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in Human Vision:

Detecting Edges Without Edge Detectors
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One early approach te the study of vision was to investigate the appearance of
small patches of light and to try to explain the appearance of the whole visual
field as the juxtaposition of the appearances of many small patches. A theoret-
ical model thal can be viewed as a natural descendant of this early approach,
made appropriately more rigorous for the case of threshold experiments, is
what I will call a single-channel model.

Despite considerable success in accounting for a variety of visual data, it now
appears that 2 single-channel model is an inadequate description of visual per-
ceplion. Moreover, a currently prevalent view is that trying to describe the ap-
pearance of a whole visual field as the Jjuxtaposition of appearances of single
points is doomed to Failure from the start. Rather, according to this current
view, the appearance of things depends on many stages of complicated infor-
mation processing. The initial stages occur in the retina and further stages ex-
tend throughout the highest parts of the central nervous system.

A popular candidate for one of the eariiest stages in this chain of visual in-
formation processing is a collection of feature deteciors that simultaneously pro-
cess different kinds of information in the visual stimulus. Each feature detec-
tor is presumed to respond vigorously only when the stimulus situation con-
tains the appropriate ““feature” —for example, an “‘edge detector” would
respond only when there is an edge in the appropriate place on the retina.

What I intend to do here is describe the role one kind of psychophysical ex-
periment has played in the rejection of single-channel models of the visual
system and in the exploration of feature-detection models. In this kind of ex-
periment, the visibility of compound patterns composed of twe or more
simpler patterns is compared to the visibility of the simpler patterns alone,
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FIG. 1. A simple sine-wave graling containing one spatial frequency is
shown on the top left, and a compound grating conlaining two spatial
frequencies is on the top right. Underneath are the intensily profiles of
the gratings, showing intensity of the grating at each horizontal location
across the pattern. From Graham and Nachmias (1971),

In the first section { will review sarly experiments on the detection of com-
pound patterns made up only of sinusoidal components (examples of a simple
and a compound sine-wave patiern of this type are shown in Fig. 1}, These
early experiments produced strong evidence against the single-channel model
for thresheld vision. The findings can insiead be interpreted as 'evidence for
the existence of a rather odd type of feature datecior—a detecior or channel
which responds only to patterns containing spatial frequencies within a limited
range. Very roughly, being sensilive to a limited range of spatial frequencies
means respending best (o a particular size of element in the paltern {e.g. width
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of stripe); a more precise definition of spatial frequency is given below, Il
refer to this kind of channsl as a spaiaf frequency channel.

In the second section 1 will discuss some recent experiments by Shapley and
Tolhurst and by Kulikowski and King-Smith. These elegant experiments used
patterns made up of sinusoids plus aperiedic stimuli {for example, sinusoids
Flus lines, sinusoids plus edges) as well as various combinations of aperiodic
stimuli. These authors interpreted their results as evidence for the existence of
several additional kinds of feature detectors—things like edge detectors and
ling detectors. The crucial distinction between these new feature detectors and
the spatial frequency channels, as will be described later, is that each of these
new feature detectors is supposed to respord to a broader range of spatial fre-
quencies than does any spatial frequency channel.

I will argue, however, that these experiments do not actually provide per-
suasive evidence for the existence of additional feature detectors. On the con-
trary, my conclusion is that these new findings can probably be expiained in
terms of (he same spatia} frequency channels that were inferred from the ear-
lier sinusoid-plus-sinusoid experiments, To reach that conclusion, [ will reex-
amine the newer data in the light of a model that allows for probability sum-
mation among spatial frequency channels.

Much of the work referred to here is not mine and [ will mention the au-
thors in the appropriate places. Much of the work that is mine has been done
in collaboration with Jacob Nachmias of the University of Pennsylvania.

A SINGLE-CHANNEL MODEL

Sine-Wave Gratings

Let's begin by looking at examples of gratings containing one sinusoidal com-
ponent (the sine-wave pattern in Fig. 1 left) or two sinusoidal components
(Fig. 1 righl). Below each pattern is a graph that shows how the intensity of
the grating varies as you move horizontally across it. For the left pattern, the
graph depicts a single sinusoid added to a constant intensity (the mean lumi-
nance). For the right pattern, the graphed function is the sum of two
sinusoids added to a constant intensity.

For patierns such as these, it is easy to specify and understand what spatial
Srequency is: The spatial frequencies containgd in a pallern are the frequencies
{cycles per unit distance) of the sinusaids that add up to equal the function re-
lating intensity to distance across the pattern. Thus the left pattern contains
only one spatial frequency and the right pattern contains two frequencies, hav-
ing a ratio of three to one. For the pattern on the left, the spatial frequency is
the number of peaks (bright bars) per unit of horizontal distance. We define
the conwrast of a stimulus (a measure of how different the light and dark bars
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are) as hall the distance beiween the peak and trough intensities divided by the
mean intensity.

First, let’s describe a Lypical single-channel madel of the visual system and
then we can see what such a model predicts for the responses to simple
sine-wave gratings, gratings containing only one sinusoidal component. At the
same time we can review & few of the basic facts about sinusoidal stimuli.

A Single Channel

Those of you who like physiological anatogues can think of a single channel as
an array of retinal ganglion celts or lateral geniculate cells or even simple corti-
cal cells. Each cell in the array has the same kind of receptive field {(he same
shape, the same orientation, the same size, everything the same except the po-
sition on the retina). Bul the receptive fields of different cells in the array,
although they overlap, cover different portions of the visual Reld.

More abstractly, we can consider a single channel to be a two-dimensional
array of *weighting functions’ (defined below) corresponding point-by-point
to the visual stimulus. (My use of the term “‘channel" is different from some
other people’s uses. Readers interested in a discussion of this terminology
should see page 258.) For the purposes of models like this, the visual
stimulus is considered to be two-dimensional as it is on the relina rather than
three-dimensional as it is in the world. {n fact, we will be dealing only with
stimuli that are effectively one dimensional: The siriped gratings vary in inten-
sity only along the horizontal axis; they maintain the same intensity along any
vertical line. Therefore we need consider only a one-dimensional cut across
the two dimensions of the single channel. In general, then, the response of a
channel is a two-dimensional array corresponding point-by-point to the visual
stimulus. But we'll usually be considering a one-dimensional cut across the
response! the response profile.

The Weighting Function

The magnitude of the response at any point in the single channel's response
profile can be specified by a welghting function. The weighting function indi-
cates the extent to which light falling at various points on the retina adds to or
subtracts from the response zt the given point in the single channel. (The
weighting function is so named because il describes how (he light falling on
different points is weighted in determining the response.) [n terms of the phy-
siological analogue, the weighting function would be a quantitative description
of a cell’s receptive fleld, and the response at a point in the channel would be
the output from the cell connected to that receptive field.

One kind of hypothetical weighting function is represented by the smatl
sketches in the top line of Fig. 2. The line as a whole represents a one-
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FIG. 2. Diagram of some of the weighting funclions that determine ihe
responses of a single channel (top row). The channel's responses
(third, fifth, and seventh rows) to three gratings of different spatial fre-
quencies (second fourth, and sixth rows).

dimensional cut across the single channel. Each of the small sketches of the
weighting function indicates that the response at a given point of the channel is
increased by light falling anywhere within some small area of the retina and is
decreased by light falling anywhere within a surrounding area. {The weighting
function shown in the figure has & somewhat artificial “‘rectangular’’ distribu-
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tion for the center excitatory area and for the surrounding inhibitory area. It is
€asy to substitute other, more plausible configurations.) The weighting func-
tions should really be pictured as being densely distributed all along the top
line, with many of them overlapping al any given point, but they have been
thinned out for clarity here. Notice that the weighting functions at al! points
across the channel are assumed to be the same; this is an important assump-
tion of the single-channe! model.

.

Response to Different Spatial Frequencies

Your intuition may suggest Lhat (his single-channel maodel should produce big
responses for gratings in which (he bar-widths mateh the dimensicns of the
weighting function, and smaller responses for gratings of other bar-widths.
The rest of Fig, 2 shows that such an intuition is approximately correct. Here
we see the intensity profiles of three stimuli and the response at each point
across the single channe! to each of the three. Notice first that, conveniently,
the response to any sine-wave stimulus is itself sinusoidal, as long as you are
considering linear systems., (We are assuming that the singie channe! is linear:
All it does is add and subtract.)

The second row of the figure shows the intensity profile of & sinusoidal grat-
ing of intermediate spatial frequency. Consider Lhe response (third row in
Fig. 2) at the middle of the bright bar at the extreme right end of the figure.
There is a lot of excitation because a bright bar is illuminating the center of the
weighting function (or receptive field on the reting). There i little inhibition
because most of the surround of the weighting function is illuminated by dark
bars. Little inhibition and a lot of excitation produces a big net response.
When the peak response is large (compared to the mean response) we say the
channel is responding well to this stimulus pattern.

Now consider the response at the middie of the dark bar, There is a lot of
inhibition because most of the negative surround of the weighting function is
illuminated by bright bars. The more strengly illuminated the inhibitory sur-
round is, the less the ngt response. Furthermore, there is little excitation, be-
cause the excilatory center is getting litile ilumination from the dark bar.
Thus there is very little response at this point in the channel. So the total
difference between the peak response {the response in the middle of the bright
bar) and the trough response (the response in the middle of the dark bar) is
very lerge. A large difference between peak and trough also indicates that the
channel is responding well to tha grating.

However, when you consider a higher spatial frequency grating (such as that
for which the intensity profile is shown in the fourth row of Fig, 2), the bars
are so closely spaced that many bright and dark bars fall within the center of
each weighting function, Likewise, many bright and dark bars fall within the
surround. Thus the response at any point in the array is approximately the
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same as thal at any other point, because there are always approximately the
same number of bright bars as dark bars in both the center and surround. The
peak respense is small, and so is the difference between peak and trough. That
is, the channel does not respond well 10 this high frequency grating.

Finally, consider what the response (seventh row) to a low spatial frequency
grating (sixth row) is like. At the center of the bright bar, there is a lot of ex-
citation (as for the medium spatial frequency) because the center of the
weighting function is illuminated by a bright bar. But there is alsc a ot of in-
hibition {unlike the case for the medium spatial frequency) because the nega-
tive surround of the weighting function is also illuminated by the bright bar. A
let of excitation and a lot of inhibition leads to a smaller response than a lot of
excitation and a little inhibition, so the peak response (o the low-frequency
graling is smaller than to the medium spatial frequency. We say that the chan-
nel is not responding well.

Like the peak response, the difference between the peak and rough response
is also smaller for a low-frequency grating than for a medium frequency. In
the middte of the dark bar there is liltle excitation {like the medium frequency
case) but there is also little inhibitian {unlike the medium frequency case),
Little excitation coupled with litile inhibition leads to a trough that is not as
deep as for the medium spatial frequency. Therefore the difference between
the peak response and trough response is relatively small for the low spatial
frequency.

In short, a single-channel model with a center-surround iype of weighting

function predicts bigger responses to gratings of intermediate frequency than 1o
gratings of lower or higher frequencies.

