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Abstract—Dietection and identification of up to four

simple sinusoidal gratings were studied. The

experimental results were quantitatively compared to predictions from several models. The models all
assumed probabilistically independent channels sensitive to different ranges of spatial frequency. The
models differed in the shapes of their underlying disisibutions and, for detection, their decision rule.
Detection and identification of far-apart spatial frequencies were consistent with these models. Thus,

uncertainty effects for both detection

and identification (the decrease in performance with an increase in

the number of possible spatial frequencies) can be explained without assuming that attention capacity is

limited,

INTRODUCTION

Spatial-frequency channels models have been quite
successful in quantitatively accounting for the de-
tection of viswal patterns (e.g. Bergen et af,, 1979;
Davis et al, 1983; Graham, 1977; Graham et al.,
1978; Mostafavi and Sakrison, 1976; Quick er al,
1978, Watson, 1982). Attempts to use these models to
explain identification of near-threshold patterns have
been encouraging (Hirsch et al., 1982; Nachmias,
1974; Nachmias and Weber, 1975; Olzak, 1981;
Thomas and Barker, 1977; Thomas et al, 1982;
Watson and Robson, 1981). Many questions remain
unanswered, however, aboul the precise character-
istics of the spatial-frequency channeis necessary to
explain near-threshold paitern vision.

Here we attempt to refine our knowledge of these
channels by studying the identification and detection
of up to four simple sinusoidal gratings of far-apart
spatial frequencies. More specifically, on each trial a
sinusoidal grating or a blank was presented. In a
given block of trials, the grating’s spatial frequency
was chosen randomly from a set of one, twe, or four
frequencies. Neighboring frequencies were either a
factor of two or a factor of three apart. After each
trial, the observer indicaied whether or not he
thought he saw a grating at all {the detection re-
sponse). Also, when the set size was two or four, no

*Since the possible identification responses did not include
“blank”, this was not a “complete identification” ex-
periment in the terminology of Bush ef al. (1963). By
ignoting the blank trials, however, this experiment does
reduce {o a complete identification experiment of the
kind that is often called a pure recognition experiment
(e.g. Luce, 1963; Green and Birdsall, 1978). The every-
day-language connotations of the word “recognitiorn”
seem less appropriate than those of “jdemtification”,
however, and so we have chosen the iatter.

matter which detection response had been given, the
observer indicated which spatial frequency he
thought he saw (the identification response).*.

The detection and identification responses
recorded in the experiment were then compared to
the quantitative predictions from several models pos-
tulating probabilistically independent channels.
These comparisons addressed several issues:

(@} Uncertainty effects: noisy channels vs limited
capacity

Recently, uncertainty (or set-size) effects in the
detection of gratings of up to five different spatial
frequencies have been shown to exist (Davis and
Graham, 1981; Davis e al., 1983; Graham et al.,
1978). That is, a grating is less detectable when the
observer is uncertain about its spatial frequency
{because trials of several different spatial frequencies
are randomly intermixed within a block) than when
he is certain (because trials of only one spatial
frequency are being presented in that block or be-
cause an auditory cue before the trial has indicated
the frequency).

According to one kind of explanation of uncer-
tainty effects, the decrements in performance with
increased set size are simply the result of the ob-
server’s having to monitor more channels, each of
which has some independent probability of giving a
“false alarm” 1o an inappropriate stimulus. There is
assumed to be no limit to an observer’s attention
capacity—that is, an observer is perfectly abic to
monitor many different chanmels at once, and the
responses of the channels are not degraded when
more channeis are monitored. The factor kmiting the
observer's performance in larger set sizes is simply the
probabilistically independent variability (ofien called
noise) in the responses of different channels which
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leads to increased numbers of false alarms as set size
is increased. These models will be called “noise-
limited” or “independent-channels” models here. It is
this class of models which we quantitatively compare
to our empirical results.

A second explanation of uncertainty effects is a
fixed attention capacity. Either the observer canmot
monitor alt the relevant channels at once, at least not
perfectly, or else the responses of the channels are
degraded when more are monitored. This model will
be called “attention-capacity-limited,” and will be
considered only qualitatively in this paper.

The quantitative results from the previous study of
the forced-choice detection of sinusoidal gratings
were consistent with noise-limited models (Davis et
al., 1983). There was no need to postulate a limited
attention capacity; an observer seemed able to mon-
itor up to at least five different spatial-frequency
channets perfectly. This consistency provides further
suppoit for the existence of independent variability in
the responses of spatial-frequency channels, a conclu-
sion previously suggested by summation experiments
using compound gratings.

In the present study we measured uncertainty
effects for the identification of sinuscidal gratings as
well as for detection. We asked whether the sizes of
these effects were all consistent with noise-limited
models, or was there evidence for limited attention
capacity in the potentially more complex task of
identification,

This study also provided another opportunity,
under slightly different conditions (single-interval
trials, set sizes of 1, 2, and 4 with the same observer
in the same experiment), to determine whether de-
tection uncertainty effects were consistent with the
class of noise-limited models and to narrow the range
of possible noise-limited models.

(8) Comparison of detection to identification per-
Jormance

If there are multiple channels sensitive to different
ranges of spatial frequency, and if the responses of
different channels remain identifiable upstream in the
nervous system and are used as the basis for
identification of spatial frequency, there ought to be
a2 close relationship between detection and
identification performance. If simple sinwsoidal grat-
ings are of different ecnough frequency to excite
separate channels, and if they are of high enough
contrast to be easily detectable, they ought also to be
easily identifiable. More generaily, identification per-
formance ought to depend on deteciion performance
with both improving from chance to perfect over the
same range of contrasts.

Previous studies have compared detection and
identification from a set of two spatial frequencies in
a forced-choice paradigm. [In this “two-by-two"
paradigm, one interval of each two-interval trial
contained one of the two frequencies; the other

interval contained the blank. The observer had to
indicate the interval (detection) and the frequency
(identification]). In accord with a number of reason-
able multiple-channet models, proportion correct
identification equals proportion correct detaction for
spatial frequencies far enough apart to stimulate
separate channels (Nachmias and Weber, 1975;
Campbell er al., 1976; Thomas and Barker, 1977;
Watson and Robson, 1981).

Here we again ask whether detection and
identification performances are related to each other
in a manner consistent with multiple-channels mod-
els, but this study includes a set size of four as well
as of two and uses single-interval trials rather than
the two-by-two paradigm, We also compare detection
performance in a set size of one fo identification
performances in set sizes of two and four.

{c) Are there systematic confusions among the
identification responses to far-apart sperinl fre-
quencies?

If spatial frequencies a factor of two or three apart
(like those used in this study) stimulate completely
separate channels, and if the responses of those
channels remain separate upstream, an observer
ought to show no systematic confusions among the
identification responses to different frequencies. That
is, when he is wrong about a grating, he ought to be
no more likely to call it a near spatial frequency than
a far-away spatial frequency. Using 2 set size of four
allowed us to check for the presence or absence of
systematic confusions in the identification responses.

INDEPENDENT-CHANNELS MODELS OF
DETECTION AND IDENTIFICATION

The predictions from several versions of models
postulating probabilistically<independent channels
were compared to the results from this study; these
models are presented as a representative sample of
independent-channel models thal are reasonable in
ligitt of current evidence. Predictions of other pos-
sible versions are briefly described in the Discussion.

