Teich & Qian, 2003a). Excitatory and
inhibitory recurrent connection strengths are assumed to be maximal
for cells with similar preferred orientation and decrease with the
difference in preferred orientations. However, inhibitory connec-
tions are assumed to be somewhat broader than excitatory con-
nections so that if the excitatory and inhibitory profiles are
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subtracted from each other, cells with similar preferred orientations
have a net excitatory influence on each other, whereas cells with
a somewhat larger difference in preferred orientation have a net
inhibitory influence on each other (the “Mexican hat” connection
profile). This causes an enhancement of responses close to a cell’s
preferred orientation and a suppression of responses far from a cell’s
preferred orientation, and this is what transforms a broadly tuned
feedforward input into a sharply tuned output. For the cells involved
in the Mexican hat interaction above, we call the excitatory cells “e”
cells and the inhibitory cells “ri” cells (this is to distinguish the
recurrent inhibitory cells from antiphase inhibitory cells, which we
call “ai” cells). All the connections in the Mexican hat (e —e, e —ri,
ri—e, and ri—ri) are based solely on difference in preferred
orientation and are spatial phase insensitive. Specifically, the
equations that dictate connectivity strength from an “e” or “ri” cell
indexed at (0', ¢) to an “e” cell indexed at (0, ¢) are

Ceﬂe(era (b’; 07 ¢) = exp[_(e - 0,)2/(265)] (5)

Criﬂe(elv ¢’; 67 ¢) = exp[—(@ - 9’)2/(20}21)}7 (6)

where g, = 35 deg and o5 = 52 deg. As noted earlier, the
connectivity strength from all “e” cells and all “ri” cells to a given
cell is each normalized to one before applying specific weighting
factors. The same equations can be written for C._, (0, ¢'; 0, ¢)
and Cy4(0', ¢'; 0, ¢).

We then add a third set of V1 cells that provide antiphase
inhibition (“ai” cells). Similarly to the antiphase inhibitory cells in
the MFM, the antiphase inhibitory cells in the MRM receive
excitatory input from the LGN and same-phase cortical excitation
from “e” cells but do not receive any cortical inhibition (either
from “ri” or from “ai” cells). These antiphase inhibitory cells then
deliver antiphase inhibition to the “e” and “ri” cells using the
correlation-based rule from the MFM above [see eqns. (3) and (4)].
The strongest inhibition is to cells of the opposite spatial phase
(Troyer et al., 1998). Note that since there are two types of inhibitory
cells in the MRM, each type of inhibitory cell connection is
separately normalized and weighted. More emphasis on antiphase
inhibition causes the model to produce simple cells, whereas more
emphasis on recurrent inhibition produces complex cells (see
Results for further discussion). For the simple cell MRM, we set
the connectivity weights w,;_,. and wy;_,; to 0.2 and the connec-
tivity weights wy; . and wy;_,  to 3.5; for the complex cell MRM,
we lower the connectivity weights w,; .. and w,;—,; to 0.02 and
raise the connectivity weights wy; . and wy;_,; to 3.86.

Changing connection weights

Around the trained/adapted orientation, both learning and adapta-
tion reduce a cell’s peak response to its preferred orientation,
although the cell’s responses to other stimulus orientations may
increase (see plastic property number 3 in Introduction) (Dragoi et
al., 2000; Schoups et al., 2001). We first modify connections in the
models to simulate the peak response reduction and then examine
the consequent changes to tuning curve shapes. Note that we are not
modeling the time course of synaptic modifications. Rather, we are
investigating how final patterns of connection changes affect
orientation tuning curves, and we are then comparing the results
with the experimental data. Throughout the paper, we designate the
trained/adapted orientation as O deg. To reduce peak responses
around 0 deg, we can either (1) reduce intracortical excitation for
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cells tuned around O deg or (2) reduce both intracortical excitation
and inhibition for cells tuned around 0 deg while making sure that
the net effect is an activity reduction. (A third possibility, considered
below, is to reduce feedforward excitation around 0 deg.) Note that
a pure reduction of inhibition does not work, as that will lead to an
increase in peak activity. An increase in inhibition will also cause
a decrease in peak activity, and this is another possibility we have
tried. We find that computationally, an increase in inhibition is
functionally identical to a decrease in excitation, and so we have not
included figures for this manipulation in the Results section.

We can reduce connection weights using either a presynaptic
rule or a postsynaptic rule (see Fig. 1). A presynaptic rule assumes
that all connections from a presynaptic cell are scaled down by
a common factor based on the presynaptic cell’s recent activity and
has its basis in synaptic vesicle depletion (Betz, 1970; Kusano &
Landau, 1975). A postsynaptic rule assumes that all connections fo
a postsynaptic cell are scaled down by a common factor based on the
postsynaptic cell’s recent activity and has its basis in the synaptic
scaling literature (Abbott & Nelson, 2000; Turrigiano & Nelson,
2000; Feldman, 2002); in addition, it has been found that even short
periods of adaptation cause a hyperpolarization that could affect all
inputs fo a postsynaptic cell (Carandini & Ferster, 1997). Our
previous modeling of learning and adaptation has assumed a post-
synaptic rule (Teich & Qian, 2003a). Here, we consider both a pre-
and a postsynaptic rule. Thus, we examine four plasticity conditions:
presynaptic reduction of cortical excitation (pre-e), postsynaptic
reduction of cortical excitation (post-e), presynaptic reduction of
cortical excitation and inhibition (pre-ei), and postsynaptic reduc-
tion of cortical excitation and inhibition (post-ei). These four
canonical forms of plasticity are by no means mutually exclusive
(e.g., one could have pre-e and post-e together), but for simplicity,
we keep them separate in this paper.

A. Pre-synaptic

B. Post-synaptic

Fig. 1. Presynaptic verses postsynaptic rules. A presynaptic rule (A) assumes
that all connections (indicated by the dotted ellipse) from a presynaptic
neuron (solid circle) are reduced by a common factor based on the prior
activity of this presynaptic neuron. A postsynaptic rule (B) assumes that all
connections (indicated by the dotted ellipse) to a postsynaptic neuron (solid
circle) are reduced by a common factor based on the prior activity of this
postsynaptic cell.

Teich & Qian

In addition to modifying the intracortical connection weights
discussed above, a final possibility for generating an activity
reduction around the trained/adapted orientation (0 deg) in V1 is
to depress the feedforward connections from the LGN cells to the
V1 cells tuned around O deg. In this case, a presynaptic rule is
inappropriate because the presynaptic LGN cells are not orientation
selective. Specifically, a presynaptic scheme predicts that the LGN
activities are uniformly depressed by a drifting grating regardless
of the orientation of the grating and thus cannot explain activity
reduction around a specific orientation in V1. In contrast, a post-
synaptic rule for depressing the feedforward connections is feasible
because the postsynaptic V1 cells are orientation tuned. We will
call this condition post-f. During our simulations for Teich and Qian
(2003a), we found that the post-f condition is virtually identical to
the post-e condition; in both cases, excitatory input is reduced based
on postsynaptic activity. In this sense, we can assume that the post-f
condition is included in the post-e category. However, since we
previously did not show detailed simulations for the post-f condi-
tion, we include this condition here for completeness. More
importantly, since orientation tuning in the MFM is determined by
feedforward connections, it is interesting to examine how modifi-
cations of the feedforward connections affect the tuning curve
shapes in the MFM.

