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ON TUNING AND AMPLIFICATION BY LATERAL INHIBITION*

By Froyp RaTrirr, B. W. Kn1caT, AND NORMA GRAHAMT
ROCKEFELLER UNIVERSITY

Communicated December 16, 1968

Abstract.—Lateral inhibition in a neural network generally attenuates the
amplitudes of the responses to sinusoidal stimuli—both spatial and temporal.
For an inhibitory influence with an abrupt onset and an exponential decay in
time, and with a Gaussian distribution in space (the forms often assumed in
theoretical calculations), the attenuation is greatest at low temporal and spatial
frequencies. The attenuation diminishes with increasing frequencies until ulti-
mately the amplitudes of inhibited responses become equal to, but never exceed,
the amplitudes of the uninhibited.

For an inhibitory influence with a delay to the maximum in time or with eccentric
maxima in space, however, the amplitudes of inhibited responses to certain inter-
mediate frequencies may be greater than those of the uninhibited responses.
This “amplification’” results because the delay and the spatial separation ‘“‘tune”
the network to particular temporal and spatial frequencies; the inhibition is
turned on at the trough of the response and off at the crest, thus tending to
produce the greatest possible amplitude. The amplification has been observed
in one neural network, the retina of the lateral eye of Limulus. The basic prin-
ciples are general, and the effects may be expected in any system with negative
feedback.

The theory developed here illustrates some effects of spatial and temporal
distributions of inhibitory influences. It is based on earlier experimental analy-
ses of interactions among receptor units (ommatidia) in the retina of the com-
pound lateral eye of the horseshoe crab, Limulus. In the steady state !' 2 the
mth ommatidium, when illuminated alone, discharges optic nerve impulses at a
rate e,,. Because of the lateral inhibition, illuminating the rest of the eye will
produce a generally lower rate r,, which is given by the linear equation

T = €m — D) knmn(ra — 1%mn), (1
n#Em

where the r, are the rates of discharge of the elements other than r,; k.. are
constants specifying the inhibition for particular spatial separations of m and =,
independent of rate of discharge; and the summation extends over all elements
for which the rate of discharge is above the threshold of effectiveness 1,,,. Fur-
ther analyses have extended the theory to include the dynamics of lateral in-
hibition.?- ¢ Such a translationally invariant linear system may be characterized
by its response to sine-wave input. The response is a sine wave of the same
frequency, generally differing in amplitude and phase. The relationship of the
amplitude and phase of the output to that of the input is commonly called the

“transfer function’ of the system.
The diagonal lines in Figure 1 illustrate the steady-state operation of a linear
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neural network, such as that represented by equation (1), in which the lateral
influence is inhibition (to simplify the illustration, effects of thresholds of inhibi-
tion are omitted). Also shown are the responses to a sinusoidal modulation of
the input. (For a retinal network, an example of an input sinusoidally modu-
lated in time is a flickering light where the intensity is a sinusoidal function of
time ¢; an example of an input sinusoidally modulated in space, in one dimen-
sion, is a pattern of striations where intensity changes sinusoidally along the
spatial axis z, perpendicular to the stria.) If the modulation is very slow in
time or very much spread out in space (long wavelength in ¢ or z), the temporal
characteristics of the inhibitory influences or the spatial characteristics of the
inhibitory field may be neglected. Under these conditions any output, inhibited
or uninhibited, would be given simply by drawing a reflection of the input from
the appropriate steady-state input-output curve, as illustrated.

Thus, for very low frequency inputs, the difference between maxima and minima
in the response is less with inhibition than without inhibition. Accordingly, the
expectation has been that the amplitude of the response of an inhibited system
cannot exceed the comparable response without inhibition. Indeed, as the fre-
quency increases, the amplitude of the inhibited response to a sine wave in-
creases and must eventually become the same as the uninhibited. This happens
because the wavelength of the stimulus at the higher frequencies is short com-
pared to the extent of the inhibitory field or the duration of the influence.

As a result of the attenuation of the amplitudes of the responses to low fre-
quencies, inhibition will produce a low-frequency cutoff in the transfer function.
In general, there is also a high-frequency cutoff resulting from other mechanisms
(Fig. 5), and so the network is “tuned” to the intermediate frequencies. Note,
however, that the limit on this best transmission is fixed by the difference be-
tween the maximum uninhibited response and the minimum Znhbited response.
If the inhibition could be turned completely off at the crests of the modulation
of the input and completely on at the troughs, the output would be amplified as
indicated by the dotted curve in Figure 1. A tuning of the system to particular
intermediate wavelengths in either space or time can actually lead to such an
amplification.

In order to make a comparison of various functions easier, the following modi-
fication of equation (1) is used:

r(a,d) = e(x,t) — S da’ Jtodt'k(z — 't — t)r(z’, ). (2)

Output
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Here r(z,t) is the response at spatial position z and time ¢, e(z,t) is the stimulus,
and k(z — 2/,t — t’) is the amount of inhibition exerted by the ommatidium at z’
at time ¢’ on the ommatidium at = at time ¢.