Assumptions of models

{1y Multiple channels. Spatial information in the
human viswal system is analyzed by multiple ¢han-
nels, each of which is sensitive to patterns that
contain spatial frequencies in a restricted range. The
output of an individua! channel on an individual trial
can be represented as a singie number.

(2) Completely separate chamnels. Although the
spatial-frequency ranges for different channels over-
lap and there may or may not be direct excitation and
inhibition among some channels, if frequencies are
sufficiently far apart, no channel will respond to more
than one of the frequencies.
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Fig. 1. Schematic probability density functions for the

responses of 4 channels to no stimuius and to a stimulus,

The distributions are identical for all channels since the

stimuli are assumed to be equally detectable. In the example

shown, the responses of the 2.0, 6.0, and 18.0 ¢/deg channels

to the 0.67 stimulus are the same as the noise distributions
(assumption 2 in the text).

(3) Independen: variability. There is variability
over trials in the output of any channel to any
pattern. This assumption is illustrated in Fig. 1 by the
schematic probability density functions describing
the distribution of responses by cach of four channels
to blank (noise) and grating (signal} stimuli. {See
figure legend for further description.}) Further, the
outputs of different channels (sources of noise) are
probabilistically independent, That is, the probability
that two channel outputs are greater than criterion on
a single trial is the product of the probabilities that
each channel output is greater than criterion.

Assumptions (2) and (3) together are equivalent to
what is sometimes called “orthogonal channels.”

In the models quantitatively compared to ouwr
experimental results, the probability density func-
tions describing the variability in the response of any
single channel to any pattern could cither be ex-
ponential or Gaussian.

{3a) In the exponential case, the probability den-
sity functions are zero for values of response mag-
nitude x less than zero and are equal to exp(-kx) for
values of response magnitude x above zero. The value
of k determines the channel's sensitivity with lower
¥'s corresponding to higher sensitivity. For the blank
stimulus, k& equals 1.0,

We have defined a parameter k', equal to 2 log,
(1fk), that is more convenient to use than . Not only
do higher values correspond to greater semsitivity

*Whether the observer monitors exactly one channel per
stimulus or several channels per stimulus (e.g. several
channels with overlapping sensitivities all sensitive to
one spatial frequency) is irrelevant, everything else
remaining constant. To avoid constant terminological
difficulties in the text, however, the observer will be
assumed to monitor exactly one channel per stimulus.

V.R. M1

{(with a value of zero for the blank) but in certain
situations (see appendix} its values are quite close to
values of d4’, the parameter used to characterize
models assuming Gaussian distributions.

The exponential distribution may seem a bit pecu-
liar as a description of the response of semsory
channels, but the ROC curves it predicts are like
those measured so far {e.g. Green and Swets, 1974;
appendix here), being nearly linear on z-axes and
getting shallower with increased detectability. Fur-
ther, exponential density functions are tractable in a
way Ganssians are not since they can be integrated
analytically (see appendix).

(3b) In the case of Gaussian distributions, only the
case where the variances in response to noise (blanks)
and signals (gratings) are equal is quantitatively
compared to our results. Cases where the variance in
response to signals is somewhat greater than that in
response Lo noise are discussed later, however. The
parameter used to characterize the model with Gaus-
sian distributions is &’. It equals the difference be-
tween the means of the distribution divided by the
standard deviation of either.

(4) Perfect monitoring. The observer is assumed to
base his responses on (that is, to monitor) oaly those
channels that are relevant in a particular condition.
Thus when the set size is one (M =1 in an alone
block of trials), the observer monitors only the
channel sensitive to the one frequency being
presented in that block. Similarly when the set size is
two or four (M =2 or 4 in an intermixed block of
trials) the observer monitors only 2 or 4 channels,
respectively. It is further assumed that the channels’
responses are unchanged by being monitored.*

(5) Detecrion linking hypotheses. Two versions of
an assumption linking the observer’s detection re-
sponse (“yas” or *no'™) to the output of the channels
were considered here. When the set size M equals one
(the alone condition) the two are indistinguishable in
their predictions.

{5a) Maxirum-output detection rule. The observer
says yes if and only if the maximum of the cutputs
from all monitored channels is greater than some
criterion (alternately, if and only if the response of at
least one monitored channel is greater than a crite-
rion, where the criterion is constant across channels).
At least when the distributions are Gaussians of equal
variance, this meximum-output linking hypothesis
Jeads to predictions for these sxperiments that are
very close to those assuming an ideal observer (Nolte
and Jaarsma, 1967).

{5a) Adding-of-outputs detection rule. The ob-
server says yes if and only if the sum of the outputs
from all monitored channels is greater than a crite-
rion.

These two versions can be seen as extreme mem-
bers of a whole family of combination rules differing
in the extent to which the greater-valied outputs are
emphasized relative to the lesser-valued outputs. The
adding-of-cutputs rule weights all sizes of output
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equally; the maximum output rule totally ignores all
but the largest.*

(6) Identification linking hypothesis. Only one ver-
sion of an identification linking assumption was
considered here, a maximum-output identification
tule. In particular, an observer identifies a stimulus as
being of the frequency corresponding to the channel
which gives the largest response on that trial.

Predictions of models

Quantitative predictions can be calculated from
these models when the spatial frequencies are far-
enough apart to stimulate completely separate chan-
ncls (see Appendix). In the Results section, our
experimental results are explicitly compared with
three (but, in efect, all four) of the models described
iz the above assumptions. For convenience, they are
given short names:

(1) The Adding-of-Gaussians model assumes
equal-variance Gaussians with an adding-of-outputs
detection rule.

(2) The Maximum-Gaussian model assumes
equal-variance gaussians and a maximum-output de-
tection rule.

(3) The Maximum-Exponential model assumes ex-
ponentials and a2 maximum-output detection rule.

The predictions of a fourth model—an Adding-of-
Exponentials model—are very simjlar to those of the
Maximum-Exponential model {Graham ez al., 1983},

EXFERIMENTAL METHODS

Stirmuli

The stimuii were vertically oriented sinusoidal grat-
ings produced on the face of an oscilloscope (Tek-
tronix 5103N) by a conventional z-axis modulation
technique (Campbell and Green, 1965). This instru-
ment had a P-31 phosphor of a desaturated green
hue. The rectangular display subtended 5.25 deg hor-
izontal and 4.0 deg vertical and was viewed binocu-
larly from a distance of 57in. A 12.5 deg diameter
circuiar surround of approximately the same hue and
brightness framed the display. The display had a
mean luminance of 6.1 ed/m?

On each trial, either a stimuhis or a blank was
presented for 185 msec. The stimuli had abrupt onsets

*Shaw (1982) also computes predictions using these deci-
sion ryles. However, the terminology differs from that
used here. The maximuem output decision rule is equiv-
alent to second-order integration with either continuous
or discrete distributions and fixed sharing. The observer
says yes if one or more channels exceed a criterion. The
adding-of-gutputs decision ruls is equivalent to
first-order integratica with continuous distributions and
fixed sharing. The observer says yes if the sum of the
egually-weighted outputs from the channels excesds a
criterion. .

and offsets. Between presentations of stimuli the
screen was uniformly illuminated at the mean lumi-
nance,

Stimulus presentation was under control of the
observer, and an auditory signal was coincident with
the stimulus or blank on each trial.