Mathematically, the reduction of connection weights is similar
to that in our previous plasticity study (Teich & Qian, 2003a).
Plausible patterns of connection changes have to be based on cell’s
activities during learning/adaptation. A cell’s activity, in turn, de-
pends on the difference between its preferred orientation (0) and the
trained/adapted orientation (0 deg). Since the drifting gratings used
in the physiological experiments cover all phases, it is reasonable to
assume that the activities are phase independent. Consider the
connection from an excitatory cell preferring 6’ to an excitatory
cell preferring 0. In the pre-e condition, for example, the connection
is reduced from the baseline value w, _, ., to:

Wee(07,0) = wee X (1 — A exp[~0"/(27))]) (7)

according to the presynaptic activity (or 0") and independent of the
postsynaptic activity (or ). When 8’ = 0 deg, the connection is
reduced maximally by a factor of A.. The reduction gradually trails off
with 0" away from 0 deg, and the spread is determined by ¢,. A similar
expression applies to excitatory connections to an inhibitory cell

Weﬂi(en 6) = We—»ix(l - Ae exp[_ea/(zaf)})? (8)

where the inhibitory cell “i” is antiphase in the MFM but can be
either an antiphase or a recurrent inhibitory cell in the MRM. Note
that we use the same maximal reduction factor (A.) from “e” cells to
all other cells in a given simulation.

In contrast, for the post-e condition, the 6" variables on the right
hand side of the above equations should all be replaced by 0. To
reiterate, the postsynaptic rule reduces all connections fo a post-
synaptic cell by a common factor depending on 6 but not 6, whereas
the presynaptic rule reduces all connections from a presynaptic cell
by a common factor depending on 6’ but not 0.

For the post-ei and pre-ei conditions, the equations for modifying
excitatory connections are the same as those for the post-e and pre-e
conditions above. In addition, there are equations for modifying
connections from recurrent inhibitory and antiphase inhibitory cells.
The equations have exactly the same form as those above but with
the maximum reduction factor denoted by A;. Also note that the
MRM contains both the (recurrent) inhibition in the Mexican hat
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profile and the antiphase inhibition. For all our simulations with the
MRM that involve reducing inhibition, we will only present results
that reduce recurrent inhibition in the Mexican hat. We have also done
simulations that reduce the antiphase inhibition in the MRM, and we
find that this generally does not affect the tuning curve slope or the
tuning curve peak location. The reason is discussed in the Results
section around Fig. 5. The MFM only has inhibition through
antiphase cells, so the pre-ei and post-ei conditions in the MFM
necessarily involve reducing antiphase inhibition.

Finally, for the post-f condition, there are a similar set of
equations for reducing feedforward connections fo excitatory,
recurrent inhibitory, and antiphase inhibitory V1 cells:

We—e(0) = wi_e X (1 — Agexp[—07/(207))) )
Wi—ii(0) = we_ri X (1 — Ap exp[—07/(207)]) (10)
Wi—ai(0) = wi_ai X (1 — Ag exp[—07/(207)]). (11)

Note that here, only the postsynaptic cells have a preferred
orientation . As in the simulations for reducing excitation and
inhibition, we use the same maximal reduction factor (Af) for
reducing feedforward input to all cortical cells in a given simulation.
We are able to achieve qualitative agreement with the data over
a wide range of o, values. We find that our results are stable for
g, values ranging from 10 to 40, with the caveat that at very small
g, values (10 or less), some of our models begin to show abnormally
pointed tuning curves; this phenomenon has already been discussed
in our prior plasticity paper (Teich & Qian, 2003a). In the following
figures, o, was set to 24 for the MRM and 22 for the MFM.

Results

We compare orientation plasticity of two models of orientation
selectivity, the MFM and MRM, systematically. Although the
MFM and the MRM emphasize the feedforward and intracortical
mechanisms, respectively, both models contain tuned feedforward
input from LGN and intracortical interactions. For the MFM, the
feedforward input is well tuned to orientation. The model uses
cortical antiphase inhibition to achieve contrast invariance and
cortical excitation to boost the tuned activity (Troyer et al., 1998).
The cells in this model are simple cells (Teich & Qian, 2006). For
the MRM, the feedforward input is only broadly tuned to orientation
and is sharpened by phase-independent recurrent cortical excitation
and inhibition in the form of a Mexican hat profile. The model also
contains antiphase inhibition for maintaining spatial phase informa-
tion. We previously used the MRM to produce the full spectrum of
simple-to-complex characteristics by varying the relative strengths
of antiphase inhibition and recurrent inhibition (please see fig. 8
from Teich & Qian, 2006). In this paper, we consider plasticity in
both a simple cell version and a complex cell version of the MRM.
When the antiphase inhibition is strong and recurrent inhibition is
weak, the model cells are simple, with an F1:FO ratio of 1.53. When
recurrent inhibition is strong and antiphase inhibition is weak, the
resulting model cells have an F1:FO ratio of 0.89 and are thus
complex. Since there is currently no model for orientation plasticity
in simple cells, it is particularly interesting to investigate the two
simple cell models: the MFM and the simple cell MRM.

Around the trained/adapted orientation, both learning and
adaptation reduce a V1 cell’s peak response to its preferred ori-
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entation, although responses to other orientations may increase
(Dragoi et al., 2000; Schoups et al., 2001). Our modeling approach
is first to modify connections in the models to simulate the peak
response reduction and then to examine the consequent changes to
tuning curve shapes. The advantage of this approach is that synaptic
modification is activity based and thus physiologically plausible;
arbitrary modifications of a large number of connections for the sole
purpose of fitting the observed tuning curve changes are avoided.
We designate the trained/adapted orientation as 0 deg. To reduce
peak responses around 0 deg, we either reduce cortical excitation for
cells tuned around O deg or reduce both cortical excitation and
cortical inhibition but make sure the combined result leads to a peak
response reduction for cells tuned around O deg. In addition, we
consider both pre- and postsynaptic rules for modifying intracortical
connections: a given connection can be reduced based on the past
activity of either the pre- or the postsynaptic cell. Thus, we have four
plasticity conditions for intracortical connections: presynaptic re-
duction of excitation (pre-e), postsynaptic reduction of excitation
(post-e), presynaptic reduction of both excitation and inhibition
(pre-ei), and postsynaptic reduction of both excitation and inhibition
(post-ei). Finally, we also examine a postsynaptic-based reduction
of the feedforward excitation (post-f). We do not consider a pre-
synaptic-based modification of the feedforward connections be-
cause the presynaptic LGN cells are not orientation tuned. In total,
we consider five different forms of plasticity (pre-e, post-e, pre-ei,
post-ei, and post-f) in three models (MFM, simple cell MRM, and
complex cell MRM).

