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Lisberger and Sejnowski (1992) recently proposed a computational
model for motor learning in the vestibular-ocular reflex (VOR) system.
They showed that the steady-state gain of the system can be modified
by changing the ratio of the two time constants along the feedforward
and the feedback projections to the Purkinje cell unit in their model
VOR network. Here we generalize their model by including two ad-
ditional time constant variables and two synaptic weight variables,
which were set to fixed values in their original model. We derive the
stability conditions of the generalized system and thoroughly analyze
its steady-state and transient behavior. It is found that the generalized
system can display a continuum of behavior with the Lisberger-Sej-
nowski model and a static model proposed by Miles et al. (1980b) as
special cases. Moreover, although mathematically the Lisberger-Sej-
nowski model requires two precise relationships among its parameters,
the model is robust against small perturbations from the physiological
point of view. Additional considerations on the gain of smooth pursuit
eye movement, which is believed to share the positive feedback loop
with the VOR network, suggest that the VOR network should operate
in the parameter range favoring the behavior studied by Lisberger and
Sejnowski. Under this condition, the steady-state gain of the VOR is
found to depend on all four time constants in the network. The time
constant of the Purkinje cell unit should be relatively small in order to
achieve effective VOR learning through the modifications of the other
time constants. Our analysis provides a thorough characterization of
the system and could thus be useful for guiding further physiological
tests of the model.

1 Introduction

The VOR provides an important mechanism for stabilizing visual images
on our retinas when we rotate our heads. During each head turn, the
system generates a nearly equal and opposite eye movement. The gain
of the system, defined as the ratio of the eye velocity to the head veloc-
ity, is close to one under normal conditions. It has been demonstrated
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that the VOR can be recalibrated when it is inaccurate and images move
across the retina during head turns. The recalibration is usually induced
in the laboratory by fitting subjects with miniaturizing or magnifying
glasses (Miles and Fuller 1974; Gonshor and Jones 1976). The gain of
the VOR can become significantly above or below unity. This form of
motor learning has been the subject of many recent studies and the main
neural circuitry involved has been identified (see Lisberger 1988 for a
review). To reconcile apparently contradictory data on the site of VOR
learning (Ito 1972; Miles and Lisberger 1981), Lisberger and Sejnowski
(1992) recently proposed a computational model based on the simplified
VOR network shown in Figure 1. The units in the figure are assumed
to be linear and the input—output relationship of each unit is described
by a single time constant (see equation 2.1). Here V represents the input
head velocity signal from the vestibular system, unit B represents the
brain stem neurons that generate the output eye velocity signals, and
unit P represents a group of Purkinje cells in the cerebellum that project
to the brain stem. There is a feedforward and a feedback pathway to
the Purkinje cells. Units T and F represent relay stations along these two
pathways. With the simplifying assumption that time constants for P and
B (7 and 7g) equal zero and that the connection weights from F to P and
from P to B (W; and W, in Fig. 1) equal one, Lisberger and Sejnowski
(1992) showed that the steady-state output of the network is proportional
to the ratio of the time constant of unit T to the time constant of unit F.
They therefore proposed that modifications of these time constants may
provide a major contribution to VOR learning. In this paper, we re-
move their simplifying assumptions on the values of 7p, 75, Wy, and W,
and investigate the stability, the steady-state behavior and the transient
behavior of the generalized system. We will describe some interesting
new features found in the generalized system and discuss their biologi-
cal implications. We will show that the generalized system can display a
continuum of behavior with the original Lisberger-Sejnowski model and
a static model proposed by Miles ef al. (1980b) as special cases. Our anal-
ysis of the network transient behavior further establishes the robustness
of the Lisberger-Sejnowski model under physiological conditions. A few
related results on smooth pursuit will also be presented.

2 Formulation and Results

Following Lisberger and Sejnowski (1992), the output of each unit in
Figure 1 is determined from its total input according to the linear rela-
tionship:

o(t) = i(t) xe™/™ .1

where * denotes convolution, i(t) and o(t) represent the total input to
and the output from the unit, respectively, and 7 is the time constant of
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Figure 1: The model VOR network used by Lisberger and Sejnowski (1992).
Unit V represents the head velocity signal from the vestibular system, unit B
the brain stem neurons which generate eye velocity signals as the output of the
system, and unit P a group of Purkinje cells in the cerebellum. Units T and F
represent the relay stations along the feedforward and the feedback pathways
to the Purkinje cells. W’s stand for the magnitude of synaptic weights between
the units. The inhibitory connections are shown as filled dots and are labeled
with a negative sign.

