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Abstract—Recent psychophysical resulis of Shapley and Tolhurst and of Kulikowski and King-Smith
have suggested that the visual system contains broadband channels fike “edge detectors” and “line )
detectors™ as weil as relatively narrowband “spatial frequency” channels. These recent results (including -
thresholds for.aperiadic stimuli} can be completely explained using only refativély narrowband channels
with- probability summation among them. This explanation’ requires many fewer {ree parameters than
the original explanation based on both broadband and narrowband channels. The bandwidths of the -
individual narrowband channels cari be estimated and are similar to those previously estimated from

sine-wave summation experiments,

INTROD UCTION

A number of early attempts to model the human
visual system used single-channel models, In single-
channel models, the important stage of the visual sys-
tem is a collection of receptive fields all of the same
kind (eg size). Although this kind of “madel can
account for a number of ‘visual phenomena, it is in-
adequate for many others. In particular, this kind of
model has not been-able to account. for the' results
of some threshold-summation ‘experiments in which
the detectability of a compound stimulus- i compared
to the detectability of each of the components of the
compound stimulus (e.g. Campbell and Robson, 1968
Thomas, 1970; Graham and Nachmias, 1971; Sachs,
Nachmias and Robson, (971},

To account for the results of these threshold-sum-
malion experiments as well as for other phenomena,
multiple-channels models have
{Campbell and Robson, 1968; Pantic and Sekular,
1968; Thomas, 1970; Kulikowski and King-Smith,
1973). In multiple-channels models there are receptive
fields of many different kindg {of, for example, many
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? The word “detector” witl be used, as Shapley and Tol-
hurst (1973) and Kulikowski and King-Smith (1973) used
(it to refer to a single receptive field. Thus a channel is
made up of many detectors, Notice that both a patticular
channel and the receptor fields (detectors) making up that
particular channel will respond 1o the same range of spatial
{requencies, o : Lol

* Jacob Nachmias first pointed out to ‘me. the. possible,
implications of probability summation for £xplaining the,

experimental results of Shapley and. Tollyrst: (1973} and.

Kulikowski and King-Smith (1973). I am’ grateful to him

and to Robert Shapley, John Robson, Dave Tothurst,.

Ewen King-Smith and Janusz Kulikowski for miary inter-
esting discussions. Don Hood and Bernice Rogowitz read
a dralt of this paper and made many useful suggestions.
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been | suggested

different sizes and orientations). In the terminology
10 be used in this papet, cach chanmel of a multiple-
channels model contains a collection of receptive
fields of the same kind (e.g. size and- orientation) with
the positions of the ‘receptive fields distributed uni-
formly across the visual field,

Within the framework of multiple-channels models,
the question naturally arises as to what the character-
istics of the various ‘channels are, Shapley and Tol-
hurst (1973) and Kulikowski and King-Smith (1973)
did threshold-summation experiments .using com-
pound stimuli composed of sinusoidal (narrowband)
and aperiodic (breadband) spatial stimuli, They inter-
preted their results in terms of various ‘classes of chan-
nels or detectors,® some responding to a relatively
narrow band of spatial frequencies and some to a
broad band. As will be shown here, however, these
sarme experimental results might be equally well inter-
preted in terms. of only one class of detector or chan-
nel, those responding to relatively narrow bands of
spatial frequencies,

The reason for the difference between the conelu-
sion of Shapley and Tolhurst {(1973) and Kulikowski
and King-Smith (1973) and the conclusion reached
here'is in thé assumption about varizoility. The ori-
ginal investigators assumed that there is no indepen-
dent variability in the responses of different recéptive
fields——therefore, a given stimulus is always detected
by the same receptive field, the' most sensitive one.
One might equally well assume, however, that there
is independent variability in the responses of different
teceptive fields or, at least, of receptive fields in differ-
ent channels. Therefore, on one trial one channel -may
dotect 4 given stimulus while on another trial, another
channel may. This alternate assumption will be called
the assumption of probability summation among
channels.? ' :

How probability summation among only relatively
narrowband channels might account for the ‘experi-
mental results of Shapley and Tolhurst (1973) and
Kulikowski and King-Smith (1573) is explained with-
out using mathematics in Graham (1977). A rather
simple but approximate guantitative prediction of
some of their experimental results is also explained
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there. An exacl quantitative prediction of most of
their experimental results (including thresholds for
aperiodic stimuli) is reported in the present paper.
Use of the convenient mathematical form for psycho-
metric functions that was suggested by Quick (1974)
allowed these exact predictions to be derived, In the
process, an estimate of channel bandwidth and some
information about how many channels respond to a
pure sine was obiained.

ASSUMPTIONS OF THE PROBABILITY
SUMMATION MODEL

The seven major assumptions used in this paper
are introduced and discussed in the following sec-
tions. The first' three of the seven assumptions are
basic to the mode! being tested, the model of prob-
ability summation among multiple, relatively narrow-
band channels, The second four assumptions were the
minimal reasonable set of assumptions that could be
found that would allow predictions to be calculated.

A glossary of the symbols and special terms used
in this paper is presented as Appendix 2 for reference.
The symbols will also be defined as they are intro-
duced in the following. In any case, the reader can
skip all equations and most symbols and still under-
stand the main points, .

A few general introductory comments may help make
the symbols iess conlusing, ¢ will refer to the contrast of
a stimulus, f to a spatial [requency, P to a probability,
and R to a response magnitude. § refers to a sensitivity
where a sensilivily is, as is conventional, the reciprocal
of a threshold measure.” :

Many symbols will contain both an argument in paren-
theses and a subscript—for example, Ri{f) designates the
magnitude of- the response of the ith spatial frequency
channel to a sine of frequency i The argument in paren-
theses always refers to the stimulus involved either by
name or, if the stimulus is a sine-wave, by frequency, When
the subscript is a single character, as in R,([), the whole
symbol will refer to some property of a channel and the
subscript indicates which of the channels it is. In two cases,
the subscript will be the word test and the precise defini-
tion will be given later. When thers is no subscript, the
symbol will refer to-a property of the visual system as
a whole. For example, 5(/f) is psychophysica! contrast sen-
sitivity, that is, the reciprocal of the observer's comtrast
threshold for a sins-wave of frequency f,

Assumption 1. Probability summation ameng multiple
channels :

It will be assumed {a) that an observer detects a
stimulus whenever at least one of the muitiple chan-
nels detects a stimulus, and (b) that the variability
in different channels is completely uncorrelated. Or,
formaily, letting P(stim) be the probability that the
observer detects the stimulus, P;(stim) be the prob-
ability that the /th channel detects the stimulus, and
N be the total number of channels, it is assumed that

Plstim) = 1 =TT [l = P,(stim)]. {1}
i=1

In words, the probability of the observer's detecting
a stimulus is just one minus the probability that no.

* Many of the technical arguments briefly described here
are described more fully in an unpublished manuscript
avaitable from the suthor,
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channel detects it. And the probability that no chan-
nel detects it is just the product of the probabilities
of each channel's not detecting it.

There is considerable experimental support for this
assumption about the multiple channels, at least for
the channels involved in sine-plus-sine experiments
(Sachs et al, 1971),

Assumption 2. Linear channels

To be able to calculate the response of individual
channels to different stimuli, one must know some-
thing about” the properties of individual channels.
Three simple, linear properties will be assumed here,

First property: linearity with contrast. The response
of a channel will be assumed to vary linearly with
contrast of the stimulus, Let c{stim) be the contrast
in the stimulus and- S;(stim) be the sensitivity of the
ith channel to that stimulus (the reciprocal of the con-
irast threshold of that channel for that stimulus), then
the response of the ith channel to that stimulus is
a number that equals contrast time sensitivity, ie.

R;(stim) = cfstim)- §;(stim}, 2)

Second property: additivity of responses to test and
sine. The test-plus-sine experiments of concern here
always invelved combinations of 4 test stimulus and
sine-wave grating in additive or subtractive phuse.
That is, the sine-wave was always in either exactly
the same phase or exacily the opposite phase as the
component jn the test-stimulus of the same frequency.
A channel’s response to such a test-plus-sine com-
bination will be assumed tc equal either the sum {if
additive phase) or the difference (if subtractive phase}
of the channel's responses to the test and to the sine
alone. Writing the responses to the test and to the
sine as in (2) and using the convention of allowing
the sign of the sinc-wave contrast to indicate phase
{sign is positive il additive phase and negative il sub-
tractive phase), this second property can be expressed
as .

Rf{test with sine) = e(test)- S;(test) -+ efsing)- §, (sine).
' (3}

Third property:- response to apericdic test stimuli,
To calculate the responses of a linear channel o any
arbitrary stimulus, one can use the methods of Four-
ler enalysis. For the case of relatively narrowband
channels and broadband stimuli (e.g. aperiodic stimu-
L}, an excellent approximate solution can be simply
obtained.* This approximation, within the framework
of the other assumptions, will allow the derivation
of & relationship from which one can estimate the
best-fitting parameters, in particular, the bandwidihs
of the channels. Thus, the bandwidths will not need
to be speeified in advance,

According to this approximation, the sensitivity of
the ith channel to & broadband test stimulus equals
the sensitivity of the channel to its best frequency
[3i{f), where £ is the best frequency of channel i]
multiplied by:the amount.of its best frequency con-
tained in the test stimulus [measured by F,._ (/)
which is discussed further below] multiplied by the
channel's equivalent bandwidth (W, further defined
below). Or, formally

Sftest) = W Si(f)- Fi. (/). (4}




Visual detection of aperiodic spatial stimuii

The measure of amount of frequency contained in the
test stimulus, F, (/) is closely related to. the Fourler
transform of the test stimulus. In particular, if L{x} is the
luminance profile of the test stimuius adjusted. so that the
peak minus trough luminance equals 1.0, then F (/) is
four times the absolute value of the Fourier transform of
Lix) at frequency f* : ’ o

The equivalent bandwidth W, is a common measuré of
bandwidth and equals the area under the channels sensi-
tivity {unction divided by the sensitivity of the channel
al its best frequency, or [
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If the channel has a rectangular sensitivity function {is uni-
formly sensitive to all frequencies it has non-zero sensi-
tivity to), then the equivalent ‘bandwidth equals the ull
channel bandwidth. If the channel has a triangular sensi-
tivity funetion, the equivalent bandwidth is the width of
the frequency range for which the channeél's sensitivity is
greater than one-hall the peak sensitivity.

