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The predictions for summation and uncertainty effaets from several multiple-spatial-frequency-channels models
were calculated. The models differed in their assumptions about the shape of the channels’ underlying probabil-
ity-denaity functions and in the decision rule used to combine the channels’ outputs. Varying these assumptions
resulted in quite different predictions about the magnitudes of these effects. Simultaneous summation and uncer-
tainty experiments measured the detectability of gratings contalning one (simple) or two {compound) spatisl
frequencies. Performance was assessed in two types of blocks of trials: either each stimulus was in a separate
bleck or three stimuli (two simple gratings and their compound) were randomly intermixed in cne block. Quanti-
tative comparisons of the models with the data showed that the increasing-variance Gaussian models (in which the

decision variable is the sum of the monitored channels’ outputs} provided the best overall fit.

INTRODUCTION

Multiple-spatial-frequency-channels models have been quite
successful in quantitatively accounting for the detection of
visual patterns.!*? For a given stitnulus, the magnitude of a
channel’s output is assumed to vary from trial to trial, and the
varigbility in different channels’ outputs is assumed to be
probabilistically independent. This assumption of inde-
pendent variability has been invoked in order to explain
several effects, in particular, uncertainty and summagion ef-
fects. However, the ability of probabilistically independent
channels to account quantitatively for these uncertainty and
summation effects depends on the precise assumptions of the
model, in particular, on the probability-density functions
describing the channels’ outputs and on the decision rule used
for combining the monitored channels’ outputs.

Summatjon Effect (Probability Summation)
The detectability of a compound grating (e.g., a grating con-
taining two far-apart spatial frequencies) is slightly greater
than the detectability of either component alone® When the
spatial frequencies are far enough apart, no channel will re-
spond to more than one of the spatial frequencies in the
compound grating, According to multiple-channels models,
the compound grating is more detectable than either simple
grating because it affects more than one channel, whereas each
component affects only one channel 8

The summation effects in the pattern vision literature have
been well accounted for by a high-threshold version of a
maltiple-channels model, usually embodied in the pooling
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formula suggested by Quick.*® However, high-threshoid
models predict no uncertainty effect and, therefore, cannot
be strictly correct. Further, high-threshold models make
incorrect predictions about the psychometric functions for
sinusoidal gratings'® as well as for other stimuli.l! (See Ref.
12 for a further discussion.)

Uncertainty Effect
Performance when only one simple.geating is presented
throughout a block of trials (an alone block) is better than
performance when trials of two simple gratings (of far-apart
spatial frequencies) are randomly presented withir a block
(an intermixed block). According to multiple-channels
maodels, in an alone block the observer is certain which stim-
ulus will be presented and is assumed to monitor only the one
channel sensitive to that stimulus, In an intermixed block
the observer iz uncertain which stimulus will cceur on any
given trial and is assumed to monitor the two channels that
are sensitive to each of the two simple gratings. The ¢hannels
that are monitored but are not stimulated on each trial of the
intermixed block are assumed to reduce performance (relative
to the alone block) by occasionally preducing false
alarmsg, 1213

The uncertainty effects for spatial frequency and spatial
position have been well accounted for by multiple-channels
models other than the high-threshold model.1213 1t is not
clear, however, that these other models can simultaneously
account for the summation effects.

In this paper, we explore the predictions of several versions
of multiple-channels models for both uncertainty and sum-
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mation effects; six different families of density functions and
two combination rules {taking the maximum or the sum of the
menitored channels’ outputs) are considered. Varying these

assumptions about density function and decision rule can’

make dramatic differences in the predicted magnitudes of the
uncertainty and summation effects, although many of these
models make quite similar predictions, These predictions
are compared with results of simultaneous uncertainty and
summation experiments, which measured the detectabitity
of simple and compound gratings. Aside from a small study
{600 trials for one observer reported in Ref, 3), this has not
been done before to our knowledge. In fact, we are not aware
of any such experiment on any sensory dimension. Running
uncertainty and summation experiments simultaneously
should provide better estimates of the relative magnitudes of
these effects for any given observer.

THEORY

Assumptions

(1) Multiple Ghannels

There exist several channels. Each channel is sensitive to a
limited range of spatial frequencies. The output of each
channel on a particular trial can be represented as a single
number; over different triaks it can be represented as a random
variable,

{2) Completely Separate Channels

There is just one channel sensitive to each of the simple
gratings, and, if the spatial frequencies of the two gratings are
far apart, there is no channel sensitive to more than one of the
simple gratings. Also, the only channels sensitive to the
compound grating are the two channels that are sensitive to
its two components; that is, there are no additional channels
that are sensitive to the compound grating.1¢

(3] Independent Variability

There is variability across Lrisls in the ontputs of a given
channel to a given stimulus; therefore the magnitude of that
channel’s output will have a certain probability density
function. "The six different families of density functions
considered here are illustrated in Fig. 1 and are described
below. Furthermore, the outputs of different channels are
probabilistically independent.