We first consider a presynaptic-based reduction of intracortical
excitation (the pre-e condition). The reduction is maximal for
excitatory connections from the presynaptic V1 cell tuned to 0 deg
and gradually trails off for other preferred orientations (see
Materials and methods). For Fig. 2, the maximal reduction of
connection strength (at 0 deg) is 40% for the MFM and 4% for the
simple cell MRM and complex cell MRM, which generates an
activity reduction at 0 deg of 30% in the MFM, 25% in the simple
cell MRM, and 24% in the complex cell MRM. The fact that a 40%
reduction of the connection strengths in the MFM and a 4%
reduction of the connection strengths in the MRM achieve a similar
reduction in firing has to do with a quantitative difference between
the cortical connection strengths in the two models (please see the
methods section of Teich & Qian, 2006, for a full explanation of the
differences between the two models). The Mexican hat cortical
connection profile in the MRM (and absent from the MFM) causes
a small reduction in cortical excitation to yield a large reduction in
the amplitude of orientation tuning curves (please see the methods
section of Teich & Qian, 2003a, for a full explanation of this
phenomenon).

Fig. 2 shows that a pre-e reduction has a similar effect in all three
models: primarily an amplitude reduction for cells near the trained
orientation (“near” cell, panels Al, A2, and A3) and little effect for
cells further away from the trained orientation (“far” cell, panels B1,
B2, and B3). We find that there is a slight amount of peak shift away
from 0 deg for “near” cells in the MFM and simple cell MRM. Even
with an activity reduction of 40—45% at 0 deg, the outward peak
shift is smaller than 2 deg. Another change is a reduction of slope at
0 deg. These changes are similar to the changes noted in a pre-e
simulation of Felsen et al. (2002) (see Discussion). Compared with
the actual tuning curve changes induced by learning and adaptation
listed in Introduction, the pre-e condition cannot explain either the
learning or the adaptation data completely. Although the MFM and
simple cell MRM show two of the adaptation-induced changes (peak
shift away from and slope reduction at the adapted orientation), the
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Fig. 2. Tuning curve changes following a presynaptic-based reduction in cortical excitatory connections (pre-e) around 0 deg orientation
(vertical line). The three columns show results from the three models (MFM, simple cell MRM, and complex cell MRM), respectively. The
top row is for a “near” cell whose preferred orientation is near 0 deg (17 deg away). The bottom row is for a “far” cell whose preferred
orientation is far from 0 deg (65 deg away). In each panel, the dotted and solid curves are the same cell’s tuning curves before and after

synaptic modifications.

peak shift (less than 2 deg) is too small compared with the data (as
large as 10 deg). More importantly, the pre-e condition cannot explain
the adaptation-induced response increase on the far flank of the tuning
curve. The “near” cells in the complex cell MRM show a slight peak
shift toward 0 deg (Fig. 2, A3). However, they do not show a slope
increase observed after orientation learning.

We next consider a postsynaptic-based reduction of intracortical
excitation (the post-e condition). To generate Fig. 3, the maximal
reduction of excitatory connections at 0 deg is 40% for the MFM, 4%
for the simple cell MRM, and 2% for the complex cell MRM. These
connection reductions generate maximal activity reductions of 31%
for the MFM, 28% in the simple cell MRM, and 17% in the complex
cell MRM at 0 deg. Note that we use a relatively small connection and
activity reduction for the complex cell MRM because the tuning
curves in this model are the most plastic (Fig. 3). Both versions of the
MRM show narrowing of tuning curves near the O deg orientation,
sharpening of tuning curve slopes around 0 deg (Fig. 3, A2 and A3),
and broadening of tuning curves far from 0 deg (Fig. 3, B2 and B3).
These changes agree with the observed tuning curve changes induced
by learning (Schoups et al., 2001). We previously found these
changes in the complex cells of the RM after a post-e modification
(Teich & Qian, 2003a, 2007). Here, we show that the same changes
occur in both the simple cell and the complex cell versions of the
MRM. By contrast, the MFM shows only a peak reduction (Fig. 3,
Al). This is a theme that will be repeated in the other conditions
below; the MRM shows a high degree of plasticity, whereas the MFM
shows no such plasticity.

To further quantify these changes, we plot the slope of each
tuning curve at 0 deg for each model following the post-e
modification (Fig. 4, panels A, B, and C). These three panels show
the pretraining orientation tuning curve slopes (dotted lines) and
different degrees of excitatory depression (solid lines). We see that
cells in both versions of the MRM (panels B and C) have increased
their slope at O deg after the post-e modification, whereas cells in the
MFM have not (panel A). Note that increasing amounts of excitatory
depression cause increasing tuning curve slopes in both versions of
the MRM, which illustrates the robustness of our results against
parametric variations. The plasticity seen in the two versions of the
MRM is similar to the findings from the perceptual learning study of
Schoups et al. (2001) (panel D). Not only do panels B, C, and D all
show an increase in slope at O deg, but the increase in slope in all
three panels is greatest for cells with the largest slope before
learning. Also note that even when we depress excitatory connec-
tions in the MFM to 10% of their original strength, so that the
maximal activity reduction at O deg is as large as 50%, there is still
less than 1 deg of maximal peak shifting in the MFM and no slope
sharpening (thick solid line in panel A).

Fig. 5 shows the simulation results for a presynaptic-based
reduction of both intracortical excitation and intracortical inhibition
(the pre-ei condition). The figure is generated with a maximal
reduction at 0 deg of 40% for excitatory and inhibitory connections
in the MFM, 40% for excitatory and 43% for inhibitory connections
in the simple cell MRM, and 20% for excitatory and inhibitory
connections in the complex cell MRM. This generates a maximal
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Fig. 3. Tuning curve changes following a postsynaptic-based reduction in cortical excitatory connections (post-e) around 0 deg orientation

(vertical line). The format of presentation is identical to that of Fig. 2.

peak activity reduction at 0 deg of 25% in the MFM, 26% in the
simple cell MRM, and 15% in the complex cell MRM. Note that
unlike in the pre-e and post-e simulations, the pre-ei simulation
requires that both recurrent excitation and recurrent inhibition are
reduced by a large amount in the MRM, at a level comparable to the
MEFM. This also applies to the post-ei condition below and has to do
with the balance of excitation and inhibition in the MRM (please see
the methods section of Teich & Qian, 2003a, for a full explanation).