Since (4} is strictly true only if the Fourier spectrum
of the test stimulus is absolutely flat within the chan-
nel's frequency range and if the phase characteristics
of stimulus and channel are appropriately matched,
some calculations (see footnote 4) were done (using
Fast Fourier Transforms) to check the accuracy of
this expression for realistic channels and test stimuli.
The accuracy was extremely good. The property (4),
therefore, will be assumed to be true for all the chan-
nels and aperiodic stimuli discussed below.

The three properties described- above are strictly
true (see footnote 4) for a patticularly simple kind
of linear channel. {The second property is trus only
for limited ranges of contrast but- that is sufficient)
This simple kind of channe] consists-of receptive fields
that act lincarly (ie.- that follow ‘the superposition

W, =

rule, as has been conventionally -assumed). In addi-

tion, (a) there is no -uncorrelated variability in the
responses of receptive fields located at different spatial
positions within the channel (so there is no probabitity
summation across space) and (b) the response of the
channel equals the response of the maximally res-
ponding receptive field.

The three properties described abaove are also ap-
proximately true for other kinds of linear channels

{sez footnote 4).-In particular, as is described further

in the Discussion section; they are approximately true
of a channel in -which there is uncorrelated variability
in the responses of receptive fields located at different
positions so there is probability summation across
space. b et

*This factor of four comes from two sources, each of
which contributes a factor of two. The first factor comes
from the definition of contrast used by Shapley and Tok
hurst and Kulikowski and King-Smith for aperiodic stimu-
li. The standard aperiodic stimulus when computing Four-

ier translorms has a peak-trough difference of one, but

the standard sine-wave wave has a peak-trough diflerence

of two. Therelore, the standard aperiodic stimulus has enly’

hall the contrast of the standard sine-wave. The second
saurce of a lactor of 2'is that, in general, the Fourier trans-
form values for both positive and negative frequencies
must be added togethér, but in the above expression, only
the positive frequency is used. - -
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Assumption 3. One bandwidth per frequency

All channels having the same best frequency will
be assumed to have the same bandwidth, This is in
contrast te Shapley and Tolhurst’s and Kulikowski
and King-Smith’s approach that allowed both nar-
rowband channels (for detecting sine-waves)  and
broadband channels (for detecting aperiodic stimuli)
at the same best frequency. .

Assumption 4. Quick's psychometric function

Assumption 2 specifies the relationship between
magnitude of a channel’s response and stimulus con-
trast. In order to use assumption 1, however, the rela-
tionship between probability of detection and stimu-
lus contrast must be specified. Frequently, this rela-
tionship is described by a cumulative Gaussian, a
function that is very difficult to work with. Quick
{1974) suggested the following form which is close to
a cumulative Gaussian and much easier to use. Let
P,(stim) be the probability of the ith channel’s detect-
ing the stimulus, then it will be assumed that

Py{stim) = | — 2 Ritatimp*
=1 - 27Id3'|mi'31(llim)]k! (s)

where k is the parameter that determines the steep-
ness of the function and is assumed to be the same
for all channels. Notice that P,(stim) equals one-half
when the response of the channel, R,(stim), equals
1.0.. This is consistent with equation (2) in making
Si(stim) equal to the reciprocal of the contrast necess-
ary for P;(stim) te equal onc-half:

Invariance property, Using the function specified in (5),
the psychophysical ‘psychometric functions for all stimuli
are predicted to have exactly the same shape on the log
contrast axis. This invariance can be shown easily by com-
bining the equation specifying probability' summation (1)
with the equation specifying Quick’s function (5) and doing
simple algebraic manipulations. Remember that P(stim) is

the probability of an observer’s detecting the stimulus. One
finds that

P(Sti.m} = ] - 2.-ln{nim)3(nlm)l“’ (6J
where ' )

N 1
S(stim) = {Z 5 [stim)“} . 6]
i=1 :

Notice that S(stim) equals the observer’s sensitivity to the
stimulus, ie. the reciprocal of the contrast producing a
probability of detection by the observer of 50%.

Green and Luce (1975) have proved that functions
of the above form (the base need not be 2) are the
only ones having this invariance property.

The. predicted psychophysical psychosmetric func-
tion {6) has the same shape on the log contrast axis
for every stimulus since only a mmuitipiicative constant
is affected by the stimulus. This invariance is at least
approximately true in the available data. Tn fact, the
predicted psychophysical function has the same shape
as that of the function (5) for an individual channel.
The parameter & can be estimated, therefore, from
the observer’s psychometric function for any stimulus.
A kof 4 or 5 provides a good fit to many functions,
to those reported by Sachs et al. (1971), for example.

Alternative interpretation in terms of nonlinear summation.
As Quick (1974) discusses, ‘the expression in {7) suggests
an aiternative but, within the present context, equivalent
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assumption to replace the assumption of probability sum-
mation. Perhaps the variability in the responses of different
channels is perfectly correlated bui the responses are
actuaily added to each other in a nonlinear summation
consistent with the expression (7). In this alternative inter-
pretation, the variability in the observer's responses would
come from a later stage of visual processing. Since this
ahernative interpretation makes the same predictions as
the probability summation assumption ¢oupled with
Quick's psychometric function, the two interpretations
cannot be distinguished from each other by the kind of
data to be discussed here,

Assumptions S and 6. Continuity in channel character-
istics

Fortunately, in making predictions for the test
plus-sine experiments, it was not necessary to make
assumptions about exactly how many channels exis:
or about the sensitivities of the whole set of channels
to the test stimulus. Some simplifying assumptions
had to be used, however, in order to make the equa-
tions tractable. It is reasonable, on the basis of exist-
ing evidence, to assume that nothing about the chan-
nels or their responses changes too quickly as you
move from one frequency 1 ancther, and that chan-
nels are close enough together in best frequency so
that there is no obvious discreteness. Two assump-
tions specifying particnlar aspects of such continuity
proved sufficient. Their rigorous mathematical formu-
lations are given below.

Assumption 5, Nearby channels” response to rest stimulus.
Roughly, nearby channels are channels having best [re-
quencies close to each other, Rigorously, two channels |
and j are nearby if they both have non-zero sensitivity
to the same sine, ie. if there exists some [requency f for
which both §(f) and 5,(f) are greater than zero.

The assumption made about nearby channels is that
they are equally sensitive to a broadband test stimulus.
Formally, assumption 5 states that

Siftest) = S ftest) (%)

il channels ¢ dnd f are nearby. : :

As is clear from equation (4), this assumption would
be exactly true if (a) nearby channels had the same band-
width and peak sensitivity and (b} the spectrum of the
test stimulus were flal throughout the [requency range
occupied by the nearby channels. Since both {a) and (b)
are approximately true for nearby channels, the assump-
tion is reasonable, One might expect, however, that this
assurnption would be violated in frequency regions where
the psychophysical contrast sensitivity function is changing
quickly [so {a) will not be true] and in frequency regions
where the spectrum of the tesl stimulus is changing quickly
[so (b} will not be true],

Assumpiion 6. Close enough channel best Jreguencies, Ts
it necessary lo assume that, for any arbilrary frequency
Ja there is a channel which has its best frequency exactly
al f;? Fortunately not. Instead it-can be assumed that the
most sensitive channel (o the arbitrary frequency f, has
its best frequency near that Irequency. Or, formally, let
a* be the channe! which, of all channels, is most sensitive
to f,. Remember that, by previously introduced notation,
Jo i the best frequency of channel o* (that is, it is the
frequency which, of all frequendies, is responded to best
by channel ¢*). Assumption 6 simply states that the fre-
quencics /; and f, are ciose to each other, How close is
close? Close enough that the sensitivity of channel g* to
both frequencies £ and f. is approximately equal, and
close enough that test stimuius contains the same amount
of bolh frequencies, These condilions will certainly hold,
with room 10 spare, if {1} and (b) mentioned under wssump-
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ton 5 hold. In general, assumption § is reasonable for
4 model having multiple narrowbang channels,

Assumption 7. Identical minimal sets of sensitivities to
a sine

Sachs et al. (1971), and others, simplified their
theoretical calculations by assuming that only one
channel responded to a pure sinusoidal grating. That
assumpticn, which was initially used here, was
rejected later because it was shown to be in conflict
with some test-plus-sine data (see below). Assump-
tions 7, 5, and 3 were used instead because they were
the simplest substitute that could be found. Assump-
tion 7 is like an assumption that sensitivity functions
for different channets are the same “shape™ although
not necessarily of the same bandwidth or the same
peak sensitivity. “Shape”, however, is not a precise
description of what is assumed constant, and assump-
tion 7 does not actually deal with the sensilivity
functions of individual channels. Instead, it somewhat
restricts the sensitivities of different channels to a
single sine.

To present assumption 7, the notion of a mirtimal
set of sensitivities is convenient. First consider the set
of numbers which is a list of the sensitivities of all
the channels to a particular frequency. Then normal-
ize all those numbers so they eXpress sensitivity rela-
tive 10 the most sensitive channel, ie. the numbers
in the list are multiplied by the factor necessary to
make the largest number equal to 1.0. Remove all
the zeros from the list. Now the set is a list of all
the non-zero relative sensitivities to the particular fre-
quency. In some cases, this is the minimal set. How-
ever, if this set of non-zero relative sensitivities con-
sists of & sub-set which is repeated twice or more,
the subset is actually the minimal set. For example,
if the set of non-zero relative sensitivities consisted
of three 1.0s, three (.55 and three Q.3s, then the mini-
mal set would be the three number subset containing
1.0, 0.5 and 0.3. This minimal ser captures the infor-
mation that one-third of the channels responding at
all respond maximally, one-third respond ai one-half
maximum, and one-third respond at (hree-tenths
maximam. In shozt, it throws away information about
the absolute level of sensitivities and about the aclual
number of sensitive channels, and keeps information
about the pattern of sensitivities across channels,

Assumption 7 states that the pattern ol sensitivities
across different channels to a single sine is the same
for all [requencies of sine, or, formally, that the' mini-
mal set is the same for all frequencies of sine.