In this model the amount of inhibition exerted by one point on another depends
on the response at the first point. A reasonable alternative is a system where
the inhibition depends on the stimulus at a point, rather than on the response.®
This is expressed by integration over ¢ rather than r:

r(x,t) = e(x,t) — o da’ fL di'k(x — 2';t — e l). (3)

In line with earlier terminology,® we will call equations (2) and (3) “recurrent”
and ‘“nonrecurrent’’ systems, respectively.

A recent investigation” of the spatial distribution of inhibition in the Limulus
eye showed that inhibition is greatest, not at points immediately adjacent to
the inhibiting ommatidium,®® but at some distance from it. This observed
distribution of the inhibition %k as a function of distance z from the inhibited
ommatidium is closely approximated by the difference between a broad Gaussian
distribution and a narrow one.

For this and for a simple Gaussian inhibitory field, the transfer functions for
responses to spatial sinusoids by both recurrent and nonrecurrent networks were
caleculated by the usual techniques of linear systems analysis. As expected
(Fig. 2), the responses to low spatial frequencies are always depressed by in-
hibition, and for high frequencies the inhibited response approaches that of
the uninhibited. For intermediate frequencies, however, there is a difference
in the behavior of the two networks. One amplifies the response (i.e., the ratio
goes above unity) and the other does not. Note that there is little difference
between the recurrent and nonrecurrent networks.

Mathematically there is a straightforward answer to the question of what
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F1a. 2.—Normalized transfer functions for examples of symmetrical unimodal (left
graph) and symmetrical bimodal (right graph) inhibitory fields k(x) in a nonrecurrent
network (upper graph) and a recurrent network (lower graph).
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produces amplification in the spatial case. Since the stimulation is constant as
a function of time, r(x,t) and e(x,t) are the same for all ¢ and can be written as
r(z) and e(x). Equation (2) for a recurrent system becomes

r(x) = e(x) — [ (@) [fimk(x — 't — t’)dt’] da’. (4)

The inner integral is a function only of the distance x — 27, indicating the total
amount of inhibition being contributed by point 2’. This will be called
k(z — ). Itis equivalent to the coefficient k.., in the usual steady-state equa-
tions (1). Kquation (4) now becomes:

r(x) = e(x) — JS r@)ke(x — x')dx’. (5)

By taking Fourier transforms of both sides and dividing by the transform of the
input, one obtains

J—
W1 o
@ 1+ i)

where 7(w) is the Fourier transform of r(z) as a function of frequency w and simi-
— — — )
larly for e(w) and k(w). Therefore 7(w)/e(w) is the transfer function of the sys-

. . — —
tem. In general, the Fourier transforms »(w) and e(w) are complex numbers
with the absolute values representing the amplitude (crest-trough distance) of
the response and the angular coordinate in the complex plane representing the

phase of the response. However, in this case, 7(w) and e(w) have the same phase

because k is symmetric, so that the ratio r(w)/e(w) is the real ratio of peak-trough
distances.
The nonrecurrent equation (3) can be transformed in the same way to give

@ —~
25 =1 = f(w). (7)
e(w)

Now assume that the total amount of inhibition £(0) (which equals the integral

p—
of k(z) over all x) is less than unity so that the absolute value of k(w) is always
less than unity. With this assumption, the condition for amplification can be

easily stated: Amplification occurs if and only if 75(7;3 is negative for some w.

The following analysis of the effects of the inhibitory time course on the re-
sponses to stimuli that vary in time, but are uniform in space, bears close formal
similarities to the above analysis. Equation (5) is replaced by

r(t) = et) — St k@t — t)r@)dt, (8)

and equations (6) and (7) follow, as before, where now ]E(:)/ is the Iourier trans-
form of the inhibitory time course k(¢) rather than of the spatial distribution of
inhibition.

The one evident difference from the spatial case is that & no longer is sym-
metric. In equation (8), only the past history of r, and not its future, influences
its present value so that where 7 < 0, k(7) = 0. This means that the point at
which the sinusoidal response reaches its crest may differ from that of the stimulus
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by a phase shift. This is reflected in a complex-valued transfer function whose
angular coordinate represents the phase shift. Two examples of inhibitory
time courses and the resulting transfer functions for a recurrent system are
shown in Figure 3. The phase advance at low frequencies, like that shown in
the figure, is typical of inhibitory feedback, as inhibition is already shutting off
the response by the time the stimulus reaches its maximum.

As is evident from the examples in Figure 3, if k(f) has a maximum away from
t = 0, then amplification may occur at a frequency about reciprocal to twice the
time to the peak of the inhibition. Qualitatively, the reason is the same as for
the spatial case above.