Procedure

Three experimental conditions were used, deter-
mined by the number, M, of alternative spatial
frequencies that might be presented, In the alone
condition {4 =1, where either a blank or a given
spatial frequency was presented on each trial), ob-
servers reported whether anything was seen (de-
tection response). In the intermixed conditions
(M =2, where either a blank or one of two spatial
frequencies was presented on each (rial, and M - 4,
where either a blank or one of four spatial frequencies
was presented on each trial), the observer reported
whether anything was seen (detection response), and
the observer also reported which frequency was
presented (identification response) independently of
the detection response; that is, even if the detection
response was “no.”

Spatial frequencies

The spatial frequencies were drawn from two
groups. In the group called 3X, adjacent frequencies
differed by a factor of three; they were 0.67, 2.0, 6.0,
and 18.0c/deg. In the group called 2X, adjacent
frequencies differed by 2 factor of two; they were 1.0,
2.0, 4.0, and 8.0 c/deg.

Contrasts

Based on results from preliminary sessions, the
contrasts were set so that all frequencies would vield
approximately equal detectability in the alone condi-
tion. Throughout a triad of sessions {see below), the
contrasts were kept constant. The level of de-
tectability in different triads of sessions was deliber-
ately varied.

Details of the sequence of trials and sessions

Sessions were generally run in triads, as follows,
One session was the alone condition {Af = 1), in
which four blocks of 300 trials were run. In each
block, a given prating was presented on 200 trials,
randomly intermixed (without replacement) with 100
blank trials. A different spatial frequency was used in
each of the four blocks. In the other two sessions,
there were intermixed conditions. Again four blocks
of 300 trials were run each session. Two of the blocks
in each session were two-frequency (M =2) inter-
mixed blocks, in which two frequencies of a group of
four were presented m the first biock, and the other
1wo frequencies in the second block; in a block each
grating was presented 100 times, and there were 100
blenk trials. The other two blocks in each session
were {our-frequency intermixed (M = 4); in each of
these two blocks each of the four frequencies in the
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group was presented on 50 trials, and there were 10¢
biank trials. In general, different sessions were run on
different days. In a triad, the alone session sometimes
preceded and sometimes followed the intermixed
gesgions.

The order of blocks within sessions was counter-
balanced; a S-min period of dark adaptation pre-
ceded each block; and there were 30 practice trials at
the beginning of each block which were not included
in the analyses. No feedback was given since this
couid have led the observer to attend to irrelevant
cues, such as small contrast differsnces.

For both D.Y. and P.W. the sessions using the 2X
group of frequencies were run after the sessions for
the 3X group of frequencies had been completed.
Observer E.G., who was run first, participated only
in intermixed sessions, and only identification results
were coliected from him.

The following pairings of frequencies were used in
the two-frequency (M =2) intermixed blocks: with
the 2X group of spatial frequencies (for ail observers)
1.0 was always paired with 2.0 and 4.0 was always
paired with 8.0 c/deg. With the 3X group of spatial
frequencies, for observer P.W., 0.67 was always
paired with 2.0, and 6.0 was always paired with 18.0
¢fdeg. For observer D.Y., that same pairing was used
in two intermixed scssioms, but in the other six
intermixed sessions, 0.67 was paired with 6.0, and 2.0
was paired with 18.0 ¢/deg. The numbers of sessions
run for each observer are indicated in Table 2.

Observers

Three observers” results are reported here: one
observer (D.Y.) is an author of this paper and the
other two were not awate of the purpose of these
experiments. All three had normal visual acuity, with
the appropriate correction. (A fourth observer's re-
sults are not reported due to several anomalies: not
only did she have an uncorrected visual deficit which
was unknown to us at the time she was running in the
experiment, she also exhibited high inter-session vari-
ability and no apparent uncertainty effects, not even
for identification.)

RESULTS

Confusion in the identification of spatial frequency

As a check on whether or not our stimuli were
detected by completely separate spatial-frequency
channels, we looked for systematic confusions among
the stimuli. That is, when an observer incorrectly
names a frequency, is he more likely to call it a nearby
spatial frequency than a far away spatial frequency?
We made & tabulation of the four possible
+identification respomses to each of the five stimuli
(four gratings plus the blank) in the four-frequency
(M = 4) intermixed condition. The identification re-
sponses to the blank will be discussed in the next
section.

Figure 2 shows the tabulations for all three abserv-
ers (different rows) with both the 3X (left column)
and 2X (right column) groups of frequencies; each
point is the proportion of trials on which a particular
response was given. Thres panels of this figure show
complete absence of any systematic confusions: the
lower two (D.Y.-2X and D.Y.-3X), and the middle
left (P.W.-3X). In the other two panels, howaver,
there is some evidence of systematic confusion, rather
slight for PW.-2X and quite pronounced for
E.G-2X.

These results are consisient with the independent-
channels models (assumptions 1 to 6 above) if the
following assumptions about channel bandwidths are
made: channel bandwidths for E.G. are wide enough
that an individual channel responds significantly to
frequencies a factor of two apart, those for P.W. are
somewhat narrower but still encompass frequencies a
factor of two apart, and those for D.Y. are narrow
enough that frequencics a factor of two apart fail in
different channels.
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Fig. 2. Median proportions of identification responses to
each stimulus, Four frequency (M = 4) condition, for the
3x {ieft) and 2 x (right) groups of frequencies, The
stimulus is indicated by the symbol (see inset). The
identification response is plotted on the horizontal axis, The
vertical axis plots the median proportion of all trails of a
particular stimulos on which a particular identification
TESPONSE Was given.
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Alternately, of course, all bandwidths may be so
nasrow that frequencies a factor of two apart fall into
different channels, but for some observers confusions
may occur at higher levels of the nervous system
(viclating the maximum-output identification rule).

In previous psychophysical studies of many sorts,
including simultaneous detection and identification
of spatial frequencies in a two-by-two forced-choice
patadigm (Campbell &1 o, 1976; Thomas and
Barker, 1977, Watson and Robson, 1981) and
identification of components in near-threshold com-
pound gratings (Nachmias, 1974; Hirsch et al,, 1982,
Olzak, 1981) spatial frequencies a factor of thres or
more apart (in temporal conditions like those here)
have appeared to stimulate separate channels, al-
though there is sometimes evidence of negative inter-
action (perhaps imhibition) between them, Fre-
quencies a factor of two apart, however, sometimes
produce marginal resnlts as they did here,

Identification responses to the blank stimufus

The detection and identification rules (assumptions
5 and 6} in the models described above imply that the
observer treats all monitored channels equsally on any
one observatior, not biasing his responses toward
one frequency or another. Although this mplication
cannot be tested directly for detection performance,
it can be tested for identification, For, if true, the
identification responses given to the blank stimulus
should be equaily distributed among the M alterna-
tive responses, except for statistical variation.

Each row of Tabiz | shows the average proportions
of identification responses to the blank for one
observer with the two groups of frequencies. Note
that the proportions for M = 2 and M = 4 were near
0.50 and 0.25, respectively, since there were two and
four response alternatives in those conditions, re-
spectively.