Four possible minimal sets were considered in the
development of the madel, Examples of each are illus-
trated in Fig. | by plotting the relative sensitivity of
twenty channels to a single sine wave, Relative sensi-
livity is plotted on the vertical axis. The twenty differ-
ent channels are represented by different positions on
the horizontal axis. For lustrative purposes, the
twenty channels were arranged in a sensible order
on the horizontal axis (although their order does not
matter) and a smooth curve drawn throngh the indivi-
dual points. The reason for the names attached to
each case should be apparent in the shapes of these
curves.

A minimal set of relutive sensitivities is indicated
for cach case by the filled-in circles. For the three
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Fig 1. Tliustrations of four possible distributions of difer-
ent channels' relatjve sensitivities to a single sine wave,
In each case, 20 channels (indicated along the horizontal
axis} have non-zeto sensitivity to the sine wave. The sensi-
tivity of each channel to the sine is given on the vertical
axis (normalized so that the most sensitive channel's sensi-
tivity equals one). In each of the four cases, a minimal
set of relalive sensitivities (defined in text) is indicated by
closed circles; the duplicates of the minima) set are indi-
cated by open circlks. The minjmal set for the rectanguiar
¢ase is 11}, For the convex case itis {174, 12, 12, 3/,
3/4,3/4, 1, 1, 1, 1}. For the triangular case it jg {110,
410, 3/10, 4/10, 5£10, /10, 710, /10, 9/10, 1}. For the
concave case it is {174, i/4, 174, 1/4, 172, 172, 172, 344, 3/4,
.

cases other than the rectangular case, the minimaj
set consists of half of the 20 relative sensitivities. For
the rectangular case, however, since ail 20 numbers
are the same, the minimal set is the one-member set
containing the number 1.0, The case where only one
channel responds to a sine, therefore, is an instance
of the rectangular case.

Whether assumption 7 is reasonable or not is un-
clear. However, the effects of assumed minjmal set
on the predictions of the model are easy to keep track
of and, further, are not great. The only effect will
turn out to be on a parameter g, the value of which
is linearly related to predicted sensitivities, The only
effect on o, at least for the range of cases shown in
Fig. 1, is less than a factor of 2. A factor of 2 s
a very small portion of the range of sensitivities pre-
dicted by the made].

Assumption 7 implies that « is the same for all
frequencies. A more formal presentation of minimal
sets and related material is given in Appendix 1.

DEVELOPMENT OF THE PROBABILITY
SUMMATIQN MODEL

Predictions for test-plus-sine contrast Interrelationship
functions '

The bulk of Shapley and Tolnurst's (1973) and
Kulikowski and King-Smith's (1973) results came
frony test-plus-sine cxperiments, experiments in which
thresholds were measured for combinations of aperio-
dic test stimuli and sinusoida) gratings. The results

v 118

for a particular test stimulus and particular irequency
of sine wave can be given as a comtrast interreigtion-
ship function, For each contrast in the sine, this func-
tion gives the contrast needed in the test stimulus
for the combination of test and sine to be at thresh.
old. In order to present the predictions of the prob-
ability summation model for these contrast interrela.
tionship functions, it wili be useful to define two new
concepts.

Equivalent number of channels. If all channels hav-
ing non-zero sensitivity to a sine of {requency f, have
equal sensitivity (the rectangular case), then the equiv-
alent number of channels just equals.the number of
sensitive channels, If the channels sensitive to the sine
are unequally sensitive, however, then the equivalent
number of channels will be less than the number of
channels sensitive to the sine, Rigorously, M2 tne
equivalent number of channels sensitive to a sine of
frequency £, is defined as

X
M{ = (“———Sm) ) )
Sn‘{fa)
Remember that a* is the channel, of all channels, that
is most sensitive to frequency 7,

Importance index. Bach test-sine pair can be charae.
terized by a single number which proves 1o be very
useful in calevlating predictions from the probabitity
summation model. This is a number which is, on an
intuitive level, a measure of how important the chan-
nels sensitive to the sine are in the detection of the
test stimulus, This number will be called the impor-
tance index, I(f,, test) and is defined as lollows

E, .
[/ test) = Mo Sellestft
E Sj([est)"‘
i=t

(10}

A particularly easy interpretation of this impor-
tance index exists for the special case where {a) all
channels that respond to the sine respond equally to
it (i.e. the tectanguiar case) and (b) all channeis that
respond to the test stimulus respond equaily to it
For example, suppose that channels 1-100 respond
equally o the tesr stimulus and no other channels
respond to it at all. Supépose that the first 10 channels
respond to the sine (ME = 10) and no others respond
1o it at all. The denominator of the importance index
will then be the sum of 100 terms, each equal to the
Se(testf term in the numerator. So the value of the
importance index will be 10/100. Qr, in general, the
importance index for this special case will equal the
fraction of the lotal number of chanrels sensitive to
the fest stimulus that is also sensitive to the sine.

The predicted function. To calculate the predictions
of the probability summation model for test-plus-sine
conirast interrelationship functions requires only
straightforward algebra. One finds an expression giv.
ing the contrast in the best stimulus necessary for
the test-and-sine combination to be at threshold [i.e.
for Pltest-and-sine) 1o ba 0.50] as a function of con-
trast in the sine wave. The derjvation of the general
formule is given in Appendix I and depends only on
assumptions 1, 2 (the first two properties), 4, and 5.

As it turns out, any contrast intcrrelationship func-
tion predicted by the model is specified completely
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il three pieces of information are known: {a} k, the
parameter determining the steepness of the psycho-
metric function, {b) the minimal set for the sine fre-
quency, and {c} I(f,, test), the imporiance index for
the particular sine and fest stimulus involved. To put
this fact in another way, once the steepness of the
psychometric function and minimal set have been
specified, al] possible contrast interrelationship fune-
tions predicted by the mode! form a one-parameter
family. The parameter is the importance index. This
reduction to a one-parameter family is a consequence
of the nearby-channels assumplion 5 and is what
makes that assumption so useful. There are probably
other assumptions that would lead to a similar reduc-
tion, but this one'is sufficient.

The solig lines in Fig. 2 are part of the family of
functions for k equal to 5 and the rectangular case,
The axes in Fig, 2 give relative contrast. The relative
contrast of & stimulus is just contrast divided by psy-
chophysical thresheld for the stimulus or, equiva-
lently, contrast multipiied by psychophysical sensi-
tivity for the stimulus, clstim} S(stim). Four functions
are shawn in Fig. 2, those for importance indices of
10, 05, 033 and 0.2, An infinite number of other
functions exist for other values of the importance in-
dex, of course. The significant point, however, is that
only one function exists for & given value of the im-
portance index,

The curvature apparent in the solid lines of Fig.
2 is not an inherent property of the general prob-
ability summation model, but is a result of the
assumption of rectangular minimal set. The predicted
functions straighten out when' several channels are
sensitive 10 the sine but sensitive to different extents,
as is true for the concave case and an importance
index of 0.157 (dotted line in Fig. 2}.

Predictions for the sensltivity of the test-stimulus detec-
tor, Sl:!l(f]

For most combinations of test stimuli and sines,
Shapley and Tolhurst and Kuiikowski and
King-Smith did not collect full contrast interrelation-
ship functions. Rather, they collected only two or
three points on these functions {ie. used only two
or three contrasts of sine wave) and then did a linear
extrapolation. The result of this linear extrapolation
was a quantity they called the “sensitivity of the test.
stimulus detector to the sine™ for reasons which are
explained in Kulikowski and King-Smith (1973) and
in Graham (1977, Operationally, this quantity is g
measure of how much the threshold for the test-sti-

® For very small values of the importance index, which
oceur in situations where the channels that respond o the
sine wave respond hardly at ali to the test stimulus, the
power relationship fails, Instesd, at small values of the im-
portance index, the predicted relative sensitivity on the left
side of the power law equation {11) asymprotes at a non-
2ero value. The asymptote is the value expected from prob-
ability summation when the channels that respond to the
sine wave do not respond at afl to the test stimutus (0,014
when the exirapolation pair is ¢ and 0.5, 0.007 when the
pair is ~0.5 and 0.5).

This power law is an extremely good description of the
sensitivities produced by the computer calcelations. | sus-
pect it could be praven analytically, but I do not know
a proof.

NoRMA GRAHAM

mulus was lowered by the presence of the sine-wave,
It will sometimes be referred to here, therefore, as
“the effectiveness of the sine-wave in lowering the
threshold of the teststimulus”. The symbol that wil]
be used for this quantity is Sl f) where the subseript
test refers 1o the particular test-stimulus and the argu-
ment fis the frequency of the particular sine.

