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A number of continuous strength models for memory are developed for and tested 
by an experimental study of recognition memory for three-digit numbers at all serial 
positions in lists of length two through seven. Empirical estimates of trace strength in 
different conditions, independent of response bias, are obtained by means of the opera- 
ting characteristic. The principal theoretical findings are: (a) strength in short-term 
memory (STM) appears to decay exponentially with the number of subsequent items; 
(b) subjects report that they recognize an item if and only if strength in memory exceeds 
a criterion; (c) the first item of a list is remembered better than subsequent items 
because it receives a greater increment in strength in STM upon presentation, not 
because it decays more slowly in STM or because it acquires some strength in a long- 
term memory. 

This paper has two general purposes. First, we develop several strength models of 
recognition memory. Second, we evaluate the fit of these models to the data from an 
experimental study of the serial position effect in recognition memory of items (digit 

triples) from lists of different lengths. We wish to account for the response probabili- 
ties for test items from each serial position in the lists. To describe these data we 
develop a model with two different psychological processes: memory and decision. 
Every item, whether presented or not, is assumed to have some strength in memory. 
The memory model describes the changes in memory strengths as each item in the 
list is presented. The decision model describes how the subject uses these strengths to 
choose his response. 
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and W.W. was supported by grant MH 08890-01, from the National Institute of Mental Health, 
U.S. Public Health Service. We thank Marta Weigle (S4) for her assistance in analyzing the data 
and serving as a subject. 

316 



SHORT-TERM RECOGNITION MEMORY 317 

On each trial of the experiment, subjects listened to a list of L different items which 
was followed by a test item. The subject’s task was to decide whether the test item 
had been presented in the previous L items. If so, he was to say “yes”; otherwise he 
was to say “no.” The subject then stated his confidence in the correctness of the res- 
ponse. The items were selected so that every serial position in lists of length two 
through seven was tested; in about one-third of the test trials the test item had not 
appeared in the list. 

DECISION MODELS 

We assume that every possible test item has some representation in memory to 
which we can assign a unidimensional measure of strength, even if that item has not 
yet been presented to the subject. When the test item is presented, the subject chooses 
his response by considering the strength of the test item in memory and his response 
biases. There are several ways in which he might do this, two of which are considered 
in this paper. The two decision models are, first, a criterion rule similar to the decision 
process of signal detection theory (Swets, Tanner, and Birdsall, 1961) and the paired- 
comparison model of Thurstone (1927), and, second, a ratio rule, coming from Lute’s 
choice theory (1959, 1963). 

THE CRITERION RULE 

Let the output of the memory system for some test item i be a real number, ti . 
Assume that the subject’s biases determine a response criterion c and he responds 
yes (he says that he recognizes the test item) if and only if ti - c > 0. Our models of 
the memory trace are algebraic so that the probabilistic properties of the responses are 
due entirely to variability in the decision process. We represent this variability by 
the addition of a random variable X (noise) to the decision process. It does not matter 
where the noise is considered to be added-e.g., in the transmission of memory trace 
strengths to the decision stage or in the location of the decision criterion-the end 
result is the same. With the addition of noise, the decision rule becomes: 

respond yes to item i iff [ti - c + X] 3 0, 

and so 

Pr (yes 1 i) = Pr {[ti - c + X] B 0). (1) 

This process is summarized by Fig. 1. 
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FIG. 1. Structural model of the memory system and two alternative decision systems. 

Before we can solve Eq. 1, we need to know the probability density function of the 
noise distribution. Usually this is taken to be the normal density function with zero 
mean and standard deviation of CJ, N(0, 0). In this case 

Pr (yes 1 ;) = pY4 - c, 4 = /p-,), WA 1). 
c 0 

As is well known, the logistic function, p = l/[l + e-(2-b)la], is very similar to the 
cumulative normal (Bush, 1963). If we let the probability density function for the 
noise be given by the derivative of the logistic we can get an explicit expression for 
response probability. Solving Eq. 1 using the logistic (replacing the variable x by 
ti - c and letting the mean, b, be zero and the “spread,” a, be one) we find 

e(ti-c) 
Pr (Yes I 4 = 1 + e(t,-c) * 

THE RATIO RULE 

According to the ratio rule of Lute’s choice theory (Lute, 1959, 1963), the proba- 
bility that the subject responds “yes” to item i is 

Pr (yes j i) = &, (4) 
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where wi depends upon strength and b is a bias parameter, wi and b > 0. It turns 
out that it is possible to find a transformation of the output of the memory system 
(including the bias) that maps the difference ti - c onto the product w,b such that 
when the ratio rule is applied to the transformed strengths it is completely equivalent 
to the criterion rule with logistic noise. 2 The required transformation is found by 
equating Eqs. 3 and 4 and solving for wib: 

and w.b = &c. z 
The application of this transformation is illustrated in Fig. 1. When the decision 

process is the ratio rule, the output of the memory system must be exponentially 
transformed before the decision rule is applied. When the decision process is the 
criterion rule the transformation is not needed but, in its place, noise must be added. 
Of course, were w,b the output of the memory system, no transformation would be 
needed with the ratio rule but a logarithmic transformation would be needed with the 
criterion rule. The form of the exponential transform tempts one to consider that it 
applies separately to strength and criterion, but this is not necessarily true. 

This is an interesting result. For “yes-no” recognition memory, the criterion deci- 
sion rule and the ratio rule produce identical transformations of the response pro- 
babilities into underlying strengths in memory, under the following conditions: 

1. the probability distribution of the noise is logistic, with equal variance for all 
items ; 

2. either 

A. an exponential transformation is applied to the strength and bias variables 
before applying the ratio rule, or 

B. a logarithmic transformation is applied to the strength and bias before applying 
the criterion rule. 

For “yes-no” recognition memory, the differences in prediction between the ratio 
rule and the criterion rule with normally distributed noise (of constant variance for 
all items) result entirely from the differences between the cumulative normal and the 
logistic distributions. These differences are very small and show up mainly in the 
tails of the distributions (Bush, 1963). We do not attempt to distinguish between these 
two but simply use the normal distribution and criterion rule because of the availability 
of convenient tables (Elliott, 1964) and graph paper. 

2 The equivalence of criterion and ratio rules is discussed by Torgerson (1958, p. 201) for 
unbiased decisions (Thurstone’s law of comparative judgment and the Bradley-Terry ratio 
rule). Proof that the logistic is the only distribution that leads to equivalence of the two rules is 
given by Burke and Zinnes (1965) and Adams and Messick (1957). 
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The equivalence of criterion and ratio rules does not mean that the two different 
scales they impose on the underlying memory (or sensory) system are equally desi- 
rable. We may wish to choose between the two decision processes on the basis of the 
mathematical simplicity of the memory model. A model that appears simple mathema- 
tically when used with one decision rule may appear to be much more complex- 
and therefore much less satisfactory-after it has been transformed for application 
with the other rule. 

