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Element-arrangement textures in multiple objective tasks
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Abstract—In his long years of studying visual perception, Jacob Beck made many contributions.
This article is a short review of one line of his research — that we shared in — and then a presentation
of some results from on-going research down the same line. In the 1980s Beck and his colleagues
introduced a new kind of visual stimulus: element-arrangement texture patterns. A series of studies
with these patterns has shown that a model containing spatial-frequency and orientation-selective
channels can explain many aspects of texture perception as long as two kinds of nonlinear processes
are also included; the published studies are briefly summarized. The new results come from multiple
objective tasks requiring the observer to make simple discriminations between second-order element-
arrangement textures. Results with the objective tasks replicate previously published results using
subjective ratings, and the use of the objective tasks allows us to explore several more fine-grained
questions about complex (second-order) channels and normalization.

Keywords: Texture; nonlinearities; complex channels; second-order; normalization; contrast-gain
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INTRODUCTION

Element-arrangement texture patterns, introduced by Jacob Beck and his colleagues
(Beck, 1982; Beck et al., 1983, 1987), have proven to be a powerful tool for
exploring intermediate stages of visual processing. Element-arrangement textures
are created by arranging two element types in a checkerboard or striped manner. An
example pattern is shown in Fig. 1. In this example, the two element types are small
and big squares, respectively, and the elements have a checkerboard arrangement in
the center and a striped arrangement in the rest of the pattern.
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Figure 1. Classic element-arrangement texture pattern. This is an example element-arrangement
pattern using small and large square elements, redrawn from Sutter et al. (1989). The arrangement
of the elements in the center forms a checkerboard texture while the arrangement elsewhere forms
striped textures. Such patterns — introduced by Beck and colleagues — have been very useful in
exploring intermediate levels of visual processing.

One of us (NG) started to work with Beck in the mid-1980s, as an offshoot
of a visit to his laboratory and an argument about the role of spatial-frequency
and orientation-selective channels in texture perception. In a series of papers,
starting with Sutter et al. (1989), these investigators (working together and
later independently with other colleagues) used element-arrangement patterns to
investigate the processes underlying intermediate level vision, and in particular,
to learn about the kinds of rigorously-defined nonlinearities one could include in
models containing spatial-frequency and orientation-selective channels to explain
even more of texture segregation.

Here we review some of the major results of these studies, all of which owe a
great deal to Jacob Beck even when he was not explicitly an author.

We also present some new experimental results. These continue to use element-
arrangement patterns as stimuli but now use several objective perceptual tasks,
involving detection and identification of different features of the patterns, rather
than the subjective rating task of perceived segregation which was used in most of
the earlier studies. These new results replicate important previous results using the
subjective task as will be shown here. But we started using these tasks because
we wish to go on to investigate properties of intermediate-level vision that required
finer-grained distinctions than seemed possible using the subjective task. We present
some preliminary new results here as well.

Spatial and intensive nonlinearities (complex channels and normalization)

A number of different kinds of studies, and important among them the studies using
element-arrangement patterns, have demonstrated that, to explain many aspects of
texture perception and related perceptual tasks, one needs not only spatial-frequency
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and orientation-selective channels but also nonlinearities of two different kinds:
spatial and intensive (e.g. Graham et al., 1992; Sperling, 1989; Wilson, 1993).

The form of the spatial nonlinearity is well described by complex (second-order)
channels, as was suggested to explain results with element-arrangement textures by
Sutter et al. (1989), to explain some results with moving stimuli by Chubb and
Sperling (1988, 1989), and to explain results in other contexts by a number of other
people (see Graham and Sutter, 1998, for references). A complex channel consists
of two layers of filtering — the first sensitive to higher spatial frequencies than
the second — with an intermediate nonlinearity. Complex channels are sufficient
to describe many texture segregation results that simple (first-order) channels —
consisting of a single layer of filtering — are not. (See Graham et al., 1992,
for a detailed discussion of this; see Landy and Graham, 2003, and Schofield,
2000, for recent discussions of the importance of second-order processing in visual
perception.)