As can be seen in Table 1, the four different
identification rtesponses to the blank were nearly
equally distributed. There are no cases, for example,
where one response was almost never given. P.W.’s
responses were particularly wniform. For the other
two observers, there arc some cases where one re-
sponse was given more often than another. In indi-
vidual sessions for all three observers there were
sometimes rather large nonuniformities of one kind
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ot another which may be more than chance variation.
Ideally, therefore, one would medify the above de-
tection and identification rules (assumptions $ and &)
to allow for differential criteria in the different chan-
nels. The fits of the models to the results discussed in
the next sections could enly be improved. To do so,
however, would be a very great deal of work, and it
is unlikely that the fits would be much improved
thereby, As will be discussed below, we did one
further check that a particular discrepancy in the fits
of all the models was not due to differential criteria
in different channels.

Overview—detection and ideniification performances

We collected five different kinds of performance
data: identification performance (proportion correct)
when either two frequencies (M =2) or four fre-
quencies (M =4} were intermixed, and detection
perfermance (hit and false-alarm rates) when one
frequency (M = 1) was alone in a block, and when
either two (M = 2) or four (M = 4) frequencies were
intermixed. The next few sections examine the
observed relations among these five kinds of data
and compare them to the relations predicted from
the independent-channels models described above
(assumptions 1-6).

In brief, the models’ predictions agree quite well
with the experimental results for the observers and
sets of frequencies where there were no systematic
confusions in Fig. 2. Failure in cases where there is
systematic confusion is w be expected, of course,
since systematic confusion implies a violation of at
least assumption 2 (completely separate channels) or
assumption 6 (the maximum-output identification
rule). All specific versions of the modets fail at some
comparisons, however, and all versions mispredict
stightly the relation between detection in the alope
condition (M =1) and identification in the inter-
mized conditions (M =2 and 4),

Since the comparisons with theoretical predictions
that are described in the succeeding sections tend to
disguise the experimental results themselves, the ex-
perimental results are given in numerical form in
Table 2. Each row in the table is from a different triad
of sessions. The left part of the table is from the alone
session, the middle part from the first intermixed
session, and the right part from the second intermixed
session of that triad, Tn the intermixed sessions,

Table 1. Identification responses lo the blank stimulus

M=2 -

0.67 20 6.0 18,0 0.67 20 6.0 180
PW, 0.48{0.02} 0.52(0.02) 0.52(0.61) 0.43{0.01) 0.2200.01) 0.24(0.01) 0.3000.01) 0.23(D.02)
Dy, 0.58(0.04) 0.4%0.03) 0.46(0.04) 0.49(0.02) 0.29(0.02) 0.2100.01) 0.29(0.03) 0.22(0,02)

1.0 20 4.0 8.0 Lo 20 40 8.0
EG 0.54(0.03) 0.46(0.03) 0.50(0.04) 0.50(0.04) 0.13(0.02) 0.2%0.02) 0.30(0.01) 0.30(0.02)
PW. 0500400 0.500.01) 0.55(0.03) 0.45(0.03) 0.24(9.01) 0.26{0.01) 0.28(0.01) 0.22(0.01)
D.Y. 0.60{0.03) 0.40{0.03) 0.52(0.03) 0.48(6.03) 0.35(0.04) 0.17(0.02) 0.25(0.02) 0.23(0.02)

Identification responses to the blank stimulus, Each row shows the average proportions (and standard errors) of identification responses
to the blank for each ebserver with the 3X (top) or 2X (botiom) gronp of frequencies. Left panel, A = 2. Right panel, M = 4. Data

are averaged across 4 to 8§ sessions.
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Table 2. Performance data
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Along Intermixed | Intermixed I1
2-frequency d-frequency 2-frequency 4-frequency

Triad H FA H FA  %C H FA %C FA %C H FA  4%C
DLY.-3x 097 005 [ 092 017 97 092 013 95 086 017 94 093 008 97
DY-3x 0% 008 [ 08 0409 95 083 013 9N 082 016 93 074 016 g4
DY-1x 072 021 [ 056 016 82 0356 028 64 | 062 020 81 049 926 67
DY-3x 07 014 | 057 026 80 043 013 61 055 012 34 050 014 7
PW-3x 04! 002 | 0.6% 001 83 0E6 007 74 | 064 002 Bl 0.54  0.03 65
PW-3x 077 0408 | 0.75 005 87 7% 007 7% [ 034 004 65 032 008 50
PW-3x 091 015 | 077 018 82 07 008 77 | 082 020 B 075 017 76
DY-2x 078 008 | 071 @018 8 064 018 73 075 021 84 060 017 75
DY-2x 082 03 | 068 01l 83 068 021 73 07l 020 85 062 024 72
PW-2x 095 014 091 ©0.12 % 088 o013 77 085 Q.17 95 691 025 N
PW-2x 09 020 | 096 .19 95 089 0l0 78 [ 095 017 9% 081 017 78
PW-2x 036 030 | 057 014 78 028 005 43 | 047 010 67 020 001 38
EG-2x a a a a %0 a 3 58 a a 88 a u 46
EG-2x a a a a 81 a a 63 a a 86 a a 57
EG-2x a a a a 8% a a 45 a a a .} L3 a

Detection and identification data. Each row gives the results of three consecutive sessions for one subject {a triad of sessions).

The left columm gives hit and false alarm rates for detection wien M = 1, The other four columns give both hit and
false alarm rates for detection, and proportion correct identification, when M =2 or M = 4. The data were pooled across
spatial frequencias. Only data from the first 9 rows were used in figures 5 and-6. (Cells marked a indicate that dala were
not cellected for that condition for that subject.) .Y -3 » ran undet two different contrasts. Rows § and 2 arc the results
for the higher contrast; rows 3 and 4 the lower contrast. In all other cases one contrast was used for each observer with

cach group.

results are given in separate columns for the blocks
where two frequencies (M = 2) were intermixed and
the blocks where four frequencies (M = 4) were inter-
mixed.

In Table 2 and in the analyses described below
(those connected with Figs 3, 4, and 5) results were
pooled across spatial frequencies within any one
session before computing hit and false alarm rates
and proportion correct identification, Since contrasts
were set to give approximately equal levels of per-
formance on all four frequencies, such pooling should
only reduce the variability of the results, at least if
models like those described above are correct. In fact,
many of the analyses described below were also done
for individual frequencies in individual sessions; the
conclusions reached were the same as with the pooled
data, and there were no systematic trends across
spatial frequency.

Identification performance in different ret sizes

Figure 3 shows the proportion of correct
identification in the four-frequency intermixed condi-
tion (M =4) on the vertical axis and the proportion
of correct identification in the two-frequency inter-
mixed condition (M = 2) on the horizontal axis. The
solid symbols come from cases showing no systematic
confusions; the open symbols from the other cases.

The upper $traight line on the figures shows where
the results would lie if performance were the same in
both the two-frequency (M = 2) and four-frequency
(M =4) intermixed conditions, that is, if there were
no uncertainty effects. The bottom curve {marked
“boundary”™} is explained later.

The two curved lines (marked “Gaussian” and
“Exponential’”)  are predictions from the
independent-channels models described above as-
suming the equal-variance Gaussian or the ex-

ponential distribution. (Detection rule is irrelevant in
this comparison since only identification results are
involved.}) Note that both models predict that per-
formance in the four-frequency condition should be

090 -

oro -

Exponant|ol
O8O -

Propartion correct identification (A7:=4}

Q50—

Q40—

1 | 1
a7 al=¢] 0%0 100

Proportion correct identification (M =2)

Fig. 3. Proportion of correct identification with four fre-
quencies intermixed (M =4) vs proportion of correct
identification with two stimuli intermixed (M =2). Each
point is from one session, with data pooled across fre-
quencies, 400 trials per point, The two points with error bars
illustrate + 1 SE computed from the binomial distribution.
The solid curves are explained in the text. Solid symbols
indicate cases where there were no systematic confusions.
Open symbols indicate cases where there were systematic
confusions.
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worse than that in the two-frequency condition, The
exponential model may fit the results from the uncon-
fused cases somewhat better than the Gaussian: afl
the solid points are on or above the Gaussian curve
but rather equally distributed around the ex-
ponential.