OPERATING CHARACTERISTICS 

Our memory models describe the way memory strength varies with serial position 
and list length. We do not have a comparable model for the decision system to tell 
us how response bias might change with these variables. Yet in order to predict 
response probabilities we need to know both the memory strength and the bias value 
for each item that is tested. However, we can predict the relationship between two 
response probabilities without knowing the values of the biases, provided we are willing 
to assume that the two biases are the same. 

In this paper we compare the response probability for an old item with the response 
probability for a new item. The probability of a “yes” response to an old test item, 
p(y j o), is some function of the trace strength of the old item, t, , and the bias, c,: 
P(Y I 4 = &o 3 c,). Similarly, the probability of a “yes” response to a new test item, 

P(Y I 47 is the same function of the new item’s trace strength and bias: 
p(y ) n) = h(t, , c,). If we assume that c, = c, = c, and if we can solve for the bias 
term, c = g[t, , p(y 1 n)], then we can determine the relationship between the response 
probabilities: 

P(Y I 4 = wo 9 g[Ga ? P(Y I 41> = f [cl 7 4a 9 P(Y I n>l* 

The functionfis called the operating characteristic. 
When the decision process uses the criterion rule with normally distributed noise, 

to solve for the bias, c, we define the tails normal deviate transformation on 
p, [TND (p)], such that 

TND (p) = TND lrnN(b, u) = e. 
a 

Taking the TND of bothp(y 1 o) andp(y 1 ) n as iven by Eq. 2 (letting the standard g’ 
deviation of the noise distribution be different for new and old items, just for the 
moment) we get 

TNDp(yIo)=e and TNDpCyIs)=y. 
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Solving for c and equating we get the operating characteristic 

TNDp(yIo)=zTNDpCy]n)+y. (5) 

This operating characteristic is linear with a slope of ~,,/a, and intercept of (to - Q/u0 
when we plot TNDp(y / 0) versus TNDp(y j ) II or, what is equivalent, plot the 
response probabilities on normal-normal probability coordinates. In our analyses 
we let crO = O, = 1 so that we expect the operating characteristic to have unit slope, 
and memory strengths have the standard deviation of the noise distribution as the unit 
of measurement. 

When the decision process is either the criterion rule with logistic noise or the 
ratio rule we get the operating characteristic by solving Eq. 3 or 4. This gives 

P(Y I 4 
l-p(yio)= 2 ( I( 

P(Y I 4 
1 l-P(Yl4 ’ 

where q/w, = e(trtn). Plotting the ratio p(y 1 o)/[l - p(y / o)] versus 
p(y 1 n)/[l - p(y ) n)] gives a linear operating characteristic which passes through 
the origin. An alternative expression comes from using the logistic equivalent of the 
TND, namely, logit p, which by definition is log [p/(1 - p)] (Bush, 1963). From 
Eq. 3, logit p(y ) z) = ti - c. As usual the operating characteristic can be obtained 
by eliminating c so that 

logit p(y I 0) = logit p(y I n) + (to - 4J. 

This operating characteristic is linear with a slope of unity and intercept to - t, 
when plotted on logit-logit probability coordinates. 

Both the criterion and ratio decision processes predict very similar operating 
characteristics that are functions of the difference in trace strength between old and 
new items (to - tn). We can determine relative strengths of items directly from the 
operating characteristics, and it is this relative strength that is predicted by the various 
memory models that are considered later in the paper. 

EQUAL BIAS ASSUMPTION 

In solving for the form of the operating characteristic it is necessary to assume that 
the subject’s response bias is the same for the two conditions being compared. This 
assumption is reasonable because most of the possible biases of the subject apply 
equally to all experimental conditions. For example, bias for a particular stimulus 
item does not much matter, because each stimulus item has equal a priori likelihood 
of appearing in any experimental condition, and each item usually appears in several 
conditions. This type of bias would, therefore, appear as an unsystematic perturbation 
of bias values which would lower our strength estimates (by increasing a) but have 
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no effect on the form of our results. If the subject varies his bias with list length, no 
problem is created because we estimate strength values by comparing conditions 
within the same list length. It is difficult to see how the subject could vary his bias * 
with serial position because knowing the serial position of an item is equivalent to 
knowing whether the item appeared in the list. Therefore, we assume that the bias is 
equal for items in all serial positions (including nonpresented items) of lists of the 
same length, This assumption could be invalid if subjects went through a two-stage 
process of first guessing the serial position of the test item (assuming the item had 
been in the list), letting this determine their bias, and then deciding whether the item 
had been in the list. However, this seems unlikely. 

METHOD OF CONFIDENCE JUDGMENTS 

To plot the operating characteristic from data we need to observe the response 
probabilities as we vary response bias (c) but hold constant the memory strengths, 
t, and tn . If the subject responds either “yes” or “no,” we get only one pair of response 
probabilities [P(y 1 n),~(y 1 o)] f or each experiment. To get more points on the 
operating characteristic we must do separate experiments, varying response bias but 
holding memory strengths constant. A more efficient method of estimating the 
operating characteristic is the method of confidence judgments, developed by Egan 
(1958) and Egan, Schulman, and Greenberg (1959). The subject is asked to section 
the decision continuum into N regions and respond by saying in which region the 
strength of the test item lies. He does this by responding both with a yes-no judgment 
and then a statement of his confidence in that response. Assuming that confidences 
correspond directly to strengths, a report of high confidence for a “no” response must 
represent a very weak strength, and a report of high confidence for a “yes” response a 
very strong strength. If the confidences range numerically from five (extremely 
confident) through one (no confidence) we assume that the strength continuum is 
partitioned as shown in Fig. 2. Note that for N categories there are N - 1 criteria. 
If we identify the boundary between confidence judgments with a bias or criterion 
value, we see that the probability that a subject responds Y3, Y4, or Y5, for example, 
is the same as the probability that he would say “yes” with a criterion at c, . Thus, 
in the experimental situation illustrated in Fig. 2 with ten response categories, we 
can transform the results into the probability of a “yes” response for nine different 
criteria. The probability of “yes” for each of these nine criteria is the cumulative 
probability of giving any response-confidence pair to the right of each criterion. The 
operating characteristic comes from looking at these nine probabilities conditional 
upon an old test item plotted against the corresponding nine probabilities conditional 
upon a new test item. 

The conversion from response-confidence pairs to criterion judgments is relatively 
straightforward. It is not quite so obvious how to transform the biases in the ratio 
rule into confidence judgments and we do not attempt to do so here. 
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FIG. 2. Strength distributions for old and new items. The vertical lines illustrate locations 
of criteria for the various responses. The probability that a subject respond “no-l” to an old 
test item is the area under the curve for old items between criteria cg and cs. 