A great deal has been learned about these complex channels through experiments
with element-arrangement textures and with other similar patterns. (i) The spatial-
frequency and orientation bandwidths of the first stage (Graham et al., 1993)
and of the second stage (Landy and Oruc, 2002; Ellemberg et al., 2004) have
been estimated. (ii) A slight correlation between the peak orientations or spatial
frequencies at the first and second filters of individual channels has been found
(Graham and Wolfson, 2001; Sutter et al., 1995). (iii) The overall contrast
sensitivity function of these channels, that is, the envelope of the individual
channels’ sensitivity function has been measured (Sutter et al., 1995; Landy and
Oruc, 2002). (iv) Processing by complex channels has been found to be slower than
that of the simple channels (Sutter and Graham, 1995; Sutter and Hwang, 1999).
(v) The intermediate nonlinearity in the complex channels has been found to be
expansive (Graham and Sutter, 1998), a point we will be returning to below.

Other texture segregation results suggested that, in addition to this spatial nonlin-
earity, a heavily compressive intensive nonlinearity was necessary (Graham, 1991;
Graham et al., 1992). The possibility that the compressive effect was entirely
an early, local nonlinearity occurring before the spatial-frequency and orientation-
selective simple or complex channels (e.g. retinal or LGN light-adaptation) was
considered extensively and, after a great deal of work, discarded (Beck et al., 1991;
Graham and Sutter, 1996, 2000). There can, however, be effects of light adaptation
if the luminances vary widely enough (e.g. Sutter et al., 1989).

Instead, the highly compressive intensive nonlinearity is well described by
inhibition among channels which can be modeled as a normalization network.
Normalization is a contrast-gain-controlling process where the gain depends on the
output of a collection of channels. In a normalization network, the output of a
channel is normalized by (is divided by, has its gain set by, is inhibited by) the output
of a collection (pool, set) of channels. The collection of channels encompasses a
wide range of spatial frequencies and orientations (but not necessarily a wide range
of space).
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Figure 2. Model with complex channels and normalization. This model sketch is based on Graham
and Sutter (2000), Fig. 1. The model contains inter-channel inhibition in a normalization network
(which produces a compressive intensive nonlinearity). The intermediate nonlinearity between the
complex channels’ two layers of filtering is shown as expansive. The comparison and decision stage
particulars depend on which of the tasks is under consideration (Wolfson et al., 2004).

Sketched in Fig. 2 is a model that includes a normalization network. Such a model
is consistent with all of our texture results. Normalization is also consistent with
physiological results and others’ psychophysical results (see Graham and Sutter,
2000, for some references). It is understandable why the visual system has such
a process. Normalization can prevent overload on higher levels by repositioning
the limited dynamic range to be centered near the ambient contrast level and at
the same time preserve selectivity along dimensions such as orientation and spatial
frequency. (See discussions and references in, e.g. Bonds, 1993; Heeger, 1991;
Lennie, 1998; Victor et al., 1997.) Normalization has also been suggested to
have the right properties to help encode natural images efficiently (Schwarz and
Simoncelli, 2001; Simoncelli and Olshausen, 2001).

Note that, while all the previously mentioned studies with element-arrangement
patterns were done with monochromatic (gray-level patterns) as will be our studies
below, Beck and collaborators have collected results with chromatically-varying
element-arrangement patterns as well (Beck, 1994; Oddo et al., 1999; Pessoa et al.,
1996).

Constant-difference experiments

Constant-difference experiments were introduced by Graham (1991) and Graham
et al. (1992) and have been very useful in understanding the spatial and intensive
nonlinearities. Constant-difference experiments use element-arrangement patterns
in which the two types of elements differ only in contrast (unlike the pattern in Fig. 1
in which the two element types have the same contrast and differ only in size). In
a constant-difference-series the contrasts of the two element types vary together in
such a way that the difference between the contrasts is always the same (hence the
name constant-difference experiments).
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Figure 3. Diagram of element contrasts in our patterns. This space of element contrasts defines the
stimuli. The contrast of one element type is plotted on the vertical axis and the contrast of the other
element type is plotted on the horizontal axis. Each big black dot represents a stimulus.