In the pre-ei condition, the two versions of the MRM show
sharpening and inward skewing of peaks of orientation tuning
curves for cells near the 0 deg orientation (Fig. 5, A2 and A3) and
broadening of tuning curves for cells whose preferred orientation is
further away from O deg (Fig. 5, B2 and B3). Thus, this scenario
yields results similar to the post-e condition and agrees with the
learning-induced tuning curve changes. Again, the MFM shows
a different result. The decreased excitation and inhibition cause
decreased tuning curve amplitudes and increase responses on the far
flanks of the tuning curves of near cells (Fig. 5, A1), but there are no
changes on par with the MRM and no changes that closely match the
physiology of learning or adaptation.

Note that the MRM has two kinds of inhibitory connections:
phase-independent inhibition in the Mexican hat profile and
antiphase inhibition (see Materials and methods). The reduction
in inhibition in the MRM in Fig. 5 is specifically in the inhibitory
connections that form the Mexican hat; connections from antiphase
inhibition are not reduced. We have done simulations that reduce the
antiphase connections, and we find that this generally does not affect
the tuning curve width/slopes or the tuning curve peak location. The
reason is that antiphase inhibition in the MRM primarily preserves
spatial phase information and inhibits responses to stimuli far from

a cell’s preferred orientation; responses close to a cell’s preferred
orientation are primarily inhibited by inhibition from the Mexican
hat. Thus, lessening antiphase inhibition in the MRM can moder-
ately increase the response of cells to orientations far from the
preferred orientation, similar to the effect seen in the MFM when
antiphase inhibition is decreased (Fig. 5, Al). Since reducing
antiphase inhibition does not affect the tuning curve width/slopes
or tuning curve peak location in MRM cells, we will not include
these simulations here for the sake of brevity.

Fig. 6 shows the results of a postsynaptic-based reduction of both
intracortical excitation and intracortical inhibition (the post-ei
condition) for the three models. The figure is generated with
a maximal reduction at 0 deg of 40% for excitatory and inhibitory
connections in the MFM, 40% for excitatory and 43% for inhibitory
connections in the simple cell MRM, and 42% for excitatory and
40.5% for inhibitory connections in the complex cell MRM. This
generates a maximal peak activity reduction at O deg of 26% in the
MEFM, 22% in the simple cell MRM, and 29% in the complex cell
MRM. For both versions of the MRM, cells with preferred
orientations near 0 deg show reduced slopes of orientation tuning
curves around O deg (referred to as “near broadening” below), their
tuning curve peaks skew away from 0 deg, and they have increased
responses on the flank of the tuning curve that face away from 0 deg.
Cells with preferred orientations further away from O deg have
modest sharpening of their tuning curves (referred to as “far
narrowing” below). All these changes agree with the adaptation
data (Dragoi et al., 2000, 2002; Felsen et al., 2002). We previously
found these changes for the complex cells in the RM in a post-ei
modification (Teich & Qian, 2003a). Here, we show that the same
changes occur in both simple cell and complex cell versions of the
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MRM. Furthermore, we show that in contrast, the MFM does not
show robust changes in the post-ei condition that can account for
either the learning or the adaptation data.

To further show that the simulations with the MRM are in line
with the experimental data, we plot peak shift in comparison to
a figure from Dragoi et al. (2000) that shows average peak shift after
adaptation (Fig. 7). Fig. 7 shows that both versions of the MRM
generate peak shift that is in the same range as the data from Dragoi
et al. (2000). Note that the simulation panels (A, B, and C) each
shows two different simulations with reduced excitatory and in-
hibitory connections (dotted and solid lines), which show the
robustness of our results against parametric variations. Both
versions of the MRM demonstrate a similar degree and distribution
of peak shifting with different amounts of activity reduction, as long
as excitatory and inhibitory connections are both reduced by about
the same amount. In contrast, the MFM does not show robust changes
that can account for the data. Again, even if we depress the
connections in the MFM further so that excitatory and inhibitory
connections are reduced to 10% of their original strength and the
maximal activity reduction is as large as 40%, there is still less than

a degree of maximal peak shifting (panel A, dotted line). Note that the
MRM simulations (panels B and C) and the data of Dragoi et al.
(2000) in panel D show the largest peak shift at different orientations.
We find that the MRM can match the data if we let the standard
deviation of the recurrent excitation and inhibition be 25 and 37 deg,
respectively, so that the Mexican hat has a slightly narrower profile.
However, we did not use this set of parameters as our standard set
because it would be more difficult to visually appreciate the
broadening and narrowing of tuning curves, even though they are
present.

Finally, we also consider a postsynaptic reduction of feedforward
excitation in the models (the post-f condition). When we previously
modeled learning and adaptation in the RM (Teich & Qian, 2003a),
we found that the post-f condition was similar to the post-e condition
in generating tuning curve changes that match the learning data. This
is not surprising because in both cases, a postsynaptic V1 cell has all
excitatory connections (either thalamic or cortical) to it reduced by
a common factor based on the cell’s past activity. We did not report
the details previously, but we do so here for the MFM and MRM for
completeness. Since the MFM assumes that sharp V1 orientation
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Fig. 5. Tuning curve changes following a presynaptic-based reduction in cortical excitatory and inhibitory connections (pre-ei) around
0 deg orientation (vertical line). The format of presentation is identical to that of Fig. 2.

tuning originates from the feedforward input, it is interesting to
examine how a post-f modification affects tuning curves in this
model. Fig. 8 is generated with a maximal reduction at 0 deg of 30%
for feedforward connections in the MFM, 20% for feedforward
connections in the simple cell MRM, and 10% for feedforward
connections in the complex cell MRM. This generates a maximal
peak reduction at 0 deg of 34% in the MFM, 22% in the simple cell
MRM, and 11% in the complex cell MRM. As in the post-e condition
in Fig. 3, the MFM shows primarily an amplitude reduction.
However, the MRM for both simple and complex cells demonstrates
inward skewing of tuning curve peaks for cells near the 0 deg
orientation, broadening of tuning curves for cells farther away from
0 deg, and sharpening of the tuning curve slope around O deg. Note
that under the post-f condition, a small degree of amplitude reduction
in the complex cell MRM produces robust plasticity in tuning curve
shape. In general, we find that the complex cell MRM shows
a stronger degree of plasticity than the simple cell MRM (cf., Figs.
3,5, and 6). This is due to the fact that nearly all the inhibition in the
complex cell MRM comes from the Mexican hat cortical interaction
profile, whereas much less of the overall inhibition in the simple cell
MRM comes from this profile (a larger portion of inhibition comes
from antiphase inhibition). We find that the Mexican hat interaction
profile is a key component of plasticity (see below).