The confidence rating technique allows us to get nine points on the operating 
characteristic in one experiment but depends heavily upon the assumption that sub- 
jects can categorize their responses along the strength continuum in a stable manner. 
If the various criteria vary over the course of the experiment or are different fordifferent 
test items the results may be inappropriate. Note, however, that variability in locating 
each criterion does not necessarily cause trouble. If we can characterize the variability 
of criterion cj by the addition of noise, Yj , to the criterion location, then the decision 
rule is simply to choose a response to the right of cj iff [ti - cj - Yj + X > 01. If 
the criterion variability is the same for all the criteria then we can simply combine the 
terms X and Y (as long as X and Y are not perfectly correlated) to form a new noise 
distribution and redefine our scale values so that the standard deviation of the new 
X + Y distribution is taken as the unit. Thus, even with decision variability we can 
assume stationary criteria and added noise (or, for that matter, no added noise but 
variability in the criterion value). 

MEMORY MODELS 

In this section we discuss the ways that the psychological processes of acquisition, 
decay, and generalization might be represented by a set of assumptions about real- 
valued memory traces. Various subsets of these assumptions are combined into models 
that describe the way trace strengths in memory change with list length and serial 
position. As we have seen in the previous section, the observable datum, the operating 
characteristic, depends upon relative trace strengths (to - t,) rather than absolute 
values. This limitation on what can be observed means that some of our models which 
are different in theory turn out to be experimentally indistinguishable. 
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DEFINITIONS 

As each item in the experimental list is presented to the subject, the memory 
strengths of all the possible items are changed. Because items are assumed to be 
homogeneous, they only differ in the serial position in which they are presented in 
the experimental list. It is most convenient, therefore, to label the stimulus items by 

their location in the list; thus, when we speak of the strength of stimulus item X, we 
refer to the strength in memory of the item which is to be (or has been) presented in 
position x of a list. I f  there are L items in a list, x may have L + 1 values: any of the L 
list positions and the null position. If  an item is not presented in the list we say it is a 

new item and let its (null) position, x, represented by *. As the stimulus list is pre- 
sented, the strength of item x can be tested at any point. Two numbers are needed to 
specify any item: the serial position in which it is presented and the serial position at 

which its strength is sampled (which may be before it is to be presented). 

Let 0, Y), h, Y), and t(x,y) be the strengths of the short-term (STM), long-term 
(LTM), and total memory traces for an item which is presented in position x and 

tested after y  items have been presented, counting from the beginning of the list. I f  
the list length is L, the first variable, presentation position, may have any value from * 
through L and the second variable, test position, runs from 0 through L. We use the 
letter “k” to refer to a position that specifically excludes the null position *, thus, 
1 < k <L. The difference in total strength between old and new items, d(k, L), is 

t(k,L) - t(*, L). 

ASSUMPTIONS ABOUT STM 

The fundamental operations that we presume occur in STM are those of acquisition 
and decay. Presentation of an item causes the strength of its representation in memory 
to increase above its current strength. Presentation of other items causes its strength 

to decay. A third process, generalization, may also occur in STM so that, at times, 
items undergo partial acquisition. 

Two different types of acquisition and generalization assumptions are examined: 
incremental and proportional acquisition. These assumptions lead to two different 
models, one with incremental acquisition and generalization assumptions, the other 
with proportional acquisition and generalization assumptions. Other reduced models 
are possible by systematic elimination of the various parameters. 

Initial strength. At the start of each trial all items have an initial strength in STM 
of oIO: 

s(x, 0) = lx0 , 0 < CYg . 

Decay. Presentation of an item that is different from the item presented in position 
x causes the strength of x in STM to decrease to some proportion 9” of its strength: 

s(x, k) = p(x, k - l), O<F<l, x # k. 
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ACQUISITION. We consider two possible forms for the acquisition of items in 
STM: incremental and proportional. In both cases acquisition occurs in addition to 
decay. The presentation of an item has two effects: first, its memory strength is 
decreased by the decay assumption; second, its strength is increased by the acquisition 
process. 

According to the iwemental acquisition assumption, presentation of an item adds 
a constant amount, CC, to the decaying strength of the item. Thus, strength in memory 
increases with each presentation to some limit set by the rate of decay: 

s(k, k) = a + yJs(k, k - l), 0 < o(. 

According to the proportional acquisition assumption there is some maximum bound 
on strengths. Presentation of an item increases its strength by some proportion of 
the distance between the decaying strength value and the maximum strength. We 
study only the case where the proportion is unity. In this case trace strength in STM 
reaches its maximum value, 01, in one trial: 

s(k, k) = a, 0 < a. 

Generalization. We assume that generalization causes items similar to the pre- 
sented item to undergo partial acquisition. We examine two types of generalization 
corresponding to our two types of acquisition assumptions. Let u, the generalization 
parameter, be the degree of similarity between any two stimulus items, 0 < (T < 1. 
In the experiments reported in this paper, similarity is assumed to be constant over all 
pairs of nonidentical stimulus items. 

First, by analogy with the incremental assumption for acquisition, let the presenta- 
tion of an item increase the strength of similar items by some constant amount. Thus, 
we obtain iwemental generalization: 

s(x, K) = cm + p(x, k - l), x # k 0 < a, O<O<l. 

This assumption becomes identical to the decay assumption when 0 = 0 and identical 
to the acquisition assumption when u = 1. 

Second, by analogy to the proportional acquisition assumption, let the presentation 
of an item increase the strength of similar items by some proportion a of the distance 
remaining between the present trace strength and the maximum possible strength, a 
Thus, we obtain proportional generaiization: 

s(x, k) = cr[cx - C&X, k - l)] + C&X, k - l), xf k 0 < 01, O,(o<l. 

This assumption becomes identical to the decay assumption when 0 = 0 and identical 
to the acquisition assumption when 0 = 1. 
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A~suMPTI~NSABOUT LTM 

Although it is possible to consider LTM in as much detail as we have considered 
STM, there seems little reason to do so since in our experiment the LTM component 
is certain to be less important than the STM component. Therefore we consider only 
one model for LTM in which there is an initial strength in LTM of X, , incremental 
acquisition, no generalization, and perfect retention over the duration of the trial. 
The assumptions of the model are: 

and 
x# k. 

/(k, k) = X + /(x, k - l), 0 < A. 

COMBINATION OF STM AND LTM 

We assume that total memory strength is an additive combination of strength in 
STM and strength in LTM. 

t(x, k) = s(x, k) + &(x, k). 

We have no justification, except mathematical simplicity, for choosing additive com- 
bination of traces over other combinations. LTM plays such a small part in our 
experiment that it does not seem wise to investigate alternative formulations. What 
seems important is to show that the present strength models can encompass both 
STM and LTM in a single consistent framework. 

PRIMACY 

Early items in a list are often remembered better than items in the middle of the 
list. No model built out of the previous assumptions will predict this. There are 
many ways to account for primacy with a strength model. One could assume that the 
Jevel of acquisition in STM is a function of serial position, or decay in STM could 
be different for the first item(s) than for later ones. 