the unit. It is convenient to analyze the system using Laplace transform,
which converts convolutions into multiplications. Throughout the paper,
we will use B(t), P(t) etc. to represent the time-dependent responses
of the units, and B(s), P(s) etc. to represent the corresponding Laplace
transforms. The set of equations governing the dynamics of the network
in Figure 1 is then

T(s) = V(S)STT1+ - 2.2)
PE) = [WoT(s)+ WiF(s) 2.3)
B(s) — [WBV(S)—WZP(S)]ST31+ : ©.4)
F(s) = —B(s)— @.5)

str+1
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where s is the variable of the Laplace transform, 7s are the time constants
for the four types of units, and Ws are the synaptic weights as labeled in
Figure 1. Note that the connections from input V to unit T or from unit B
to unit F are assumed to be fixed at a magnitude of 1. It is not necessary to
introduce additional variables to represent these two weights because the
linearity of the units would allow them to be absorbed into Wp and Wi,
respectively. They would only affect the responses of the T and F units
but would not add anything new to the behavior of the network output
represented by unit B. Also note that all the 7s and Ws are assumed to
be positive. The negative signs for inhibitory connections are explicitly
expressed in the above set of equations, instead of being absorbed in the
Ws. Solving for B(s), we obtain

B(s) = Hyor(s)V(s) (2.6)
where the VOR transfer function Hy(s) is given by
Hyor(s) (2.7)

_ (STF+1){WB[SZTTTP+S(TT+TP)] + Wp — W, Wp}
(sTr+1)[s31p7eTp+S*(TBTE+TETP+TpTE) +5(TB+TE+Tp) + 1 — W1 W]

The temporal responses of the units in the system can be obtained through
inverse Laplace transforms.

We now state and derive our results for the VOR network in Figure 1.

2.1 Stability Conditions. An essential requirement for any useful
system is stability. We therefore first determine the stability conditions
of the network. The stability is defined in this study as the boundedness
of the response of the system. That is, the system is considered stable if
the response does not diverge with time. We consider the case of Wi W,
equal to 1 and W;W, not equal to 1 separately.

2.1.1 VOR.

Result 1. When WiW, = 1, the VOR network is stable under sustained and
finite vestibular input if and only if Wg = W, Wh.

The VOR input signal is sustained durmg the head turn. When W, W, =
1, the positive feedback loop BFPB in the network acts as a perfect in-
tegrator and the temporal integration of a sustained input would cause
divergence with time. Result 1 states that this problem can be resolved
by properly adjusting the feedforward pathway to the Purkinje cell unit
in the VOR network.

We first prove the necessary condition by noting that to avoid integra-
tion in the VOR network, the VOR transfer function should not contain a
1/s term in its expansion. This is possible only when there is an s factor
in the numerator to cancel that in the denominator in equation 2.7. This
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in turn requires Wz = W,Wp. To prove the sufficient condition, we note
that the roots of the denominator in equation 2.7 are

1
51 = —— (2.8)
T
S35 = —(TBTp'i‘Tpr—FTpTB):i:\/Z 2.9)
ZTBT}:TP
where A is defined as
A = (1p7e + Tp7p + 7p78)? — A7RTETP(TE + TF + TP) (2.10)

The real parts of all roots can be easily shown to be less than zero. This
ensures the stability of the system.

Result 2. With finite vestibular input V(t), the VOR network is stable when
Wi W, < 1. It is in general unstable when W, W, > 1, except when an additional
condition is satisfied.

It is intuitively clear that W;W, > 1 should normally cause divergence
since W1 W, is the gain of the positive feedback loop BFPB in Figure 1.
The fact that Wi W, < 1 guarantees stability is somewhat less obvious. To
prove these results mathematically, we consider the roots of the denom-
inator in equation 2.7. We show in the Appendix that when W;W, < 1
the real parts of all roots are negative. This ensures the stability of the
system. When W;W, > 1 positive real part(s) occurs and this will in
general cause divergence. The only exception is when there happens to
be an identical root in the numerator of the transfer function that cancels
the offensive root in the denominator. The condition for the occurrence
of this type of cancellation will be derived in Section 2.3.