The predicted power law. Families of COntrast inter-
relationship functions like the family of solid lines
in Fig. 2 were calculated using & computer for various
minimal sets and steepnesses of psychometric func-
tions (values of k). Linear extrapolation was then
done from a pair of points on these functions in the
manner of Shapley and Tolhurst and Kulikowski and
King-Smith. This extrapolation yields the predicted
value of S,..(f), the predicted sensitivity of the test-
stimulus detector to a sine (i.e. the effectiveness of
the sine in lowering the threshold for the test stimu-
lus),

An extremely convenient rela tionship emerged from
these caleulations. In particular, according to the
probability summation model, the test-stimulus detec-
tor's sensitivity to & sine (relative to the observer's
sensitivity to that sine) is a power function of the
importance index for the particular test stimulus and
sine involved:®

S/
In words, the more important the channels sensitive

to the sin¢ are in the detection of the test stimulus,
the more effective the sine is in lowering the threshold

= a[I(f,, test)]¥. (i)

)
Rectangular case
1.5 1=
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%
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Fig. 2. Examples of contrast interrelationship [unctions
predicied by the probability summation among chanpels
model. Contrast in the test and sine stimuli relative 1o
their own thresholds are given on the vertical and horizon-
tal axes, respectively. Each point on 4 curve represents
& combination of test stimulus and sine stimulus that is
just at threshold. “The solid lines are predictions from the
rectangular case of the model; the dotwed line fram he
concave case. The number next to each curve gives the
importance index of the test-plus-sine combination produc-
ing that curve. The parameter 4 determining the steepness
ol the psychometric function was always 5
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Table L. Values of multiplicative constant « and exponent
£ in power law for different minimal sets, values of the
steepness parameter k, and extrapolation pairs

Extrapolation pair

0, +0.5) @, +02) (-05 +0.5
o ] o £
Rectangular
k=35 L1 033 1.0 0.70 10 047
k=4 11 033 1.0 0.58 Not
calculated
k=3 1.1 033 LG 049 Not
calculated
Conrex
k=35 13 033 Not 1.25 047
calculated
Triangular
k=5 1.6 033 Not 1.6 047
calculated
Concave
k=13 1.7 033 Not 1.9 047
calculated

for the test stimulus. The exact relationship between
the two quantities is a power law.

The values of the constants « and # are given in
Table | for particular minimal sets, steepnesses of
psychometric function (k's) and pairs of points used
in the linear extrapolation. Three pessible pairs of
points were used in the linear extrapolations: the pair
(in the third column of Table 1) usually used by Shap-
ley and Tolhurst an¢ Kulikowski and King-Smith
containing the two points where the relative contrast
of the sine was either —0.5 (negative phase) or +0.5
(positive phase); a pair that may have been used by
the original investigators where the relative sine con-
trast was zero ot 0.5; and 2 third pair tried out of
curiosity where the relative sine contrast was zero or
0.2. These pairs will be called extrapolation pairs. As
can be seen in Table 1, both « and § depend on
the exirapolation pair and on the steepness par-
ameter. For a given extrapolation pair and steepness
parameter, the value of £ does not depend on which
minimal set is assumed; the value of o does but varies
by less than a [actor of 2 as the minimal set is
changed.

Making the power law testable. In order to use the
power law in (11) to make quantitative predictions
for the data, one must be able to calculate the impor-
tance index for cach combination of test and sine.
It is moderately easy to change the expression for
the importance index into a form~that is closer to
being calculable. Consider the S,.(test) term in the
numerator of the definition (10) of the importance

" Nothing in the development of the power function,
however, demanded assumption 3, In [fact, according to
that development, there might be many channels other
than a* that are sensitive to f, And these others could
have different bandwidths, The cnly restriction on the
bandwidths is that all the channels sensitive to f, must
be equally sensitive to the test stimulus {assumption 5).
Thus, the product of each channel’s bandwidth times its

peak sensitivity must be approximately constant [see equa-
tions (4) and (8)].
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index I(/,, test). By the third property () of the linear

channels stipulated in assumption 2 applied to chan-
nel a*,

Sr(tCSl] = Wan 'Sm(fr)'Flest(fa')-

By assumption 6 (close enough channel frequencies),
fu can be substituted for £ in the above expression
for Sp(test). Then, in the definition (10) of the impor-
tance index, Su(test) can be replaced by the above
equivalent number of channels, MZ, no longer appears
replaced with the quantity it equals by definition (9).
These substitutions yield

H’;"S a '-Flc:: a *
I(f,. test) = ('—(ér(t]_esi)_'—U}) ,

In this new expression for the importance index the
equivalent number of channels, M, no longer appears
explicitly. [t appears implicitly, instead, as part of the
psychophysical contrast sensitivity S(f)).

Substituting this new expression for the importance
index into the power law in (11) gives

Sien(fa) - a("{a' S0 F:ul(fa))n*l

S0/ S{test) {2

This new form of the power law is quite manage-
able as it contains only two variables, « and W
which are not either observable in the data or caleul-
able from knowledge of the experiment. S.,(f.
Sftest), §{ ), and & are observable in the data; F_,(f,)
is calculable from knowledge of what the stimulus
is, and § is known [rom the steepness parameter k
and the pair of points used in the extrapolation. The
value of o depends on the minimal set. The value
changes by less than a factor of two, however, for
the minimal sets investigated. Further, since the mini-
mal set is assumed to be the same lar all frequencies,
(assumption 7), the value of z will not depend on
the frequency of sine-wave used. The bandwidth par-
ameter (W) of the most sensitive channel for fre-
quency f, might well depend on frequency, however.
It will be the major free parameter in comparing the
model’s predictions of §,..(f) 1o data.

Notice that we will be working with only one chan-
nel bandwidth (W..) for each frequency. This practice
is consistent with assumption 3 that there is only one
bandwidth of channel at each frequency.’

Predictions for test-plus-test experiments

Shapley and Tolhurst and Kulikowski and King-
Smith alsc did scme test-plus-test experiments in
which the thresholds for combinations of two aperio-
dic test stimuli were measured. It is not easy to deal
with this kind of experiment in general using the
model described above. But caleulations of results for
special cases can easily be done.

COMPARISON OF MODEL AND DATA

Shape of the test-plus-sine conirast interrelationship
functions

Although Shapley and Tolhuarst (1973} and Kulik-
owski and King-Smith (1973) published few complete
test-plus-sine  contrast interrelationship functions,
their published data strongly suggest that the empiri-
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For cach panel, the test stimulus used is shown as an inset in
lower -twa curves are predictions of the pidbability summation

among channels.model for §,,,(f). The predictions from all cases of the model {rectanguiar, concave,
etc,) are the same. The upper curve in éach panel is the psychaphysical contrast sensitivity function,
. e . S(f), shown for comparison, -~ . ...~ . - . :

cal functions -are not ‘as curved as the functions pre-
dicted by the rectangular case of the probability sum-
mation model (solid curves; Fig. 2). The small degree
of curvature in the functions predicted by some other
cases,” however (e'g, the dotted lirie in Fig. 2) is cer-
tainiy compatible with' existing ‘data. " , '

The rectangular case of the probability summation
model, including the subcase where only oni¢ channel
responds to a’sine, can be rejected, therefore, on the
basis of the shape of the contrast intetrelationship
functions. Other cases of ‘thé probability summation
model are consistent with- this data, o '

Sensitivity of test stimulus detectors, 5,,,(f)

~ A second way of evaluating the model's fit 1o data
is illustrated in Fig.'3. The points in ihe figute are
the sensitivities of test stimulus detectors, the Sl f}
data, from Shapley. and Tolhurst’s experiment (lower
right panel) and Kulikowski and King-Smith's experi-
ment (other panels). The small insets iilustrate the
particular test'stimuli used. There is a good deal of
difference between the results for an edge coilected
by Kulikowski atid King-Smith (upper ‘middle panel)
and those collected by’ Shapley and Tolhurst (lower
tight ‘panel). This ‘differénce will feappear- later as a
difference in the paraméters of the model. The upper
curve is the ordinary psychophysical contrast ‘sensi-
tivity function {the function drawn through the sensit-
ivities of the observer to different frequencies of sine,
i.e. the 5(f) data]. The lower solid and dashed curves
are predictions of §.,,(f) from the probability sum-
mation mode] derived using the power law in (12)
(details below), ... i -+

Overall, agreement between the data and the
model's predictions is extremely good. There may be

small but consistent discrepancies at-extreme frequen-
cies, that is, the predicted-functions may be somewhat
narrower than the. observed ones. These discrepancies
may result from the inadequacy.of assumption 5 (the
nearby-channels - assumption) _in frequency ranges
where.the test-stimulus spectrum and/or the psycho-
physical. . conirast. sensitivity function is changing
quickly.-Also, experimental error is larger for these
extreme. frequencies: because. the ratio of Sl ) to
S(f).is.Jow:. In any case, the overall agreement is
much.more impressive than the :discrepancies. Both
the.frequency most effective in reducing the test-sti-
mulus threshold [i.c. the frequency at the peak of the
Sieulf) function] and the range of somewhat effective
frequencies are. almost ‘perfectly.. predicted by the
probability summation model. o

:To make the predictions shown in Fig. 3 required,
8t most, one free parameter: for each aperiodic stimu-
lus plus one free parameter for each frequency of sine.
To fit thé same data in.the. way done by the original
investigators (assuming broadband channels and no
probability: summation). required, .in effect, one par-

“ameter for.each data point {one.for each combination

of test stimulus and: frequency. of sine) which, in the
case of Kulikowski and’ King-Smith’s study, is ap-
proximately five times as many as used in Fig. 3.

Detoils of making the predictions.in Fig. 3. Since the
thresholds for the test-stimulus alone [the Sitest) data]
were not known for all test stimuli and -since, as will be
discussed. further. below, these thresholds are mare closely
related to.channel bandwidih than are the Syl f) data,
it was decided to fit the 8,.(f) data. without using the
Sitest) data, . . -, .. e s

Instead, the following adjustment was made in the power
law (12}. The bandwidth W, at frequency £, was expressed
as a constant (called the relative bandwidth w,) times the
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Table 2. A possibie decomposition of parameters used in predictions in Fig. 3. Available S{test) data

a=11 f=1033

=10 fe=047 Data
'
W W
W t - w Sltest S(test
Sest) Sesth  Sreed {test) (test)
Kulikowski and King-
Smith )
Blurry bar 0.011 1.4 127 " 0013 2 150 -Unknown
Edge 0.01& 14 88 0.019 2 105 15
Wide bar 0017 14 84 0.020 2 o9 100
Narrow bar 0.152 14 ¢ 0.183 2 11 10
Triphasic blip 0.054 14 26 0.125 2 16 Unknown
Shapley and Tolhurst i
Edge ' 0375 310 0.0016 050 310 310

0.0012

bandwidth at 1.0 c/deg (called W). Then equation (12) can
be rewritten as follows in order to separate (a) the known
quantities from (b) the parameter depending on sine-wave

{requency from (c) the parameter depending on the test
stimulus:

Sialfa) = S(f)- (FenlFa): S(J‘;J]“

- W\
X [wa]f x Q(S[test]) .