We have demonstrated that both the simple cell and the
complex cell versions of the MRM (and the original RM) show
rich plasticity of orientation tuning that can match learning and
adaptation data, while the MFM does not. We now provide an
intuitive analysis of what properties inherent in the MRM and RM
and absent from the MFM are critical for robust plasticity. We have

identified two such properties. The first is the Mexican hat
intracortical interaction profile. The second is a broadly tuned
feedforward input. To illustrate the dependence of plasticity on
these properties, we focus on one specific phenomenon from the
above simulations: the near broadening (Fig. 6, A2 and A3) and far
narrowing (Fig. 6, B2 and B3) in the MRM for the post-ei condition
that matches the adaptation-induced plasticity. Why do cells near
0 deg (the adapted orientation) broaden their tuning curves? To
understand this behavior, we must consider what happens to the
Mexican hat intracortical interaction profile after a post-ei modifi-
cation in the MRM.

In Fig. 9, panel A, the dashed curve shows the baseline Mexican
hat intracortical connection profile to a postsynaptic V1 cell tuned to
0 deg before modification. This profile is the difference between the
excitatory and inhibitory connections the cell receives. It sharpens
a broadly tuned feedforward input by boosting responses near 0 deg
and suppressing responses at far orientations (dashed tuning curve
of panel B). Now consider the post-ei modification of the con-
nections. Since both the excitatory and the inhibitory components of
the Mexican hat are reduced, the strengths of both net excitation
from near orientations and net inhibition from far orientations to the
cell are reduced, resulting in a scaled down Mexican hat (solid curve
of panel A). The reduced net near-excitation decreases the tuning
curve amplitude at its peak, and the reduced net far-inhibition
broadens the flanks of the tuning curves (solid curve of panel B).
Once this phenomenon of near broadening is understood, it becomes
clear why in Fig. 6 tuning curves narrow for cells whose preferred
orientation is far from 0 deg. Because of the Mexican hat interaction
profile, cells near O deg inhibit cells far from O deg. Since cells near
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Fig. 6. Tuning curve changes following a postsynaptic-based reduction in cortical excitatory and inhibitory connections (post-ei) around
0 deg orientation (vertical line). The format of presentation is identical to that of Fig. 2.

0 deg now have expanded flanks, there is more overlap between
their tuning curves and far cells’ tuning curves. Thus, they provide
more side inhibition to far cells, and since far cells do not have
modified Mexican hats that might cause broadening, the net effect is
for far cells to narrow their tuning.

The above reasoning also explains the lack of an effect on far
cells in the MFM under the post-ei modification (Fig. 6). In Fig. 6,
even though the near cell in panel Al does not really broaden, the
reduction in inhibition does cause the cell to fire at more distant
orientations. However, because of the lack of a Mexican hat, this
change does not affect the width of the far cell in panel B1.

In addition to the Mexican hat interaction profile, a broadly
tuned input is also critical for the near broadening discussed
above. In order for a reduction in net flank inhibition to yield
a broader tuning curve, there needs to be some input at flank
orientations that is normally being inhibited. A useful analogy is to
think of a sculptor making a statue out of rock. If one starts with
a large piece of rock, then chiseling away less stone can produce
a wider statue. However, if the sculptor is given a piece of rock
that is already in the narrow shape of the final statue, it is
impossible to produce a wider statue by modifying the sculpting
technique. The top row of Fig. 10 shows the simple cell MRM
results in a post-ei scheme for both a broadly tuned and a narrowly
tuned feedforward input. The characteristic near broadening (panel
Al) is nearly lost when the feedforward input is already sharply
tuned for orientation (panel A2). Fig. 10 also compares broad and
narrow feedforward inputs for the post-e condition (bottom row).
Here, the near sharpening of the slope at 0 deg (panel B1) is
diminished when the feedforward input is already sharply tuned
(panel B2).

We find that peak shift of tuning curves also depends on the
Mexican hat profile and a broadly tuned feedforward input. Fig. 10
shows that in the simple cell MRM, the peak skewing away from
0 deg under the post-ei condition and the skewing toward 0 deg
under the post-e condition are both reduced for a sharply tuned
feedforward input. This partially explains why the MFM, which
assumes a sharply tuned feedforward input, does not show signif-
icant peak shift in all simulation conditions, while the MRM, which
normally assumes a broadly tuned feedforward input, does. In
general, a broadly tuned feedforward input allows for a greater range
of possibilities for the final tuning curve to be shaped by both the
excitation and the inhibition a cell receives from other cortical cells.
Less inhibition from cells on one side of the tuning curve will pull
the peak in this direction; less excitation will cause it to be pulled in
the opposite direction.

Discussion

We have systematically investigated orientation plasticity of
a feedforward model (the MFM) and a RM (the MRM). Despite
their names, both models contain a feedforward input and recurrent
cortical interactions. However, the MFM assumes well-tuned
feedforward input not sharpened further by cortical interactions,
while the MRM assumes a broadly tuned feedforward input
sharpened by cortical interactions. The MFM is for simple cells.
The MRM, on the other hand, can display a continuum of simple-
to-complex characteristics so we use both a simple cell version and
a complex cell version of the MRM. We consider plausible synaptic
modification rules based on the past activities of either pre- or
postsynaptic cells and we reduce either excitatory connections
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(dotted line). Note that both manipulations cause a similar distribution and degree of peak shifting. The same phenomenon is seen in panel
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alone or both excitatory and inhibitory connections. We find that the
MFM does not demonstrate plasticity that can account for the
changes seen in learning or adaptation experiments (Dragoi et al.,
2000, 2001; Schoups et al., 2001; Felsen et al., 2002), whereas the
MRM can explain these changes for both simple and complex cells.
Specifically, the MRM reproduces the adaptation data with a post-
synaptic-based reduction of intracortical excitation and inhibition
(post-ei). The same model reproduces the learning data with a
postsynaptic-based reduction of intracortical excitation (post-e),
a postsynaptic-based reduction of feedforward excitation (post-f),
or a presynaptic-based reduction of intracortical excitation and
inhibition (pre-ei). Thus, the adaptation data place a stronger con-
straint on synaptic modification than the learning data do. Two
features of the MRM, that are absent from the MFM, are found to be
critical for robust plasticity: a Mexican hat intracortical connection
profile and a broadly tuned feedforward input. Both these features are
also found in the original RM for complex cells and explain plasticity
in that model as well (Teich & Qian, 2003a). This result is consistent
with the experimental finding that plasticity is weaker in iso-
orientation domains than in pinwheel centers of V1 (Dragoi et al.,
2001), as cells in iso-orientation domains may receive cortical inputs
from only a restricted range of preferred orientations, and the resulting

weak Mexican hat profile may lead to weak plasticity regardless of the
breadth of the feedforward tuning. Our study is the first that
reproduces the observed orientation plasticity in a simple cell model.
Moreover, our exhaustive exploration of different synaptic modifi-
cation schemes in the MFM and the MRM provides a fairly complete
picture of orientation plasticity of the models and establishes a basis
for using plasticity to evaluate feedforward and recurrent mechanisms
of orientation selectivity.