Along any horizontal or vertical line in this space, the underlying stimuli have one element type at a
constant contrast while the other element type’s contrast varies. For example, the vertical line marked
‘one element only’ consists of patterns in which the contrast of element type 1 is held constant at zero
while the contrast of element type 2 varies. This is referred to as ‘one element only’ since only one
element type (the element type whose contrast varies) can be seen — the other element type has zero
contrast (that is, it is the same as the background).

Along any right diagonal line in this space (thick gray lines), the underlying stimuli all have the
same difference between the contrasts of the two element types. This is a constant-difference-series
of stimuli. For example, the thick gray line marked ‘both elements identical’ consists of patterns in
which the two element types have the same contrast, so the constant difference between the element
types is zero.

At any particular contrast-ratio-angle the ratio of the contrasts of the two element types is constant.
For example, the vertical line marked ‘one element only, 45 degrees’ has a contrast-ratio-angle of 45
degrees. The diagonal line marked ‘both elements identical, 90 degrees’ has a contrast-ratio-angle of
90 degrees. An intermediate contrast-ratio-angle of 71.57 degrees is also shown. Note the contrast-
ratio-angle is taken with respect to the negative diagonal.

Consider the space of element contrasts as sketched in Fig. 3. The contrast
of one element type is shown on one axis and the contrast of the other element
type is shown on the other axis. A big black dot in the diagram represents a
stimulus composed of elements at those two contrasts. The contrasts are in arbitrary
(positive) step units (which will be defined for each particular task). Each of the
thick gray right diagonal lines lies on top of a group of stimuli that are from a single
constant-difference-series.



214 S. S. Wolfson and N. Graham

The predictions for constant-difference-series results, from several classes of
models, are sketched in Fig. 4. Each curve shows the results from one constant-
difference-series (i.e. from the stimuli along one thick gray right diagonal line in
Fig. 3). The middle panel shows predictions from a model containing only (i) simple
linear channels and (ii) complex channels containing a piecewise linear rectification
at the intermediate stage (between the two layers of filters in the complex channel).
A down-turn at the end of the constant-difference-series with a common envelope
for all the curves (right panel) is indicative of a compressive nonlinearity (such as
normalization). An up-turn of the curves (left panel) is indicative of an expansive
nonlinearity.

Figure 4. Nonlinearity characteristics and curve shapes. Sketched predictions for constant-difference
experiments. (These predictions are redrawn from Graham and Sutter, 2000, Fig. 14.) The shapes of
these curves will depend on the expansiveness or compressiveness of the nonlinearities involved in the
processing (in particular, on the intensive nonlinearity and the intermediate nonlinearity between the
two layers of filtering in the complex channels). Expansiveness is characterized by an up-turn at the
ends of the curves (left panel) whereas compressiveness is characterized by a down-turn at the ends
of the curves (right panel).

Figure 5. Nonlinearity characteristics and more complicated curve shapes. Sketch showing
the predicted performance with a compressive intensive nonlinearity (normalization) and also an
expansive intermediate nonlinearity in the complex channels. (These predictions are redrawn from
Graham and Sutter, 2000, Fig. 14.) These predictions — and our results — show a downturn at the
ends of the curves preceded up an upswing at low contrast ratio angles.
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The predictions sketched in Fig. 5 show an up-turn of the curves (characteristic
of expansion) at low contrast-ratio-angles and a down-turn (characteristic of com-
pression) at high contrast-ratio-angles. These predictions are from a model having
an expansive intermediate nonlinearity in the complex channels and a normalization
network (see Graham and Sutter, 2000, for details and intuitions). Results from the
previously published work using subjective rating tasks are well accounted for by
such a model (Graham et al., 1992; Graham and Sutter, 1996, 2000). See those pub-
lications for further explanation of the predictions from constant-difference-series
experiments, including a discussion of area-contrast-tradeoff experiments, which
are important but we will not discuss further here for lack of space (Graham and
Sutter 1998, 2000; Sutter et al., 1989).