Note that the stability condition in Result 1 is a generalization of
that used by Lisberger and Sejnowski (1992), who let W; = W, = 1 and
Wpg = Wh (see also Lisberger et al. 1994b). There are two equalities in this
condition. Since it is unlikely for a biological network to maintain a pre-
cise relationship between its parameters we next examine what happens
to the stability of the system when the equalities are slightly violated (see
also Section 2.3). If W;W, drops below one the system will still be sta-
ble because of Result 2. If W;W, becomes larger than one, however, the
system will diverge with time exponentially. With perturbation method,
the time constant of the divergence can be found to be approximately:

T~T3+TF+TP
TWIW, — 1

Clearly, the divergence is slow when W; W, is just slightly above one. For
example, with W;W, = 1.01, and with 7+ = 70 msec and 73 = 7p = 0 as
used by Lisberger and Sejnowski (1992), it will take about 7 sec for the
divergent term to become significant, much longer than the time scale of
the VOR, which is typically less than a second.

(2.11)
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We next consider how fast the system will diverge with time if the
requirement Wz = W, W) is not precisely satisfied. By calculating the
coefficient of the 1/s term in the expansion of B(s), it can be shown that
the diverging term is given by

Wg — WoWp !
—= [ V() dt 2.12
Tr+ Tp + 7B ./0 ®) ( )

which is equal to

t

(Wp — WoWp)V, Ppr———— (2.13)
for constant vestibular input V(¢) = V (for t > 0). For the VOR with short
durations relative to 7 + 7p + 75 and for relatively small Wy — W, W5 this
term will not pose a serious problem. For example, with Wy — W,Wp =
0.01, and with 7+ = 70 msec and 7p = 73 = 0, the term is equal to 10%
of V; after 700 msec. We conclude that small violations of the stability
condition in Result 1 will not completely break down the VOR system
over the time scale of the normal VOR.

2.1.2 Smooth Pursuit. Evidence suggests that the positive feedback
loop BFPB in Figure 1 is also involved in maintaining smooth pursuit eye
movements (Lisberger and Fuchs 1978a,b; Lisberger et al. 1987). Smooth
pursuit is activated by retinal image motion generated by an outside
moving target. Under the normal closed-loop condition, the retinal im-
age velocity is equal to the target velocity U(#) minus the eye tracking
velocity B(f). If we assume that this error signal enters the network
through unit B with a weighting factor Wj, the set of equations govern-
ing the dynamics of pursuit can then be obtained by replacing V(s) with
U(s) — B(s) and Wy with W}, and by setting Wp = 0 in equations 2.2-2.5.
(If, instead, we assume that the error signal B(S)—U(S) enters the network
through unit P with a weighting factor Wy, (Lisberger et al. 1987), results
identical to those shown in Results 3 and 6 below can be obtained except

 should be replaced by W,Wj. All conclusions remain the same.) The
new set of equations so obtained can then be solved to obtain

B(s) = Hyp(s)U(s) (2.14)
where the pursuit transfer function is given by

Ho(s) = Wy(s7e +1)(s7p +1)
P (g + 1) (s + 1) (57p + 1) + Wi(se + 1) (s7p + 1) — Wi W,

Using the same method for proving Result 2, we obtain the following
stability condition for smooth pursuit:

(2.15)

Result 3. The smooth pursuit system is stable when WiW, < 1 + Wy and is
unstable when WiW, > 1+ Wg.
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Note that smooth pursuit is stable over a wider parameter range than the
VOR. The difference is caused by the fact that while the vestibular input
to the VOR is sustained during the head turn, the retinal error signals
to the pursuit system decrease as soon as the eye starts tracking. This
effective negative feedback of pursuit increases its parameter range of
stability. However, to ensure the stability of both the VOR and smooth
pursuit it is necessary to require that W;W, < 1.

Unlike the VOR case (see Result 2), the pursuit system is always
unstable when W, W, > 1 + W} without exception. The cancellation of
the offensive root in the denominator of the pursuit transfer function will
not happen since the offensive root is nonnegetive while the two roots
in the numerator are both negative.

2.2 Steady-State Behavior. We now investigate the steady-state re-
sponses of the system under each of the stability conditions stated above.

2.2.1 VOR.

Result 4. Under the condition that W W, = 1 and Wy = W,Wp, the steady-
state gain of the VOR is

TT + Tp
G = — 1 "% W (2.16,
ver T+ 73+ Tp B

for constant vestibular input.