Psychophysical Data

In predicting the greatest response (o intermediate frequencies, a single-
channel model does agree well with psychophysical data. A human observer’s
responsiveness to a grating is often measured by finding the contrast threshold,
the smallest light-dark contrast that enables the observer to tell there is a grat-
ing present rather than a blank field. (In these experiments, the average inten-
sity is held constant while the contrast is varied.) Another measure of the
same sort is conrast sensitiviy, which is defined as the reciprocal of the con-
trast threshold; the higher the conirast threshold, the lower the contrast sensi-
tivity.

Consider what should happen if a human observer were well described by a
single-channel model and if we made the additional assumption that the con-
trast threshold is the smallest contrast necessary te produce a sufficiantly large
response somewhere across the single channel. It other words, we assume the
contrast threshold is achieved when the contrast is high encugh for the
channel’s peak response to exceed some criterion. Then we would expect the
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MINUTES of ARC

FIG. 3. The weighting function for a single channel model which leads
to accurate predictions of the data on human contrast sensitivity for
gratings. From John Robson.

contrast threshold to be lowest {contrast sensitivity to be highest} for gratings
of intermediate frequencies, since it is at intermediate frequencies that the
channel produces the biggest response (for any given amount of stimulus con-
trast). This is just what does happen: It is well known that human contrast
sensitivity is greatest at intermediate frequencies. In fact, you can make the
single-channel model agree perfectly with human psychophysical data by simply
picking out a weighting functien with an appropriate shape. Figure 3 shows a
weighting function that works well for human contrast threshold data.

Effect of Changing the Weighting Function

For future reference, It will be useful to consider now how changing the
weighting function changes the channel's response to different spatial frequen-
cies. The kind of weighting function we've already looked at, one central ex-
citatory area flanked by surrounding inhibitory areas, always leads to & frequen.
cy response function something like the broadest one (B) shown in Fig. 4. It
is a rather wide function—the maximum sensitivity is to a spatial frequency of
14 cycles/degree, yet sensitivity is substantial even to spatial frequencies as
different as 5 or 30 cycles/degree. With this sort of weighting function, there
Is a sizable response t¢ spatial frequencies that differ from the best frequency
by a factor of two or more. (The function that gives the peak response to vari-
ous frequencies is the same as what’s called *‘the amplitude characteristic of
the Fourier transform.” It can be computed easily using the methods of
Fourier analysis. It is important to note that although using the methods of
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FIS. 4, Theoretical frequency response curves (B and € for two
different channels centered on the same spatizl frequency but having
different bandwidths. The third curve (A) is a frequency-response curve
estimated from data. The vertical axis, marked “relative sensitivity,”
gives the peak response of the channel to a grating of some fixed cri-
terion contrast (relative to the peak response produced by a 14
cycle/degree grating at the crilerion contrast), Or equivalently, since we
are considering linear channels, the verlical axis gives the reciprocal of
the amount of contrast necessary to produce a peak response that
reaches a criterion (relative (0 the contrast necessary at 14
cycles/degree). From Sachs, Nachmias, and Robson (1971),

Fourier analysis seems to impiy analyzing a compound stimulus into its

sinuscidal components, it does not in fact imply the u
model.)

se of a multiple~-channals

If you change the size of the weighting function (if, for example, you double
the widths of both the center and surround but leave the shape unchanged},
you will change the channel's best frequency (for example, from 14
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cycles/degree 1o 7 cycles/degree) but you will not change the breadth of the
response function. For example, if the original weighting function gave a
response to frequencies between 5 and 30 cycles/degree, a ratio of 1 10 6, a
weighting function twice as wide will give a response 1o frequencies between
2.5 and 15 cycles/degree, 2gain a ratic of 1 10 6, This means that when you
change only the size of the weighling functicn, the channels frequency
response function will keep the same shape when plotied against a logarithmic
frequency scale as in Fig. 4, bul it will be shifted horizontally.

Suppose you wanted to construct a channel that responds only (o a Very nar-
Tow range of spatial frequencies, something more like curves A and C of
Fig. 4. These curves depict a sizable sensitivity only to spatial frequencies
between 12 and 18 cycles/degree; a 10 or 20 cycles/degres grating gives only a
negligitle response. What kind of a weighting funclion would you need in ord-
er 10 produce such a narrow response curve? Figure 5 gives the rather peculiar
answer: a multilobed weighting function with severg/ evenly spaced excitatory
and inhibitory areas.

A channe! that is an array of such mulilobed weighting functions is sensitjve
o a much narrower range of spatial frequencies than is the channel of Fig. 2.

\/\/\ a

S

FIG. 5. The weighting function for a channel having a freguency
response like thal of curve C in Fig. 4. From John Robson.
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To see why, first imagine a grating stimulating the channe! with muitilobed
weighting functions, with a bright bar illuminating the central excitatory part of
one particular multilobed weighting function. If the grating has the best spatial
frequency for this weighting function, bright bars will fall in ali the excitatory
areas and dark bars will fall in all the inhibitory areas. Therefore there will he
& very large response at this point in the channal. The large peak response
means that the channel is very sensitive to this stimulus. (Similarly, the
channel’s response at the point where a dark bar falls on the central excitaiory
part of a multilobed weighting Function will be a very small response, so the
difference betweern the peak and trough responses of the channel will be
large.)

Now imagine a grating with slightly narrower, more closely spaced barg,
again with a bright bar falling on the centra! excitatory part of the weighting
function. You dont need to imagine much of a change in the grating’s fre-
quency before dark bars start creeping inward into the outermost excitatory
areas, thereby reducing the response. Slightly widening the bars has the same
effect, as dark bars creep outward into the outermost excitatory areas. In
short, any slighl mismatch between the bar-spacing of the grating and the di-
mensions of the multilobed weighting function will lead to a much reduced

response by the channel; thus the channel is sensitive to only a narrow range
of spatial frequencies.

Response of a Linear Channel to Other Stimulj

Also for future reference, let's look at another convenient fact about sine
waves. Knowing how the channel for any linear system) respands 1o sine
waves is enough to tell you how the channel responds to any stimulus at all,
This apparently magical fact is true because two other facts are true: One—any
stimulus at all can be treated as the sum of a2 number of sinusoidal stimuli:
and two—a linear channel's response (o a stimulus which is the sum of various
component stimuli can be shown o equal the sum of the responses to the vari-
ous component stimuli. So 10 calculate the channel's response to any arbitrary
stimulus, you just need to know which sine waves the stimulus is the sum of,
and then you add up the iesponses 1o those sine waves.

Sine Waves Added to Sine Waves

Let's go back to the mein discussion. What does a single-channel model of the
visual system predict for the response to sine waves? We have shown that a
single-channel model can deal very well with thresholds for single sinusoidal
gratings if an appropriate weighting function is chosen (Fig. 3). But how well
can it do with thresholds for a compeund grating composed of two sinusoids
added together?




226 Norma Graham
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FIG. 8. Four grating patterns {left column) and the responses 1o them
predicted by the single-channel {middie colurn) and multiple-channels
models (right column—three channels are shown). The broken lines in-
dicate the sinuscidal components of the compound gratings. From Gra-
ham and Nachmias (1971).

The left column of Fig. 6 presents the intensity profiles of several stimuli
and the middle column shows the responses of the single channel to these
stimuli. The top stimulus is a simple grating {a sine wave added to a constant
luminance), with a contrast selected to put the grating at psychophysical
threshold. Remember that we are assuming that “‘to be at psychophysical
threshold” means ‘‘to produce a peak response that is as big as a cettain cri-
terion.” This criterion size is labelled T (for “‘threshold’*} ir Fig. 6. (In this
model of the detection process, the threshold is determined entirely by the
peak response. Therefore the spatial ordering of the response magnitudes in
the response profile is:of no importance. That is, if you tock the set of
response magnitudes and scrambled them into 2 new spatial order, yaou would
still predict the same threshold. Another way of saying this is that in the kind
of channe! models that | am discussing, a#f of the spatial interactions (i.e. all
the interactions that depend on distances between points) are a result of the
weighting function.)

The second rew shows a simple sinusoidal grating of three times the fre-
quency of the first stimulus. Its contrast, too, was chosen o put the grating at
threshold; that is, it has been adjusted so that the peak response matches the
criterion T.

The thitd and fourth rows in Fig. 6 show two compound gratings that are
combinations of the simple sinusoidal stimulf in the first and second rows. (In
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both combinations, the two component sine waves have been added together,
and added to the same mean luminance as in the simple gratings.) In the com-
pound grating shown in the third row, the (wo sine waves were positioned so
that the darkest point of one coincided with the brightest point of the other
{the peaks-subwact phase). In the fourth row, the component sine waves were

positioned with the brightest point of one coinciding with the brightest point of
the other (the peaks-add phase).

The single channel’s response to each of these compound gratings can easily
be computed from its responses to the simple gratings. Since the single chan-
nel is a linear device and each compound grating is a sum of the simple grat-
ings, the response to the compound grating is just the sum the responses to the
simple gratings, (Of course you have to position the simple response functicns
appropriately, so that they correspond with the positions of the simple
sinusoidal components in the compound grating. In this discussion, ail pat-
terns are adjusted to have the same mean intensity, This means that, for a
linear channel, the mean response across the channel is the same for all pat-
terns and therefore can be ignored in deriving predictions that compare
different patterns.) The responses shown in the second column were comput-
ed in this way. As you can see, the peak response to each of the compound
gralings is now greater than T, the criterion for detection. In fact, it is 1.4
times T for the stimulus in the third row (the peaks-subtract stimulus) and 2.0
limes T for the stimulus in the fourth row (the peaks-add stimulus). There-
fore, according to this single-channel model, you should be able to reduce the
contrast in each component of the peaks-add patlern by a factor of 2.0 and find
that the peaks-add pattern would then be at threshold, because the peak
response would then just equal T. You should be able to reduce the contrast
in each component of the peaks-subltract patiern by a factor of 1.4 and find that
the peaks-subtract pattern would be at threshold.

To put it another way, according to the single-channel model, the two com-
pound gratings should be more visibie than either simple grating, and further,
the peaks-add compound shoukl be more visible than the peaks-subtract, The
brightest part of the peaks-add compound is brighter than the brightest part of

the peaks-subtract compound, and both are brighter than the brightest parts of
the simple gratings.

Evidence Against a Single-Channel Model

What happens when you actually measure the thresholds of humans for such
simple and compound gratings? Rather strangely, but definitely, the com-
pound gratings are aof much more visible than the simple ongs—certainly
nothing like the predicted factors of 1.4 or 2.0, Moreover, relative position

(phase} makes no difference—the peaks-add pattern is no more visible than
the peaks-subtract. -
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This experimental finding is definitive evidence against the version of the
single-channel mode! presented above. Is there some easy way to modify the
single-channel model to make it fit this Ainding? Apparently not. Postulating
compressive nonlinearities before or after the single channel doesn’t heip
much, Instead of assuming, as we did above, that the peak response must
reach some criterion in order for a patiern to be at psychophysical threshold,
you might try some other assumption about the detection process. However,
none of the obvious alternatives works, although some alternatives (such as
probability summation across space, which will be discussed later in another
context) do move the predictions closer to the data—that is, some relatively
simple detection processes do lead to single-channel predictions of a difference
between simple and compound stimulf that is somewhat fess than the factors of
2 and 1.4 predicted by the peak-response criterion (but a#of as much less as
found in the experimental data}.