Remermber that the steepness parameter & can be known
from independent data since it is determined by the steep-
ness of the psychometric function. For the predictions
shown in Fig. 3, k was set equal to 5. A_value for & of
4 would also be consistent with the available psychometric
functions (Sachs et al, 1971). The predictions of §,.,(/)
using a k of 4 are slightly better than those shown in Fig.
3. Also, § is known once k and the extrapolation pair
have been specified. In fact, the solid curve predictions
in Fig, 3 result from assuming 8 equals 0.33 [the extrapola-
tion pair (0, 0.5)] and the dashed curves from f## equals
0.47 [the extrapolation pair (0.5, +0.5)]. The psychophy-
sical contrast sensitivity Miction §{f) is independent data
that was collected by Shapley and Tolhurst and Kulik-
owski and King-Smith and so is known. And the spectrum
Fleulf) is determined by the test stimulus, Hence, for each
frequency f,, the leftmost factor in the right side of the
above expression is known. )

The middle factor, however, contains the relative band-
width parameter w, that must be chosen for sach frequency
fo The following choices were made. For Kulikowski and
King-Smith's experiment, the relative bandwidth par-
ameter w, was assumed fo be constant (equal -to 1.0) at
all frequencies, For Shapley and Tolhurst’s experiment, W,
was assumed tc be proportional to frequency. This differ-
ence between relative bandwidths in Shapley, and Tol-
hurst's and in Kulikowski and King-Smith’s experiment
will be discussed later at length. The right-most “factor
above is the parameter that was left free to vary sepataiely
for each test-stimulus and its actual value can be recovered
from Table 2. ' :

11 the probability. summmation model is ultimately to be
accepted, the most conservative approach 1o the counting

® In fact, by making an assumption about the density of
channels along the spatial frequeney axis, one can reduce
the number of parameters still further by requiring only
one parameter for all test stimuli instead of the one par-
ameter for each test stimulus {see footnote 4). This is how
the fits in Fip. 3 were actually done. In the process, one
gets an estimate Telated to channél density. The density
estimate is extremely unstable however, that is, a large

© range of values produces satisfactory predictions; There-
fore, the details of this procedure are not presented here.

of frec parameters is overestimation rather than underesti-
mation of the number. The larger the number of frae par-
ameters, the more difficult it is to accept the model. As
mentioned before, the number of free parameters involved
in making the predictions of Fig. 3 was, at most, one [ree
paramster for each frequency (relative bandwidth) plus one
free parameter for each test stimuijus.

If the probability summation model is ultimately 10 be
rejected, however, the most conservative approach is un-
detestimation of the number of free parameters. The
smaller the number of free: parameters, the harder it is
to reject the model. The actual freedom involved in making
parameter choices was much less than the above acecount.
ing acknowledges. First, relative bandwidths were not
chosen independently for different frequencies. On the
basis of previous data, it was decided that relative band-
width would either be constant acrass frequenciss or in-
crease in direction proportional to frequency. Second, the
parameter depending on test stimulus® (the right-most fac-
tot in the above equation) must be decomposabie into
reasonable values of a, S(test), and bandwidth at 1 c/deg
(W). Such a decomposition is-carried out in Table 2 and
the available S(test) data are presented for COMmparison to
show thal the values are reasonable. Table 2 assumes the
minimal set is rectangular. If other minima)l sets are used,
the estimate of bandwidth at 1 ¢/deg (W) becomes smaller

~ by a factor of 1.5 or less.

Independence of S,.,(f) predictions from absciute band-
width and minimal set : :

It can easily be shown that the predictions of
Siesd /) are independent of the absolute value of band-
width. Consider what would happen if the bandwidth
of every channe! in the model were suddenly dou-
bled, that is, if Wwere doubled. The observer’s sensi-
tivity to broadband test stimuli [S{test)] would also
double since, by (4), each channel’s sensitivity would
double and, by (7), therefore, so would the observer's
sensitivity. Thus, the right-most factor in the above
equation (the parameter depending on test stimulus)
would remain unchanged, and so would the predicted
Sien(f) for all frequencies and test stimuli. Thus, the
Sees(f) data by themselves can tell us nothing about
the absolute vailue of bandwidth, only about the rela-
tive values at different frequencies. The eomparison
of the §...(/) data with the S(f) data, however, does
give information about absolute bandwidth, and is
described in the next section.

Sensitivity to the test stimuli and bandwidth estimates

The method described in the last section for eva-
luating the probability summation model had the
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advantage of directly comparing predictions to the
data for the sensitivities of test-stimulus detectors
(Fig. 3). The method described in this section uses
both that data and the. data for the sensitivities of

the observer o the test stimuli [S{test}]. This method

allows ove to see clearly- exactly -whal would- be
required 1o reject the probability summation model
and also allows one to obtain directly an estimate
of bandwidth at each frequency. )

As discussed earlier, the power law in the form of
equation (12) i an almost parameter-free prediction
of the probability summation model: only &, which
depends on channel shape, and the bandwidth W
are free to vary. It will be usefu] 1o rearrange (12)
50 that the bandwidth W, is isclated on the left side;

140 k]
o (™ g

1 )liulkm.rm"' U
Prrrd IR (Y B
- . o '. - . 'IFtesl(f;} .
 Suppose the contrast sensitivity function S(f) and
also the complete data for one fest stimuius, i.e. S(test)

K

and’the function 'S,.(f), are known. Suppese also,

as will be supposed for the rest of this discussion,
that the steepness parameter k and the extrapolation
pait are known, Then, choose a particular minimaj

set so that o ig determined, It is'now possible to com--

pute from equation {13) the bandwidth patameter W,
for each frequency of sine f,. o
Another wayof looking at this fact is that, in the

above situatic_m,' in which there is data from only one

test stimulus, it is impossible to reject the probability

summation medel, For each frequency, a value of the .

bandwidth can be found which will make the three

kinds of data {$( ;’.),"S(tcst), Suul )] compatible with .

each other,.::.: - R S

-In order to reject the probability summation model,
thercfore, one must have data from at least two test
stimuli; Then independent computations of W, for
a single frequency f, can be made using the data from
different test stimuli, The computations from different
test stimuli should agree if the model is correct, since
bandwidth is supposed to be a fixed characteristic
of the channel having a given best frequency. If they
do not, agree, the model can be rejected. (Changing
the’ assimed miniral set and thereby changing the
value of. ¢ changes the calculated bandwidths by the

same amousit for ali, frequencies and all test stimuli.
The 'choice. of o s, therefore, irrelevant ‘in: this test

of the'model), " .~ T B
Figure' 4 shows, the. bandwigth parameters calcu-
lated for different frequencies and for different test
stimuli from. the data. of Shapley and Tolhurst (left
panels) and Kulikowski and King-Smith (fight panels,
different test stimuli shown by different insets®). The
top panels, (f = 047) come from the extrapolation
pair (—~05, 0.5) and the bottom panels =033
from the pair (0, 0.5), The value of the steepness par-

® Points for the two extreme frequencies 'used with ‘the
triphasic blip have been omitted from Fig. 4. The data

they derive fram are’ inherently extremely variable, since

the measured .ratio.of .S, () to -8(f) was very low for
these twoipoints.. ... ... .. ... . .
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-+ Frequercy, . - c/deg

Fig. 4, Bandwidth parameters (as a function of {requency)
esimated from the S,,,(f).data, the S(test) data and the
probability summation ‘ameng channels model. The band-
width ‘parameters estimated from Shapley and Tolhursts
deta for an:edgs stimulis are shown in the left half of
the figure. Those estimated from Kulikowski and King-
Smith's data for five different’ test stimuli are shown in
the right half. The difference betweeen the estimates in the
top hall of the figure and those in the bottom hall are
explained in the text. All the estimates were made using
the rectangular case of the model. If the bandwidth par-
ameter ¢stimates had been made using some other case
shown in'Fig, 1.'they would all have been smaller by the
same factor of less than 1.5, If the handwidth estimates
had been made assuming the existence of probability sum-
mation across space, they would have been somewhat
larger.- The open symbols are from- the two test stimuli
for which S(test) was not known; thus the vertical position
of each of the two kinds of open symbols was free to vary.
LRSS N o I :

ameter 'k was 5. The solid symbols are from test
stimuli for which all relevant data were known, and
the open symbois for test stimuli for which Sitest)
was not given. When S{test) was not known, the
values could be caleulated only up to one multiplica-
tive constant, so the vertical, position of each set of
open symbols was arbitrarily chosen. .

The bandwidih. estimates -shown in Fig. 4 were
computed - assuming-- a ‘- rectangular  minimal set
because that ‘minimal set’ produces -the largest band-
width estimates, The effects’of assuming other mini-
mal sets are’easy ‘to state. Changing the minimal set
increases & by"a factor of less than 2 (Table 1). In-
creasing.« decreases the estimated bandwidth for all
frequencies and all test stimuli by the same amount
[equation (13)]: If « increases by .a factor of 2, the
bandwidth parameter- decreases by a factor of 1.5
when k# = 5 x 0.33 (bottom panels Fig. 4) or a factor
of 1.34 when kft = 5 x 0.47 {top panels). Thus the
absotute: values of bandwidths shown in Fig. 4 may
be overestimates by a factor of less than 1.5, -

The agreement in Fig. 4 (tight half) between the
bandwidths calculated from the five stimuli used by
Kulikowskj and King-Smith is very good, particulariy
for [requencies greater than 2 ¢/deg. What discrepan-
cies there are may..be due to experimental error or
to minor. inadequacies in the model {e.g. the nearby-
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channels assumptions may be violated at extreme fre-
quencies). There is a decided difference between the
form of the function relating bandwidth to frequency
for the Kulikowski and King-Smith data (almost con-
stant with frequency) and for the Shapley and Tol-
hurst data (increasing dramatically with frequency).
This discrepancy cannot, however, be taken as evi-
dence against the probability summation model. The
discrepancy might be true bandwidth differences due
to the use of different observers or different mean
luminances. It might also be an artifactual result of
Kulikowski and King-Smith's small field size. Field
size is, in fact, an important variable and its possible

consequences are described in the Discussion section. -

Not anly is there agreement among the bandwidth
estimates calculated from different test stimuli (Fig.
4) but there is also rather good-agreement between
these estimates and previous estimates of chamnel
bandwidth from sine-plus-sine experiments (Sachs et
al, 1971; Lange, Sigel and Stecher, 1973; Pantle,
1973; Quick and Reichert, 1975: Kulikowski and
King-Smith, 1973; King-Smith and Kulikowski,
1975}, '

King-8mith and Kujikowski (1975) recently collected
data for the sensitivities of test-stimulus deteclors, 5..(f),
using more different test stimuli. The various test stimulj
used in this recent study did not contain significantly over-
lapping ranges of spatial frequency. As is therefore
expected on the basis of the probability summation mode],
the frequency ranges whers the measured Seylf) functions
were definitely greater than zero did not overlap signifi-
cantly either. Thus, these data also are consistent with the
probability summation model. However, since the fre-
quency ranges did not overlap and-the Sftest) data were
not available, neither the shape of the function relating
bandwidth estimaie to [requency nor the absolute values
of the bandwidth could be compared across test stimul;
to test the probability summation model more rigorously.