Consider the constant vestibular input V(t) = V; (for t > 0). The Laplace
transform of this input is simply V(s) = V,/s. Equations 2.6 and 2.7 ther
become

(STP + 1)(57"1"7’1? + 77+ Tp)WBV()

B(s)= 2.17
(s) s(str+1)[s2m5TeTp +5(TBTE+ TETP+ TPTB) +TB+TE+TP) (

To derive the above gain expression, let f(s) denote the numerator anc
g(s) the denominator of equation 2.17. The steady-state output of the
VOR network is then given by

£(0) T+ 7p
B(t — c0) = - W5V, 2.18
(¢ = o) g0 mHmrm 0 (

Equation 2.16 is obtained using the fact that the steady-state VOR gai
is defined as B(t — o0)/V,.

As we mentioned before, the condition that W;W, = 1 and Wj =
W,W5 is a generalization of that used by Lisberger and Sejnowski (1992
who assumed W; = W, = 1 and Wg = Wp. If we let p» = 73 = 0, th
generalized gain expression, equation 2.16, reduces to the special cas
G = Wpgrr/7r, found by Lisberger and Sejnowski. Our result indicate
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that the steady-state VOR gain depends on all four time constants in the
network. This is perhaps not surprising because the gain is determined
by the relative balance between the inhibitory feedforward and the pos-
itive feedback loops in Figure 1, and this balance is influenced by all
the four time constants. The time constant of the Purkinje cell unit 7p
is special in that it appears on both the numerator and the denominator
of the gain expression in equation 2.16. This is a reflection of the fact
the projection from unit P to unit B is part of both the feedforward and
the feedback loops. Consequently, modifications of 7p would be the least
effective in changing the VOR gain. Furthermore, the value of 7p deter-
mines how effectively the VOR gain can be changed through modifica-
tions of the other three time constants. Large 7p will render any changes
in those other time constants insignificant. Our analysis therefore gener-
ates the testable prediction that 7p should be significantly smaller than 77,
or 7r + 73, or both, if the modifications of the time constants indeed con-
tribute significantly to the VOR plasticity, as proposed by Lisberger and
Sejnowski (1992). A quantitative test of the Lisberger-Sejnowski model
requires measurement of all four time constants in the network.

Result 5. When W1W, < 1, the steady-state gain of the VOR is given by

Wp — WL W
G = 13 W i/\/ P (2.19)
- Wi,
for constant vestibular input.

This result can be derived in the same way as the previous one. It
emphasizes the fact that the dependence of the steady-state gain on the
time constants shown in equation 2.16 occurs only when W;W, =1 and
Wy = WoWp. If WiW, < 1, i.e, if the positive feedback loop is a leaky
integrator, we will not require Wy = W,Wp for the stability of the system
and the steady-state gain will be given by equation 2.19.

It is interesting to note that equation 2.19 is essentially identical to the
gain expression derived by Miles and co-workers (Miles et al. 1980a,b),
who used a static model with connectivity similar to Figure 1. Our anal-
ysis therefore provides a connection between the dynamic model of Lis-
berger and Sejnowski and the static model of Miles et al. Both of them can
be viewed as special instances of the generalized system. We conclude
that the difference between the two models is mainly due to Lisberger
and Sejnowski’s assumption that W;W, = 1 and the consequent require-
ment that Wg = W,Wp. A natural question to ask is how the system
switches from one steady-state behavior to the other as W, W, varies from
1 to just slightly below 1. More importantly, is the Lisberger-Sejnowski
model robust against small perturbations of the weight variables? These
questions will be examined in detail in Section 2.3.
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2.2.2 Smooth Pursuit.

Result 6. When WiW, < 1 + W, the steady-state gain of smooth pursuit is
given by

W
1+ W; —WiW,
for constant target velocity.

Gsp = (2.20)

The derivation of this result is the same as that for Result 4.

We showed earlier that the stability of the VOR network requires
W;W, < 1 (see Results 1 and 2). Under this constraint, the smooth
pursuit gain G, < 1. It is equal to 1 only when W;W, = 1. In reality,
pursuit gain is close to 1, which implies that W; W, should be close to 1.