Of course, postulating a sufficiently complicated detection process as a substi-
tute for the peak detector {which would be like postulating a large number of
other stages of processing occurring afier the single channel) might predict
these data well and also might make an interesting model, but it wouid be a
rather different model from those considered to date.

[t should be mentioned that James Thomas and his colleagues at UCLA
have done a series of experiments similar to these, involving the detection of
disks of different sizes rather than gratings of different spatial frequencies.

Their experiments also produced results inconsistent with a singie-channel
model.

MULTIPLE SPATIAL-FREQUENCY CHANNELS

So now we are left with the problem of explaining the unexpectedly low visibil-
ity of two sinusoidal gratings added together. On the basis of preliminary
resulis somewhat similar to these results from adding up sine waves, Fergus
Campbell and John Robson advanced a new mode! in 1968 as an alternative to
the single-channel medel. They proposed that the important part of the visual
system for experiments like these is not a single channel but a collection of
many channels.

Each of these multiple channels responds only to & relatively narrow range of
spatial frequencies. One channel might respond only to low spatial frequen-
cies, another only to high frequencies. The sensitivity of the whole visual sys-
tem 1o any pattern is determined by whichever one of the multiple channels is
most sensitive to the pattern. In particular, a pattern will be above threshoid

for the whole visual system whenever it is above threshold for ar jeast one of
the spatial-frequency channels.
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Although one can certainly talk about these channels without specifying any
particular physiological mechanism, 1 find it helpful to think of the multiple
channels in more concrete terms. One can consider each channel as an array
of receptive fields, or weighting functions, just like the single channel of the
single-channel model. Each channe! is specialized for a different range of spa-
tial frequencies, so the weighting function (or the receptive field) for each
channel has a different size—the channel for low spatial frequencies has a-
weighting function with much wider excitatory and inhibitory areas than the
channe! for intermediale spatial frequencies has, and so forth for other chan-
nels. This multiple channels model is quite similar (¢ a mode! proposed by
James Thomas, although Thomas's model was not developed to deal with
sine-wave grating experiments.

Sine Waves Plus Sine Waves

To see what this multiple-channels model will predict for the threshold of tweo
sine-wave gratings added together, let's look at the right hand column of
Fig. 5. The lines labelled A, B, and C represent the responses of lhree
different channels. Channel A is the channel that responds to the low-
frequency sine wave in the left column, and it does not respond to the high
frequency at all; channe! C respends to the high frequency, and not at all to
the low frequency; channel B doesn’t respond to either one. Since the top
stimulus in this figure is assumed to be at threshold and only channel A
responds to it, the response in channel A must be at threshold—that is, the
peak response by channel A must equal the criterion for threshold, marked T.
Similarly for the second pattern: Channel C, in reacting to the second pattern,
must give a peak response equal to T.

Now consider the peaks-subtract compound grating shown in the third row.
How will channe! A respond to it? The compound grating is the sum of the
low-frequency and high-frequency sine waves pictured above it (and repeated
as dotted lines in the third row). Therefore channel A's response to the com-
pound graling is the sum of its response to the low-frequency component plus
its response lo the high-frequency component. Since channel A doesn't
respond at all to the high-frequency component (its response profile is a flai
line}, its lotal response Lo the sum of the two components looks just like its
response to the low-frequency grating alone. We've already said that the low-
frequency grating is at threshold fer channel A so the compound grating,
which gives exactly the same response, must also be just at threshold. Similar-
Iy for channe! C: Its response to the compound grating looks just like its
response te the high-frequency component alone, so the compound grating is
just a1 threshold for channel C. Since the compound grating is just at thresh-
old for each channel individually, it is (according to the muliiple-channels
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mode!’s assumptions) just at threshold for the visual system as a whole, (The
analysis differs somewhat if response variability is considered, as is done in the
next section.)

So, uniike the single-channel model, and in much better accord with the
psychophysical data, the multiple-channels model predicis that the peaks-
subtract compound grating should be no more detectable than one of its com-
ponents. We can go through the same analysis and reach precisely the same
conclusion for the compound grating shown in the fourth row, the peaks-add
slimulus. It is just at threshold for each channel individually and hence for the
visual system as a whole. Therefore this compound grating should be no more
detectable than either of its sinusoidal components, and the peaks-add and
peaks-subtract gratings should be equally detectable. In other words, relative
position or phase of the two components shouldn’t matter at ail. And that was
one of the surprising aspects of the psychophysical data: Peaks-add and
peaks-subtract gratings gave the same results,

Even this simple version of the multiple-channels model does quite a good
job of predicting & human observer's performance when detecting these kings
of pattern: Compound gratings are (1o a first approximation} no more detegt-
able than their most detectable compenent, and the relative phase between
components in a compound grating makes no difference 1o its detectability. In
the next section we will find that when we take response variability into ac-
count, the multiple-channels model fits the data even more closely,

Probability Summatton Among Multiple Channels

I have been talking as if there were no variability in the visual system, as if a
Braling with a contrast just below tha threshold were invisible every time the
subject locked at it and a grating with a slightly higher contrast, just above the
threshold, were visible every time. But in fact there is a whole range of con-
trast levels for which a grating is sometimes visible and sometimes invisible.
The *‘threshold” is arbitrarily defined as that contrast level at which the grating
is seen a certain percentage of the time, usuaily 50%.

As Sachs, Nachmias, and Robson showed, in order to predict the thresholds
for compound gratings exactly, one has to take the visual system's variability
into account. It turns out that a very simple way of dealing with (he variability
will do, a way often referred to as **probability summation.”

Consider again the response of the multiple channels to the gratings in
Fig. 6. Remember that each of the sinuscidal components is individualiy at
threshold; we've picked the appropri.le amount of contrast to make that 50,
Thus on 50% of the trials with the low-frequency companent alone, channel
A’s response is big encugh for the observer to see something. Likewise, on
50% of the trials with the high-frequency component alone, channel C's
response is big encugh for the observer 1o see something. What happens when
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the compound grating is presented? According to the multiple-channels
model, just the same thing as when its two components are presented separate-
ly: On 50% of the trials channel A responds to the compound grating and on
50% of the trials channel C responds. But the trials on which channe! A
responds are not all trials on which channel C responds {uniess the variability
in the two channels happens to be perfectly correlated). So on more than S0%
of the trials either channel A or channel C (or both) gives 2 response big
enough to meel the criterion for threshold. Therefore, according to the
multiple-channels model, the observer sees something on more than 50% of
the trials with the compound grating. This means the compound grating is
somewhal more detectable than either of its components; how much more
depends on the degree of correlation between the channels.

In fact, an assumption of complete independence {no correlation) between
channels produces predictions that agree quantitatively with the data. This in-
dependence is ordinarily implied by the term probability summation. In gen-
eral, probability summation among channels refers to the increase in the detec-
tability of & pattern that results when two or more uncorrelated channels rathet
than one respond to the pattern (“‘summation” because there is an increase in
detectability and “‘probability’” because the increase is a direct result of the
probabilistic nature of the process). Nolice that probability summation ean
make a compound pattern more detéctable than any of its components even if
there is nc “‘real’ summation among components within any one channel~-
that is, even if, as far as the response of any one channel is concerned,
presenting two (or more) components is no better than presenting cne alone.

Thus, within the {ramework of a multipie-channels model, there are two
possible causes of an increased detectability of a compound pattern relative to
its companents: “‘probability summation™ resulting when channel responses
are uncorrelated and more channels respond to the compound pattern than
respond 1o any one of its components alone, and “‘summation within a chan-
nel” resulting when one of the channels responds better to the compound pat-
tern than to any of its components. This distinction between kinds of
summation will be very important in the next section.

An Example of Probability Summation

Probability summation can sometimes make a compound grating swhstantially
more visible than either of its components. Let me give an example. The data
shown in Fig. 7 come from a two-alternative forced-choice experiment that
John Robson and I ran, comparing the detectability of compound gratings con-
taining three compenents (rather than two as in Fig. 2) to the detectability of
each of the three companents alone. The components® frequencies were in the
ratio of | to 3 10 9. In the compound gralings, the three COmponents were ar-
ranged in either of iwo phases, and the relztive contrasts in the three com-
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FIG. 7. Percent correct in a two-alternative forced-choice experiment
for three simple gratings and two compound gratings containing the
three frequencies of the simple gratings but in two different phases. In
the compound gratings, the components were arranged s¢ (hat rheir
peaks coincided (cosine phase) or so that the combination spproximated
a square-weve grating (sine phase). The broken line is the prediction
for the compound gratings based on probability summation among the
three simple components,

Each of the curves in the figure has been herizontally translated
(which is why the horizemial axis is marked ‘'normalized contrast” in-
stead of “‘contrast’’) se that the compound graling represented by any
one of the circles is made up of the three components whose detectabili-
lies are given by Lhe three symbols directly below the circle. Notice that
the contrasts of the three componenis in any one of the cempound grat-

ings were chosen so (hat all three would be approximateiy equally
detectable,

The mean luminance of the 7.25° x 4.5° desaturated green {P31)
display {29 x I8 centimeters at a distance of 2.28 meters) was 100 miili-
lamberts, and the display was surrounded by a homogeneous white

screen of approximately the same mean luminance with outer dimen-

sions of 60 by 60 centimeters. Fach rial consisted of two 600 miltisec.

ond presentations of a tone, separated by 300 milliseconds; during one

tone a prating was presented and during the other the displey remained
unpatterned. The onset and offset of the grating were gradusl, the con-
trast of the grating during the 600 millisecond period being proportional
to e=/100% where { varied from —300 milliseconds ro 300 milliseconds.

Trials were initiated by the subject. In any one block of trials, 40 pats

terns (eight contrast levels in each of the three simple and two com-
pound gratings) were presented once each in a4 random order, In accor-
dance with a ‘‘staircase’ rule, contrast levels were sometimes changed
beiween blocks to keep performance al a fairly constant level. Each data
point in the figure comes from between 60 and 150 Irials. The observer

was John Robson, viewing the display binocularly with normal spectacle
corrections.

1
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ponents were adjusted so that all three were about egualy detectable when
presented alone. (In accord with this adjusiment of relative contrasts, the hor-
izontal axis in Fig. 7 is labelled “‘normalized conlrast.”” The normalization was
done by dividing the actual contrast by a different factor for each component
frequency. Each point an the horizontal axis represents three different fre-
quencies’ contrasts in the same ratio in which they appear in the compound
gratings. The value of 1.0 was assigned for convenience to that normalized
contrast closest to the one producing 75% correct.)

