A comparison of light adaptation results from 40 years of the probed-sinewave paradigm

Norma Graham, S. Sabina Wolfson, & Jenifar Chowdhury

ARVO 2001 abstract #840
nvg@psych.columbia.edu
http://www.columbia.edu/~nvg1/
Columbia University
Department of Psychology
New York, NY 10027, USA

METHODS AND PROCEDURES
In the probed-sinewave paradigm, detection threshold is measured for a probe superimposed at various times (phases) on a sinusoidally flickering background. We compared all published studies known to us that used sinusoidally flickering backgrounds at photopic luminances. These studies were conducted under widely varying conditions. (See table below for conditions shown in figures here. An even wider set of conditions can be found in the original studies.)

RESULTS AND DISCUSSION
Shape of Probe-Threshold-versus-Phase curves
The shapes of the probe-threshold-versus-phase curves at low flicker frequencies (e.g. the 1Hz - 1.9 Hz figure here) are quite similar in all the studies, showing a distinct drop in threshold near 270 deg, the phase at which the flickering background’s intensity is lowest.

The shapes of the probe-threshold-versus-phase curves at middle frequencies (e.g. the 7Hz -13 Hz figure here) are quite variable. For example, the curves indicated by the symbols Y, H, and m have primary or secondary maxima near 270 deg, while the other curves continue to show minima at 270 deg.

The shapes of the probe-threshold-versus-phase curves at high frequencies (>=30 Hz) for the studies) are quite similar in the few studies measuring that high. They are generally sinusoidal and in phase with the stimulus near 30 Hz, but shift phase at higher frequencies.

dc-level, peak-trough distance, and “modulation”
The dc-levels of the probe-threshold-versus-phase curves (thresholds averaged over phase) show a dramatic maximum at middle frequencies. (See the top left and right panels of the Summary Figures.) This is true whether linear (top left) or logarithmic (top right) probe thresholds are averaged. The maximum dc-levels occur at about 8 Hz in the studies indicated by Y and H and closer to 20 Hz in the other studies. (The dc-level is unknown for the study indicated by m.)

The peak-trough distances in the probe-threshold-versus-phase curves act differently in different studies and for linear vs. logarithmic thresholds. (See the variability within and between the middle panels of the Summary Figures.)

The “percent modulation” in the probe-threshold-versus-phase curves (the peak-trough distance divided by the dc-level) acts very differently for linear versus logarithmic thresholds (lower left vs. right panels of Summary Figures). For reasons we do not (yet) understand, the “percent modulation” for logarithmic thresholds is very similar in all the studies; thus the curves juxtapose better in the lower right panel of the Summary figures than in any other panel.

TWO QUESTIONS
What do the studies Y, H, and probably m have in common that leads their results at middle frequencies to differ from those of the other studies?
Why does “percent modulation” in the probe-threshold-versus-phase curves from different studies agree so well (when the other summary measures do not)?
In the probe-threshold-versus-phase curves, each cycle of thresholds has been repeated twice for clarity. For each cycle, the results shown here are the averaged log thresholds from 2 or more observers.

1. The DeMarco, Hughes, and Purkiss (2000) symbol O probe-threshold-versus-phase curve shown here at 1 Hz (their only frequency) is for a 100 ms probe because that is the only probe duration for which we could find the steady-state thresholds. They also used 12.25, and 60 ms probes; the shapes of the curves at all probe durations are quite similar.

2. The Maryama & Takahashi (1977) symbol M study is not included in the Summary Figures here because we could find no indication of the absolute levels of their thresholds (nor of steady-state thresholds). In the Probe-Threshold-versus-Phase Figures here, the M curves were vertically shifted so that their thresholds measured at 180 deg equaled the average of all of the other thresholds at 180 deg.

3. The Wolfson and Graham (2001) symbols W and w thresholds here are for decrement rather than increment probes because that data is more complete. As Wolfson and Graham, and also DeMarco et al show, there is a small systematic difference between increment and decrement thresholds. But it is too small to matter for the kinds of conclusions being drawn in this paper.

4. The Wu, Burns, Elsner, and Eskin (1997) symbol U study did not measure thresholds on a steady-state uniform background but instead measured "control" thresholds on a uniform background intermixed between bursts of flicker. These control thresholds varied with background flicker frequency, being greatest at the lowest frequency they measured (20 Hz) and quite low at the highest frequencies (60 and 70 Hz). For our purposes here, we took the minimum control threshold as an estimate of the true steady-state threshold.

Notes About Data Selection

In the probe-threshold-versus-phase curves, each cycle of thresholds has been repeated twice for clarity.

1. The DeMarco, Hughes, and Purkiss (2000) symbol O probe-threshold-versus-phase curve shown here at 1 Hz (their only frequency) is for a 100 ms probe because that is the only probe duration for which we could find the steady-state thresholds. They also used 12.25, and 60 ms probes; the shapes of the curves at all probe durations are quite similar.

2. The Maryama & Takahashi (1977) symbol M study is not included in the Summary Figures here because we could find no indication of the absolute level of their thresholds (nor of steady-state thresholds). In the Probe-Threshold-versus-Phase Figures here, the M curves were vertically shifted so that their thresholds measured at 180 deg equaled the average of all of the other thresholds at 180 deg.

3. The Wolfson and Graham (2001) symbols W and w thresholds here are for decrement rather than increment probes because that data is more complete. As Wolfson and Graham, and also DeMarco et al show, there is a small systematic difference between increment and decrement thresholds. But it is too small to matter for the kinds of conclusions being drawn in this paper.

4. The Wu, Burns, Elsner, and Eskin (1997) symbol U study did not measure thresholds on a steady-state uniform background but instead measured "control" thresholds on a uniform background intermixed between bursts of flicker. These control thresholds varied with background flicker frequency, being greatest at the lowest frequency they measured (20 Hz) and quite low at the highest frequencies (60 and 70 Hz). For our purposes here, we took the minimum control threshold as an estimate of the true steady-state threshold.

References

SUPPORT

NIH grants EY06933 and EY08459.