2.3 Transient Behavior. We showed in Section 2.1 that the VOR net-
work is stable under two different conditions: (1) W;W, = 1 and W3 =
WoWhp, or (2) W1 W, < 1. We further demonstrated that the steady-state
gains of the system under these two conditions are quite different and
they are given by equations 2.16 and 2.19, respectively. Two related is-
sues need to be addressed to interpret these results correctly. First, the
steady-state gains tell us only the asymptotic behavior of the system.
They do not tell us how long it takes for the system to settle down to the
final states. If a state can be reached only after a time period much longer
than the time scale of the VOR, then it is not physiologically relevant.
Second, the first stability condition involves two equalities. While it is
conceivable that biological learning algorithms could maintain the two
equalities approximately, it is unlikely for the equalities to be satisfied
exactly. We have shown in Section 2.1 that small violations of the first
stability condition will not break down the system over the time scale of
the VOR. It is also important to find out how the system behaves when
the equalities are only approximately satisfied. In particular, when W;W,
changes its value from 1 to slightly below 1, how will the system change
its gain from that given by equation 2.16 to that given by equation 2.19?
Is the Lisberger-Sejnowski model, which is based on the two equalities
of the first stability condition, robust against small changes in the net-
work parameters? We address these issues in this section by studying
the transient behavior of the network.

2.3.1 A Special Case with 7p = 73 = 0. To simplify the analysis and to
illustrate the key points, we first consider the special case of 7p = 73 = 0.
For constant vestibular input V(t) = V; (for t > 0), it can be shown that
the exact solution of the network output B(t) is given by

B(t)

t
= WBT—T + Wpg (1 — T—T> E_t/TT + (WB - Wsz) ("— + 1)
Vo TF TF TF

for W1W2 =1 (221:




744 Ning Qian

and by
w _ WB — Wsz + (Tp - TT)W2WP —t)7r
Vo 1-— W]W2 T — TT(l - W1W2)b

~ WiWa[rrWi(1 = WiW,) — 72(Wp — WaWp)] 1wy /e
(1 = WiWa)[rr — 7r(1 — WiW,)]
for W1W2 76 1 (222)

First note that these expressions confirm our general conclusions on the
VOR stability conditions and steady-state gains stated in Results 1, 2, 4,
and 5. When W;W, = 1 the system is stable only if Wz = W,Wp and it
will reach the steady-state gain Wgrr/7r. The system is also stable when
Wi;W, < 1, and the steady-state gain will become (W — W,Wp)/(1 —
Wi,).

We next examine in detail the transient behavior of the system. It is
easy to show that the initial gain of the system, B(t = 0)/V,, is equal
to Wp, according to either equation 2.21 or 2.22. This is expected since
the direct VOR pathway with a gain of Wj takes immediate action when
7g is 0. The subsequent behavior of the system depends on the other
parameters. Under the first stability condition the system will settle from
the initial gain Wj to the final steady-state gain Wg7r/7r through a single
exponential decay with a time constant 7r. Under the second stability
condition, on the other hand, the gain will reach the final steady-state
value (W — W,Wp)/(1 — W;W,) after exponential decay of two terms
with time constants 71 = 7r and 7 = 7¢/(1 — W1 W,), respectively. When
WiW, is just slightly below 1, the second time constant is much greater
than the first. It can be shown with equation 2.22 that when time ¢ is
much smaller than 7, the gain of the system is approximately

B wgg + Wp (1 - g) et/ (2.23)
F F

Vo

accurate to the first order of 1 — Wi W, and Wz — W,Wp. That is, the
solution is approximately equal to that under the first stability condition.
Therefore, when W;W, is slightly below 1, the system first settles into a
quasi-steady-state similar to that described by Lisberger and Sejnowski
(1992) after the quick decay of the fast transient with time constant rr. It
will then slowly reach the final steady-state identical to that of the static
model of Miles et al. (1980b) with the decay of the slow transient with time
constant 7x/(1 —W;W;). As W;W, is getting closer to 1, it will take longer
for the system to reach the steady-state of Miles et al., and consequently
the system will spend more time in the quasi-steady-state of Lisberger
and Sejnowski. When W;W, becomes 1, the quasi-steady-state becomes
a real steady-state and the system will behave like that described by
Lisberger and Sejnowski exactly. We conclude that although the steady-
state responses of the network under the two different stability conditions
are very different, the system is not discontinuous when the product
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W;W, changes from 1 to slightly below 1. For the Lisberger-Sejnowski
model to work, the system does not have to maintain W;W, = 1 and
Wp = W,Wp precisely. So long as the two equalities are approximately
satisfied, the system will follow the behavior of the Lisberger—Sejnowski
model over the time period t <« 7¢/(1 — W1W,). The final real steady-
state may not be relevant over the time scale of the VOR. For example,
assuming that W;W, = 0.98 and 7 = 7r = 70 msec as in the original
Lisberger-Sejnowski model, the time constant for the slow decay to the
final steady-state is 3.5 sec.