On each trial the observer had to say whether the grating was in the first or
second interval. The three lower curves in Fig. 7 show the improvement in
seeing each of the three simple gratings as conlrast is increased. The circles up
above give similar data for a compound grating. Each circle gives the detecta-
bility for a compound grating made up of the three simple components whose
detectabilities are represented by the three symbols directly below the circle.
The dashed line shows the predictions for the compound grating's detectability
based on probabilitly summation among the three simple components. As you
can see, the fit is quite good, considering the binomial variability inherent in
the data.

In 2 two-alternative forced-choice experiment like this one, a subject will be
correct on 50% of the trials if he simply guesses randomly. The 50% guessing
rate has to be taken into account when computing the probability-summation
predictions. Thus, if a subject is correct on each component 50% of the time
{no more than chance), the prediction from probability summaticn alone is
that he will be correct on the compiex grating only 50% of the time.

The threshold in forced-choice experiments is typlcally defined as the con-
trast needed for 75% correct. For each of the three simple components in
Fig. 7, then, the threshold is at a nermalized contrast of about 1.0, The
threshold for the compound grating is quite a bit lower, at a contrast of about
0.8, lower than the lowest of the thresholds for any of the three components.
This substantial difference, a ratio of about 0.8 (0.1 log unit}, is fully explained
by probability summation among the multiple channels.

IU's important to bear in mind that even though the compound gratings in
this experiment did have thresholds considerably lower than any of their com-
ponents’ thresholds, the data are still far from consistent with a single-¢hannel
model. A single-channel model would predict that when you add up three
componenis in peaks-add phase, you should need only one-third as much con-

trast to put the resuliing compound grating at threshold. In Fig. 7 that would
be a contrast of 0.33, off the graph to the lefL.

Measuring the Bandwidth of a Spatial-Frequency Channel

So far I haven't said anything specific about the bandwidth of each of the mul-
tiple channels. How wide a range of spatia] frequencies does a given channel
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respond to? All I’ve said is that the range is considerably narrower than for
the single-channel model. In that model, the single channel responds to the
entire visible range of spatial frequencies, so it predicts that a compound pat-
tern should be more detectable than any one of its component frequencies, no
matter how far apart they are. We know that the channels can’t be that broad-
ly responsive, because the data show that for widely separated [requencies, a
compound pattern is no more detectable than you'd expect from probability
summation among independent detectors that each respond to only one com-
ponent frequency.

There is a way to estimate more precisely the range of responsiveness of an
individual channel. Once Sachs, Nachmias, and Robson had shown that {al-
lowing for probability summation among channels) the multiple-channels
model accurately predicts the findings for two widely separated frequencies
(which were assumed to stimulate completely separate channels), they could
use this mode! to estimate the bandwidth of an individual channe! by choosing
frequencies that were quite close together.

When two neighboring frequencies were used, they found that the com-
pound pattern was more detectable than probability summation predicts, The
“extra’” detectability could be allributed 1o summation within individual
channels—to individual channels’ having responded to both frequencies. They
assumed that only two channels were significanily involved in the detection of
any two-component graling—the two, independent chanpeis with center fre-
quencies equal to the two frequencies in the compound grating.

To calculate backwards from the amount of extra detectability for compound
patterns to the sensitivity of individual channels, Sachs, Nachmias, and Robson
had to use¢ some assumption about the combined effect of neighboring fre-
quencies on an individua!l channel, that is, about the exact form of the summa-
tion within each individual channel. For the patterns used in their experi-
ments, their assumption was equivalent to the following model of a channet (a
model that is consistent with everything said about channels so far): Each
channel is & linear system exactly like the single channel of Fig. 6’s middle
column, except that it is sensitive to a narrower range of frequencies; a pattern
is at threshold for a channel whenever the peak response across the channel
meets a criterion; and the variability in a channel's response (which leads 10
probability summation among channels) comes from one of two equivalent
sources—either the criterion varies from time to time, or the whole response
profile of a channel is raised or lowered by a noise signal added to it, which
varies from time to time.

In their study, Sachs, Machmias, and Robson measured the detectability of
compound gratings containing (wo componenis, ong of which always had a fre-
quency of 14 cycles/degree, and so they were able to estimate the frequency
response of the channel centered at 14 cycles/degree. You've already seen
their estimate of the frequency response of that channel; it is the extremely
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narrow curve in Fig. 4. Remember thal there is nothing mysterious about an
extremely narrow frequency-response curve. If you Lhink of a channe}.as an
array of receptive fields or of weighting functions, the frequency-response
curve is narrow if the weighting functicn has not only an excilatory central area
and an inhibitory surrounding ares, but also auxiliary areas of excitation and
inhibition (like Fig. 5).

Studies by Quick and by Sachs, Nachmias, and Robson suggest that, for
channels centered at lower spatial frequencies, the estimated bandwidth (on a
log frequency axis) may be a good deal broader than for the channel at 14
cycles/degree. If so, then for the lower spatial frequency channels, this es-

timated bandwidth implies that the weighting functions may be simple cenler-
surround weighting functions.

Discrepant Estimates of Bandwidth

The bandwidth that Sachs, Nachmias, and Robson estimated for the 14
cycles/degree channel is a good deal narrower than the bandwidth usually de-
duced from a different type of experiment. invelving adaptation or masking.
The explanation of this difference is not at ail clear. It could be that the chan-
nels revealed by summation experiments are not the same channels as those
revealed by adaptation/masking experiments. Another possibility is that the
models currently used to deduce bandwidth from summation and
adaptation/masking experiments are inadequate. For instance, perhaps adapta-
tion itsell could cause an increase in bandwidth; this possibility was caonsidered
and rejected by Lange, Stecher, and Sigel (1973).

Inadequacies in the models that are used (either explicitly or, more often,
implicitly) to deduce bandwidth from adaptation/masking experiments are
beyond the scope of this discussion. But a possible shortceming of the model
used Lo deduce bandwidth from summation experiments was alluded {o earlier,
in the discussion of the single-channel model. There are other plausible as-
sumptions, besides those described above, that we could make about the detec-
tion process and about the variability in the channel’s responses. Seme of
these alternative assumptions (one example is discussed in the nexi section)
would lead us to derive a broader bandwidth estimate from summation experi-
ments, an eslimate more in line with those from adaplation/ masking experi-
ments. However, precise quantitative agreement between such estimates based
on the different kinds of experiments remains to be shown, and trying 1o show
it may well reveal more problems. (The assumption that only two channels are
involved in the detection of a two-component compound grating may well be
another inadequacy of the model used by Sachs, Nachmias, and Robson. But
if more than two channels are involved, using the assumption of only two
probably makes the estimated bandwidih broader than the actual bandwidth.
Thus, changing this assumption could only make the bandwidth estimated
from summation experiments even narrower,)




236 Norma Graham

Probability Summation Across the Spatial Extent of g Channel

I will now give an example of a possible detection process other than the sim-
plest form of peak-response delection. The example is particularly appropriate
because it involves another instance of probability summation. However,

understanding the example is not necessary for understanding the material that
follows this section.

In the models describad carlier, all of the variability in a channel’s responses
was assumed to come from one of two equivalent sources —variability in (he
threshold criterion for each channe| gr variability in a noise signal that is added
to the whole response proftle of the channel, thereby raising or lowering the
profile as a whole. Neither source of variability changes the basic shape of the
response profile; points that have equal responses at one time (the peaks, for
example) alsc have equal responses at any other time. tn gther words, neither
of these two sources of variability entils any variation in the relative magni-
tudes of responscs at different points across a channel.

But cther sources of variability in a channel's fesponses are possible and are
perhaps even more reasonable, After all, why shouldn't the relative response
magritudes at different points across a channel vary? In the physiclogica!
analogue, the responses at different points across a channel are produceq by
different neurons. If the sensitivity of neurons varies over time, and if the sen-
sitivities of different neurons are not perfectly correlated, there would have 10
be variation over time in Llhe relative response magnitudes at different points.

Let’s try assuming that all the variability in a channel's responses comes
from the variability of response magnitudes at individual points across the
channe! (and not from the two spatially uniform sources of variability men-
tioned above). Ap any one moment, the respongse profile will laok more irreg-
ular than those in Fig. 6; some Ybumps’ will be higher than others, for in-
stance. On different trials, the peak response (the highest bump) will occur at
different iocations —sometimes at a lecation that dcesn™t even correspond 1o 3
peak in the stimulus,

We can stil assume that a pattern is at threshold whenever the peak
response reaches a criterion, but now the particular lacation in the channel that
produces the peak response will vary from triat (g trial, In this mode! of the
delection process, there will, therefore, be probability summation across the
Spatial extent of a channel: When there are smore locations at which a very
large response often oceurs, there are more chances on any particular trial tg
Bet a very large peak response. Therefore, the channel will be more likely to
detect the stimuius, and wil| be more sensitive to the pavtern. (In this model
of the deteciion process, as in the simple peak-response model described ear-
lier, the spatiat ordering of the response magnitudes is of no importance.)

30, for example, as the number of bars in a grating is increased, a chaonel's
sensitivity (o the grating will increase, because more points in the channel wilj
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have a chance to detect the grating. (In addition, of course, there will still be
probability summation among different channels, because whether or not each
channel's peak response exceeds the threshold crilerion will still vary from trial
to trial.)

As Granger (1973) pointed out, this new model of a detection process, ine
cluding probability summation across space, predicts that a channel will show
fess summation between components of a compound grating than predicted by
the simple peak-detection model. Why this is so can be seen by carefully com-
paring a channel’s responses to simple and o compound gratings. Figure 8
shows the prefiles of a channel's responses to a single grating of 12
cycles/degree and to a compound graling of 12 cycles/degree combined with 1}
cycles/degree. The conirasts in the gratings were chosen so that the peak
response would be the same height in both profiles. If a channei had a simple
peak-detection process, therefore, it would be equaily sensitive to both pat-
terns.

However, according to the new model, the profiles in Fig. 8 represent only
average responses. The probability of getting a peak response that meets the
criterion on a particular trial does not depend solely on the peak in the average
response profile. Rather, it depends on the number of different localions across
the channel that produce large average responses (and, of course, on how large
those responses are). As is clear in Fig, 8, the “'beating”” between components
produces enly a few high points in the compound grating's average response
profile, whereas there are many high poinls in the simple grating’s profie.
Therefere, according to the new model, the channel will be a good deal less
likely to detect the compound grating than (o detect the simple grating. In
short, a model allowing for probability summation across space predicts much
less detectability for the compound grating relative to the detectability of the
component frequencies (that is, much less summation within a channel) than
does the simple peak-detection model.

The upshot is that if we were now (o assume thal there is probability sum-
mation across the spatial extent of a channel, lthen we would expect compound
stimuli 10 be less detectable than we expected when we were assuming simple
peak detection. So when we find experimentally that a compound stimulus is
not very much more detectable than its components, we would no lenger as-
sume that this means each channel is very insensitive to [tequencies other than
its optimal ene. We would conclude instead Lhat the channel is more Sensitive
to nonoptimal frequencies than we had previously thought. And saying that a
channel is more sensitive 1o nonoptimal frequencies than we had thought is the
same as saying that the channel’s bandwidth is broader than we had thought.