Predictions of a high-threshold independent-
channels model are also shown in Fig. 3. Such models
are clearly wrong (see Discussion) and will not be
pursued further here, but it seemed worth noting that
they do predict uncertainty effects in identification
although not in detection. (When the stimulus is not
detected, the observer’s chance of idemifying cor-
rectly by guessing is higher in smaller set sizes.) The
predicted effects are somewhat smaller than those
actually obtained in this study, however,

Many probability distributions might be censid-
ered in the model described above in addition to
Gaussians and exponentials. It is possible to compute
a bound on their predictions for the uncertainty effect
in identification (Shaw, 1980). The lowest curve in
Fig. 3 is the lower boundary of the region in which
independent-channels models’ predictions can fall no
matter what continuous probability distribution is
assumed. Therefore, if data points fall significantly
helow this boundary line, the uncertainty effect is too
large to be explained by any independent-channels
models like those described above, no matter what
probability distribution is assumed.

In Fig. 3, the results from cases where there were
no systematic confusions were all above the bound-
ary line. That is, the identification uncertainty effect
can be explained by noise-limited models, and there

is no need to postulate a limit to attention capacity. -

The results from cases where there were systematic
confusions tended to fall below the boundary line,
particularly the results from E.G.-2X where the §Yys-
tematic confusions were greatest (see Fig. 2). This is
farther evidence that the assumptions of the above
independent-chansiels model have been violated in
these cases. The stimuli may be too close to stimulate
separate channels (violating assumption 2) andjor
there may be confusions among neighboring channel
cutputs al higher-levels of the nervons system (vio-
lating assumption 6). in either kind of violation,
points might fall below the boundary line since, in the
four-frequency intermixed blocks, a middle frequency
has two neighbors, those on either side of it, whereas
in the two-frequency intermixed blocks, each fre-
quency has only one neighbor.

If attention capacity is limited so that an observer
cannot monitor all channels perfectly (2 violation of
assumption 4) the results might also fall below the
boundary fine. This explanation is unattractive here,
however, for it seems unlikely that P.W. could maon-

-itor four channels perfectly for spatial frequencies a
factor of three apart but not for a factor of two. In
other situations, however, results below the boundary
line seem likely to indicate an inability to monitor all
relevant channels perfectly, e.g. the results for identi-

fying the location of a target letter appearing amid
distractors (Shaw, 1983).

To summarize, identification performance did de-
teriorate as set size increased. For cases where there
was no systematic corfusion i the identification
responses, (he size of this uncertainty effect was
consistent with the independent-channels models (as-
sumptions 1-5). For cases where there were system-
atic confusions, the identification uncertainty effects
were too large to be explaived by any independent-
channels model (assumptions 1-6 above) probably
becaunse the frequencies were too close to stimulate
completely separate channels,

Computation of underlying model parameters

The type of comparison shown in Fig. 3 requires
plotting performance data directly on each axis. This
is not possible in the case of our detection data where
two numbers (hits and false alarms) are needed. The
comparisons involving detection results are presented
in a different form, therefore. For cach model and
each of the five kinds of performance data, we
calculated the value of the underlying parameter that
would lead that specific model to predict the obtained
performance. This underlying parameter describes
the signal and noise distributions in each individual
channel. It is k'=2 logy(l/k) in the case of
exponential-distribution models and d = (uu,)/c,
in the case of Gaussian-distribution models. Since all
spatial frequencies arc presumed equally detectable in
these analyses, this parameter is the same for each of
the M channels and thus one patameter is sufficient
to describe the model.

To assess how well a specific mode! does in relating
any two kinds of performance data, we can plot the
undetlying parameter from cne kind of data apainst
the underlying parameter from the other kind. If the
specific model were a perfect description of the
system, then the two underlying parameter cstimates
should be the same (except for statistical variability)
and the plotted points should lie close to the positive
diagonal, Such comparisons are given in Fig, 4 and
are discussed in the pext sections.

Since the systematic confusions shown in Fig. 2
and the large uncertainty effects shown in Fig. 3
indicate violations of the modeis’ assumptions, re-
sults from the two cases E.G.-2X and P.W.-2X are
not presented in Figs 4 or 5 below. (Those from
E.G.-2ZX could not be in any case since detection
results were not collected from him.) As it happens,
when piotted in the form of Figs 4 or 5, they do not
deviate systematically from the points for the cases
shown.

Detection performance in different set sizes

In the middle row of panels of Fig. 4 we compare
detection performance when M =4 {underlying
parameters plotted on the vertical axis) to that when
M =2 (underlying parameters plotted on the hori-
zonta] axis). The points in the left middle panet tend

g
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to lie above the positive diagonal. That is, the adding-
of-Gaussians model predicts systematicatly larger de-
tection uncertainty effects than were found. (Points
above the positive diagonal reflect an underlying
parameter for the M =2 condition that is smaller
than that for the M = 4 condition. Thus the adding-
of-Gaussians model that correctly predicts the ob-
served performance in the M =2 condition would
predict worse performance than observed in the
M =4 condition.) The points for the maximum-
Gaussian and maximum-exponential models (middle
and right panels), on the other hand, lic quite close
to the diagonal indicating that these models predict
effects of about the right size.

The bottormn row of panels compares detection
performance when M =2 to that when M = 1. Here
the points in the rightmost panel, for the maximum-
exponential model, tend to lie below the diagonal.
That is, the maximum-exponential model predicts
smaller detection uncertainty effects than were found
going from M =1 to M =2 The maximum-
Gaussian and adding-of-Gaussian models, on the
other hand, predict effects of about the right size.

Not shown are the graphs comparing detection
performance in M = 1 to M =4. They are implicit in
the graphs shown for M =1 1o M = 2 (bottom row)
and M =2to M =4 (middle row), and produce what
one might expect. The adding-of-Gaussians predicts
too large an effect (since it does 50 from M =2 to
M = 4), the maximum-exponential too small an effect
(since it does so from M =1 10 M =2) and the
maximum-Gaussian  approximately the observed
effect.

To summarize, in cases where there are not system-
atic confusions in Fig. 2, the size of the detection
uncertainty effects in poing from M =1to M =210
M =4 is generally consistent with the class of
independent-channels models. Of the three specific
versions we have considered, the maximum-Gaussian
best accounts for uncertamty effects in detection.