Smooth pursuit can also function when W; W, is less than but close to
one. The eye position will lag significantly behind the visual target only
after extended periods of time and this could be corrected by sacades.

Root Cancellation. The second exponential term in equation 2.22,
which is responsible for the final slow decay when W;W, is close to
1, comes from the root s = (W;W, — 1)/7¢ in the denominator of the
VOR transfer function. When W;W, = 1, this root becomes zero and the
stability of the VOR network requires that Wz = W,W)p to have a zero root
in the numerator to cancel this root in the denominator (see Result 1).
Similar cancellation between the numerator and the denominator can
also occur for the case of WiW, # 1 (although it is not required for the
sake of stability when W;W, < 1) and when this happens the second
exponential term in equation 2.22 will disappear. By setting either one
of the two roots in the numerator equal to (W;W, — 1)/, it is easy to
show that the exact conditions for the cancellation are

1-WiW, W5 - WoWp (2.24)
TF W3 .

or
WiW, =0 (2.25)

(The same conditions can also be obtained by setting the coefficient of the
second exponential term in equation 2.22 to zero.) The second condition
is not interesting since it implies complete lesion of the positive feedback
loop. The first condition makes intuitive sense since it implies the identity
of the gain expression for the Lisberger-Sejnowski model (Wg7:/7r) and
that for the static model of Miles et al. [(Wg — W, Wp) /(1 — W;W,)]. Under
this condition, the network response settles to the final steady-state after a
single exponential decay with the time constant 7r, regardless of whether
W;W,; is near 1 or not.

It is also worth pointing out that when equation 2.24 is satisfied, the
network is stable even if W, W, is larger than 1 because the canceled root
is the one that would otherwise cause divergence. It is the additional
condition mentioned in Result 2.
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2.3.2 The General Case. Similar analysis on the time courses of the
responses can be carried out for the general case. The exact solutions
could also be derived but the expressions would be too complex to be
useful. Since our results on smooth pursuit suggest that the product
W1 W, should be very close to 1 for the pursuit gain to be close to 1, we
choose to examine the transient behavior of the VOR system when W;W,
is around 1. Using perturbation method, we found that the transient
behavior of the general system is characterized by the following four
time constants:

o= Tr (2.26)
1 _

n o~ —|1-5 1- Wik, .27)
52 s3(7pTe + TETP + TPTB) + 252(TB + TF + Tp)
1 _

Bnor —|1-5 1- Wik, (2.28)
S3 53(TBTF—|—TFTP+TPTB)‘|‘253(TB—|—TF+TP)
T8 + Tr + Tp

PR AL 2.29
[ p. AT (2.29)

where s, and s; are given by equation 2.9. The approximations are ac-
curate to the first order of 1 — W;W,. The behavior of the system is
similar to the special case discussed above. When W;W, is very close
to 1 and Wp is approximately equal to W,Wjp, the system will first reach
the quasi-steady-state given by equation 2.16 after the decay of the three
fast transients characterized by the time constants 74 to 73. It will then
slowly reach the final steady-state given by equation 2.19 with the time
constant 7,. When W;W, is close to 1, 4 will be so large that the final
steady-state will have no physiological relevance.

We have performed some computer simulations with the general sys-
tem and the results are shown in Figures 2 and 3. The parameters used
in Figure 2 are W; = Wg = Wp = 1, 73 = 14 msec, 7+ = 70 msec,
7 = 2 msec, and 7r = 41 msec. The seven curves were obtained with W,
equal to 1, 0.99, 0.98, 0.96, 0.9, 0.8, and 0.5, respectively. Under this set of
parameters, the quasi-steady-state gain is approximately 0.5 and the final
steady-state gain is 1.0. We see from the figure that when W;W, is close
to 1, the system first reaches a gain of about 0.5, which is then slowly
moving toward the value 1. As W; W, gets smaller, the decay to the final
state becomes faster. A similar set of simulations is shown in Figure 3
where Wy, = Wz = Wp =1, 73 = 14 msec, 77 = 70 msec, 7p = 2 msec, and
7r = 41 msec. The seven curves were obtained with W; equal to 1, 0.99,
0.98, 0.96, 0.9, 0.8, and 0.5, respectively. Under this set of parameters, the
quasi-steady-state gain is 0.5 and the final steady-state gain is 0. Again,
when W;W, is close to 1, the system first reaches a gain of around 0.5
and then very slowly decays toward a gain of 0.