There was, howsver, one interesting aspect of the band-
width estimates computed from King-Smith and Kulik-
owski (1975). For the couple of test stimuli containing spa-
tia] frequencies between 1 ard & o/deg, the bandwidth esti-
males increased in proportion to frequency as did those
from Shapley and Tolhurst’s study but not those from
Kulikowski and King-Smith's (1973) eatlier study. The
fiekd size used in this later King-8mith and Kulikowski
study (7.5%) was large, more like the size used by Shapley
and Tolhurst {5.5°) than that by Kulikowski and. King-
Smith (2.5%). } :

Threshold for the test stimuli alone. 1t is important
to notice that the agreement in Fig, 4 among ' the
absolute values of W’s for different test stimuli involves
two kinds of data: S,.,(f), the test-detector sensitivi-
ties; and Sitest), the psychophysical sensitivity for the
test stimulus alone. Thus, for the test stimuli for
which S(test) was given (the solid symbols in Fig, 4),
the measured values of Sitest) have been shown to
be consistent with the probability summation model.

Test-plus-test data

Kulikowski and King-Smith (1973) and Shapley
and Tolhurst (1973) showed some experimental
resaits for combinations of edges with lines and lines

'*“Channe! bandwidih™ used in the context of prob-
ability summation across space still refers to the bandwidth
of the frequency response of the receptive fields making
up the ¢hannel
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with lines. These results alsc can probably be handled
by the probability summation model,

The experimental results were what the original in-
vestigators expected on the basis of their test-plussine
experiments assuming the existence of breadband
detectors and no probability summation. To use one
concrete example, they found that the effectiveness
of a line in reducing the threshold for an edge is equaj
to the sum of the eflectivenesses of the sinusoidal
components of the line, It would be more work than
seems worthwhile to calculate the complete predic-
tions for these test-plus-test experiments using the
probability summation mode] (assumnptions 1-7). It
s easy to argue, however, on the basis of some sample
calculations, that the test-plus-test data are probably
consistent with the .probability summation model. It
is easy to show, for exampie, that the effectiveness
of 2 compound stimulus which is the sum of a large
number of equally effective sinusoidal components is
approximately equal to the sum of the eflectiveness
of the components (for a wide range of numbers of
channels and kinds of broadband stimuli). If the same
additivity of effectiveness holds with uregually effec-
tive sinusoidal components, as seems likely, the test-

plus-test results would be successfully predicted by
the probability summation modet

DISCUSSION
The possibility of probabifity summation across space

There may be probability summation among recep-
tive fields located at different spatial positions within
a single channel as well as among receptive fields in
different channels (King-Smith and Kulikowski, 1975;
Stromeyer and Klein, 1975; Graham, 1877). Such
probability summation across space would occur if
the channels were like those described at the end of
assumption 2 except that there was uncotrelated vari-

ability in the responses of receptive fields located at
different positions,

Test-plus-sine results, How could the general prob-
ability summation mode! above {(assumptions 1-7)
handle the possibility of probability summation
across space? The only modification would need to
be in assumption 2 which postulates completely linear
channels. A number of computer calculations were
done (see footnote 4} to investigate how well the three
propertics of assumption: 2 do in describing a version
of the model including probability summation across
space. In fact, the three properties describe it well,
The computer calculations suggest that the predic-
tions computed from assumptions 1-7 {Fig. 3) are
very close Lo the predictions that would be obtained
from a version of the model that explicitly and accu-
rately included probability summation across spage,
The version with probability summation across space,
therefore, can accurately account for the test-plus-sine
data (including thresholds for the test stimuli alone).
If the version including probability summation across
space is actually correct, however, the bandwidths W
estimated in Fig. 4 and Table 2 are underestimates
of the channel bandwidth.!® How great an underestj-
mate is extremely difficul: to say because the band-
width estimates and the estimates of the area over
which probability summation occurs seem to be hea-
vily interdependent.
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Sine-plus-sine results. I probability summation
across space is the correct assumption, the bandwidth
estimates originally made from sine-plus-sine experi-
ments (Sachs et al., 1971, for example) are also under-
estimates of the true channel bandwidth (King-Smith
and Kulikewski, 1975: Stromeyer and Klein, 1975).
An explanation of why is given in Graham (1977).
Exactly how much of an underestimate depends on
various properties of the channels, ., the density of
channels, and is not easy to caleulate in any case,
One sample calculation is given in Graham and
Rogowitz (1976) based on some previous theoretica)
work by Stromeyer and Klein (1975). Preliminary cal-
culations suggest that the same bandwidth can
explain both the test-plus-sine and the sine-plus-sine
experiments under the assumption of probability
summation across space.

FM grating results. Another kind of stimulus, a fre-
quency-modulated (FM) grating, was used by Stro-
meyer and Klein 1o investigate the spatial pooling
properties and bandwidths of channels. Graham and
Rogowitz’s (1976) reanalysis of their study showed
that the results are probably consistent with either
the assumption of probability summation across
space or the assumption of no probability summation
across space (given probability summation across
channels). Again, the bandwidth necessary on the
assumption of probability summation across space is
larger (and by about the same amount as for the sine-
plus-sine case),

King-Smith and Kulikowski (1975). In contrast to
their earlier conclusion that both narrowband and
broadband channels would be necessary to explain
test-plus-sine and sine-plus-sine results, King-Smith
and Kulikowski have recently suggested (1975) that
a single bandwidth would be sufficient if there is
probability summation both among channels and
across space (i.e. in their terms, if there is probability
summation among sub-units'!), Although they only
report one sample calculation to support their sugges-
tion, the calculations reported here (Fig. 3 and Dis-
cussion} show that a single bandwidth is indeed suffi-
cient if there is probability summation among chan-
nels and across space,

In fact, the calculations reported here show that
a single bandwidth is sufficient even i there is no
probability summation across space as long as there
is probability summation across channels, King-
Smith and Kulikowski (1975) disagree with this latter
conclusion. They try 1o show that probability summa-
Lion across space is necessary by computing some
sample predictions {p. 250 and Appendix). Their
method of computing predictions involves a priori
specification of parameters like bandwidth and

“* King-Smith and Kulikowski {1975) use the word “sub-
unit" as the word “receptive field” is used here, and use
the word “detector” or “detection process” to refer not
to a single receptive field but to whatever it is that detects
& particular stimuius. Thus, in their 1975 paper, a “delec-
tor” can be a cluster of “sub-uniis” among which there
is probability summation. In Kulikowski and King-Smith
(1973), however, the possibility that a detector is actually
made up of sub-units is not menticned nor is the possibi-
lity of prebability summation. Rather, the detectors them-
selves are described as being the clementary units, as being
equivalent to receptive Relds.
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number of channels rather than the derivation of a
relationship (like the pewer law here) that allows esti-
mation of the best-fitting parameter values. From
these calculations they conclude that, without prob-
ability summation across space, the test-plus-sine daia
cannot be explained on the basis of probability sum-
mation among channels of 1 single bandwidth. This
conclusion is in direction contradiction to the conclu-
sions here. This discrepancy is perhaps due to the
@ priori specification of parameters (most probably
the specification of bandwidth as a lunction of fre.
quency) that is required by their method of doing
theoretical calculations.

Although the results from the test-plus-sine experi-
ments cannot be taken as support for the existence
of probability summation acress space, King-Smith
and Kulikowski (1975) do present other evidence
which seems to be better support.

Conclusions about bandwidth and probabilii ¥ summu-
tlon across space. A large amount of data seems 1o
be consistent with 2 model in which there is prob-
ability summation among relatively narrowband
channels. These data include results from test-plus-
sine, sine-plus-sine, and FM grating experiments, The
data appear to be consistent with either of (wo ver-
sions of the model, one assuming probability summa-
tion across space and one not. The bandwidih necess-
ary on the assumption of no probabitity summation
across space is caleulable (Fig, 4 here; Sachs er i,
1971, for example). And the bandwidths necessary for
the different experiments are in satisfactory agreement
(but see Discussion below on bandwidths at different
frequencies). The bandwidth necessary on the assump-
tion of probability summation across space is defi-
nitely larger but more difficult to caleulate exactly.
It is therefore not yet certain, although it seems likely,
that the bandwidths for the different experiments
agree under this assumption also.

Further, whether probability summation across
space is the correct assumption or not has yet 1o be
firmly established although existing evidence (King-
Smith and Kulikowski, 1975: Mostafavi and Sakri-
son, 1976; Stromeyer and Klein, 1975; Graham and
Rogowitz, 1976) does lavor probability summation
across space cover the simple kind of channel de-
scribed at the end of assumption 2. There are, of
course, other possible assumptions about poeling
across spatial extent which might be even better.