Overview of the study

We ran three detection tasks and two identification tasks using constant-difference-
series. All of the patterns were composed of vertical Gabor-patch elements arranged
in stripes. Small pieces of texture are shown in Fig. 6. In the piece of texture on
the left, the contrasts of the elements alternate with each row, producing what we
will call a horizontally-striped texture. (Horizontal refers to the arrangement of the
elements, not a property of the elements themselves.) In the middle is a piece of
uniform texture (that is, both types of elements have identical contrasts). And on
the right is a piece of vertically-striped texture.

There were five tasks as follows:

Region Identification. For this task we used patterns with ‘embedded rectan-
gles’. A caricature of a pattern with a vertically-elongated embedded rectangle is
shown in the left panel of Fig. 7. On each trial a pattern with an embedded rectangle

Figure 6. Pieces of the textures used in this study. The elements are always vertical Gabor patches.
On the left the elements are arranged in a horizontally-striped texture with one element type having
high contrast and the other element type having zero contrast (i.e. it is the same as the background).
In the middle is a uniform texture in which both element types have identical contrasts. On the right
the elements are arranged in a vertically-striped texture with one element type having high contrast
and the other element type having low contrast.
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Figure 7. Sketches of patterns. The little elements shown here represent the Gabor patch elements
used in the tasks. Actual pieces of texture are shown in Fig. 6.

On the left is one of the patterns used in the Rectangle Identification task. In this example
the embedded rectangle is on the left side, elongated vertically, and has a horizontally-striped
arrangement. The area outside the rectangle has a vertically-striped arrangement. In the task the
embedded rectangle could be oriented vertically or horizontally, and in one of three possible positions
for each of these orientations. One region always had a vertically-striped arrangement and the other
region always had a horizontally-striped arrangement.

On the right is an example of a vertically-striped pattern used in the other tasks (all Detection tasks
and the Stripe Identification task). Horizontally-striped patterns were also used in some of these tasks.

region is shown. The rectangle is elongated in the horizontal or vertical direction
and the observer indicates the elongated orientation of the embedded rectangle.

Stripe Identification. For this task, we used patterns with only one region (that
is, no embedded rectangle), as in the sketch in the right panel of Fig. 7. On each
trial a horizontally-striped pattern or a vertically-striped pattern is shown and the
observer indicates the orientation of the stripes.

Uncertain Detection. On each trial a horizontally-striped pattern or a vertically-
striped patterns or a uniform pattern is shown and the observer indicates the
presence or absence of stripes. The observer knows that there will be randomly
intermixed horizontally- and vertically-striped patterns.

Certain Horizontal Detection. On each trial a horizontally-striped pattern or a
uniform pattern is shown and the observer indicates the presence or absence of
stripes. The observer knows that all the striped patterns in the session will be
horizontal.

Certain Vertical Detection. The same as Certain Horizontal Detection but with
vertical stripes.
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Questions. We will ask for each of the five objective tasks whether the constant-
difference experiment results show the down-turn that is characteristic of normaliza-
tion and/or the up-turn characteristic of an expansive nonlinearity (as in Figs 4 and 5
and the results of previously published studies using subjective ratings; Graham et
al., 1992; Graham and Sutter, 1996, 2000).

We will also ask about the relationship of the three Detection and one Stripe Iden-
tification tasks to one another. Do models of complex (second-order) channels that
are analogous to common models of simple (first-order) channels account for these
results? What do these tasks have to say about several characteristics of complex
channels: In particular, are the outputs of different channels probabilistically inde-
pendent? Are the channel outputs labeled? Is an observer able to monitor some
channels but not others (showing an ability to selectively attend)? Is the observer
able to monitor all relevant channels (showing no attention capacity limitation)?

METHODS

This section contains details of the methods that were not included in the Introduc-
tion. The reader should be able to skip these details without loss of continuity.

Subjects

All observers — AD, GTM, OS, and UJT — were paid undergraduates. All
subjects except GTM had previous experience in texture segregation experiments.
All observers had normal or corrected-to-normal acuity.