Root Cancellation. Similar to the special case described in Section
2.3.1, in the general case, the root in the denominator of the transfer func-
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Figure 2: The VOR gains under a step vestibular input. The network parameters
are so chosen (see text) such that the expressions in equations 2.16 and 2.19 are
equal to 0.5 and 1, respectively. The seven curves counting from the bottom are
generated with W{W, equal to 1, 0.99, 0.98, 0.96, 0.9, 0.8, and 0.5, respectively.
It can be seen that when W1 W, < 1 the gain will eventually approach the value
of equation 2.19. However, for WiW, very close to 1, the system practically
behaves like equation 2.16 over a time period of less than a second.

tion that generates the slow decay term in the inverse transform may also
be canceled by one of the three roots in the numerator in equation 2.7.
The three corresponding conditions for the cancellation can be easily de-
rived under the approximation that 1 — W;W, and Wz — W,Wp are small.
Two of the three cancellation conditions are not physiologically plausi-
ble, however, because they require the positive feedback loop to become
a negative feedback loop. The remaining condition is a generalization of
equation 2.24 and is given by

1-WW, Wy — WaWp
Tr+ 78 + Tp = (Tp-l-TT)WB

(2.30)

Similar to equation 2.24 for the special case above, this condition also im-
plies that the gain expression in equation 2.16 for the first VOR stability
condition is equal to that in equation 2.19 for the second VOR stability
condition. For this reason, we suspect that the condition is probably ex-
act even though it was derived with an approximation method. Under
this condition, the system quickly settles to the final real steady-state
independent of the value of Wi W,.
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Figure 3: This figure is the same as Figure 2 except that the network parameters
are so chosen (see text) such that the expressions in equations 2.16 and 2.19 are
equal to 0.5 and 0, respectively. The seven curves counting from the top are
generated with Wi W, equal to 1, 0.99, 0.98, 0.96, 0.9, 0.8, and 0.5, respectively.
It can be seen that when Wi W, < 1 the gain will eventually approach the value
of equation 2.19. However, for WiW, very close to 1, the system practically
behaves like equation 2.16 over a time period of less than a second.

Oscillation. Another type of transient behavior the system may have
is oscillation. This happens when the/some roots of the transfer func-
tion are complex. For example, when A in equation 2.10 is negative,
the roots s, and s; in equation 2.9 form a complex conjugate pair. Sinu-
soidal functions with frequency § = v/ —A/27p7e7p will then appear in
the temporal response B(t). However, since there is always a negative
real part associated with each of the complex roots, the oscillation will be
quickly dumped. In fact, we performed simulations with a wide range
of parameters and the effect of oscillation is never very significant.

VOR Overshoot. Finally, we consider the experimental observation
that when the gain of the VOR is low, the initial eye velocity during a
head turn overshoots its steady-state level (Lisberger 1988). This over-
shoot disappears under the high gain condition. Lisberger and Sejnowski
(1992) noticed that their network model displayed similar behavior. Here
we would like to provide a simple mathematical explanation for this ob-
servation. For simplicity we assume 7p = 73 = 0 as in the original model
of Lisberger and Sejnowski. The solution to the network output is given
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in equation 2.21. Under the stability requirement stated in Result 1, the
third term, which diverges with time, becomes zero. The first two terms
are the steady-state and the transient VOR responses, respectively. Using
the steady-state gain expression

G=WZL (2.31)
TF
equation 2.21 can be written as
B(t) = G+ (Wg — G)e '/ (2.32)

When the gain G is low, (Wp—G) is positive. There is therefore a transient
overshoot that decays away exponentially. With increased VOR gain,
the amplitude of the overshoot, (Ws — G), decreases. The overshoot
disappears when the gain reaches G = Wj, and further increases in gain
will generate an undershoot.