Bandwidths of channels at different spatiai Jrequencies

If the probability summation across channels
model is correct, test-plus-sine experiments provide
a relatively simple way of estimating the bandwidth
of channels having different best spatiai frequencies
(Fig. 4). Unfortunately, the estimates derived here
from the two experimental studies depend on spatial
frequency in two different ways, The estimates in the
larger field size where bandwidth estimare increases
with frequency (Shapley and Tothurst, 1973) may be
closer to correct than those in the small field size
where bandwidth estimate s independent of [re-
quency (Kulikowski and King-Smith, 1973) as will be
elaborated below.

Effect of field size on bandwidth estimaies, The esti-
mate of the bandwidth parameters [Fig. 4, equation
{13]] is based on several kinds of data. One of these,




Visual detection of aperiodic spatial stimuli -

the contrast “sensitivity function S(f), is' known 'to
depend on field size (g Campbell “and 'Robson,
1968). The other.two kinds’ probably do not" since
Sensit <. visual systéin (o' the test
stimulus, S(test), & sensitivity’ funétion of ‘the
Suenil), involve "2 “stifmilus

test-stimulus” detectof, _
located at the center of the field, "<

The most obvious way.in’ which the contrest sesis;.
tivity function depend§ ofi"field 'size is that the low-
frequency decline is frore dramatic for smaller field
sizes (Hoekstra, van'der~Godt, van der' Brink and
Bilsen, 1974; Savoy dnd‘MéCann, { 975). The contrast
sensitivity in a small field relative to that in a large
field gets progressively smaller as the spatial frequenicy
gets lower. Therefore, ‘since the estimate of W depends

inversely on contrast sensitivity {see equation’ (13)],
the estimate of W'in a small’ field telative ‘to that
in a large fieid should get progressively. larger as the
frequency gets lower. For. frequencies below 7 or 8
¢/deg, this is exactly the. difference between the esti-

matgs of Wirom Kulikowski and King-Smith’s (1973)
results collected in  smiall field (2.5° dia) and those
from. Shapley and Tolhurst's (1973} resuits, coliected
in a large field (5.5° dia), " .. S T
Not cnly do the measured contrast sensitivity func-
tiens show this effect of field size, but there.is a-good
theoretical reason why they might. ‘Sippose that the
true bandwidth of channels did increase in propottion
to the center frequency of the: channels. Theén the
receptive fields associated with ‘a’ spatial 'frequency

channel will get broader s the ceriter frequency of the

<hannel gets lower, And a grating in-a small enough.

field will not completely. cover any-of ,the receptive
fields of the lowest frequency channels. ‘Thus the low-
est frequency channels will be less sensitive to gratings
in a small field than to ‘gratings that are infinite in
extent. That is, ﬂle"co_ntra'st’sensitivity'-func_;libt! will
be lower at'low spatial*frequenciés for small’ fields
than for large fields. And the estimates of W for low
spatial frequencies will be cotresponidingly highier. -
It remains to be cxplained why,. for: the- highest
spatial lrequencies used (8-10 c/deg), the estimates of
the bandwidth parameter from Kulikowski and. King-
Smith’s (1973) data are actually smaller than the esti-

mates from Shapley and Tolhurst's data. It is ‘not

clear that the difference-in field size’ can explain this
difference in bandwidth estimates, e
Bandwidths ar different frequencies. Tt ‘is_ tempting
to conclude at this point that channel bandwidth does
increase iinearly with increasing frequency. This con-
clusion would be consistent:with. the baridwidth est)-
mates from. the Shapley and Tolhurst and - the: later
King-Smith and-Kulikowski ‘(1975) test-plus-sine ex-
periments done-in’ &' relatively: large -field.” Inconsis-
tency ‘with the earlier Kulikowski and ' King-Smith
{1973} experiment would be mostly explained away
a5 the consequence of their small field size. Thresh.
olds for sine-wave gratings as field size is varied also
.seem to be consistent with linearly .increasing -band-
widths; the measured. sensitivity, to.a .grating as-.a
function of number of cycles is the same function for

all nominal frequencies (Hoekstra et ‘aly'1974; Savoy’

and McCann, 1975, Estevez " and- ‘Cavonius,” 1976,
Further, results of adaptation and masking ' experi-
ments are usually interpreted; as '_showiplg. ba_nd)\_'fidth

linearly increasing with frequency.” -
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Quick’and Reichert (1975), however, used sine-plug.
sine experiments in a relatively large field 1o’ measure
the bandwidth-at 5, 1S and 21 ¢/deg. Their “results
suggest that |he bandwidths are equal Tather than in-
creasing with frequericy. The question”of Kow band-
widths at different f equencies compare is still_ not
definitely answered. - 1 ¢ C N
Two other complications, in ‘the. interpretation of test-

plus-sine experiments U
 Retinal inhomogeneity. The ‘existence of retinal in-
homogeneity is well-known, and it is possible that
the receptive fields sensitive to low spatial frequencies
may tend to be firther front the central 'fovea than
the receptive fields sensitive to higher spatial frequen.-
cics (Doorn, Koendetink and Bouman, 1972; Ruben-
stein and. Limb, 1975). That is, different spatiai fre-
quency channels may -actudlly be located at different
retinal positions. Since sine-wave stimuli cover a large
area, & different-channels:af-differerit-positions - ver-
sion_of the ‘model could - certainly account for the
known sine-plus-sine results, It “miight also. be_ zble
to account for the test-plus-sine results in a manner
analogous to that described iri this'Saper, but whether
it could or not ‘depends heavily, on'the precise band-
widths and the exact charactenistics of the inhomo-
geneity, ool o '
On the other hand, some recent evidence suggests
that, fo¥ all spatial frequencies, the central fovea may
be’ more sensitive than any other. retinal position
under ‘conditions like those usiially wséd in the sine-
plus-sine "and test-plus-sine experiments (Hilz and
Cavonius,. 1974, ‘Robsen, 1975;, Wilson'and _Giese,
1976). If this is {rie, the inbomogeneily will not be
important in interpreting &ither siné-plus:sine or test-
plus-sine ekpprimcnts,pet:ause':bcjtli siné waves and
aperiodic test'stimiili are being deteited af {the central
fovea, , ol
Summation” In"“ detéction. or Jacilitation in. masking.
The test-plus-sine éxpetiments were analyzed here as
detection experiments. The task for the observer, was
assumed to be the détection of the test-plus-sing com-
bination stimulus, ie. the discrimination of the com-
bination from a blank field. In the' procedure used
in the expcriments.'howacr‘; the sine was ‘en con-
tinuously, and the observer adjusted the ‘contrast in
the test stimulus until he was satisfied. The task for
the observer, therefore, might actually have been the
discfimination ‘of the combination ffom the sine, a
task that is identical to-that in a ‘masking experiment
where the sine is the masking “stimulus. Further,
results like" those ' of Shapley. and” Tolhurst’s and
Kulikowski and King-Smith’s tigh well occut, (for
positive conirasts ‘at least) in a straight masking ex-
petiment. The reduction in the’ test-stimulus threshold

due I the presence of some’ sine-wave (in’ positive
phase) can be seen as an instance of facilitation, and
facilitation is known to occur’in_experiments using
sub-threshold sine waves as masking stifuli {Nach-
mias and Sansbury, 1974; Stromieyer aind Klein, 1974),
" However, to analyze Shapléy.and Tolhurst's. and
Kulikowski and King-Smith's experiment ag masking
experimerits Vsirg ‘a p_r'obabilityj._s.u.m'mat_iox} model
would require making reasonable ‘assumptions about
sine-wave” masking, and the "necefisaty, Jinformation
about sine-wave masking is not available In’ any case,




0.
the original investigators analyzed the experiments as
detection experiments.’Since these inivestigators were
aléo’ the  observers; ‘the cofrect’ inierpretation of the
data’is certainly as- detection ‘dataif either (a) the
observer carl choose whether {0 Take ' detection-
type or d’ masking-type discrimiihiation of if (b) the
observér knoWws: whick Sype of d Timination he
makes. - __ ARG i it :

S SUMMARYL o0

_'Aglarg _ .é.'m.oﬁnlt_ of available data on the detectabi-

fity .of visual pati¢rais.is consistént ‘with a model in

whick thiere, is probability summation (of gquivaléns
noz-lifiear. povling of outputs) dmong maltiple, rela-

! whand charinels. ' Under this interpre-
tatioh,’, the ‘{est-plus-siné .datd’ ‘shown’ in"‘any ‘single
panel of Fig,'3 do not represent ‘the sensitivity func-
tion ‘of 'a_ single” linear broadband detector as they
were” otiginally” thought "o ' (Shapley and” Tolhurst,
1973, Kulikowski”and. King-Smitk, 1973). They rep-
resent the conglomerate action of many relatively nar
rowband ' channels "'with ' probability summation
amonglhechan ‘Ilé-.:_l ....:‘..,‘. .. i} ,tx;i, ; .‘
_The fit.of the probat lity, Suramation' model’s pre-
dictions (lower"solid ahd détred curves in Fig, 3) to
the actdal ‘deta; {points). is very' good snd required
many fewer paramieters thail the explanation’ in terms
of broadband detegtors. .
' The model' ¢f probability summation among ¢han-
nels can alsg'accouny for ‘the thrésholds of the aperio-

nuli; In;the process of accounting simul-
lirgsholds and for the test-plus-
» otie_obtains: an estimate ‘of the
ividual chanpels at different fre-
-are’shown in Fig,'4 as a
_best” fre gl the’ channel. The
difference between ‘the ways” | which’ the estimateg
{rom' 'the "two "experiments’ dépénd on’’ Spatial fré.
quercy may be an artifact due to, the small field size
used by Kulikowski and King-Smjth (1973)."Tn any
case, the estimates’ aré in’satisfactory agrcement with
previous estimatés’ ‘siné-piuis-sine experiments.”