Preliminary calculations suggest that, when probability summation across
space is considered. the data from Sachs, Nachmias, and Robson’s experiment
may be consistent with an estimated bandwidth almost as large as thal of the
broadest curve shown in Fig. 4. This bandwidth is substantially larger than
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FIG. 8. The top graph is a channel's response profile to a simple grating
of 12 cycles/degree, and the botlom graph s the response profile to a
compound grating containing components of 11 ¢ycles/degree and 12
cycles/degree. The conltrasts of the gratings were chosen so that the two
response profiles would have the same peak height. In particular, the
contrasts in the two componems of ihe compound grating were chosen
so that the responses lo each component slone would have the same
peak height. Hence, the contrast in the 12 cycles/degree simple grating

was twice the contrast of the 12 cycles/degree component in the com-
pound grating.
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that originally estimated and, if correct, the weighting function for the 14
cycles/degree channel might be of the center-surround type. However, it is an
open question whether or not probability summation across space should be in-
cluded in the model of a spatial frequency channel. And it is worth emphasiz-
ing that this broader bandwidth still is not nearly wide enough to make the
multiple-channe! model into a single-channe! model,

Summary

What | have said up to this poini can be summarized as foliows: To explain
the measured thresholds of compound gratings composed of several sinusoidal
components, it is not sufficient to assume a single-channel model. It is
sufficient to assume probability summation among multiple channels each of
which responds to only a relatively narrow range of spatial frequencies. Exactly
how narrow a range depends on the particular model of a channel’s detection
process that is assumed. The range is narrower, for example, when simple
peak delection is assumed than when probability summation across spatial ex-
tent is considered. When I refer to a channel as “narrow™ in what fallows,
mean only that the range of frequencies to which the channel responds is nar-

row enough 1o require at least several such channels to span the range of fre-
quencies 1o which a human observer is sensilive.

EDGE DETECTORS AND OTHER NEW FEATURE DETECTORS

In 1he rest of the chapter | would like to discuss some recent interesting exper-
iments by Shapley and Tolhurst and by Kulikowski and King-Smith. These ex-
periments were interpreted by their authors as evidence for other kinds of
feature detectors in addition to spatial-frequency channels of the sort discussed
above. First I'll review the interpretations given by the authors and then I'll
go on to lock at an alternative explanation that assumes there ate no feature
delectors other than the spatial-frequency channels.

Sine Waves Plus Broadband Stimuli

Rather than adding sine waves only to sine waves as in the experiments
described above, Shapley and Tolhurst and Kulikowski and King-Smith added
sine waves to broadband ‘“‘test stimuli,” such as sdges and lines. {A broad-
band stimulus is a stimulus that can be considered to be the sum of a large
number of sine-wave components, wilth a fairly large range of different fre-
quencies. All nonrepetitive or aperiodic stimuli are broadband. An edge
stimulus is a bright homogeneous field next to a dark homogeneous feld. A
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line stimulus is a bright stripe superimposed on a dark feld. The intensity
profites of an edge and of a line, as well as of the other aperiodic stimuli that
were used, are shown in the insels of Fig. 11).

They did their experiments in the following way: They set the conirast in
the sine-wave grating at seme level below threshold. They then had the sub-
ject adjust the contrast in the superimposed test stimulus (in the edge, for ex-
ample} until the subject could just barely see that there was a patiern present
instead of a blank field. (The mean intensity of the paltern was held constant
while the contrast was being adjusied.) This procedure was repeated with
several subthreshold values (including zero) of sine-wave contrast.

The data they obtained were plotled as in Fig. 9 The test-stimulus contrast
needed 1o make the campound pattern visible was plotted for each level of
conirast in the subthreshold sine wave. Their actual data looked much like the
fictitious data in Fig, 9. The points fell on a straight line, and the line inter-
sected the horizontal axis at a conlrast far above the threshold for the sine-
wave grating alone {here calted 1.0).

Frequency Responses of the New Detectors

The investigators interpreted these results within the framework ol the follow-
ing model: A large number of differenl feature detectors exist, each of these
detectors is a linear system, and a slimulus is always delected by the detector
that has the lowest threshold for that stimulus, Notice that there is no provi-
sion for probabilily summation in their model—that is, it never happens that
the relative sensitivities of feature detectors fluctuate so thal a stimulus is
sometimes detected by one feature detector and sometimes by another,

Using their model, they could easily interpret data like that of Fig. 9. The
data were gathered using added sine waves with low contrasts, including zero.
All of the dala points fall on a straight line as would be true if only a single
linear feature detector were acting. Therefore they assumed that a single
feature detector did determine all the daia points. That detector would be the
one with the lowest threshotd for the test stimulus alene (i.e. the detecior that
determines the point on the plot where the sine-wave contrast is zero) and so
will be called the *‘test-stimulus deteclor.”

Then they could infer the test-stimulus delector’s sensitivity to sine waves of
various {requencies by using data like that in Fig. 9. (Why not directly mea-
sure the detector’s sensitivity for a sine wave by presenting a sine wave 10 the
observer? You can't, according to this kind of model, because when you
present a sine wave by itself, its threshold is determined by whatever detectar
is most sensitive to the sine wave rather than by the test-stimulus detector.)
The way to infer the test-stimuius deteclor's sensitivity is 1o see where the
straight line through data like that in Fig. 9 cuts \he horizonial axis: That in-
tercept should tell what contrast in the sine wave would produce a threshold
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FIG. 9, [Hustration of the method used by Shapley and Tolhurst and by
Kulikowski and King-Smith w0 measure Lhe “‘sensitivity of a tes(-
stimulus deleclor (o sine waves.” [nsel al upper right shows (he inlensi-
ly profile for one kind of stimulus they used—a combination of an edge
and a sine wave. Data points are fictitious points typical ol their aclual
data, showing, for each amount of contrast in the sine wave, how much
contrast in the edge is necessary to make the compound patlern jusl visi-
ble to the obhserver, The straight line drawn Ihrough the data points is
assumed 10 represent the responses of a linear “lest-stimulus detector”
whose behavior is described by the equation given in the figure, where
Cliest} and Clsine) are (he contrasts in the test stimulus and sine,
respectively, and S{lest) and S{sine) are the sensitivities of the test-
stimulus detector for Lhe tesl stimuius and sine, respectlively. (Sensitivi-
1y is, as usual, the reciprocal of threshold.}

response by the test-slimuius detector when there is no contrast at all in the

test stimulus (0.0 on the vertical axis). So the reciprocal of this intercept is
the test-stimulus detector’s sensitivity to thal sine wave,

For each test stimuius, Kulikowski and King-Smith and Shapley and
Tolhurst used sine waves of a number of different spatial frequencies, Anding
the intercept for each one, as shown for the fictitious data in Fig. 10 (ief1).
Then, by plotting the reciprocals of the values of those intercepts against the
spatial frequency, they produced a frequency-sensitivity curve like that in Fig. 10
(right). This curve shows, for each frequency of sine wave, the inferred “‘sen-
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FIG. 10. The three plois on the left are the fichitious results of adding
sine waves of three different frequencies (5, 10, and 15 cycles/degree}
to a test stimulus, See Fig. 9 for more delails about the method. The
plot on the right shows the ‘‘frequency-sensilivity curve of the lest-
stimulus detector™ that is derived from the plots on the left {and from
similar plots lor other frequencies}. For each spatial frequency, the
curve gives the reciprocal of the intercept from a plot like those on the
lefi. {The righthand axis shows the actual value of the intercept.)

sitivity of the test-stimulus detector’™ for that sine wave, Notice thal the
steeper the line on one of the plots in Fig. 10 (ieft), the greater the
corresponding sensitivity on the frequency-sensitivity curve in Fig. 10 {right).
I will sometimes refer, therefore, to the inferred sensitivity of the test-stimulus
detector for a sine wave as “‘the effectiveness of a sine wave in reducing the
threshold for the test stimulus,”™ as a reminder of what was actually measured.

Figure 11 shows the actual frequency-sensitivity curves from Kulikowski and
King-Smith's data for six different test stimuli {one of which was a sine-wave
grating as in the earlier experiments). The lower curve in each panel shows
the data for the sensitivity of the test-stimulus detector. The upper curve is
the psychophysical contrast-sensitivity function. Shapley and Tolhurst's curve
for an edge, not shown here, is similar to Kulikowski and King-Smith’s. As
you can see in Fig. 11, there are at least five different curves for the six
different test stimuli. (The curves for the two lines shown in the upper right
ang lower left panels are very similar and might be considered identical.) By

these investigators’ interpretation, this indicates the existence of five different
detectors.

Weighting Functions of the New Detectors

Now, if these detectors are indeed linsar systems (as was suggested by the
straightness of the data plotted as in Fig. 9}, the curves in Fig. 11 are just the
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FIG, 11. Data from Kulikowski and King-Smith's expariments adding
sine waves to six different test stimuli. The top curve In each pane! is
shown for reference and is the usual psychophysical contrast sensitivity
function; it gives the reciprocal of the threshold contrast for a simple
sinusoidal grating as a function of the spatial frequency of the grating,
The Jower curves connect the data peints for the sensitivity of six
“test-stimulus detectors’ calculated by the method iliustrated in Figs. 9
and 10. The test stimuli were a blurry bar (upper lefi}, an edge (upper
middle), a 3-minute wide line (upper right), a 0.3-minute line (lower

feft), a triphasic light-dark pattern (lower middle) and 2 sine-wave
Clower right).

frequency responses of linear systems. So the curves in Fig. 11 can easily be
ttansformed mathematically to reveal the spatial weighting functions that
characterize the various detectors. (Just as the spatial weighting function can
be transformed to give the frequency response by taking the Fousier
transform, you can lake the inverse Fourier transform of the frequency
response (if you are willing tc assume semething zbout the phase characteris-
ties of the system) in ordet 1o get the spatial weighting function.)

The results of this transformation are shown in Fig. 12. The weighting fune-
tion of the edge detector consists of one excitatory region next to an inhibitory
region; the grating detector has a multijobed weighting function much like that
shown earlier for the original interpretation of the Sachs, Nachmias, and Rob-
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FI1G. 12. The weighting functions characteristic of Lthe detectors for
which the frequency responses are shown in Fig. 11. There are only five
weighting functions shown because the data for lhe two widths of line
{upper right and tower left in Fig. 11) were so similar. These weighting
functions were calculated from the data in Fig. 11 by using the assump-
tions that the detectors were linear and that certain kinds of symmetry
would be found in the weighling functions. Notice that the scales on the
axes are different for the different stimuli.

son data (Fig. 5}, and the other detectors have various versions of a center-
surround weighting Tunction.

These weighting functions, strictly speaking, describe the detection of the
test stimulus when the test stimulus occupies a particular location in the visual
field (since the test stimulus was presented only in one locatien in these exper-
iments). Presumably, however, similar responses could be evoked over a wide
area of the visual field. Then you could describe the detection of an edge, for
example, by an array of the appropriate weighting functions (each weighting
function being an excitatoty region nexi to an inhibitory regien) spread over a
large part of the visual field. You might refer to this whole array as the “‘edge
detector’’ or you might refer to each weighting function as an “‘edge detector.”
Either usage will make sense in everything that follows, In any case, in line
with the previous definition of a ““channel,”” you might well refer to the whole
array of weighting functions as a channe!.