There is currently no consensus over how orientation selectivity
originates in V1, and many specific assumptions in the models are
debatable (see Teich & Qian, 2006, for a recent discussion). Our
systematic investigation of orientation plasticity in the MFM and the
MRM offers a new opportunity for addressing the issue. For
example, Ferster et al. have provided some of the strongest evidence
for a feedforward mechanism of orientation selectivity for the
simple cells in the input layer of cat V1 (Ferster et al., 1996; Chung
& Ferster, 1998). Based on our work, their conclusion implies that
these input-layer cells should not show much orientation plasticity
other than a reduction of peak responses after learning or adaptation.
In contrast, Dragoi et al. (2000) found similar orientation plasticity
across all layers of cat V1. If some of their recorded cells with strong
plasticity were input-layer simple cells, our work predicts that these
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cells must use a recurrent mechanism to generate orientation
selectivity. Clearly, to distinguish between different proposals for
the origin of orientation selectivity, future experiments could focus
on orientation plasticity of input-layer V1 cells. If these simple cells
show no plasticity beyond a peak response reduction, then they are
better described by a feedforward mechanism such as the MFM.
Otherwise, a recurrent mechanism like the simple cell MRM is
a better choice. One could also compare the degree of cortical
sharpening of feedforward tuning with the degree of orientation
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plasticity in the same V1 cells and see whether they are positively
correlated as predicted by our study. A related observation is that
orientation tuning width in at least some simple cells changes with
the spatial frequency of a stimulus (Vidyasagar & Siguenza, 1985).
This observation is better explained by a feedforward model because
in a RM, the tuning width is largely determined by intracortical
interactions and is not very sensitive to stimulus spatial frequency
(Ferster & Miller, 2000; Teich & Qian, 2006). Therefore, it would
also be interesting to compare the degree of the spatial frequency
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Fig. 9. An explanation for near broadening in the MRM after a post-ei modification. Dotted and solid curves show results before and after
the modification, respectively. (A) The Mexican hat profiles for a V1 cell tuned to 0 deg. The profile shows the net connection strengths this
cell receives from cells tuned to other orientations. (B) The orientation tuning curves of the cell.
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Fig. 10. A broadly tuned input is required for robust plasticity in the MRM (simple). In panel (A1), we see a near cell (17 deg away) for the
post-ei condition (as in Fig. 6). In panel (A2), this same cell is now receiving a much more sharply tuned input, identical to the feedforward
input in the MFM (aspect ratio = 4.54). Panels (B1) and (B2) illustrate the same exercise for the post-e condition (as in Fig. 3). The dotted
curves are the tuning curves before modification, and the solid curves are the tuning curves after modification.

dependence of tuning width with the degree of orientation plasticity
in the same V1 simple cells and see whether they are negatively
correlated. Finally, our simulations with the two versions of the
MRM predict that although both simple and complex cells can show
similar plastic behavior, the latter should display a stronger degree
of plasticity than the former.

Our work predicts that orientation plasticity in both simple and
complex cells follows the same mechanism. Although this pre-
diction has not been directly tested, many studies suggest that
simple and complex cells do adapt similarly. Movshon and Lennie
(1979) found that simple and complex cells in cat V1 show similar
shift of their contrast response functions after grating adaptation
(although complex cells show somewhat more reliable spatial
frequency selective adaptation). This basic finding was confirmed
by others in cats (Ohzawa et al., 1982, 1985; Dean, 1983) and
monkeys (Sclar et al., 1989). von Der Heydt et al. (1978) showed in
cats that adaptation of both simple and complex cells depends on
whether the adapting grating is drifting in a cell’s preferred or null
direction, and Bonds (1991) showed that contrast adaptation can
occur even after very brief exposures (50 ms) in both simple and
complex cells in cats. Others have looked closely at adaptation in
simple and complex cells and found subtle differences. Maffei et al.
(1973) showed that simple cells in cat V1 take longer than complex
cells to recover from adaptation, and Albrecht et al. (1984)
confirmed this finding in cats while also showing that simple cells
are more resistant to adaptation than complex cells. However,
Hammond et al. (1988) showed that cat V1 simple and complex

cells have roughly the same susceptibility to adaptation, while special
complex cells (optimal response to short contours) are generally
resistant to adaptation, and that contrary to earlier reports, the time
course of adaptation and recovery is shorter in simple cells than in
complex cells. One possible explanation for the discrepancy in the
literature is that there is far more variability in the response of
complex cells to adaptation than simple cells. Several studies have
shown that simple cells in cat V1 show significant direction-selective
adaptation to a drifting grating and generally have lower direction
selectivity after adapting to a grating in their preferred orientation and
direction (Marlin et al., 1988; Giaschi et al., 1993). Complex cells,
however, are far more variable, and some even increase direction
selectivity following preferred direction adaptation.

Regardless of simple/complex types and cortical layers, our
work predicts that cells showing strong plastic properties as listed
in the Introduction must receive a broadly tuned feedforward input
(either from LGN or from poorly tuned V1 cells) sharpened by
Mexican hat intracortical interactions. Of course, we cannot rule
out the possibility that a new model without these features may be
proposed in the future to explain all the observed orientation
plasticity. However, our intuitive explanation in Results on why
these features are necessary makes such a possibility unlikely.

The existence of Mexican hat intracortical interactions is also
controversial and has been discussed in detail in our previous
publications (Teich & Qian, 2003a, 2006). Here, we just note that
the inhibitory connection profile only needs to be slightly wider than
the excitatory connection profile to generate a net Mexican hat
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for the RMs to produce robust plasticity. A related point is that
although the MFM also uses recurrent cortical excitation to boost
responses around the preferred orientation and cortical inhibition to
suppress contrast-dependent DC responses (i.e. the untuned com-
ponent) from nonpreferred orientations, it does not have the same
Mexican hat as in the RMs. The reason is that cortical excitation and
inhibition in the MFM are phase dependent, as well as orientation
dependent. Consequently, there is a temporal separation of excit-
atory and inhibitory input a cell receives (Troyer et al., 1998), and
one cannot simply subtract them to get a net connectivity profile.
Finally, since both the MFM and the MRM contain recurrent
intracortical excitation, it is not accurate to conclude that recurrent
cortical interactions lead to robust plasticity. What is important is
whether the recurrent connections form a Mexican hat to sharpen
broadly tuned feedforward input.