These. data rémain_consistent with the miodel of
probability, sumimation among channels even if prob-

ability sumtiiation’ across space 'is alsd assumed. The
bandwidth necessary to explain the datd is, however,

largér 'when, probability. summation across space is

assumed tHlan, whign it s mot, " "

. Il'a medel involving multiple relatively narrowband
channels’i§ correct, it would be ‘iriteresting to know
something ‘about the fesponses. elicited in different
channels by a pure sifsoidal grating. Does a pure
sine excite only one’ channel as has sometimes been
assumed for'simplicity’s sike (e.g. Sachs ei al, 1871y
The theoretical predictions’ described hers, provide a
partial ‘angw his question,” If only, éne channel
resporded to 4 & if ‘Severa] channels responded
equally well, 3 good deal of Survatlié would be pre-
dicted in the. coritfasi inietrelationship functions. (the
funcﬁ_ons'_p‘ tting "conitrast'in’ test versus contrast in
sine when the test-plus-sine ‘combination is just ‘at
threshold),*This miuch' cutvature (solid curves ‘of Fig,
2) appears’ iicompatible, with the small amount of
putlished "data, Thus, 'more than one channel prob-
ably responds 074 sihé and the chanriels responding
do not all respond equally, =~ '

N
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.. That & model or, theory is consistent with all avail-
able data docs ot make it correct. Probability sum-
mation among channels did’ 6¢eur 'in earlier sine-plus-
sine experiments (Sachs, et al.,.1971). It probability
surmation did ot oocyr if the test-pliis-sine experi-
ments, however, the ‘onginal 'investigators interpre-
lation"of these” experimenits in_ térms of broadband
channels might be correct. Or, of couise, some com-
pleiély  different "theory might be''the appropriate
explatiation Tor this whole class of experiments. On
the otlier h ‘Id:_t_hfe_abililty‘pf, the probability summa-
tion, Aradrig-multiple. chiannels model o predict the
it {r ~plus-sine  éxperiments 'is impressive.

With; few.assumptions or, fiee parameters not sup-
ported” by ini pendent_data, the' model successfully

acéGunits for the deteciability of a wide variety of pat.
terns, both periodic and aperiodic.,
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" APPENDI
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Contrast interrelationship functions predicted: by -the . prob-
ability summation model =5 ¢ e e i

General case. Although' it involves a number of steps,
the derivation of the contrast ‘interielationship function
predicted by the probability silmmation ‘model requires
only algebraic manipulations” (see footnote 4), Using
assumptions one (probability summation among channels),
two (linear channels, properties one and - two), and four
{Quick’s psychometric function), one.can prove that

l.' . S T .
. (St S.(sineJ)* B
....Z,_(.S(t_m}' " S(sine) '

where 5 is the ratio of relative :sine contrast to relative
test contrast, i.e. .

eltest) S(test) =

c(sine) S(sine)
cltest) S(test)
Under assumption 5, Us“mg the nearby-channels 2§50imp-
tion allows further simplification of (Al). Some new ter-
minology will be useful. Let M, be the number of channels
having non-zero sensitivity to - frequency f,. For con-
venience, let the channels: be- nismbered 50 that the M,
channels sensitive to f, are first M, By the nearby-channels
assumption, the sensitivity of edch of these first M, chan-
nels to the test stimulus will equal the sensitivity of channel
a* that s, . . o N -
C Siltest) = Seltest) for i = 1, M,
Let the relative sensitivities of different channels to a

(A2

sine-wave frequency f, be expressed by constants ). These -

constants give the: sensitivity of channel j relative to that
of the most sensitive channel @*), or B o
5,{L)
Jra = has
e Salfl)

. fled, fand .50, ag.
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For channe} a*, the constant dars €qualsone, For ke first:
M, channels, g;, will be greater than zero. and less than
or equal 16 one. For. the) other. channels,. g, will equal,
zera, B AT K TP R,
Then equation (A1) can be . modified ta ..
cftest) Stest) - S o

e e o

e | . B ) Taa
Sttt T N s ey
Lt .(_Sr'('-é“‘}.d- ".) (M:).]_”‘) I;-+ I_Mﬂ( S(test) )

: (A3
~.This Qontras_t,,"tnterr,clat_loné_ function (A3) for the
tiearby-channels’ casé depends in weneral o the particalar
values in the set of non-zero. relative sine sensitivities, the

861G, = {g;,| ?I»-.-'J‘{ 1M} But suppose they have been speci-’

3.8 result,, have beeri the values M, and
ME). Suppose gf:sc'gllh'a;,a"',value; of & has'been settled on,
Then there is only. one. number loft that most be known
before (A3} carl be used to genstate s’ contrast interrela.
tionship function, ‘That numiber i85 a(test)/S(test) Ongce
that number has been specified, sweepitig through values
of p will generate the whole function, Rather than specify-
Ing S.{test)/S(test), howdver,’ the 'imiportance index could
be specified just: ag’ well. ‘(Fron' lhe'impostance index one
can always calculate 'S,i{test)/S(test) since"the other. vari-
ables in thie importance’indéx are Krowny In short, once
the set of relative siié ‘sensitivities ‘G, ‘and the steepness
of the psychoméiric functiofi havé' besn specified, the
family of possible ¢Ontrast” interrélationship - functions
becomes 4 one-pardmeter family, whére the parameter s
the importance index. |~ - A L
- Minimal sets. 1t is ‘ot true, however, that every possible
set G, of relative sing sensitivities leads fo a different one-
parameter family of contrast interrelationship functions, It
for example, ane doubles the number 'of channels respon-
sive to a sine (ie’ doubles M) by duplicating the existing
set of sine sensitivities (so" that ‘each''valie . of g, in the
original tnodel's set appears twice in the éipanded model’s
set), than the predicted contrast interrelationship function
for'any given value of importdrids index rémains the same.

There is nothing magic about the nuimbér 2, Expanding
the set G, by replicating it any (integral) number of times
will leave untouched the contrast interrelationship function
for ‘any particular value of importance index. This car be
proved using straightforward, if tedious, algebraic manipu-
lations. . R )

Because the model's predictions remain the same for un.
ians of the set G, with sets identical to itseil an indefinite
number of times, it is a sufficient description of the model
to know the smallest ‘set which, when replicated some
number of times, can’ generate G,. This set will be called
the minimal sec of relative semsitivities to the sine £, and
will be denoted by G,

In terms of minimal sets, one can easily state the depen-
deney of the contrast interrelationship function. The con.
trast interrelationship function is completely determined by
the minimal set G, the steepness parameter k, and the
importance index I{f,, test). . .

The rectangular case. In the special case of a rectangular
minimal set (G, = {1}), the contrast interrelationship func-
tion (A3) reduces to o

c(test) S(test)

. R X
- {um.mst)m FF+1 j_m:;test)} g
APPENDIX 2: GLOSSARY

See discussion of general conventions at -beginning of
the section in the main text called Assumptions of the
Model, ' : [
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Symbafa i approx:ma:e a!pkabenca! ord'er

equa.ls mulnphcatwe constant in power law
:the: channcl, f hil’channcls. which is most-
sens:t:ve to a given rrequcncy § 5
" eqitalé exponent/in" povier faw
. .contrast of stimulug - - . .
"4 'sine-wave ' {requency. with & script " a
refers 1o an arbitrary frequency. With all
. other subscripts, refers to best frequcncy of
. chidnnel indicated. by subseript .
; measure of amouiit of fréquency f in. test
* stimulus, Equals four times Fourier trans-
. form-at frequency f of test stimulus when
3t stlmulus has peak—trough lummancc of
ne unit -
relative sensmwty of channel  to frequency
" foequals § ASASA L) (Appendix 1)
‘the: set” of relative sine SenSlllVltIES'
{gisll = 1, M.} {Appendix b -
3 mlmmal set of relatwe sme sensnwltles

AL

Flei:('fj s

a'nne]s scns:twe 0 frequency:
tion Of the! test stimulus, See
‘qugnon (10 in text” " _
‘pacameter determining steepress in Quick's.
psychom;trlc fumction |
lummancc 83 function of position
‘nurber of channels hawmg BON-Zero sensi-
. uivity to freqiency 7 .- . -
_eqdivaleni number of channels sensitive, to
l’rcquency - See equation (9) in text )
total number of channels’
- probability that observer detécts stimulus
s probabl]J'ty ‘that channel i detects stimulus
; .o annel b equals one. when

o for wh.lch:
phys:cal senst-_

IP,(snm} OS callcd sensntmty' of, chan-
nel Lo .

. NoRMA GRAFiAM |,

Sunlf) 0

sensitivity. of, test~st1mulus detector to fre-
quency [, ie. the effectiveness of a sine of

frequency. 7.in lowcrmg the threshold for
the. test stimuius ., .

Words in approximaze alphabenca! order

additivé phese’ phase-inwhicly sine is added to test stimu-
‘lus in phase w:th the oomponent in test- snmu]us of same
frequency -

best frequency rhe frequcncy, of all frequencles to whxch
a’chennel ¥ most sensitive :

contrast: one-halfl the difference: between the maximum and

* miniiim’ liminatices' divided: by the: mean luminanee

contrast mterrcla{ qshlp func est) S(lest] a5 a fune-
- tion*of ‘cfsine) 'S(sinie) .

contrast. sensmvlty function: S( flasa I'unctlon of f

equivalent number ‘of channels sée MECT :

extrapolanon pair! the two ‘vildes' of ‘relative contrast in
thc Siné-wave for ‘which' is" “known,'the relative contrast
i thetest’ nece'ssary for' thé test-plus:sing to'be at thresh-
old. Swalf) i calculated by linear extrapolation from
“"thie'two, pointa on the contrast mterrelatlonshlp functlon
deterimined by these two valiies™ -

importanéeindex; ses IS, test)

mean’ Juminance: himinance averaged over the spatial
cxtent of the patiern ® -

relative contrast: contrast of 4 stimulus multiplied by the
psychophysical - sensmwty I'or the  stimulus,
ostim)S(stim) !

spatigl- f:equency number of .- cycies per. unit of distance,
usually given in cycles - per degree of visual angle {¢/deg)

subtractive phase: phase in which sine is added to test

_stimuius 180° out of” phase with the component in test

snmulus of same frequcnc