The channel deduced from the case where the test stimulus was a grating is
akin to a spatial-frequency channel. (It might not be exactly the same as a
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spatial-frequency channel, because the logic used in deducing it, which ignored
probability summation, might not be guite right.) The channels deduced from
cases where the test stimuli were nonrepelitive (and therefore broadband) are
distinguished from the spatial-frequency channels by their responsiveness to a
much broader band of spatial fraquencies.

Other Predictions

[f the detectors are linear, one can make two kinds of testable predictions from
the above data. The expected resulls for various other combination stimuli,
like edges and lines added together, are predictable {rom the weighting func-
tions {or equivalently from the sine-wave sensitivity profiles). And the actual
threshold of the visual system for a test stimulus alone is also predictable. The

investigators made these predictions and checked some of them against data;
the predictions fit the data quite well,

BROADBAND FEATURE DETECTORS GR
PROBABILITY SUMMATION AMONG
SPATIAL-FREQUENCY CHANNELS?

Shapley and Tothurst's and Kultkowski and King-Smith's experiments and in-
terpretations make rather a pretty story, explaining quantitatively a variety of
interesting results. And in some ways, edge detectors and line detectors are
more appealing to common sense than are Lhe spatial-frequency channels,
We've all seen and drawn lines and edges, whereas sinuscidal gratings are a la-
boratory curiosity.

Too Many Channels?

However, two things bothered us about these studies, First, almost any time a
new test stimulus is used a new feature detector—a new channel—is found.
How many channels are we going to end up with? Somehow it seems wIOng to
end up with an infinite number of them. In some sense of the word, of
course, there smnisr be a different channe! for each stimulus that we can aame
differently; if we can recognize two Llhings as different, then somewhere in the
nervous system the responses to these two things must be different: the infor-
mation about the two things must be channeled differently at some point. Bul
that is not the kind of channe! I thoughi we were studying and it is not the
kind of channel people talk about studying—we talk as if we were dealing with
a limited number of feature detectors which farm an early stage in visual infor-
malicn processing.
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Probability Summation

The second bothersome thought was: *'What would happen if you tried to
take probability summation into account?”, or'in other words, “Where have
all the spatial-frequency channels gone?”’ Shapley and Tolhurst and Kuli-
kowski and King-Smith's logic assumes that there is no probability summation,
that whatever detector has the lowest threshold for the pattern will always
detect the pattern (i.e. there will be ne variability from trial to trial in the rela-
tive magnilude of the responses from various detectors and thus it will never
happen that on one trial one detector has the bigges!t response and on ancther
trial another detector dees). Using this assumption, they could indeed rule out
the possibility that any of the spatial-frequency channels detects the broadband
test stimulus. According to their logic, il a spatial-frequency channel ever
detects the broadband test stimulus (or the combination of test stimulus with a
very low contrasi sine wave), then it must afways detect the broadband test
stimulus. And the kind of curve plotted in Fig. 11 would look like the narrow
frequency response of a spalial-frequency channel, just like the data from a
sine-plus-sine experiment. Obwviously, the broadband-stimulus curves don'l
ook narrow, so it does seem that the spatial-frequency detectors play no role
in detecting broadband stimuli.

The assumption that there is no probability summation was certainly a rea-
sonable one to begin with, especially since it led to such good guantitalive
predictions. But we know thal probability summation does occur in Lhe sine-
plus-sine experiments, so a model that ignores probability summation (like
Shapley & Tolhurst’s or Kulikowski & King-Smith’s) cannot explain those ex-
periments completely.

Threshald for an Edge

Once you acknowledge the presence of probabitity summation, it becomes
much more difficult to decide whether various test stimuli are being detected
by new kinds of feature detectors or by conglomerates of spatial-frequency
channels. For example, you might try lo make a straightforward calculation of
what probability summation among spalial-frequency channels would predict
about the threshold for an edge. To perform such a calculation you'd need to
know how many channels there are (which we do not know), what their fre-
quency response is {which we do not know, except at 14 cycles/degree), and
what the lower part of their psychometric function looks like. With such
large area of ignorance in which to make auxiliary assumptions it is, as you
might expect, possible to construct a model, involving only probability summa-
tion among spatial-frequency channels, that does accuralely predict the thresh-
cld for an edge. The problem, though, is that when so many auxiliary assump-
ticns are used to predict so little data, you cannot claim the successful predic-
tinn as a clear validation of the model.
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Sine Waves Plus Broadband Stimuli

80 it seemed worthwhile to see whether we coukl devise a testable model with
fewer auxiliary assumptions, which could be checked against some other kind
of data. [n particular, we asked what probability summation among spatial-
frequency channels would predict about the experiments using broadband test
stimuli combined with sine waves. [F these prediclions had disagreed with
Shapley and Telhurst and Kulikowski and King-Smith’s data {no matter what
kind of auxiliary assumptions were made), we would al last have had a con-
clusive demonstration of the insufficiency of spatial-frequency channels. As It
turned out, the predictions agreed with all their data using only a few reason-
able auxiliary assumptions. This agreement gives considerable support to the
view that the only kind of channels involved in the detection of threshold
stimuli are spatial-frequency channels.

Qualitative Predictions from a Probability-Summation Model

Let's consider at a qualitative level (before going on lo some guantitative pre-
dicticns) what you might expect to happen when a sine wave is added to a
broadband test stimulus, if you think the only relevant part of the visual Sy¥5-
tem is a sel of spatial-frequency channels and if you allow for probability sum-
mation,

The broadband test stimulus activales a2 certain subset of the spaltjai-
frequency channeis: the subset that responds to the spatial frequencies of
which the test stimulus is composed. What happens when you add a sine wave
to the test stimulus? If the sine wave's spatial frequency is nor contained in
the test pattern, the sine wave will not affect the channels that are responding
o the test stimulus. So al low contrasts the added sine wave will have no
effect at all on the threshold for a combination of itself and the test stimulus.
The sine wave will not contribute anything to the detection of the test-plus-
sine combination until the sine wave’s conlrast is high encugh to strongly ac-
tivate ils own spatial-frequency channel, And then the sine wave will contrib-
ute only because its own channe! is probabilily summalting with the channels
that are responding to the test stimulus, nol because it is increasing the
response of any of the channels that the test stimulus is activating.

However, you would expect something quite different to happen if you add a
sine wave ol a [requency that /s a substantial component of the test stimulus.
As soon as you add any of the sine wave at all, no matter how low its contrast,
you increase the likelihood of detection. When the sine wave is added, the
response of the channel tuned to the sine wave's frequency goes up from a low
fevel (due to the test stimulus alone) to & higher level. So the threshold for

detecting the test-plus-sine combination is lower than the threshold for the test
stimulus alone.
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OF course, if the test pallern were 4 sine wave with the same frequency as
the sing wave you are adding, the threshold would be even lower. In that case
you would be adding a sine wave 1o a sine wave of the same frequency, so only
one channel would be involved in detecting either the test stimulus or the
test-plus-sine combination. For a broadband test stimulus, though, containing
many {requencies, a large number of different spalial-frequency channels is in-
volved in detecling the test stimulus. Adding a sine wave increases the
response of only one (or a few) of them, so there is only a small effect on the
lhreshold.

More generally, if only spatial frequency channels are involved, the
effectiveness of adding a sine wave 1o a test stimulus should depend directly on
how much of that sine wave's spatial ftequency is present in the tesl
slimulus—the greater the relative amount of the spatial frequency present, the
grealer the effectiveness of adding it. Notice that, qualitatively, this is what
does happen in the experiments (Fig. 11}. When a blurry bar (which contains
only low spatial frequencies) was used, only sine waves with low spatial [re-
quencies were effective, when a triphasic light-dark-light pattern {which con-

lains only high spatial frequencies) was used, only sine waves with high spaliat
frequencies were effective.

Predictions for Simple Test Siimuli

Can we calculate guantitative predictions lrom a model with probability summa-
lien among spatial-frequency channels and no other feature deleciors? For the
kind of experiment in which a sine wave is added 10 a test stimulus, it is rather
easy io calculate predictions, if you choose a certain kind of test stimulus. Fig-
ure 13 shows the resuits of some calculations for four specially selected test
stimuli, For these four stimuli, the calculations are easy because we don't
have lo worry about how many channels (here are and what their bandwidths
are.

Cne of the four test stimuli was a sine wave grating, The other three test
stimuli consisted of two, three, or five sine waves added 1ogether, The sine
waves in any one test stimulus were very different in frequency, so each sine
wave would affect a different channel. The contrasts in the sine waves were
adjusted so that each of the two, three, or five channels involved was presume-
ably responding &t the same level. (1t was assumed, for convenience, that a
sine wave affects only one channel.) To carry out the caleulations, it is neces-
sary to assume some form for a channel’s psychometric function. Purely for
convenience, the psychometric funclion used was a log-linear function that
spanned a range of seven log units on the log contrast axis, Neither of these
assumplions used for convenience is crucial,

Each line in Fig. 13 represents the predictions for adding a sine wave of a
frequency contained in the test stimufus to one of the test stimuli. (The label
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FIG. 13. Quantitative predictions for the thresholds of combinations of
sine waves and certain lest stimuli, assuming that there are cnly spatial-
frequency channels with probability summation among them. The four
hypothetical test stimuli consist of one, two, three, or five sine-weve
components (as indicated by the numbers next to the lines). See text
for further details.

next to each line identifies the test stimulus, by specifying the number of [re-
quencies it contains.) The symbols show, for various amounts of contrast in
the added sine wave, how much test-stimulus contrast is necessary to put the
test-plus-sine combination at threshold.

The plots in Fig. 13, depicting predictions from a model of probability sum-
mation among spatial-frequency channels, look just like plots of data from a
Shapiey and Tolhurst or Kulikowski and King-Smith experiment (see Fig. 9.
The peints fit quite wel! onto straight lines {although in fact the linearity is
only approximate). When the lines are extended, they hit the horizontal axis
far beyond the threshold for the single sine wave. The approximate linearity
simply shows there are many ways of getting a straight line.

The positions of the intercepts in Fig. 13 make sense according to the quali-
lative argument given earlier. To repeat briefly: When the intercept is at a
higher contrast than the threshold contrast for a sine wave alone, that means
that the sine wave is Jess effective in reducing the threshold for a breadband
stimulus than it is in reducing its own threshold (i.e. when the test stimulus is
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also a sine wave, with Lhe same frequency). The reason, according to a model
of probability summation among spatial-frequancy channels, is that the test
stimulus is detected by several spatial-frequency channels {two, three, or five
channels for the test stimuli used here) whereas a sine wave is detected by
only one channel. Thus, when you add a sine wave to a broadband test
stimulus, you assist only one of severg! channels that each contribute to detec-
tion at one time or ancther {producing probability summation). When you
add a sine wave o a single sine wave of the same frequency you affect the one
channel that is completely responsible for the detection. Sc, reasonably
enough, the sine wave helps more in the latier case,

Figure 13 displays ancther property of the predicticns from the model of
prebability summation among spatial-frequency channels; The larger the
number of channels involved in detecting a 1est stimulus, the less it helps to
add a sine wave to that stimulus (that is, the farther out the intercept of the
data line with the horizontal axis). The reason for this is an extension of the
argument above: When more channels contribute 1o detecting the test stimu-

lus, any one channel contributes less, so the less the effect of adding a sine
wave which affects only one channel.