Details of patterns and elements

Each pattern was a 15×15 grid of Gabor-patch elements (Fig. 6 shows 5×5 pieces).
Each Gabor-patch element was truncated to lie within a 64 × 64 pixel square (64
pixels subtended about 1 degree at the viewing distance used). The period of the
sinusoid in each Gabor-patch was 8 pixels, so the spatial frequency was about 1/8th
cycle per pixel, which was 8 cycles/deg. The full width at half height of the circular
Gaussian envelope of each Gabor patch was 16 pixels. This results in quite a bit of
‘blank’ space between elements. All Gabor-patch elements were in odd phase and
oriented vertically.

In the Region Identification task a rectangle was embedded in the background as
shown schematically in the left panel of Fig. 7. The rectangle was 7 × 11 elements
in size, oriented vertically or horizontally, in three possible positions (see Graham
and Wolfson, 2001, for details). One region was always vertically-striped and the
other horizontally-striped.

In the other tasks, the whole pattern was one region of horizontally-striped,
vertically-striped, or uniform texture. Small pieces of these textures are shown in
Fig. 6; a vertically-striped pattern is sketched in the right panel of Fig. 7.
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In the Stripe Identification task a vertically-striped or horizontally-striped pattern
was shown on each trial.

In the Uncertain Detection task, a vertically-striped, a horizontally-striped, or an
uniform pattern was shown on each trial. In the Certain Horizontal Detection task
only horizontally-striped and uniform patterns were used. In the Certain Vertical
Detection task only vertically-striped and uniform patterns were used.

Details of the element contrasts

The space of element contrasts is shown in Fig. 3. This space is really just a
subspace of all possible element contrast combinations. This particular subspace
is useful in exploring the nonlinearities in the underlying processing because the
expansiveness or compressiveness of the nonlinearities will change the shape of the
results in this subspace as sketched in Figs 4 and 5. Other parts of the subspace
are useful in determining other aspects of the underlying processes. See Graham
and Sutter (2000) for a sketch of the whole space of element contrast combinations
(Fig. 6 of Graham and Sutter, 2000) and predictions (Fig. 7 of Graham and Sutter,
2000).

The stimuli shown in Fig. 3 here as big black dots do not accurately represent the
stimuli used in this study. In particular, the number of constant-difference-series
(3 are shown in this figure), the length of the series (shown as 5 in this figure), and
the size of the contrast step (shown as 1 in arbitrary units) vary. Also, which element
type is called element 1 and which is called element 2 in such a diagram is arbitrary.

For all three Detection tasks, if one were to diagram their stimuli like Fig. 3, there
would be 9 dots on each of 4 lines. The size of the contrast step for both elements
was 5%. Thus the sizes of the constant differences were 0%, 5%, 10% and 15%.

For the Stripe Identification task there would be 9 dots on each of 3 lines. The size
of the contrast step was 4%. The sizes of the constant differences were 4%, 8%, and
12%. (The contrasts are smallest here because pilot experiments had suggested that
this is the easiest task.)

For the Region Identification task there would be 7 dots on each of 4 lines. The
size of the contrast step was 9%. The sizes of the constant differences were 9%,
18%, 24%, and 36%. (The contrasts are largest here because pilot experiments had
suggested that this is the hardest task.)

To clarify the constant differences and contrast-ratio-angles, here is an example.
Consider the 9% constant-difference-series for the Region Identification task. This
particular constant-difference-series is best represented in the diagram of Fig. 3
by the middle thick gray line. This series in our Region Identification task has 7
contrast pairs (dots), so it would extend from (0,1) to (5,6) rather than from (0,1) to
(4,5) as show in Fig. 3. If we convert from these arbitrary contrast steps of Fig. 3
to real contrast values, the contrast pairs in the Region Identification task are (0%,
9%), (9%, 18%), (18%, 27%), (27%, 36%), (36%, 45%), (45%, 54%), and (54%,
63%). These correspond to contrast-ratio-angles of about 45, 72, 79, 82, 84, 85, and
86 degrees.
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Details of experimental procedure and design

Each trial consisted of (1) a 500 ms low-contrast fixation point on a background at
the mean luminance of the patterns, (2) a 100 ms blank screen at the mean luminance
of the patterns, (3) a 100 ms stimulus presentation, (4) a 1000 + ms blank screen
at the mean luminance of the patterns until the observer responded (the observer
was not allow to respond until at least 1 second had passed for reasons discussed
in Graham et al., 1993, and Sutter and Graham, 1995). Feedback was provided
by high (wrong) and low (correct) beeps. The screen remained blank at the mean
luminance of the patterns until the observer pressed a key to start the next trial.