As one hypothesis, we consider primacy in our experiment to be the result of greater 
learning at the time of presentation, in STM, or LTM, or both. Various intuitive 
reasons can be given for this, such as more intense or prolonged attention to the first 
items, but whatever the reason, such a primacy effect can be described by assuming 
that the acquisition parameters, OL and h, are functions of serial position, k. Since most 
of the primacy effect is on the first item, and since we do not have a theory giving us 
the explicit function, we simply approximate it by a step function: let al(k) and h(k) 
be estimated separately for the first position of the list so that a(k) and A(k) are 01~ and 
X, for k = 1 and simply a: and h for k > 2. 
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As the other hypothesis we let the rate of decay in STM be a (step) function of 
serial position so that rp(K) = vi for k = 1 and simply CJI for k > 2. Primacy effects on 
decay in STM could result from rehearsal or consolidation that occurs after presenta- 
tion and so might vary with serial position. 

SELECTION OF MODELSFOR THEORETICAL INVESTIGATION 

A very large number of memory models can be constructed by putting together the 
various possible combinations of our assumptions. There is no reason to discuss them 
all in this paper. Instead we have selected a number of models for discussion, guided 
by the fact that decay in STM is by far the largest effect under consideration. Every- 
thing else is a second-order effect compared to this decay. We use as our basic model 
the STM Decay model, constructed of a minimum of assumptions: no primacy, no 
generalization, and no LTM. We compare this model with a few more complicated 
models that include one or more of these other processes. The empirical predictions 
of these models are derived and certain equivalences are demonstrated. 

STM DECAY MODEL 

This is the basic model from which all the others build. In it we ignore primacy, 
generalization, and LTM. There are three versions of the decay model, depending 
upon our choice of initial strength and acquisition assumptions. Regardless of the 
acquisition axiom, decay is exponential, s(x, k) = p(x, k - 1). 

Strictly speaking, the decay should be referred to as “geometric,” because it is 
discrete. We choose to use the term “exponential decay” for two reasons. First, it has 
been commonly used in the past to refer to forgetting in discrete-trial experiments. 
Second, we do not think that the forgetting occurs instantaneously at discrete times, 
but rather that it occurs continuously over the trial. Geometric decay is the discrete 
analog of exponential decay, and the discrete representation is simply more convenient 
for the present experiment. It should be noted that the assumption of exponential 
decay is neutral with respect to whether the decay occurs with the passage of time or 
as the result of interfering activity. 

If we make the simplifying assumption that s(x, 0) = 0, then s(*, L) = 0 for all L, 
and s(k, k) = 01 no matter which acquisition assumption we choose. Thus, 

d(k, L) = s(k, L) = aqL-‘. 

Assuming nonzero initial strength, s(x, 0) = OL,, > 0, and the constant-increment 
assumption about acquisition, we get the same final equation for d(k, L), 

d(k, L) = s(k, L) - s(*, L) 

= Lug, L-k + o$qTL - a#JL 
L-k =ciql . 
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However, with the one-trial proportional assumption and nonzero initial strength, 
the form of the final equation is changed to: 

d(k, L) = aqL-k - aoqJL. 

We shall not consider further this more complicated decay model. 
If normal (or logistic) noise is added to the trace strengths specified by the STM 

Decay Model, one obtains a normal (or logistic) density function with exponentially 
decaying mean and constant standard deviation. When the criterion rule is used to 
convert trace strengths into response probabilities and when trace strength starts 
out substantially above the criterion, the probability of responding “yes” to the test 
item with that strength will start out with a probability very close to unity, drop very 
slowly while the left tail of the distribution is moving past the criterion, then drop 
rapidly as the center of the distribution moves past the criterion, and finally drop 
very slowly as the right tail moves past the criterion. That is to say, for any given list 
length, the serial position curve of response probability will be S-shaped. 

INCREMENTAL MODEL 

In this model we assume that presentation increases the strength of an item in both 
STM and LTM by some amount above its previous strength. Generalization in 
STM is also assumed, but it will not change the form of the final equation for cf(k, L). 
The assumptions of the model are: 

s(x, 0) = a0 8(x, 0) = A, . 

s(x,k)=m+&,k-1), xfk 8(x, k) = f((x, k - 1), xf k. 

s(k, k) = 01 + p(k, k - 1) /(k, k) = h + L’(k, k - 1), 

so that 

e(*,L) = A, 

s(k,L) = uct (’ l-J;-k) + vL-“s(k, k) t(k,L) = A, + h 

s(k, L) = (1 - c+ c+-” + CKY 

Thus, 
d(k, 15) = s(k, L) + A, + h - s(*, L) - A,, 

d(k, L) = (1 - u) a~“” + A. 

The result is independent of initial strength in both STM and LTM. Furthermore, 
SO long as similarity is held constant and LTM is negligible (A = 0), the expression 
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for d(K, L) is experimentally indistinguishable from that obtained in the simple decay 
model. That is to say, generalization has no effect on the equation for d as a function 
of k and L. However, had we varied similarity, the incremental model would have 
predicted the coefficient of vL-’ to vary. For the present experiment, though, the 
above derivation demonstrates that we may ignore any effects of incremental generaliza- 
tion. 

PROPORTIONAL MODEL 

In this model we assume that strengths are bounded by 0 and CL Presentation of an 
item increments it to full strength and presentation of a similar item increments it 
some proportion of the distance between its present strength and full strength. The 
assumptions of the model are: 

s(x, 0) = qJ 45 0) = A, , 

&k)=(l -u)&,K-l)$aol, xfk Qx, k) = 8(x, k - 1), x f k, 

s(k, K) = a /(A, k) = h + f?(k, K - l), 

so that 

s(*,L) = (TOT 1 - b(1 - 41Li l _ v(l _ u>r + Cdl - 41L “0 

s(k,L) = cm 
i 

’ - [dl - a)lL-k 
1 - v(l - u) I 

+ Lv(l _ +,“-” o1 4k L) = 4 + 4 

and, finally, 

d&L) = s&L) + h'(h,L) - s(*,L) - 8(*,~) = A#-" + mL + A, 

where 
e = p(l - u), 

A =ol (1 -4(l -VI 
1-e 

and B = & - a0 . 

Both the incremental and proportional models reduce to the simple decay model 
when the parameters, 01,, , CJ, and X are zero. Proportional generalization yields a 
different form of equation for d(K, L) than the incremental assumptions by introducing 
a term of the form BBL. 

STM ACQUISITION-PRIMACY MCDEL 

In addition to the assumptions of the incremental model we assume that presentation 
increments the strength in STM of the first item by 0~~ and later items by LX. The 
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assumption that 01 is a function of K has no effect on the form of the final equation for 
d(K, L). Hence, we obtain: 

,d(k, L) = (1 - u) a(K) r$?. 

As noted before, the incremental model is indistinguishable from the simple decay 
model in the present experiment so we may write the above equation in the simpler 
form: 

d(K, L) = a(k) q?“. 