Tdentification and detection performances in the inter-
mixed conditions

The top row of Fig. 4 compares identification
performance when M =4 (underlying parameters
plotted on the vertical axis) to detection performance

fdding Gaussien (') Maximum Gaussian [¢') Maximum exponantiol {4'}
L LA BNCE B LIS L DL I BNLE N SR B BN B I R AL DL L L N
B 1%
5 4 n ;
-1 - E n
{- =
4 e -~
£l 1 s g
2l 4 s58=
[ e 4
1z %
-~ 'r 1t ©
x ol ]
-
Q9 L d
o sk 1T+ &
" ] "
B 4T 1= =
= it
3 4 0 c
s T 15%8
& 1% 2
- a
e -1 ®
g ot o
£l
% Op .
£
b=t -
£=] - -~
D st N =
- n "
4k = =
[ =
3 5% 58
| 27 g
2 H @
L H T
o o
1
Lo N T AR IR BTN BT A L2 I I T I Y -
o) 1 2 3 4 5 [+] 1 -4 3 4 5

Underlying parameter (&' or ¥ ')

Fig. 4. For 3 models (columns) the values of @* or &’ for three difierent comparisons (rows) are calculated

from the data. The horizonta) axis plots Detection, M = 4 (top row); Detection, M = 2 (middle row); or

Detection, M = 1 {bottom row), The vertical axis plots Identification, M = 4 {top row); Detection, M =4

(middie row); or Detection, M =2 (bottom row). Data points are from single sessions, pooled across
frequencies, 400 trials per point.
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in the same sessions, that is, when M =4 (horizontal
axis). Both the adding-of-Gaussians {left parel) and
maximum-Gaussian model (middle panel) predict
that idemtification of stimuli at a given level of
detection performance should be better than it is. The
peints for the maximum-expomential model (right
panel}, however, lie quite close to the positive diago-
nal, indicating that this model accounts well for the
observed relation between identification and de-
tection performance in intermixed sessions.* Al-

though not shown, analogous plots for identification .

vs detection petformance when M = 2 look extremely
similar. :

Sumimary of comparison with models

As a class, the independent-channels models de-
scribed above do a good but certainly imperfect job
of accounting for the detection and identification
performances in cases where there were not system-
atic confusions.

Perhaps the easiest way to remember the details of
the preceding comparisons with models is to note that
the maximum-exponential model (which, of the mod-
els considered here, predicts the smallest uncertainty
effects) correctly accounts for all the relationships
among detection and identification performances in
the intermixed conditions (Fig. 3 and the top and
middle rows of Fig. 4). Remember, howsver, that it
predicts too small an uncertainty effect in going from
M =1toM =2 (bottom row Fig. 4). In other words,
it predicts that detection performance in the alone
condition (M = 1) should be worse than it is relative
to the other four kinds of performance data.

Detection performance in the alone condition
(M =1} can be successfully reiated to detection per-
formance in the intermixed conditions (M=2and4)
by the maximum-Gaussian, But this model fails at
relating detection to identification in the intermixed
cenditions.

*A number of investigators interested in the refation of
detection to identification performance in various stim-
ulis domains (e.g. Green et al., 1977, Swensson and
Judy 1981; Parasuraman and Beatty, 1980; Swets et af,,
1978) have made use of the theorem of Starr of of.
(1975) in the way described by Green and Birdsall
(1978) This theorem is atiractive because it allows one
to test a large class of independent-channels modsls
against detection and identification results collected in
the same intermixed session. This class of models
835UMES 8 maximum-output identification rule (with the
same criterion in each channel), No assumptior abont
the form of the probability distribution is necessary
except that it is continuous. This distribution is, in
effect, deduced from the ROC curve, {The stimuli must
be equally detectable and far enough apart o affect
separate channels, The channels are probabilistically
independent; the observer monitors perfectly.) If we had
collected full ROC curves they would presumably have
been rather well described by the maximum-cxponential
model, Since the maximum-exponential model is suc-
cessful at relating identification to detection per-
formance in intermixed blocks, the Starr ef al. theorem
would presumably have been successful also.

Thus, as discussed further in the next section, there
is one (and only one) failure that is common to all
versions of the independent-channels models we have
considered: no model we have considered can suc-
cessfully relate detection performance in the alone
blocks (M =1) to identification performance in the
intermixed blocks (m = 2 or 4).

Detection performance in the alone condition M=1
and identification performance

This failure of the models is shown directly in Fip.
5. The underlying parameters describing detection
when M =1 are plotted on the horizontal axis with
the Gaussian case in the left panel and the ex-
ponential case in the right panel Proportion of
correct identification when M =4 is plotted on the
vertical axis. The predictions of the models are given
by solid lines. In both panels, the obtained
identification performances fall below the predicted
performances by about 0.1. The failures in the case
of M =2 are very similar io those shown.

This failure should not be overemphasized, how-
ever. The discrepancy between model predictions and
experimenta| results (about 0.1 on the vertical pro-
portion correct axis, about 0.5 or the horizontal
underlying parameter axis) is small relative to the
ranges over which proportion correct and 4’ or &*
vary, As is clear in Fig. 5, identification performance
is increasing across the same range of contrasts for
which detection performance increases.

INSCUSSION

Systematic confusions

As was expected on the basis of independent-
channels models for far-apart stimuli, there were no
systematic confusions among the identification re-
sponses to spatial {requencies a factor of three apart
or, for one observer, a factor of two apart. There
were systematic confusions among the responses to
spatial frequencies a factor of two apart for two
observers.

Detection and ideniification

For far-apart spatial frequencies, the class of
independent-channels models explains quite weil the
quantitative details of the detection and identification
of gratings of far-apart spatial frequencies (Figs 2-5).
Of the three models explicitly compared to the re-
sults, the maximum-exponential model did perhaps
the best job, successfully accounting for the re-
lationships among detection and identification per-
formances in both the intermixed conditions. With
the exponential distribution, it makes little difference
whether the maximum-output or adding-of-outputs
detection rule is used, and an Adding-of-
Exponentials model would do just as weil. The
Maximum-Gausstan model also did z good job,
accounting rather well for detection performances in
all three sel sizes although failing to exactly relate
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Fig. 5. Proportion of correct identification with four frequencies intermixed (M = 4) vs d° or &’ with one
frequency (M = 1). Left panel: Gaussian distributions. Right panel: exponential distributions. Data points
are from single sessions, pooled across frequencies, 400 trials per paint.

identification to detection. The adding-of-Gaussians
model did not do as well as the other two, basically
because i predicts larger uncertainty effects than
occur when increasing the set size from 2 to 4.

Atention

In short, even in the potentially more difficult task
of identification of spatial frequencies, there is no
need to assume a limited attention capacity, just as
there had not been in detection.

Note that, although attention capacity may be
unlimited, the observer may still selectively attend to
one or a small group of channels when it is to his
advantage. In fact, according to independent-
channels models, an observer is assumed to monitor
only one channel (or one small group of channels)
whenever he is certain about the spatial frequency.
The spatial-frequency tuning of the detection uncer-
tainty effect in blocks containing a preponderance of
one spatial frequency is also evidence that an ob-
server is able to monitor only one or 2 small group
of channels (Davis and Graham, 1981; Davis, 1982).
Further, the existence of sequential dependencies in
some conditions suggests that switching of attention
among channels may oceur rather thar simultaneous
monitoring of all channels if conditions favor it
(Davis and Graham, 1981). This switching of atten-
tion can apparently take place in less than a second
judging from the complete effectiveness of auditory
pre-cues (Davis ef al., 1983).