For the three Detection tasks the observer’s response was to indicate (with the
‘y’ or ‘n’ key) whether a striped pattern had been seen or not. There were 432
trials per session (presented in random order). Half of these trials were dedicated
to the zero constant-difference-series for which the correct answer was ‘n’; these
trials were distributed equally across the 9 dots in this series. The other half were
dedicated to the three other constant-difference-series (distributed equally across
dots) for which the correct answer was ‘y’. Each observer completed 4 or 5 sessions
in each Detection task.

For the Stripe Identification task the observer’s response was to indicate whether
the pattern was vertically-striped (‘up arrow’ key) or horizontally-striped (‘right
arrow’ key). There were 432 trials per session (presented in random order and
equally distributed across the 3 series each of 9 dots). All observers completed 5
sessions except for UJT who completed 3.

For the Region Identification task the observer’s response was to indicate whether
the embedded rectangle was oriented vertically (‘8’ key) or horizontally (‘4’ key).
There were 672 trials per session (presented in random order and equally distributed
across the 4 series each of 7 dots). All observers completed 5 sessions except for
UJT who completed 3.

Equipment and room details

Stimuli were presented on an Apple 17′′ ColorSync monitor (75 Hz refresh rate,
1280×1024 resolution) controlled by a Power Mac G3. The mean luminance of our
patterns was approximately 40 cd/m2. Stimuli were generated and presented using
MathWorks’ MATLAB with the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997). The monitor’s lookup-table was linearized. The viewing
distance, with unrestrained head, was approximately 86 cms.

RESULTS AND DISCUSSION

Normalization and expansive intermediate nonlinearity in the five tasks

Figure 8 shows results from the five tasks (columns) for four observers (rows).
Each panel plots performance (percent correct) against contrast-ratio-angle. (At
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Figure 8. Normalization results from the objective tasks. Results from 4 observers in the 5 tasks.
Task names are listed at the top of each column. The key under each task name shows the symbol and
line styles used for each constant-difference-series along with the value. The value is the difference
between the contrasts of the two element types in the series. (For example, at upper-left in the Region
Identification key, 36 means that the difference in the contrast between the two element types for all
points on that curve is 36%.) Observer’s initials are show to the right of each row. The shapes of the
constant-difference-series curves are very similar to the predictions in Fig. 5 from a model (like that
in Fig. 2) incorporating a normalization network and an expansive intermediate nonlinearity in the
complex channels.

any particular contrast-ratio-angle, the ratio of the two element-types’ contrasts is
constant.)

We also ran two observers in a constant-difference experiment using patterns
composed of Gaussian-blob elements and found the same general pattern of results.

The shapes of the curves in Fig. 8 have implications for the underlying processing
as shown in Figs 4 and 5. The down-turn of the ends of the curves (at high contrast-
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ratio-angles) indicates a compressive nonlinearity. The up-turn of the curves (at low
contrast-ratio-angles) indicates an expansive nonlinearity. The predictions in Fig. 5,
which match the data in Fig. 8 quite well, are predictions from a model (like that
in Fig. 2) with an expansive intermediate nonlinearity in the complex channels and
a compressive intensive nonlinearity in the form of inhibition among channels in a
normalization network.