STM DECAY-PRIMACY MODEL 

This model is designed to account for primacy by assuming that the first item decays 
at a slower rate in STM than do later items. With the assumptions of the incremental 
model, 

d(k, L) = a[p(K)]L-k. 

INCREMENTAL LTM-PRIMACY MODEL 

In this model we attempt to account for primacy by assuming that the first item is 
incremented by presentation to a greater strength in LTM than are subsequent 
items. With the assumptions of the incremental model, 

d(k, L) = .pL-” + A(K). 

STM-LTM PRIMACY MODEL 

Although it involves the largest number of parameters (five), this model is the more 
general version of the incremental acquisition-primacy models. It assumes that the 
first item may acquire greater strength in both STM and LTM. Thus, 

d(k, L) = a(k) v”” + h(k). 

SELECTION OF MODELS TO BE TESTED 

Selection of models to be tested was guided by two considerations. First, models 
that make equivalent predictions of our data obviously cannot be distinguished from 
one another, so only the simpler model is considered to be tested. For example, we 
shall call the model whose final equation is d(K, L) = c&-” the STM Decay model, 
model, but it is also the STM Incremental model. Second, we do not want to consider 
models which require too many parameters to be estimated. So, for example, we do 
not combine the proportional generalization assumption with any of the primacy 
assumptions, on the grounds that improvement in fit is extremely unlikely to com- 
pensate for the extra parameter, when so many parameters have already been estimated 
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from the data. The models to be tested for goodness-of-fit and their equations for 
d(k, L) are as follows: 

4k L) 

STM Decay “TJ 
L-k 

STM Proportional ci$-” + y’pL 

STM Acquisition-Primacy a(k) vL-k 

STM Decay-Primacy 4d41L-k 
LTM Acquisition-Primacy a@” + X(k) 

STM-LTM Primacy a(k) yGk + Q). 

EXPERIMENT 

PROCEDURE 

Our aim was to examine in detail the serial position effect in recognition memory 
by minimizing the effects of response interference and getting operating characteristics 
from each individual subject for each possible position of the test item in each list 
length tested. We tested our subjects individually and made only one test after each 
list presentation. We used the confidence-rating method to get operating character- 
istics because of its greater efficiency compared to other methods. 

We started at the smallest list length of any interest (two items) and tested every 
list position in every length up to seven items, getting 75 observations at each point by 
each of four subjects. The probability of a new test-tern was about .33 at each list 
length. The items were three-digit numbers (with some restrictions to be described 
later) and the recognition test occurred immediately after the end of the list. A trial 
consisted of the auditory presentation of L digit-triples at the rate of one triple per 
second, followed by a tone about .25 second long, followed by the test-triple. The 
subject had 5 seconds in which to decide whether the test-triple had been in the 
list just presented, answering “yes” or “no” and stating his confidence on a scale 
from “1” (least confident) to “5” (most confident). 

DESIGN 

The digit lists and new test-triples were made from pseudo-random numbers 
prepared on a digital computer. The lists were recorded on magnetic tape, and no 
session lasted more than one hour including one 5-10 minute break and two 20-second 
pauses. The digits were all pronounced at the rate of one three-digit number per 

480-7 
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second; 0 was pronounced “oh.” The selection of digit-triples was governed by the 
following restrictions: 

1. No two digits in a triple could be the same. 

2. Ascending and descending sequences were not allowed; 

a. i - I, i, i + 1, or 

b. i + 1, i, i - 1, where i = 1, 2, ..* 8,9 and 9 + 1 = 1 - 1 = 0. 

3. The alternating sequences were not allowed; 

a. i, i + 2, i + 4, or 

b. i + 4, i + 2, i, where i = 1, 2, 3, 4, 5. 

4. The sequences 369, 963, 248, 842 were not allowed. 

5. No triple could be repeated on a tape within 500 items of its previous presenta- 
tion. 

Lists of only one length were included in each session, so subjects always knew the 

list length. The serial position of the test item (including *) was randomized over 
trials. For the longer lists it was necessary to use two or three tapes for each condition, 
giving a total of 12 tapes. There were five practice lists at the beginning of each session 
and three practice lists after the break. The first l-hour session was also practice. 

After the practice session each subject went through the 12 tapes three times, with a 
different random order for each subject and for each time through the 12 tapes. 

SUBJECTS 

The subjects were four Harvard undergraduates, two male and two female. They 
were paid $1.50 per hour for their services. 

RESULTS 

CORRECT AND FALSE RECOGNITION RATES 

Correct recognition rates for items in each serial position, for the six different list 
lengths, and for each of the four subjects are presented in Table 1 and Fig. 3. False 
recognition rates for new items presented after lists of each length are also presented 
in Table 1 and Fig. 3. Each correct recognition point comes from 75 observations and 
each false recognition point from 7.5 to 264 observations, depending on the list length. 
By using the parameter estimates in Table 3, the lines are the best fitting predictions 
of the STM Acquisition-Primacy model. 
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TABLE 1 

CORRECT AND FALSE RECOGNITIONPROBABILITIES 

k L NB Sl 

* 
1 
2 

75 
75 
75 

BOO 
1.0 
1.0 

.ooo 
1.0 
1.0 

.ooo 
1.0 
1.0 

.013 
1.0 
1.0 

.003 
1.0 
1.0 

114 .026 .ooo .026 .OOO .013 
75 .907 .920 .933 1.0 .940 
75 .920 ,987 1.0 .987 .973 
75 1.0 1.0 1.0 1.0 1.0 

150 .080 .060 .087 .080 .077 
75 .560 ,987 .787 .880 .803 
75 .587 .800 .667 .973 .757 
75 .973 .920 .920 1.0 .953 
75 1.0 1.0 .987 1.0 .997 

189 .106 .042 .079 .lOl .082 
75 .640 .880 .573 .787 .720 
75 .653 ,627 .707 .867 .713 
75 .773 ,800 .787 .973 ,833 
75 .987 .987 .907 1.0 ,970 
75 1.0 1.0 1.0 1.0 1.0 

225 .071 ,044 .076 .093 .071 
75 .307 .613 .387 ,507 .453 
75 .320 .507 .320 .600 .437 
75 .533 ,760 .680 .907 ,720 
75 .720 .813 .747 .973 .813 

75 .960 .973 .987 .987 .977 
75 1.0 1.0 .987 1.0 .997 

264 .155 .091 .I29 .170 .136 
75 .347 .533 .373 .387 .410 
75 .227 .387 .253 .467 .333 
75 .427 .547 .400 .747 .530 
75 .640 .640 .507 .867 .663 
75 .907 .853 ,800 1.0 .890 
75 .961 .974 .949 1.0 .971 
75 1.0 1.0 1.0 1.0 1.0 

s2 s3 s4 Average 

8. The N is for each subject; the average is based on 4N trials. 



334 WICKELGREN AND NORMAN 

The correct recognition results show a substantial recency effect: recognition increa- 
ses rapidly with serial position. There is some primacy effect which is masked in this 
plot, as will be demonstrated in subsequent analyses. 
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FIG. 3. Correct and false recognition rates for each subject as a function of serial position (k) 
with length of list (L) as the parameter. The lines are the theoretical predictions of the STM 
Acquisition-Primacy model. 