Complications in comparing alone to intermixed condi-
tions

A common minor failure of all the independent-
channels models is in relating detection in the alone
condition (M = 1) to identification in the intermixed

conditions (M =2 or 4). The maximum-exponential
version, in particular, predicts all the other results (all
the relations among detection and identification in
the intermixed conditions) quite well; detection in the
alone condition, however, is too good relative to the
other results to be accounted for by that model. The
suspicion arises, therefore, of some systematic
difference between our alone and intermixed experi-
mental conditions that is violating assumptions of the
models, although the assumptions are not wrong in
an important way. In this section we consider three
possibilities for this difference. Major modifications
of the models are considered in the next section.
In the alone condition, the observer made only one
response on each trial although making two (both a
detection and identification response) in the inter-
mixed conditions. Perhaps this difference allowed the
observer to perform generally better in the alone
condition than in the intermixed conditions. This
possibility cannot be completely ruled out. However,
the results in Davis et al. {1983), where the observer
always made oniy one response (a detection response)
on each trial, show a drop in detection performance
between M =1 and M = 3 that is large enough to be
consistent with the same models that can account for
the drop measured here between M =1 and M =2.
In the present experiment, various practical consid-
erations led to the results for the alone condition
being gathered in different sessions from those for the
intermixed conditions, and generaily, therefore, on
different days. Since there are slow shifts in sensitivity
across days (belween-session variability is greater
than within-session variability), it is possible that the
observers just happened to be consistently more
sensitive on their alone days than on their intermixed
days, producing artificially large decrements in per-
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formance between the alone (M = 1} condition and
the others. Although possible, it would be rather a
coincidence. In any case, the alone and intermixed
conditions in Davis ef al. {1983) were run on the same
day.

As mentioned earlier, the assumption that channels
are treated identically (implicit in the maximum-
output detection and identification rules) is not quite
true, At least on some days for some observe:ri there
seem to be different criteria in different channels in
the intermixed conditions. Perhaps differential crite-
ria lower performance in the intermixed conditjons,
(Iz the alone condition, of course, there is 1o possi-
bility for differential criteria.) Unfortunately, com-
puting the exact predictions of the models using
differential criteria would be a very difficult task,
Instead, we did a rough check on the possibility that
differential criteria in the intermixed conditions might
be causing the failure of the models. We computed
two ad-hoc measures for each session: one measuring
how nen-uniform the identification responses to the
blank were in that session and the second measuring
the discrepancy between predicted and actual
identification performances {see Fig. 5). We then
correlated these two measures across all sessions. The
correlation was trivial and nonsignificant. This anal-
ysis, although far from compelling, suggests that
differential critetia are not the reason for the minor
failure of the models in relating aione detection to
intermixed identification.

Other versions of independent-channels models

The models quantitatively studied here are only a
sarple of the possible independent-channels models.
Thus the question naturally arises as to whether other
verions of independent-channels models would be as
good or even better at explaining the detection and
identification of gratings of far-apart spatial fre-
quency.

Other probability distributions, Unequai-variance
Gaussian distributions, where the inequality increases
with detectability in the way suggested by the siope
of empirical ROC curves (see appendix), were studied
by Graham et al. (1983). With the adding-of-outpuis
rule, where predictions are not completely determined
by the ROC curve for M = |, these unequal-variance
Gaussians predict more uncertainty effect in de-
tection than does the exponential and more than was
found here. With the maximum-output rule, how-
ever, they act very much like the exponential distribu-
tions, as would be expected since the ROC curves (for
M =1) for the two distributions are known to be
very similar, Thus, the unequal-variance Gaussian
model with a maximum-ountput rule would also be a
good description of the experimental results reported
here.

The double-exponential distribution and the
maximum-output detection rule produces a model
that is equivalent to the choice model (see Yellots,
i977). 1t predicts uncertainty effects in both detection

and identification that are larger than those predicted
by the Maximum-Gaussian model (e.g. Green and
Weber, 1980) and inconsistent with the results here.
In any case, the double-exponential distribution leads
to ROC curves for the alone condition (M =1) that
have a slope greater than 1.0 and thus too steep to be
compatible with known results (Graham et of., 1683).

Some sample ROC curves for a model assuming
Poisson distributions are shown by Nachmias (1972)
as well as a plot of their horizontal intercept vs signal
strength for several values of M (1, 4, and 16). The
predicted size of the detection uncertainty effect
(from M =1 10 16) seems similar to that of the
maximum-exponential or Gaussian distributions, in
fact. Its ROC curves when M = 1, however, are close
to slope one (like the equal-variance Gaussian) which
makes them somewhat less attractive as a description
of visual pattern thresholds,

High-threshold independent-channels modeis are
like the modeis described above but with a two-
discrete-state probability distribution and no false
alarms, They predict no uncertainty effects in de-
tection, and thus must be wreng in detail at least.
They also predict ROC curves that are inconsistent
with available data. It is somewhat odd, therefore,
that the Quick Pooling model, which as usually
derived is a high-threshold model, does so well at
relating the detection thresholds of different visua!
batterns (see further discussion of this issue in Davis
et al., 1983).

In low-threshold models there are only a small
number of discrete states that channel responses can
take on but, unlike high-threshold models, there is
some probability that noise will cause a channel to be
in the highest detect state. These models do predict
uncertainty effects depending on the parameters
chosen for the probabilities of getting into each state

(Green and Weber, 1980; Green and Birdsall, 1978).

For a given level of detectability, they can predict
identification performance as high as that predicted
by continuous models or a good deal lower de-
pending on the exact parameters and detection rule
(Green and Birdsall, 1978). These models predict
ROC curves that have unnataral looking corners in
them, but one might well never see those corners jn
empirical results. Certain one-parameter families of
these two-state distributions can be ruled out as an
explanation of our results. The symmetric two-state
model of Green and Weber, 1980, for exanmple,
predicts detection uncertainty effects on the negative
diagonal that are too large for the present results, It
would be a mistake to think that all two-state models
could be ruled out at this stage as an explanation of
uncertainty results, however, and certainty multiple-
state models could not be,

Madifications of other assumpiions

Allowing for differential criteria in different chan-
nels 2nd also for variability in that criterion across
time would be more realistic. As suggested by the
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identification of individual frequencies in compound
gratings (Hirsch et al, 1982; Olzak, 1982) the re-
sponses of different channels might be positively
correlated to some extent, at least at low signal Jevels.
Positive correlation among the responses would re-
duce the size of predicted uncertainty effects pre-
dicted by any model, whereas negative correlation
would increase it. These studies Further suggested that
there might be some inhibition among channels,
another factor that would decrease predicted uncer-
tainty effects. Or, as in an alternate explanation of
compound-grating identification results, the correct
kinking hypotheses might be more compiicated than
the ones assumed here. Finally, the number of chan-
nels presumed to be monitored in the different set
sizes might be wrong. In a set size of one, for
exatnple, the observer might manage to monitor only
the relevant channel, But when the set includes two
or four far-apart frequencies, the observer monitors
some irrelevant channels as well.

It is probable that some combination of the
modified versions of assumptions 1-6 would produce
an independent-channels model that could account
for the experimental results even better than the
versions considered here. We have been unable to
think of a simple or elegant modification of the
models that would do so, however, and the discrep-
ancies between these models and the experimental
results seem too small to justify complicated
modifications. On the other hand, numerous combi-
nations of minor medifications would undoubtedty
produce independent-channels models that do just as
well or better than as the versions considered here,
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APPENDIX

Calcwlating predictions from models

All the models discussed here obey assumptions (1}-{6)
above with the distinctions lying in the particular form of
probability density used in assumption (2) and the deleciioa
rule in assamption (5).