Our conclusion that the MRM is superior to the MFM for
modeling orientation plasticity is consistent with previous studies
that examined plasticity (Felsen et al., 2002; Teich & Qian, 2003a).
In particular, Felsen et al. (2002) compared a feedforward model
with a RM and concluded that the RM was better at producing
arepulsive shift of the tuning peak induced by adaptation. However,
they used a presynaptic-based modification of cortical excitation
(the pre-e condition in this paper) in the RM. As shown in their
simulations and our Fig. 2, such a modification scheme can only
produce a very small peak shift and cannot explain other aspects of
adaptation-induced changes (Dragoi et al., 2000). We find that
a postsynaptic-based modification of both cortical excitation and
cortical inhibition is needed to produce a large enough peak shift
(Fig. 6) and to explain all the adaptation-induced changes (Figs. 6
and 7). Also note that the feedforward model implemented by Felsen
et al. (2002) does not contain intracortical excitation that is present
in the full version of the MFM (Troyer et al., 1998) as suggested by
anatomical (Peters & Payne, 1993) and physiological experiments
(Ferster et al., 1996; Chung & Ferster, 1998). When such intra-
cortical excitation is included, we show that a feedforward model
(the MFM in this paper) also produces a small repulsive peak shift
under the pre-e condition but not other adaptation-induced changes
(Fig. 2). Therefore, the current study strengthens Felsen et al.’s
(2002) conclusion by demonstrating that the feedforward and RMs
are best distinguished by systematically examining all plausible
modification schemes and taking into account all plastic changes
induced by learning and adaptation experiments. Finally, the RM
implemented by Felsen et al. (2002) is atypical in that it used a well-
tuned feedforward input not sharpened by recurrent cortical con-
nections and used a recurrent connection profile with diminished
side inhibition. We show in this paper that to explain all the observed
plasticity, it is not sufficient to introduce recurrent interactions,
which are present in both the MFM and the MRM. Rather, the
recurrent connections must form a Mexican hat (with strong side
inhibition) that sharpens broadly tuned feedforward input.

In our previous work of modeling orientation plasticity (Teich
& Qian, 2003a), we also considered perceptual implications of the
tuning curve changes induced by learning and adaptation. We found
that while the learning-induced tuning changes can explain the
improved orientation discriminability around the trained orientation,
the adaptation-induced tuning changes cannot explain the percep-
tual consequences of adaptation. Orientation adaptation generates at
least two perceptual effects. The first effect is an improvement of
orientation discriminability at the adapted orientation as if adapta-
tion is a transient form of learning (Regan & Beverley, 1985).
Whereas the increased tuning slope at the trained orientation
explains the improved discriminability for learning, the reduced
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slope at the adapted orientation cannot explain the same perceptual
improvement (Teich & Qian, 2003a). The second effect is the well-
known tilt aftereffect: After adaptation to a given orientation, nearby
orientations appear to be repelled away from the adapted orientation
(Gibson, 1933; Wolfe, 1984; Greenlee & Magnussen, 1987). The tilt
aftereffect indicates that the population response of cells preferring
different orientations has a repulsive skewing from the adapted
orientation. It has long been recognized that the activity reduction at
the adapted orientation produces such a repulsive skewing in the
population response (Sutherland, 1961; Gilbert & Wiesel, 1990).
However, the repulsive skewing of the funing curve induced by
adaptation means an attractive skewing of the population response
(see Appendix 2 for a simple explanation), the opposite of the tilt
aftereffect (Gilbert & Wiesel, 1990; Yao & Dan, 2001; Teich &
Qian, 2003a). When we plotted the population response from our
adaptation simulations, we found that these two opposite “forces”
largely cancel each other resulting in little skewing of the population
response (Teich & Qian, 2003a). We concluded that adaptation
physiology cannot explain adaptation psychophysics. In contrast,
our learning simulation predicts an attractive skewing of the tuning
curve peaks and thus a repulsive shift of the population response. So
adaptation psychophysics can be well explained by our learning
simulations. We thus raised the possibility that adaptation may lead
to learning-like tuning curve changes in alert animals or in a later
cortical area. Interestingly, Kohn and Movshon (2004) subsequently
found that motion adaptation induces tuning curve changes in area
MT (middle temporal) of anesthetized monkeys in precisely the
matter predicted by our orientation learning simulation. All the main
aspects of their data, such as narrowing of tuning curves near the
adapted orientation and skewing of tuning curve peaks toward the
adapted orientation, are predicted by our learning simulations (Teich &
Qian, 2003a).

Jin et al. (2005) proposed an interesting alternative to reconcile
the V1 physiology of orientation adaptation with the tilt aftereffect.
These authors did a quantitative analysis of the physiological data
from Dragoi et al. (2000) and found that the activity reduction alone
would produce too large a tilt aftereffect. After including the
canceling effect of the repulsive peak skewing of the tuning curves,
the net tilt aftereffect agrees quantitatively with human psycho-
physical measurements (Clifford et al., 2000). However, one
possible problem with their proposal is that in Dragoi et al.
(2000), the activity reduction happens first, within 10 s of adapta-
tion, while the repulsive skewing of tuning curves occurs later and
gradually increases as the adaptation time is increased up to 10 min.
Thus, Jin et al.’s (2005) model predicts that the tilt aftereffect is most
pronounced at 10 s, when there is a great degree of activity reduction
but no repulsive shift of tuning curves, and that the effect gradually
diminishes as a subject adapts longer and the repulsive skewing of
tuning curves counters the effect. Psychophysical data do not seem
to support this prediction. The tilt aftereffect has been shown to
increase monotonically with the duration of adaptation for up to an
hour (Greenlee & Magnussen, 1987). In addition, there is no reason
to expect a quantitative agreement between the predicted aftereffect
based on the cat data and the observed aftereffect in humans because
of differences in species, stimulus parameters, and experimental
paradigm. Despite these caveats, Jin et al.’s (2005) model provides
an important framework for linking physiology and psychophysics
that may prove useful in future studies.

As mentioned in Introduction, the V1 plasticity data are
somewhat controversial. For example, Ghose et al. (2002) failed
to find learning-induced changes of orientation tuning reported by
Schoups et al. (2001), and we previously discussed possible causes



Orientation plasticity and intracortical sharpening

of this discrepancy (Teich & Qian, 2003a). However, as long as any
of the six plasticity properties mentioned in Introduction exists in
V1, our study supports the notion of intracortical sharpening of
broadly tuned feedforward input. Tuning changes similar to those
reported by Schoups et al. (2001) have also been found in V4 (Yang
& Maunsell, 2004; Raiguel et al., 2006). Thus, our study may also be
relevant to orientation selectivity in higher cortical areas, suggesting
intracortical sharpening as a mechanism for (partially) maintaining
orientation tuning along the visual hierarchy.

In conclusion, we have systematically examined the plastic
properties of the MFM and the MRM under plausible synaptic modi-
fication schemes. We find that the MRM can explain all the observed
tuning curve changes induced by learning and adaptation, while the
MFM cannot. Our work provides the first simple cell model for
orientation plasticity and complements our previous simulations of
plasticity in a complex cell model. Furthermore, our work reveals that
the mere presence of recurrent cortical interactions is insufficient to
explain orientation plasticity; rather, the recurrent interactions have to
form a Mexican hat that sharpens broadly tuned feedforward input.
Our work offers guidance on how to use plasticity to distinguish
between different mechanisms of orientation selectivity. Future
studies are needed to resolve this issue and to better link physiology
and psychophysics of adaptation.