The false recognition rate shows a general tendency to increase with list length, 
although a plateau shows up in each of the four subjects for list lengths four through 
six. A general increase in the false recognition rate can come about in two ways. First, 
if the criterion is fixed (independent of list length), false recognitions will increase 
if the mean of the new distribution increases with list length. This increase in the 
mean strength of the new distribution is predicted only by models that assume 
generalization. Second, the increase in false recognition can come about by a decrease 
in the criterion with list length, and this is compatible with any of the models. 
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MEMORY OPERATING CHARACTERISTICS 

The last item in each list and, for some subjects, the next to last item, were correctly 

recognized almost all of the time, so it was not possible to get reliable estimates of the 
operating characteristics for these conditions. Individual operating characteristics for 
conditions that did produce reliable estimates are shown in Figs. 4-8 on normal-normal 
plots. Points where either coordinate was below 0.02 or above 0.98 have not been 

included in these figures because the scale transformation makes the graphs extremely 
sensitive to slight variations in this region. Best-fitting straight lines were determined 
by eye for the points on each operating characteristic and values for d and slope were 
computed for each condition from the straight lines. The d values were estimated by 

entering the coordinates of the intersection of the straight lines with the negative 
diagonal in the published tables for d’(Elliott, 1964). This method of estimating d 
is often used in signal detection theory because it minimizes the effect of deviations 

NORMAL 

+-- 

FIG. 4. Memory-operating characteristics for individual subjects for the first item in the 
list with length of list as the parameter. Points with a correct recognition rate greater than 0.98 
or a false recognition rate less than 0.02 have not been included. 
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in the slope of the operating characteristics from unity. The unit of d, in this case, is 
the average of the standard deviations for the old and new distributions. We also 
computed the d value for each condition by using the point on the operating characte- 
ristic corresponding to the “yes-no” criterion. Both of these d values for each con- 
dition for each subject are shown in Table 2. Conditions where the probability of 
correct recognition was too high to produce reliable estimates of d are not included. 
The two ways of estimating d values give almost the same estimates. In all subsequent 
analyses we shall use the values estimated by the fitted lines because they are based on 
more data. 

According to the criterion decision rule with normally distributed noise, the opera- 
ting characteristics should be straight lines on normal-normal probability paper. 
The fit of straight lines to the data appears to be reasonably good. The slope of each 
line gives the ratio of the standard deviation of the new distribution to that of the old. 

NORMAL 
-2 -1 0 t, +2 

FIG. 5. Memory-operating characteristics for individual subjects for the second item in the 
list with length of list as the parameter. Points with a correct recognition rate greater than 0.98 
or a false recognition rate less than 0.02 have not been included. 
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According to our theory, slope ought to be constant, independent of distance from 
the chance diagonal (d value), and always equal to unity. To test the hypothesis that 
slope is independent of d value, we computed Pearson product moment correlations 
between the slope and d value for each of the four subjects. The correlations were 
.16, .32, .31, and -.03, far from being significant in every case. To test the hypothesis 
that the slope is unity, we used both the binomial test and the t test. By the former, no 
difference was significant at the -05 level. By the latter, S3 had slopes significantly 
above unity at the .05 level, S4 had slopes significantly below unity at the .05 level, 
and the other two subjects demonstrated no significant deviation from the null 
hypothesis. No deviation reached significance at the .Ol level, and the 99 y0 confidence 
limits for the true slope for each subject are: 1.12 f .29, 1.16 f .33, 1.41 f 44, and 
.84 f .17. Although some subjects may have slopes that tend to be above or below 
unity, the deviations are not great, not consistent over subjects, and not correlated 
with d value. 

NI)RMAL 

--2 

.20 .40 -60 .m 
Pr ‘;ALSE 

-20 *o .60 .80 .95 

FIG. 6. Memory-operating characteristics for individual subjects for the third item in the 
list with length of list as the parameter. Points with a correct recognition rate greater than 0.98 
or a false recognition rate less than 0.02 have not been included. 
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NORMAL DEVIATE 

FIG. 7. Memory-operating characteristics for individual subjects for the fourth item in the 
list with length of list as the parameter. Points with a correct recognition rate greater than 
0.98 or a false recognition rate less than 0.02 have not been included. 

PRIMACY AND RECENCY EFFECTS 

Primacy and recency effects on trace strength can be assessed by comparing d 
values of operating characteristics for items with different numbers of prior items 
(k - 1) and different numbers of subsequent items (L - k). According to the STM 
Acquisition-Primacy model, 

d(k, L) = a(R) cpL-“. 
Hence, 

log d(K, L) = log a(K) + (L - K) log ‘p. 

This makes d(R, L) a linear function of the number of subsequent items (L - K) 
on a semi-logarithmic plot. Furthermore, the slope is the same for all serial positions, 
but the intercept should be a function of serial position. By the one-step primacy 
assumption, all items after the first should have the same intercept. 
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DEVIATE 

FIG. 8. Memory-operating characteristics for individual subjects for the fifth and sixth 
items in the list with length of list as the parameter. Points with a correct recognition rate greater 
than 0.98 or a false recognition rate less than 0.02 have not been included. 

According to the STM Decay-Primacy model, it is the slope that is a function of 
serial position, rather than the intercept. Thus, the first item should be fit by a line 
with the same intercept as all other items, but the slope should differ. 

Figure 9 presents semi-logarithmic plots of d(k, L) against the number of subse- 
quent items (L - R) for each subject for all conditions in which reliable estimates of d 
were obtained. The two straight lines in each plot are the least-squares fits to the data. 
The upper line is the fit to the first items (K = I), and the lower line is the fit for all 
the other items (k > 1). 