Other results

Uncertainty effects for complex (second-order) channels are like those for simple
(first-order) channels. We are interested in the comparison of observer’s perfor-
mance in conditions of certainty versus uncertainty, that is, the comparison of per-
formance in the Certain Horizontal and Vertical Detection tasks with that in the Un-
certain Detection task. This is a standard type of experiment that has been done on
many dimensions (e.g. first-order spatial-frequency, in Davis et al., 1983; Kramer
et al., 1985; see also Graham, 1989, 1992, for models, and for results on other
visual dimensions). These experiments provide evidence about the probabilistic in-
dependence and labeled outputs of underlying channels as well as about possible
limitations to the observers’ ability to attend to particular subsets of channels. In
the case of the experiments reported here, the channels are complex channels and
the two subsets at issue are (i) the subset containing the complex channels having
second-stage filters sensitive to our horizontally-striped patterns and (ii) the subset
containing channels sensitive to our vertically-striped patterns.

The result we found is a common result on many dimensions: observers perform
somewhat (but not dramatically) less well when they are uncertain than when they
are certain. This result is seen for all of the observers except for GTM. (One could,
in principle, see this result in Fig. 8, but the difference in performance is too small
to be readily seen in this format. Further, to analyze this properly one needs to
compute d’ values to avoid misleading effects of response biases.)

This kind of small difference in performance between conditions of certainty
and uncertainty can be explained by a standard signal-detection model with the
assumptions — precisely analogous to the assumptions for simple channels — that
(i) these channels are noisy and probabilistically independent, and (ii) on each trial,
the observer can attend in parallel to all the channels that may receive stimulation on
that trial while not paying attention to the outputs of other channels. (In other words,
the observer can ‘exclude’ distracters or external noise with no capacity limitation.
This kind of attention need not be conscious, of course.) Note that this assumption
about attention requires that the outputs of the channels be sufficiently ‘labeled’ that
some process upstream can know which output comes from which channel so that
selective attention can occur. We see no reason, therefore, to suspect that there is
any more attention limitation for the complex channels processing static patterns
than for the simple channels doing so. (Processing of motion may be different in
this regard. See Ashida et al., 2001; Lu et al., 2000.)
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Although Jacob Beck was not directly involved in these uncertainty experiments,
they nonetheless reflect his long-term influence on research in perception. He
consistently pointed out — in publications, formal talks, and conversations —
the importance of considering whether visual processing was occurring in parallel
(without being limited by attention constraints) or not (see, for example, Beck, 1972,
1975).

Relationship of identification and detection by complex (second-order) channels.
The comparison of detection and identification performances (the three Detection
tasks compared to the Stripe Identification task) requires further results than
those shown in Fig. 8 in order to compare detection and identification results
appropriately. (In particular, the exact same contrast levels have to be used on all of
the tasks to be compared.) We have collected the necessary results for two observers
to date. These results are also consistent with the standard signal-detection model
with the assumptions that (i) the complex channels sensitive to the vertically-striped
and to the horizontally-striped patterns are probabilistically independent, and (ii) the
outputs of the channels are labeled sufficiently that some process upstream knows
which channel detected the stimulus. Ellemberg et al. (2004) have also reported
preliminary results consistent with these assumptions. (See Graham, 1992, and
Graham, 1989, chapter 10, for introduction to these models.)

Stripe Identification is the hardest task and Region Identification is the easiest.
If one considers an observer’s performance on a particular stimulus (at particular
contrast levels) for all five tasks, then one finds that percent correct is highest for
the Stripe Identification task and lowest for the Region Identification task. This
may not be immediately evident from Fig. 8 since we adjusted the contrast levels in
order to keep the results for all tasks in the informative range. However, note that
higher contrasts were used in the Region Identification task than in the other tasks
but did not produce superior performance. (Similarly, lower contrasts were used
in the Stripe Identification task than in the other tasks but did not produce inferior
performance.)

The observant reader might have noticed that there were more trials per session in
the Region Identification task than in the other tasks, so the low performance in the
Region Identification might be thought to be due to exhaustion. However, we ran a
control experiment in which the Stripe Identification and Region Identification tasks
had the same number of trials per session and the same contrast levels, and it was
still true that performance in the Region Identification task was much worse than in
the Stripe Identification task.

As explained in the preceding subsections, the inter-relationship of Stripe Identi-
fication and the three Detection tasks is as would be expected from standard signal-
detection models of multiple channels.