3 Discussion

In this paper, we generalized the Lisberger-Sejnowski model for VOR
learning by removing their simplifying assumptions 7p = 73 = 0 and
Wi = W, = 1, and investigated the properties of the generalized network
analytically. We found that the generalized system can display a con-
tinuum of behavior including that of the original Lisberger—Sejnowski
model and the static model proposed by Miles et al. (1980b). Specifically,
we showed that the VOR network is stable under either one of the two
conditions: (1) W;W, = 1 and Wiz = W,Wp, or 2) WiW, < 1. The first
condition is a generalization of that used by Lisberger and Sejnowski.
Under this condition, the steady-state gain is given by equation 2.16,
which depends on the time constants of all the units in the network.
Under the second stability condition, on the other hand, the steady-state
VOR gain is given by equation 2.19, which is equivalent to the gain of
the static model proposed by Miles ef al. The difference between the
Lisberger-Sejnowski model and that of Miles et al. is therefore mainly
due to Lisberger and Sejnowski’s assumption that W;W, = 1 and the
consequent requirement that Wz = W, Wp.

Although the steady-state VOR responses under the two stability con-
ditions are quite different, the system is not discontinuous when W;W,
varies from 1 to slightly below 1. Our analyses and simulations of the
network transient behavior demonstrate that when W; W, is very close to
1 the model works in almost the same way as when W;W, is exactly 1,
over the time scale of the normal VOR. Although the system will even-
tually decay to a different steady-state, the process is too slow to have
any physiological significance. Thus, for practical purposes, the network
behavior described by Lisberger and Sejnowski is robust against small
perturbations in the model parameters. Of course, when W;W, becomes
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significantly smaller than 1 the system’s behavior will be very different.
Under this condition, the network can quickly settle to the steady-state
identical to that of the static model described by Miles ef al. (1980Db).

Since the positive feedback loop in the VOR network is believed to
be involved in smooth pursuit eye movement as well, we also calculated
the pursuit gain under the closed-loop condition. The result shown in
equation 2.20 suggests that W;W, should be close to 1 to keep the pur-
suit gain close to 1. Thus the VOR network is likely to operate in the
mode similar to that described by Lisberger and Sejnowski (1992). Un-
der this condition, we found that the VOR gain depends on all four time
constants in the system as shown in equation 2.16. The gain could thus
be changed through modifications of many possible combinations of the
time constants. However, the fact that the VOR learning does not affect
smooth pursuit indicates that the three time constants involved in the
temporal response of pursuit, 75, 7r, and 7p, are not modified (Lisberger
1994) during the learning process. Since 7p appears on both numerator
and denominator in equation 2.16, we require its value to be small so that
the modification of the fourth time constant 71 could effectively change
the gain. In this connection, it is interesting to note that stimulation of
the flocculus and the ventral paraflocculus (corresponding to the P unit
in the model network) evokes an inhibitory response in the flocculus tar-
get neurons in the brain stem (corresponding to the B unit) with a time
delay of only about 2 msec (Lisberger et al. 1994a). The physiological
value of 7p could therefore be as small as a couple of milliseconds.

Our analysis provides a fairly complete picture of how the model
VOR network behaves over the entire parameter range. It could thus
be useful for guiding further physiological tests of the model and for
interpreting new physiological data on the VOR learning.

Appendix

Proof of Result 2. As discussed in the text, in order to prove Result 2,
we need to examine the roots of the denominator of equation 2.7. If the
real parts of all roots are negative, the system is stable. On the other
hand, if any root has a positive real part, the system is unstable unless
the root is canceled by an identical term in the numerator. We need the
following theorem (Korn and Korn 1961) to prove our result: All the
roots of the nth degree algebraic equation with real coefficients:

ax" +ax" 14+ 4 a, i x+a,=0 (ag # 0) (A1)

have negative real parts, if and only if the same is true for the (n — 1)st
degree equation:

_ - o — o _
a x4+ apx” 2+-~-—|—anmlx+an—a—a3x” 2—{1—u5x" f_...=0 (A2
1 1
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The first term in the denominator of equation 2.7 always gives a neg-
ative root. We focus on the roots of the second term:

7’137'1:’7'1353 + (TBTF + TrTp —|—TPTB)52 + (TB + Tr + Tp)S +1-W W, =0 (A3)

Applying the theorem, we examine the second-order equation:

as? +bs+1— WiW, =0 (A4)
with

a = TRTF+ TFTp + TpTs (A.5)

- T3(7r + 7p) + 7(7p + 7) + TE(TB + TF) + 2+ Wi W, (A6)

TBTE + TETp + TpTB ’
The two roots of equation A.4 are given by
—b+/b* —4a(1 - W;W.
S12 = \/ ( ! 2) (A7)

2a

Since a > 0 and b > 0, it is clear that if (1 — W;W,) > 0, both roots have
negative real parts, and that if (1 — W;W,) < 0, then one root is positive,
the other negative. This completes the proof.
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