Assumptions for a Quantitative Probability-Summation Model

The remaining sections of this chapier are for those readers who would like 3
more deiailed derivation of quantitative predictions for the test stimuli actually
used by Shapley and Tolhurst and by Kulikowski and King-Smith, instead of
predictions that are qualitative or restricted (o a special kind of test stimuli, as
discussed so far. The derivation will show that, using only a small set of rea-
sonable assumptions, we can calculate very good fits to the previously obtained
data.

We are going to assume that the data result from probability summation
among a set of spatial-frequency channels without any other, specialized,
breadband detectors at work. The calculations plotted in Fig. 13 show that
probability summation ameng spatial-frequency channels does predict the gen-
eral type of results found experimentally when a sine wave is added to certgin
broadband stimuli. But we haven’t yet demonstrated that such a probability-
summalion model can predict quantitatively the results for various other test
stimuli as you vary the spatial frequency of the sine wave. To do so requires
either some assumptions about the number of channels, their bandwidth, and
their psychometric functions, or a general assumption that avoids those prob-
lems. D've chosen to make such a general assumption here because, although
it produces only an approximation of the predictions of a complete model, the
general assumption conveys a better idea of why the model makes the predic-
tions it does. And anyway the approximation is not too bad.
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FIG. 14. Some results from sample calculations assuming only spatial-
frequency channels with probability summation among them. The hor-
izontai axis gives the proportion of the sum of the responses of all chan-
nels thal is being contributed by the channel responding to the sine
wave. The vertica! axis shows the effectiveness of adding the sine wave
to the test stimulus relative to the effectiveness of adding the sine wave
lo itself {or, in other words, the sensitivity of the test-stimulus detector
10 a sine wave divided by the sensitivity of the visual syslem 1o that sine

wave). See he lower left section of Fig. 15 for definition of the symbols
used on the axes.

To explain the motivation for the particular assumption I used { Assumption
1l in Fig. 15), the predictions from Fig. 13 are plotted in a different way in
Fig. 14. The horizonta! axis of Fig. 14 gives the contribution by the one chan-
nel that the added sine wave activales, as a fraction of the sum of the average
magnitudes of all channels' responses (o the test stimulus. (The average mag-
nitude of a channel’s response is simply the average peak in the channel's
response profile, because, in terms of the models presented in the first half of
this chapter, the peak response determines whether a ¢hannel detects a
stimulus.} When the test stimulus has two sinusoidal components adjusted to
affect two channels equally, and the added sine wave affects one of those two
channels, the quantity on the borizantal axis is 1/2. When the test stimulus
has three components adjusted 1o affect three channels equally, the quantity is
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1/3, and so on. {For definitions of the symbols ¢n Fig. 14's axes, see the bot-
tom of Fig. 15.)

Figure 14's vertical axis gives the effectiveness of adding a sine wave (o the
test stimulus, relative to the effectiveness of adding the sine wave to itself. In
other words, the vertical axis gives the “'sensitivity of the test-stimulus detec-
tor’ to a sine wave, divided by the sensitivity of the visual system to the sine
wave. The solid points in Fig. 14 were determined from the intercepts of the
lines drawn in Fig. 3. (The other poinis come from other kinds of sample
calcutations. The open cireles come from calculations like those of Fig. 13 but
using a log-linear psychometric function spanning 5 decibels rather than 7 deci-
bels on the log contrast axis. The diamonds come from calculations using a
test stimulus composed of two sine waves far apart in frequency where the
contrasts were ror adjusted to produce equal responding in the two affected
chaonels but to produce severa! different ratios of responding; a 7 decibel
psychometric function was used.)

Assumption 1 in Fig. 15 is a mare general form of the relation suggested by
the straight line in Fig. 14. The fact that the points in Fig. 14 fall roughly
along a straight line suggests thal the relative effectiveness of the added sine
wave is approximately propertional to the fraction of the total response of all
the channels that is contributed by the channel that the added sing wave ac-
tivates. [ am assuming that the propoertionality shown in Fig. 14 for a few sam-
Ple calculations is true for all cases of probability summaticn among multiple
channels. (See Fig. 15 for a formal statement of this assumption.) Such an
assumption has the great advantage of circumventing the problems of how
many channels there are, their exact psychometric functions, etc. It is not
completely accurate, because the relative effectiveness depends not only on
what propartion of the 10tal response a given channel contributes but also on
the distribution of the responses across the other channels. And even in the
case of test stimuli compecsed of equally balanced components, the relative
effectiveness is not strictly & linear function of the fraction of total response
contributed by the added sine wave's channel. However, this assumption is
quite accurate enough for an investigation of whether probability summation
among spatial-frequency channels can predict the kind of results found when
sine waves are added to broadband stimuli.

Thke other assumption used here, Assumption 2 in Fig, 15, is that the aver-
age magnitude of the response of any channel to the test stimulus (more pre-
cisely, the average peak response) is proportional to the maximal sensitivity of
that channel (taken 1o equal the contrast sensitivity of the visual system for
that channel's center frequency) multiplied by the amount of that channe!'s
center frequency which is contained in the test stimulus (ihe magnitude of the
test stimulus spectrum at that frequency). Because this assumption is based
entirely on what happens at one spatial frequency (the channel's center fre-
quency), it is necessarily an approximation for any channel that is not extreme-
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ly narrow {any channel with greater than zero bandwidth). But it is a very
goed approximation for the spatial-frequency channels since, as can ensily be
shown by direct calculation from the models described in the first part of this
chapter, the approximation is good even for quite wide channels.

The relation of the constant of proportionality, B, to the bandwidth of the
channel does depend on the particular detection process that is assumed. To
predict a given value for the constant of proportionality, B, you need to as-
sume a larger channel bandwidth when using the detection-process mode! that
allows for probability summaticn across space than when using simple peak
detection {in which case bandwidth will actually equal B if you define the spec-
trum of test stirnuli carefully). The additional assumption, embodied in As-
sumption 2, that the same constant of proportionality B holds for every chan-
nel across the whole frequency range is antamount to the assumption that
every channel has the same bandwidth, measured on a linear frequency axis
{thus on a log frequency axis the bandwidth is broader for a low-spatial-
frequency channel than for a high). Quick’s study suggests that this assump-
tion is quite reasonable,

Assumption 2's specification of the average magnitudes of the spatial-
frequency channels’ responses to an edge is illustrated by the top three lines in
the right half of Fig. 15. The topmost line is the spectrum of an edge—how
much of each spatial frequency is present in ths edge. The second, curved line
is the psychophysical contrast-sensitivity function (from Kulikowski & King-
Smith's study}, which also telis us the peak sensitivities of the channels cen-
tered at various spatial frequencies. The third line is the product of multiplying
the functions in the first two. By Assumption 2, the value of this product at a
given spatial frequency is proportional to the average magnitude of the
response 1o an edge by the channel centered at that spatial frequency.

Quantitative Predictions from a Probability-Summation Model

Putting Assumption 1 together with Assumplion 2, we can easily derive a
duantitative prediction (see Fig, 15): The “'sensitivity of the test-stimulus
detector’* (what I've been calling ‘‘the effectiveness of a sine wave in reducing
the threshold for the test stimulus®™) should be proportional to the spectrum of
the test stimulus multiplied by the square of the contrast-sensitivity function.
Or in other words, the sensitivity of the test-stimulus detector to a given fre-
guency is predicted to be proportional to the average response magnitude of
the channel centered at that frequency multiplied by the psychophysical con-
trast sensitivity for that frequency.

The predicted *‘sensitivity of the edge detector’ is given by the bottom
curve in Fig, 15, which is the product of the second and third curves. Similar
predictions can easily be made for the other test stimuli used in Shapley and
Telhurst’s and Kulikowski and King-Smith's experiments.

The constant of proportionality for these predictions of test-stimulus detector
sensitivity, as can be seen in Fig, 15, is equal to the product of the two un-
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known constants of proportionality from Assumptions 1 and 2 (the constants
do nat depend on which test stimulus you are considering) divided by the sum
of all the channels® average responses to the test stimulus (this sum does, of
course, depend on which test stimulus you are considering). Thus, if you ean-
not estimate the sum of all the channels’ average responses, you are left with a
different constant of proportionality for each test stimulus. In that case, you'd
have to fit the predicted sensitivities (e.g. boltom curve, Fig. 15) to the actual
data (Fig. 11} separately for each test stimulus, by finding the constant of pro-
portionality that produces the best fit. (In practice, you plot both the predicted
sensitivities and the actual data on log-sensitivity axes and shift the predictions
vertically to get the best possible fit to the data.)
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FIG. 16. Comparisons between predictions from the probability-
summation model and data rom Kulikowski and King-Smith's experi-
ments. The solid points are the *‘sensitivities of the test-stimulus detece
tor** to sine waves of different frequencies, as calculated from the exper-
imental data. (The same data points were shown In Fig. 11.) The lower
curve gives the predictions from the probability-summation-among-spa-
tiakfrequency-channels model. (The upper curve is the usual psycho-
physical contrast-sensitivily function.)

(A) Data and predictions for experiment using a blurey bar. {B)
Edge. (C) 3.0-minute wide line. (D) 0.3-minute line. (E) Triphasic
lighi-dark-light pattern. No predictions are made for the sine wave grat-
ing since it is not a broadband stimulus.
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Figure 16 shows how well the data collected by Kulikowski and King-Smith
are fit by predictions based on probability summation among spatial-frequency
channels. In each section, the top curve is the visual system’s overall
contrast-sensitivity function, shown for reference. The points are the experi-
mental data. The bottom curve is the prediction from probability summation
among spatial-frequency channels. {There are no pradictions for the sine-wave
grating since it is not a broadband stimulus.} As you can see, the predictions
are a very good fit to the data. They are not perfect, of course, but neither are
the data. (By making an additional assumption, you can fit the data almost as
well with just one free parameter. See the note on page 260-261.)