Let f(z/noise) be the probability density function for the
response of a single channel when noise is presented. Let
J{z/signal) be the probability density function for the re-
sponse of a single chanpel when a stimulus exciting that
channe] is presented, [Since the contrasts of the four fre-
quencies used in these experiments were chosen to make the
frequencies equally detectable, the same signal probability
density function f{(z/signai) applies to all four channels
involved in any prediction.] Then let x and y (which will be
the predicted false-alarm and hit rate when the set size is
ong) be the integrals of thess two density functions from
some crilerion lambda to infinity. That is

x= j‘w Jfiz/noise) dz
A

and -
¥y =I Sfiz[signal) dz.
4

When the density functions are Gaussians, x and y must
be found from 2 table (or directly from numerical integra-
tion). When the density function is an exponential exp(-kx),
however, integration can be done analytically and easily and
vields

x=exp{—A)
y=exp{ —ki).

Predictions for detection performance

Alone condition (M =1}, In the alone condition, x and
y equal the predicted false-alarm and hit probabilities (that
is, the Ppredicted probabilities of saying yes when noise or
signal is presented, respectively) for a perticular criterion
lambda. The full ROC curve is gencrated by varying
lambda. This is true for either the adding-of-outputs or
maximum-output detection rule since they reduce to the
same rule for the atone conditon.

As is well-known and easy to derive, the ROC curve for
the case of Gaussian density functions is a straight [ine on
prabability coordinates (that is, when the z-scores of x and
y are plotted). Its siope is equal to the noise standard
deviation divided by the signal standard deviation {g.fo,).

The absolute value of its horizontal intercept is equal to
the value of the parameter 4, that is, the difference between
the means of the signal and noise density functions divided
by the standard deviation of the noise distribution
[{(#)e,). At the intersection of the ROC curves with the
negative diagonal, twice the ordinate (what we will call the
negative diagonal &) is equal to the difference between the
means divided by the average of the two standard deviations
[(p, — u)/s] where 5 = {(z, + 5,)/2). Notice that the negative-
diagonal ¢" equals d* oaly for the case of equal signal and
noise standard deviations (where the ROC curve has a slope
of one).

The ROC curve when M =1 for the exponential case is
easy to derive (Green and Swets, 1974; Egan, 1975) and is
¥ =x* This function turns out to be almos! linear when
plotted on probability coordinates for false-glarm proba-
bilities within an empirically-coilectable range, Further, the
value of twice the ordinate at the intercept with the negative
diagonal (what is called negative-diagonal 4" for the Gaus-
sian model) is approximately equal to k=2 log(1/%). In
fact, to get exponential-model ROC curves with apparent
negative-diagonal & values (twice the ordinate at the
negative-diagonal intersection) equal to 3.00, 2.00, and 1.00,
one needs X' values equal to 3.18, 2.15, and 1.0, re-
spectively.

The ROC curves for the exponential distribution get
shallower as the detectability of the stimulus increases. To
describe this trend and compare it with that in empirical
tesults, consider a plot of the reciprocal of the exponential
ROC curve’s slope in the upper left quadrant (on z-axes) as
a function of the horizontal intercept. {If ROC curves came
from Gaussians of unequal variance, this plot would be a
plot of {s,/a,) vs d"=[{u,— uyo,]). For the exponential
cutves, one finds the following relation: the reciprocal of the
slope is approximately equal to one pius a constant times the
horizontal intercept. That constant is about one-third when
describing the refationship for horizontal intercepts out to
about —3.0 (which occur with a & value of about 2.0) but
smailer (about one-fourth) when describing the relationship
over a larger range (out to intercepts of about —5.0).

Empirical ROC curves for many stimuli also seem to get
shallower with incressed detectability (Green and Swets,
1974; unpublished results for sinusoidal gratings from a
study reported in Hirsch er al.,, 1982; Nachmias and Kochar,
1970). In fact, their trend is frequently deseribed by saying
that the reciprocal of the slope is approximately equal to one
plas one-fourth times the horizontal intercept. Given the
imprecision in the erpirical results, constants of 1/3 or 1/5
would do as well as 1/4. Thus, the exponential ROC curves
seem 1o agree quite well with empirical results for simple
stimuli.

Intermixed conditions. Maximum-output detection rule.
Lst x,; and p,, be the false-alarm and hit rates, respectively,
in the condition where M frequencies are intermixed. Then,
if an observer says yes whenever the maximum output {or,
equivalently, the output in at least one channel) is greater
than the criterion lambda

xy=1=0=x

it
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and
Pu=T—{l=y) (1 —x)¥-,

Full ROC curves can be generated for any given value of Af
and for any given probability density functions by varying
lambda. (Note that lambda is being assumed equel for all
channels in accord with the maximum-output rule.} For
M =2 and for M = 4, we generated curves for a range of
values of &*, assuming exponential density functions, and of
d’, assuming equal-variance Gaussians, For the Gaussi 1
these curves are published in Nolte and Jaarsma (1976).
Intermixed condition. Adding-of-outputs detection rule.
The adding-of-ontputs detection rule js particularly easy to
use in combination with Gaussian density functions (c.g.
Creelman, 1960). For, as is well-known, the sum of
Gaussian-distributed random variables is again Gaussian
distributed. The mean is the sum of the means, and, if the
random vatiables are probabilistically independent, as the
channel outputs are assumed to be, the variance is the sum
of the variances. Thus the ROC curves are linear on z-axes
with easily compmiable intercepts and slopes. In patticular,
setting the mean and standard deviation of the noise
distribution equal to 0 and 1, respectively, (without loss of
generality) and letting o’ (M) be the negative-diagonal &’
value for M intermixed frequencies -

24,
@M D= (s

1t is easy to show that d; (M) is greater than or equal to
d; (1)// M. equality holding when ¢,=a, = I.

In general, the density function for the sum of random
variables is the convolution of the individual density funce
tions for those random variables. In the case of exponential
distributions, these convolutions can be ealculated in a fairly
straightforward manner. For a noise trial in a condition of

d,{M)=

M intermixed frequencies, the convolution of M ex-
ponentials with k =1 is needed. For a signal trial, the
convolution of M — 1 exponentials with k =1 and one
exponential with & less than 1 is needed. The densities can
then be analytically integrated from lambda to infinity o
yield the false-alarm and hit rates,

Predictions for identification performance

For continuous probability distributions like those dis-
cussed here, the relation between proportion correct in the
identification of M intermixed frequencies and the ROC
curve for detection in the alone condition (M =1) is well-
known (e.g. Green and Birdsall, 1978; Green and Swets,
1974; pp. 45-51). Letting P(M) equal the proportion of
correct identification in the condition where trials of A
frequencies are intermixed, the independent channel models
predict

i
PM) zJ‘ {1 —x)™-'dy.
']

This is often known as the area theorem since, when M = 2
this integral is equivalent to the integral of y with respect to
X, that is, the area underneath the ROC curve.

For the Gausdan density functions, the values of these
integrals must be obtained numericalty. They have been
tabled for the equal-variance case (Elliot's table, in Green
and Swets, 1974, recently improved by Hacker and Ratchiff,
1979), and an algorithm for extending thetn has been
suggested by Smith (1982).

For the exponential density function, the integration can
be done apalytically and yields

P =1k +1)
P@Y=1-3k{tk + 1)+ 3kjik +2) —kfk +3)