The effects of proportional generalization, LTM, and primacy in LTM are not 
easily assessed by inspection of Fig. 9, and so consideration of models involving these 
effects will be deferred until the next section. However, it is possible to compare the 
STM Acquisition-Primacy model with the STM Decay-Primacy model by examining 
the dependence of the acquisition and decay parameters on list position. By using a 
least squares criterion, the acquisition and decay parameters are estimated by the 
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TABLE 2 

d(k, L) VALUES ESTIMATED FROM OPERATING CHARACTERISTICS (OC) 
AND FROM “YFS-No” PROBABILITY DATA (YN) 

Sl s2 s3 s4 
k L 

oc YN OC YN OC YN oc YN 

1 
2 

1 
2 
3 

1 
2 
3 
4 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 
7 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

3.32 3.26 
3.40 3.34 
- - 

- 
- 
- 

- 
- 
- 

3.63 3.44 
- - 
- - 

1.43 
1.69 
3.24 

1.56 3.36 3.79 2.40 
1.62 2.67 2.40 2.10 
3.34 2.98 2.96 2.84 
- - - - 

2.16 
1.79 

2.71 

1.43 
1.63 
1.86 
3.40 
- 

1.61 
1.64 
1.99 
3.48 

2.90 1.83 1.59 1.86 
2.05 2.14 1.94 2.24 
2.51 2.30 2.20 3.15 
3.96 2.14 2.13 - 

- 

2.62 
2.03 
2.64 
3.60 
- - - 

1.05 .96 1.72 1.99 1.16 1.14 
1.03 1 .oo 1.76 1.12 1.49 .97 
1.25 1.55 2.44 2.41 1.80 1.90 
1.94 2.05 2.15 2.60 2.14 2.09 
3.40 3.22 3.50 3.65 3.89 3.67 

- 

.38 .62 1.44 

.33 .26 .82 

.64 .83 1.43 
1.35 1.37 1.86 
2.16 2.33 2.34 
3.10 2.78 3.58 

1.42 .66 
1.05 .54 
1.46 .88 
1.70 1.35 
2.39 1.86 
3.30 2.92 
- - 

.80 

.46 

.81 
1.14 
1.97 
2.76 

- 

- 
- 

- 
- 

- 
- 
- 

- 
- 
- 

2.36 
3.33 

- 

2.58 
3.34 
- 
- 

2.07 
2.39 
3.22 
- 
- 

1.01 
1.25 
2.56 
3.25 

- 

1.33 
1.57 
2.64 
3.26 
3.55 
- 

.48 .66 

.72 .87 
1.32 1.62 
2.06 2.06 
3.29 - 
- - 

intercepts and slopes of the best fitting straight lines to the data of Fig. 9 for each 
value of k. The resulting parameter estimates for each subject are shown in Fig. 10. 
The results are clear. The slope shows no tendency to change with k, but the intercept 
decreases with k, in accord with the STM Acquisition-Primacy model. 
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t 

I 
,.,i I 1 1 1 1 121456 ..,L 123456 

L-k L-k 

FIG. 9. The d(K, L) values for each serial position (K) as a function of the number of subse- 
quent items (L-K). The two straight lines in each plot are the least-squares fits to the data. The 
upper line is the fit to the first items (K = 1) and the lower line is the fit for all the other items 
(k > 1). 
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FIG. 10. Least-squares estimates for v and OL (slopes and intercepts) as a function of serial 
position (k) for each subject. There are not enough points in our data for k = 5, 6, and 7 to 
determine reliable estimates of q and CI for these conditions. 
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Several features of the data should be noted. First, for all subjects, trace strength 
as a function of the number of subsequent items is quite well described by an exponen- 
tial decay function. This is true for the first as well as later items, and the rate of 
decay appears to be the same for all items. Moreover, the rate of decay appears to be 
approximately the same for each of the four subjects. Although there are some devia- 
tions from straight lines on semi-logarithmic plots, the deviations do not suggest any 
reasonable alternative function. Second, for all subjects the initial item in a list has 
greater trace strength than later items, when the number of subsequent items is the 
same. Third, for all subjects the differences among other serial positions are small 
when the number of subsequent items is controlled. The results are in striking agree- 
ment with the STM Acquisition-Primacy model, although the STM Decay-Primacy 
model provides a reasonable first approximation to the data. For S4 the fit of the STM 
Decay model is extremely good without a primacy assumption. 

ESTIMATION OF PARAMETERS 

To assess the goodness-of-fit of each of our models and to compare the fit of dif- 
ferent models, we must have a fair method of estimating parameters. Our models do 
not predict behavior directly, but rather the underlying memory strengths and, 
through them, the probability of responses. In the present instance, it seemed dif- 
ficult to use standard maximum likelihood techniques for parameter estimation. 
Instead, we estimated parameters for each subject by minimizing the chi-square 
value of the fit of each model to the “yes-no” probability data, using the six empirical 
false recognition probabilities to estimate the retrieval criterion for “yes” responses. 

Because reasonable parameter estimates yield expected frequencies less than one 
in a number of instances, we could not use a standard chi-square goodness of fit 
test. Instead, we determined the probability of obtaining each observed frequency of 
correct recognition (or a more discrepant frequency) by using the binomial test. We 
found the exact probability using the binomial distribution, not the probability 
obtained from the normal approximation to the binomial. The probability of getting 
a frequency as extreme as the observed frequency in a particular condition (for a 
particular model with a particular set of parameter estimates) was transformed to x2, 
using the exact transformation proposed by Fisher (1938) for combining independent 
tests of significance. The transformation is, x2 = - 2 log,p, where x2 is on 2 a!! 
These x2 were then summed for all 27 conditions to yield an overall test of the good- 
ness-of-fit of a particular model with a particular set of parameter estimates. The 
number of degrees of freedom is found by taking the number of independent con- 
ditions, subtracting the number of parameters estimated from the data and then 
doubling this difference. Thus, with 27 observed frequencies of correct recognition 
and three parameter estimates, there are 2(27 - 3) = 48 df. 

We found the minimum this-quare values by systematically varying parameters and 
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testing goodness of fit at many points in the n-space determined by the parameters3 
If done in one step, this gridding technique is very inefficient because a fine grid must 
be used to get precise estimates of parameters and hundreds of thousands of chi- 
squares calculated. A more efficient procedure is to examine a rough grid of the para- 
meter space and the examine the (few) areas of interest in more detail, repeating this 
procedure as many times as is necessary to get the desired precision of the estimates. 
This hierarchical procedure is usually inefficient because each analysis depends upon 
the results of the previous analysis, and on the usual university computer facilities the 
computations might take months. Fortunately, we were able to use a remote console 
(located at Harvard) of the Compatible Time Sharing System (CTSS) of the Massa- 
chusetts Institute of Technology (Project MAC), so that the hierarchical gridding 
procedure was fast and efficient. We continued our analysis until we were sure that 
we were not examining a local minimum and we had reached a precision of slightly 
less than two significant figures. 

GOODNESS-OF-FIT OF THE MODELS 

The parameter estimates and minimum x2 values for each of the models tested are 
shown in Table 3. The simple STM Decay model appears to be inadequate without 
some primacy assumption for at least three of the four subjects. The Proportional 
model fits much better than the Decay model, but is consistently less adequate than 
the STM Acquisition-Primacy model. The Proportional model gives some primacy 
effect, especially for low values of L - k, so it is reasonable to guess that this is 
responsible for the improvement in fit of the Proportional model over the Decay model. 
Since the more straightforward primacy models provide an even better fit to the 
data, it is reasonable to prefer them to the Proporional model. The LTM parameters 
appear to be completely unnecessary, 

The fit of the STM Acquisition-Primacy model is uniformly better than the fit of 
the STM Decay-Primacy model for each of the four subjects. In addition, there are 
three other considerations that favor the STM Acquisition-Primacy model. First, 
the least squares results summarized in Fig. 10 lead us to conclude that primacy 
affects acquisition, rather than decay. Second, it is intuitively more plausible to assume 
that subjects spend more time or effort learning the first items compared to the later 
items than it is to assume that the decay process proceeds at a different rate for the 
first items than for later items. Third, the STM Acquisition-Primacy model yields 
estimates for the rate of decay in STM that are almost invariant over the four sub- 

3 We would like to thank Richard C. Atkinson and Edward J. Crothers for sending us a copy 
of their computer program for parameter estimation by the minimum chi-square method and 
discussing the estimation problem with us. We did not use their iterative hill-climbing program 
to obtain our estimates, however, but instead used the hierarchical grid procedure described 
in this section. 
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jects, while the STM Decay-Primacy model does not yield estimates for the initial 
learning that are comparably invariant over the four subjects. 