Remaining Problems

As mentioned earlier, Shapley and Tolhurst apd Kulikowski and King-Smith
showed that a few examples of two other kinds of data were quantitatively con-
sistent with their results from the test-stimulus-plus-sine experiment: the
results from test-stimulus-plus-ancther-test-stimutus experiments (such as
edge-plus-line) and the thresholds for each test stimulus alone. It can easily be
argued, on the basis of some sample calculations, that the consistency found
between the data from the test-stimulus-plus-sine experiments and the data
from the test-stimulus-plus-test-stimulus experiments would be expected from
a model of probability summation among spatiai-frequency channels, What
cennot be quantitatively predicted on the basis of probability summation
among spatial-frequency channels using the approach presented here are the
actual threshold contrast values for various test stimuli alone,

If instead of the assumplions used here, an explicit model of probability
summation ameng channels is constructed, then the thresholds for test stimuli
can be predicted and, in the process, estimates of channel density and
bandwidth are obtained (Graham, 1977). This estimate of channe!l bandwidth
is in good agreement with the estimate from the sine-plus-sine experiments
like those of Sachs, Nachmizs, and Robson and of Quick. Both kinds of esti-
mates depend in similar ways on the exact model assumed for the channel:
that is, on whether or not probability summation across space s included in the
model.

A possible shoricoming of the probability summation model is that, in the
long run, even one free parameter to fit data is one 100 many—its value may
prove 1o be inconsistent with some other kind of data.

Finally, even if the collection of spatizl-frequency channels could detect
broadband stimuli, it might not actuaily do so. An observer might, for exam-
ple, ignore the spatial-frequency channels when engaging in tasks for which
some other part of the visual system seemed more appropriate. Or there might
be inhibition among spatial-frequency channels, so that when many of them
are responding, none responds very well.
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Counclusion

At the moment, despite some remaining questions, I fee! there is nop way to
rule out the hypothesis that only relatively narrowband spatiai-frequency chan-
nels, with prebability summation, are involved in the detection of the various
kinds of stimuli used in these experiments. That hypothesis means that data
of the kind shown in Fig. 1§, for example, from an experiment in which sine
waves of various frequencies were added to a broadband test stimulus, might
be better viewed as the result of probability summation among several relative-
ly narrowband channels than as the frequency response of a single “‘test-
stimulus detector,”

AS was explained earlier, howaver, these “relatively narrowband™ spatial-
frequency channels may rot be ag narrowly tuned as was originally deduced
from the sine-plus-sine experiments. If probability summation across space
does occur, the bandwidth of these channels may turti out to be much broader
than we at first thought.

To put this last point another way, suppose that we knew that an early stage
of the visual system consists of a set of spatial-frequency channels. Suppose
that each channel is an array of identical receptive Helds (identical in all
characteristics except location in the visual field), but the characteristics of the
receptive fields (size, in particular) vary from channel to channel. Suppose
further that there is probability summation across space {across different loca-
tions} and across channels {across different kinds of receptive field). What,
then, wouid be the bandwidths of these channels (what would be the Fourier
transforms of the weighting functions associated with the various channels)?
The answer is not yet known. But this much can be said. The bandwidths will
probably be greater than those deduced from sine-plus-sine experiments when
probability summation across space was ignored (although probability summa-
lion across channels was considered), But the bandwidths will probably be nar-
rower than those deduced for test-stimulus detectors from broadband-tesi-
plus-sine experiments when probability summation across channels was ignored
(probability summation across space was not very important because all the
test stimuli occupied fixed locations in the visuaf field). And such an inter-
mediate bandwidth is what I mean by *'relatively’’ narrowband.

Perhaps we are wrong to consider the results of detection-summation experi-
ments like those described here as telling us anything about a limited set of
paraliel feature detectors (spatial-frequency channels) early in the chain of
visual information processing. Perhaps we would do better to consider all the
data as resulting from much more complex processes. Bul if we are going to
consider these experiments as revealing the existence of parallel feature detec-
tors, it seems possible to explain all the psychophysical data described above
quite simply: You do nor need to conclude that there are broadband detectors,
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like edge detectors and line delecters, in addition to the relatively narrowband
spatial-frequency channels. Relatively narrowband channels alone, with proba-
bilily summation among them, would be sufficient. The exact characteristics of
these channels, however, remain to be determined.

FURTHER COMMENTS FOR INTERESTED READERS

Terminology

Channels. Rather than using a purely arbitrary word to name a concept, a
person often chooses a word suggestive of the concept. Unfortunately, what
the word suggesis to one person may not be what it suggests to another. 1
have used the word channef lo mean & two-dimensional array or, in terms of
the physiological anzlogue, a collection of receptive fields that are identical ex-
cept in position. [ have heard at ieast two objections to this use of the word.

To some people, a *'channel” should be something that produces only a sin-
gle number as its oulput. These pecple might prefer to call each single neuron
a channel. Or they might consider a channel to consist of the kind of array
that [ call a channel plus a “*detector” whose output is either the height of
peak response or perhaps a 0 or 1 depending on whether the peak response
exceeds the criterion level, (The terminology | have used is consistent with
that used in sudition. The input for an auditory channel is an acoustic
waveform whose amplitude varies with time. The output is alse a waveform,
filtered, whose amplitude varies with tjme. The output is a single number only
for a single instant. When we draw the analogy between audition and vision,
visual space takes the place of auditory time. So it is consistent with the usage
in audition to consider both the input and output of a visual channel to be a
waveform whose amplitude varies with spatial location.)

To some other people, a ‘‘channel” should be something that produces a
distinctive perceptual effect~that is, the outputs of different channels should
be kept quite separate and should make qualitatively different contributions to
perception.  Although my definition of "*channels” does not exclude their hav-
ing qualitatively different effects, the definition in no way requires it. And I do
net want 1o require it, at least not in this conlext, since it is irrelevant for the
kinds of experiments described here.

Detectors. There are several possible uses of terms like *‘line detector.”” If
the bandwidth of the spatial frequency channels twrns out to be wide encugh,
the weighting functions associated with the channels will be of the simple
center-surround type (if symmetric). Rach spatial frequency channel might
then be called an array of “‘line detectors.”” Thege *‘line detectors,” however,
would no; be the detectors deduced by Kulikowski and King-Smith from the
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experiments using combinations of lines and sine waves—that is, their weight-
ing functions would not be the same, excepi by accident.

There is another possible use of the term “line detector.” If it does turn out
that the detection of lines is done by a subset of the spatial-frequency chan-
nels, that subset might be called a “‘line detector.”

Modifications of the Model

Some slight modifications of the multiple-channels models described in this

chapter will have little or no effect on these models’ predictions. Three exam-
ples follow.

One peak detector or several? [t was assumed here that each channel (each
array of neurons having the same kind of receptive fields) has its own peak
detector—that is, it was assumed that a paltern is above threshold for the visu-
al system when it is above threshold for at least one channel, and that it is
above threshold for a particular channe! whenever the peak response in that
channel (ihe response of the neuron that gives a bigger response than any oth-
er neuron in that particular channel) is above some criterion. However,
without changing the predictions at all, one could instead assume that there s
only one peak detector associated with the whole collection of channels—that
is, it could be assumed that a pattern is above threshold whenever the peak
response in the whole collection of channels {the response of the neuron that

gives a bigger response than any other neuron in any channel) is above the cri-
terion.

Peak or peak-irough detection? We could assume that the threshold is based
on peak-trough detection (the difference between the highest and lowest points
in a channel's response profile) instead of on peak detection (the difference
between the highest point and the average across the profile). For very nar-
rowband channels, the change in assumption would not affect predictions at all.
For channels with slightly wider bandwidths (like the cufrent idea of a spatial-
frequency channel), the change will affect the predictions somewhat. (Assum-
ing peak detection instead of peak-trough detection improves the approxima-
tion contained in Assumption 2 of the mode! summarized in Fig. 15}

Retinal inhamogeneiy. A third modification that might make little difference
in the predictions of the multiple-channels model is based on retinal inhomo-
geneity. All sizes of receptive fields may not be present at all places in the reti-
na. The small receptive fields subserving high-spatial-frequency channels may
be located within and near the fovea, whereas the broader receptive fields sub-
serving low-spatial-frequency channels may be located more peripherally.
Whether or not retinal inhomogeneity makes a substantial difference in the
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predictions for aperiodic stimulj depends on several factors, including the
bandwidth of the channels and the exact distribution of receptive field sizes.

Retinal inhomogeneity remains a petentially important factor that has not been
adequately explored.

Effect of Limited Extent of Gratings

Embodied in Assumption ? of the model summarized in Fig. 15 is the assump-
tion that the peak sensitivity of a channel is correctly estimated by the visual
system’s contrast sensitivity for that channel’s center frequency, This assump-
tion is, unfortunately, introducing an approximation that may vary sysizmati-
cally with spatial-frequency. The peak sensitivity of a channel in the model is
the sensitivity for a grating containing only a single sinusoidal component. But
in order to have only a single component, the grating would have to be infinite
in extent. The contrast sensitivity of the visual system measured in an experi-
ment is of course based on sinusoidal gratings that are limited in extent. (n
fact, changing the extent of gratings is known to change the shape of the
contrast-sensitivity function. In other words, changing the extent changes the
estimates of peak sensitivities by different factors for different channels.

There are good reasons, which should be incorporated into a more complete
model of multiple channels, why varying the extent of gratings might have this
experimentally observed effect. For one thing, a sine-wave grating that is lim-
ited in extent contains a band of frequencies in addition to the nominal fre-
quency and thus stimulates a number of channels, For another, if the extent
of a sine-wave grating is small enough, and the weighting functions are mul-
tilobed, the whole grating will be narrower than the weighting functions of the
most sensitive channels, and then the peak response in these channels will be
smaller than the peak in the channels® responses (¢ an infinite grating. Furth-
er, the detection process in channels might depend on the extent of a grating
in a way that would produce Lhe observed effect of varying extent. {(However,
if the detection process is either simple peak detection or peak detection with
probability summation across space, it would not depend on extent.) Finally,
as mentioned zbove, the retina is not completely homogeneous, so the

respense may be different depending on how much of the retina is stimulated
by the grating.

Reducing the Number of Free Parameters

If you fit the data for each test stimulus separalely as was done in Fig. 16, you
are using as many [ree parameters as there are test stimuli. (The original in-
vestigators ussd as many free parameters as there were data points.) It turns
out that you can fit the data almost ag well, and yet reduce the number of free
parameters 1o one, by making an additional assumption. This assumption al-
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lows you to estimate a quantity that is proportional (¢ the sum of all the chan-
nels’ average responses lo the tesl stimulus, regardless of what the test
stimulus is. What you assume is that the channels are evenly spaced along the
linear spatial-frequency axis {there is no evidence on this one way or another).
Then the sum of the average responses of aff the channels will be approxi-
mately proportional to the sum of the average responses of a swbser of chan-
nels which have center frequencies evenly spaced along the linear spatial-
frequency axis. (In my calculations 1 used a spacing of | cycle/degree.) You
are then left with only one free constant (A times B divided by the constant of
proportionality used in estimating the sum of the average responses), and that
single constant can be adjusted 1o fit the data for all the test stimuli simultane-
ousiy,

The cnly difference between the predictions that are obtained if one free
parameter is allowed and the predictions shown in Fig. 16 is that the vertical
position of the predicted curve fof the blurry bar is higher relative to the verti-
cal positions of the predicted curves for other stimuli, This change in relative
vertical position produces somewhat less impressive, although not bad, fts
between data and predictions.
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