What is left to explain, therefore, is why the Region Identification task is so much
harder than the four other tasks. The difference can be considerable: For example, it
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is possible to find situations where the Region Identification performance is barely
above chance, say 65%, and Stripe Identification is essentially 100%. Or, Region
Identification performance is at chance but Stripe Identification is still at 85 or 90%.
At a qualitative level, this difference between the Region Segregation task and the
others does not seem surprising. To do the Region Identification task requires, at
the very least, processing of a wider area of the stimulus than do any of the other
tasks. However, the processes that are involved in integrating over this wider area
have not been explicated at anything like the level of rigor of the processes shown
in Fig. 2.

For the dynamics-of-normalization experiments described in the next subsection,
it is important to note the following: The Region Identification task (like the
subjective rating of region segregation we used in many earlier studies) may well tap
into additional higher-level processes not revealed in the Stripe Identification and
Detection tasks. However, the signature of normalization is just as well revealed in
these tasks as in the Region Identification task. Thus, we can use the more sensitive
Stripe Identification task for the further studies of normalization we are currently
engaged in and that are briefly described in the next subsection.

Dynamics of normalization. Very little is known psychophysically about the
dynamics of any contrast-gain-controlling process in any perceptual task. And yet
dynamic characteristics are a very good way of telling different candidate processes
apart. And, more importantly, dynamic properties are extremely important for the
functions of perception.

Previously we have investigated psychophysically the dynamics of retinal light
adaptation by using a flickering background stimulus (a flickering large disc of light)
to drive the light adaptation process and probing it with a brief-duration test stimulus
(a small disc of light); this paradigm proved very powerful in discriminating among
different models of light adaptation (Hood and Graham, 1998; Hood et al., 1997;
Wolfson and Graham, 2000, 2001a, b).

We have now generalized this paradigm in order to study the dynamics of the
normalization contrast-gain control process in texture perception. We are using
a uniform element-arrangement pattern — contrast modulating in time — as
the flickering background stimulus to drive the normalization process. We then
probe with a brief-duration introduction of a horizontally-striped or vertically-
striped element-arrangement pattern at various phases with respect to the temporal
modulation of the background pattern. The observer is required to identify the
orientation of the stripes in the probe (i.e. a Stripe Identification task). This
experiment is trickier than the light-adaptation experiments for several reasons,
but one is the limited range of contrasts available for the probe. Using a Stripe
Identification task, however, appears to offer us enough contrast range. For example,
one preliminary result is that, for some patterns, the temporal modulation of the
background stimulus appears to produce greater probe threshold elevation as the
temporal frequency of the modulation increases (up to at least 4 or 8 Hz). To what
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extent this effect represents action only of the contrast-gain-control processes rather
than of (retinal) light adaptation remains to be clarified, however.

SUMMARY AND CONCLUSIONS

A long series of published studies using element-arrangement textures (introduced
by Beck and colleagues in the 1980s) has revealed a number of properties of visual
pattern processing. Here we use element-arrangement patterns in five different
objective perceptual tasks to investigate several more fine-grained questions about
pattern processing. We find:

(i) The results of all five objective tasks replicate the results from subjective
rating procedures in showing both the compressive effect of a normalization
contrast-gain-controlling process and the expansive effect of the intermediate
nonlinearity in the complex (second-order) channels.

(ii) Comparisons of the Detection tasks (under conditions of certainty and uncer-
tainty) and the Stripe Identification task with one another suggest that the com-
plex channels are noisy and probabilistically independent, with labeled outputs
so that processes upstream can selectively attend to subsets and can identify
them. Further there is no apparent capacity limitation to this attention, at least
when only two subsets of channels are involved. The complex channels are like
the simple (first-order) spatial-frequency and orientation-selective channels in
this regard.

(iii) We have begun to use the most sensitive of the tasks (Stripe Identification) to
explore the dynamics of normalization.

Our current research benefits from, and our future research will continue to benefit
from, the visual patterns Jacob Beck introduced, the perceptual phenomena he
described, and the questions about visual processing that he raised.
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