TABLE 3 

PARAMETER ESTIMATES AND MINIMUM &II-SQUARE VALUES 

Model 
Parameters 

S X2 df P 
STM LTM 

STM Decay 
d(k,L) = cq+” 

STM Proportional 
d(k,L) = q=-’ + y+ 

STM Acquisition- 
Primacy 
d(k,L) = ,x(k) I+” 

STM Decay-Primacy 
d(R,L) = &Qz)]L-L 

LTM Acquisition- 
Primacy 

d&L) = a#-” + X(k) 

STM-LTM Primacy 
d(k,L) = 

a(k) p+ + h(k) 

1 (6YO) $6) >300 
2 (5.0) t.80) > 300 
3 5.0 .I0 224 
4 8.5 .66 57 

50 .OOOl 
50 .OOOl 
50 .OOOl 
50 .23 

1 4fb i.0 .:I 87 48 
2 2.7 5.5 .75 132 48 
3 3.3 5.5 .67 95 48 
4 6.0 6.0 .66 25 48 

1 5:o 
2 4.9 
3 4.6 
4 7.5 

1 5:s 
2 5.3 
3 5.0 
4 8.2 

1 5: 
2 5.2 
3 4.8 
4 7.8 

1 ST0 
2 4.9 
3 4.6 
4 7.5 

a1 
7.5 .6’s 
8.5 .74 
7.5 .68 

10.0 .67 

Fl .71 I2 
.83 .I2 
.76 .65 
.70 .65 

A A, 
.6i .I .6 
.I2 .o 1.1 
.65 .I .8 
.66 .I .4 

a1 
7.0 

.zs h Xl 
.o .1 

8.5 .74 .o .o 
7.5 .68 .o .o 

10.0 .67 .O .O 

.OOl 
JO01 
JO01 
.99 

49 48 .44 
71 48 .015 
86 48 .OOl 
20 48 .99 

69 48 .02 
87 48 .OOl 

122 48 .OOOl 
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The fit for the LTM Acquisition-Primacy model is also uniformly poorer than 
the fit of the STM Acquisition-Primacy model for each of the four subjects. Again, 
the parameter estimates for the combined STM-LTM Primacy model confirm 
the choice of the STM Acquisition-Primacy model over the LTM Acquisition-Primacy 
model. The best estimates for the STM-LTM Primacy model indicate a large differ- 
ence in the acquisition parameter for STM and effectively no difference in the 
acquisition parameter for LTM. In fact, LTM appears to be playing a negligibly 
small role in our experiment, so it is quite reasonable to assign the largest part of the 
primacy effect to STM. 

DISCUSSION 

The principal finding of the present study is that STM trace strength decays expo- 
nentially with the number of subsequently presented items when the criterion decision 
rule is used to transform strengths into probabilities. This conclusion is based on the 
satisfactory fit of the STM Acquisition-Primacy model to the data. In our view, this 
provides strong support for both the criterion rule and the exponential decay assump- 
tion. This conclusion is based as much on a criterion of simplicity as on a criterion 
of adequacy, because if we applied an exponential transformation to strengths, the 
ratio decision rule would apply equally well to our data. 

In the present study the decay in recognition probability is not exponential. We 
find an exponential decay only when we transform probability measures into strength 
measures using the criterion rule. Other studies of recognition memory have also shown 
that the probability of recognition departs from an exponential decay function (see 
Shepard, 1961, p. 186, and Shepard and Teghtsoonian, 1961). 

The fact that the trace strengths estimated with the criterion decision rule are best 
described by a simple exponential decay function provides strong support for the 
validity of the criterion rule and the choice of strength over probability as the variable 
to which the laws of forgetting apply. 

The simple exponential decay model accounts for a good deal of our data. However, 
of the models we studied, the best was the STM Acquisition-Primacy model. It 
seems that the first item in the list is remembered better than subsequent items 
because it reaches a higher initial strength in STM than other items. In order to 
account for these results it does not seem necessary to assume that any items acquire 
substantial strength in LTM or that strength in STM decays at a different rate for 
items in different serial positions. 

In other experiments with other types of material, multiple presentation, slower rates 
of presentation, or greater opportunity for rehearsal it will probably by necessary 
for models to include an LTM component in the total memory trace, even when there 
is a very brief retention interval. Such a combination of short- and long-term traces 
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was found necessary by Waugh and Norman (1965) in order to account for the 
forgetting curves in a variety of recall experiments. The almost complete absence of 
LTM effects in the present experiment can probably be obtained only under controlled 
conditions. In our view, the most important experimental conditions leading to this 
result are control over rate of presentation, the nature of the materials, and the rehearsal 
instructions to the subject. Large LTM effects, especially for the first item(s), can 
probably be obtained rather easily if subjects are permitted to rehearse in any way 
they please, if the items are simple and highly differentiated in their associations, and 
if the rate of presentation is not extremely fast. In the present experiment we repeatedly 
instructed our subjects to rehearse only the currently presented item. Furthermore, 
we used a fast presentation rate and relatively complex and undifferentiated items. 

If the assumption that STM and LTM traces are combined additively is true, one 
need not be concerned about the direct effect of the initial strength of LTM traces, 
provided they are approximately equal for all items in the population being used. As 
demonstrated in the theoretical section, initial strength in LTM (4) does not occur 
in the final equation for d(K, L), in every model. Strong initial LTM associations do 
not interfere with immediate memory. 

Finally, proportional generalization does not account for the primacy effect as well 
as the more straightforward assumption that the first item(s) are learned better. This 
does not mean that there was no generalization in our exepriment. Evidence for or 
against generalization should come from an experiment in which the similarity of 
items is varied in a systematic way. 

CONCLUSION 

The theoretical assumptions that receive strongest support are: (a) strength in 
STM decays exponentially with the number of subsequently presented items and (b), 
subjects respond that they recognize an item, if and only if its strength in memory 
exceeds a criterion. Primacy in our experiment was best explained by assuming that the 
first item(s) received a greater increment in STM when they were presented than 
did later items, with no differences in their LTM values or in the rate of their decay 
in STM. 
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