A variety of time courses for the inhibitory influences were examined by vary-
ing the parameters in the following general expression:

Ofort < 7

k(t) = — n —
K- (f—ﬂ> exp (— L ”) fort > 1, ©)
n! Td Td

where K is the total or steady-state inhibition, 7, is the latency before onset of
inhibition, 74 is the relaxation time for final decay, and n indexes the order of
onset (n = 0 abrupt, n = 1 linear, n = 2 parabolic, etc.). The time courses
in Figure 3 are n = 0 and n = 3 from this family. The parameters r4 and n are
less easily grasped than the peak time (the time until the maximum inhibition)
and spread time (the “standard deviation’”) of the time course defined by

.- |=7]" (10)

)

which also characterize the time course.
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Frg. 4.—Families of normalized
transfer functions obtained by changing
the delay to the onset (4), the delay to
the maximum (B), and the spread of
inhibition about the maximum (C).
Inset in each graph shows the time
course of the inhibition. The double-
headed arrow indicates the parameter
that is changed. The single-headed
arrows indicate direction of shift of
amplitude and phase curves as the
parameter is increased. (The Nyquist
instability criterion is exceeded in the
single case where the phase continues
to advance at high frequencies.)
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The temporal transfer function changes, as expected, with inhibitory latency,

peak time, and spread time (Fig. 4).

be checked experimentally in the eye of Limulus.

A longer latency (4), or a later peak (B),
or a narrower spread (C) gives a stronger amplification maximum, and a longer
latency also enhances secondary extrema in the transfer function.

This theory of the response of an inhibitory network to temporal stimuli may

The total inhibitory influence

in this case is composed of self-inhibitory (k) and lateral inhibitory (k;) com-

ponents:

]C(t) = ks(t) + kl(t)i

) = Fnlw) + Koo,

(11)

(12)
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Both k, and k; may be measured directly'® and the measured functions may be
matched fairly well to ones coming from time courses in the equation (9) family
by the following choice of parameters:

For self-inhibition, K = 3, 7; = 0, 74 = 0.5 sec, n = 0.

For lateral inhibition, 7; = 0.1 see, 74 = 0.3 sec, n = 0.

The total lateral inhibition, determined by the size of the flickering spot illumi-

nating the eye, is K = 0 for a small
and K = 3 for a large spot. Figure
54 shows the generator-spikes trans-
fer function for small and large spots
predicted from equation (6). (The
falling-off of the small-spot curve near
10 cps is due to a complication that
arises when the driving frequency ap-
proaches the mean interspike fre-
quency.) With the large spot (and
the resulting lateral inhibition) there
is amplification of responses to inter-
mediate frequencies.

In the Limulus eye, there is a con-
version from light stimulus to genera~
tor potential that occurs prior to the
inhibitory network. Itstransfer func-
tion can also be measured directly!®
and is plotted in Figure 5B (for the
same mean light intensity as in A).
Since the output of the transfer func-
tion in B is the input to that in 4,
multiplying the transfer functions in
A and B together gives a predicted
transfer function for the complete
light-spikes conversion which is plot-
ted in Figure 5C.  Also plotted in C'is
a transfer function for the complete
conversion that was measured directly
from another preparation under simi-
lar conditions.’? In the phase data
(not shown), the agreement between
theory and experiment is equally
good.

The principles underlying tuning
and amplification are general, and
similar effects may be expected to
occur in any system with negative
feedback. For example, Kelly*® ob-
served a similar amplification in the
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Fr1a. 5—Comparison of theoretical and ex-
perimental results.

(A) Theoretical generator to spikes transfer
function (solid line) for no lateral inhibition—
that is, a small spot of illumination; and the
corresponding transfer function (dashed line)
for lateral inhibition—that is, a large spot of
illumination.

(B) Observed light to generator transfer
function.

(C) Theoretical light to spikes transfer
functions (A times B) for small spot (heavy
solid line) and for large spot (heavy dashed
line). Experimental results for small spot
(filled data points, thin solid line) and for large
spot (open circle data points, thin dashed line).
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temporal frequency response of the human eye. (Although he attributed the
observed effects to ocular tremor, he noted that any other retinal mechanism
capable of providing the necessary spatiotemporal interactions would account
equally well for the effects.) A similar amplification has also been observed in
the transfer function of xerography.* It is worth noting, in conclusion, that
there is a possibility that reversible variations in the tuning of neural networks
in the central nervous system could provide a means for the storage and retrieval
of information.

The transfer function shown in Figure 5B is based on an experiment carried out by
Jun-ichi Toyoda. We also wish to acknowledge the assistance of F. A. Dodge, Jr.,
Norman Milkman, and H. K. Hartline.

* This research was supported in part by a research grant (B864) from the National Insti-
tute of Neurological Diseases and Blindness, U. S. Public Health Service, and by a research
grant (GB-6540X) from the National Science Foundation.
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