Appendix 1

In this appendix, we present some implementation details for the
MFM and MRM.

In the MEM, the recipient V1 cell can be either excitatory (“e”)
or antiphase inhibitory (“ai”). There are a total of five weighting
factors denoted by We_ e, We— ais Wai—es Wi—e, and wy_, 5, Which
represent weights for excitatory to excitatory, excitatory to antiphase
inhibitory, antiphase inhibitory to excitatory, feedforward to excit-
atory, and feedforward to antiphase inhibitory connections, re-
spectively. Their values are identical to those in Teich and Qian
(2006), withwe o = 0.13, we i = 0.15, wy . = 0.22, we_,. = 0.1,
and wy_,,; = 0.1. Note that there are no inhibitory to inhibitory
connections in the MFM (Troyer et al., 1998), so wyi—, 5 = 0. The
membrane potential (V) of each cortical excitatory cell in the MFM is
updated according to the differential equation (Carandini & Ringach,
1997; Teich & Qian, 2003a):

’C({)V/at +V=Vi4+V,—Vy (1)

where 7 is the membrane time constant (15 ms in all simulations),
and V;, V., and V,; are the synaptic potentials generated by the
feedforward, cortical excitatory, and antiphase inhibitory input. For
a given excitatory cell indexed at (0, ¢), these potentials are given
by:

Vf = waﬂexc()@y; 97 ¢) Xngn(x7 y) (11)

Xy

Ve= Z Weeexceﬂe((-)gqﬁ’;(% ¢)XRS(H’7¢,) (111)

0’

Vai = Z Wai—e Xcai—>c(0’7 ¢’; 97 ¢) XRai(0,> ¢,)7 (IV)
0'¢'

where Rign(x, y) is the firing rate of the LGN cell at spatial position
(x, ), and R.(0', ¢") and R,(0', ¢') represent the firing rate of an
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excitatory cell and an antiphase inhibitory cell indexed at (0, ¢'),
respectively. The summations in the three equations cover LGN
cells, cortical excitatory cells, and cortical antiphase inhibitory cells,
respectively. All Cs represent normalized connectivity patterns; C(x,
y; 0, ¢) is determined according to the explanation after eqn. (2), and
Cee(0', 050, p)and Cy, (0, @'; 0, ¢) are set according to eqn.
(4) in the Materials and methods section.

The membrane potential for each antiphase inhibitory V1 cell is
calculated in the same way but with Wi, We_ e, and wy .
replaced by wy_, ai, We a3, and wy;— ,i(= 0), respectively.

In the MRM, there are excitatory (“€”), recurrent inhibitory
(“ri”), and antiphase inhibitory (“ai”) cells and a total of 10
weighting factors denoted by We_ e, We—ris We—ais Wri—e> Wri—ris
Wai—e» Wai—1i» Wi—es Wi— > and wy_, »;. The specific values of these
weights depend on whether we are running a “simple cell” or
“complex cell” version of the MRM. For the simple cell MRM,
We e = 32, We i = 32, We 5ai = 07, Wyi—se = 35, WhH—r — 35,
Waise = 02, wai g = 0.2, W = 0.07, we,; = 0.07, and wy_, ,; =
0.07. The complex cell MRM is identical to the simple cell version,
except that recurrent inhibition weights (w;_. and w;_. ;) are
increased and antiphase inhibition weights (W, and wy;_, ;) are
decreased (see Materials and methods). All these values are identical to
those in Teich and Qian (2006). The membrane potential (V) of each
cortical excitatory cell in the MRM is updated according to the
differential equation (Carandini & Ringach, 1997; Teich & Qian,
2003a):

rOV/at +V=Ve+ Ve — Vi — Vai, (V)

where Vyand V,; are as defined above, and V. and V,; are the synaptic
potential generated by the recurrent excitatory and inhibitory input.
For a cortical excitatory cell indexed at (0, ¢), the latter two
potentials are given by

Ve= Z Weﬂexceﬂe(olv(i),;ov ¢)XR6(0,7¢,) (Vl)

0’

Vri = Z Wriﬂexcriﬂe((.)’a ¢’§ 61 ¢)XRri(0,7 ¢’)7 (Vll)

0’

where the summations cover the recurrent excitatory and inhibitory
cells indexed at (0', ¢'), respectively; the normalized connectivity
patterns C.—..(0', ¢; 0, ¢) and C;_,.(0', ¢'; 0, ¢) are determined
according to eqns. (5) and (6) from the Materials and methods
section, respectively; and R.(0', ¢") and R;;(0’, ¢") represent the firing
rate of the recurrent excitatory and inhibitory cells, respectively.

The same equations are used to update the membrane potential
of each recurrent inhibitory V1 cell but with w._,. and w;_,,
replaced by w._,;; and wy_ . The equations for updating each
antiphase inhibitory V1 cell are the same as those in the MFM
described above. Thus, as in the MFM, the “ai” cells in the MRM
receive same-phase excitation from “e” cells and deliver antiphase
inhibition to “e” cells. In addition, the “ai” cells in the MRM deliver
antiphase inhibition to “ri” cells.

The weighting factors (ws) in the above equations are constants
for baseline simulations but depend on the preferred orientation of
either pre- or postsynaptic cells (0" or 0) for plasticity simulations;
see “Changing connection weights” in the Materials and methods
section for a full explanation.

The interval (At) at which we integrated all differential equations
is 1 ms in all simulations. Our models directly relate membrane
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potential to firing rate via the threshold function with a gain factor o
(Carandini & Ringach, 1997; Teich & Qian, 2003a):

R =omax(V,0) (viii)

The o value is 5 for excitatory cells and 8 for antiphase inhibitory
cells in our MFM and 6.5 for all cortical cells in our MRM. These
values are chosen to produce the right baseline and maximum firing
rates in each model but can be altered without changing the overall
qualitative results.

Appendix 2

The opposite directions of skewing between tuning curves and
population responses have been shown graphically (Gilbert &
Wiesel, 1990; Yao & Dan, 2001). Here, we give a simple algebraic
demonstration. Let R(0, ¢) represent the mean response of cells with
preferred orientation 0 to a stimulus orientation ¢. For simplicity,
we focus on skewing without considering activity reduction at the
adapted orientation or other inhomogeneity across different orien-
tations. Then, R(0, @) only depends on the difference between 0 and
@: R(0, ¢) = R(0 — ¢). Now note that a tuning curve is R(0 — @) as
a function of ¢ for a fixed 6, while the population response is R(6 —
@) as a function of 0 for a fixed ¢. Therefore, the tuning curve and
populations response are related by R(x) and R(—x), respectively. In
other words, they are mirror reflections of each other, with opposite
directions of skewing. When different orientations are not repre-
sented homogenously as is the case of adaptation, the argument is
only an approximation.
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