[4] Perfect Monitoring

Ax; observer’s response is based enly on those channels that
are monitored on a particular trial. When an observer knows
that any of several spatial frequencies are equally likely to he
presented on a given trial, the observer monitors all relevant
channels simultaneously. (This implies that the channels’
outputs are labeled enough that the observer knows which
¢hannel produced which oulput.} The output of a channe!
is in no way degraded by increasing the number of monitored
channels.

For convenience in later discussions, let M be equal to the
number of channels monitored in a block of trials, and let #
be equal to the number of channels that are sensitive to a
particular stimulus on a given trial.
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{8) Detection Decision Bules

Two possible assumptions were considered here about how
the monitored channels’ outputs are combined to lead to an
observer’s response in a two-interval forced-choice procedure.
{One interval contained a blank field and the other interval
contained a grating.)

Maximum-Output Rule. The observer chooses the in-
terval that contatned the maximum output from all monitored
channels.

Sum-of-Outpuis Rule. The observer sums the chaunels’
outputs from interval one and sums the channels’ outputs
from interval two. The observer chooses the interval that
contained the larger sum.

The observer uses the same decision rule in all experimental
conditions (alone and intermixed blocks of trials).

Probability Density Functions

The six families of density functions are illustrated in Fig. 1.
The magnitude of a single channel’s output is plotted along
the horizontal axis, and probability density is plotted along
the vertical axis. Each row shows two functions for a partic-
ular family. The function on the left (noise-density function)
describes the channel’s output when it is not stimilated, that
is, when there is a blank field or a stimulus to which that
channel is not sensitive. The funetion on the right (signal-
density function) describes the channel’s output when it is
stimulated (for a particular signal strength). The greater the
signal strength, the greater the separation hetween the noise
and sighal density functions. Further details of Fig. 1 are
given below in the description of each family.
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Fig. 1. Six families of probability-density functions. For each
family, the probability density for the noise (unshaded) and one signal-
(shaded) density function are plotted as a function of a channel's
output.  For the high-threshold family, the noise-density function
and the part of the signal-density function near zero are exactly
overlapping; they have been offset from zero for clarity.




Kramer ef af.

These families were chosen because they are representative
of those commonly used in the literature;2'*-17 in particular,
they are an extension of those used by Davis et al. 12 and Yager
et at.13 for uncertainty experiments in detectior: and identi-
fication, In fact, the magnitudes of the surnmation and un-
certainty effects predicted by these models span the ranges
that have been found empirically; the models range from one
that predicts no uncertainty effect but a large summation
effect to one that predicts no summation effect but a large
uncertainty effect.

High Threshald

The high-threshold family is shewn in row A, of Fig. 1. The
noise-density function is a uniform function over a small re-
gion of output magnitudes near zero. The signal-density
function is uniform over this same range (but smaller area)
and is also uniform over a small range of values near 1. As the
signal strength increases, the area of the sigpal-density
function in the range near one also increases, 18

Exponential

The exponential family is shown in row B. of Fig. 1. The
density functions are zero for output magnitudes less than zero
and are equal to k[exp(—kz)] for output magnitudes (z)
greater than or equal to zero, where 2 < 1. The value of the
signal strength parameter & is inversely proportionat to the
sensitivity of a channel to a stimulus; as signal strength in-
creases, £ decreases.

Goussian

Three versions of Gaussian families are shown in rows C.,D.,
and E. of Fig. 1. If u; and p,, are the means and if 7. and o,
are the standard deviations of the signal- and noise-density
functions, respectively, then

g_,_=1+r[(#s~#n)].
Tn Tn

The value of r determines the rate at which the variance in-
creases gs the mean increases and equals 1/3, 1/4, and 0 for
rows C,, ., and E., respectively, The constant-variance
Gaussian family {row E., often called equal variance)-is com-
monly used in the literature; the increasing-variance Gauss-
ians {rows C. and D.) predict receiver-operating-character-
istic (ROC) curves whose slopes are similar to those found
empirically.11.20

Double Exponential _
This family is shown in row F. of Fig, 1. Their density fune-
tions are deseribed as follows:

exp(—z + U){exp[——exp(—-z + )i

The vaiue of the signal strength parameter I equals zero for
the noise-density function and is greater than zero for the
signal-density functions. Under certain conditions, the
double-exponential model is equivalent to Luce’s Choice
Theory.2!

Ten Distinct Models
For the high-threshold mode}, the sum-of-outputs rule makes
exactly the same predictions as the maximum-output rule.
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For the double exponential, the work involved in computing
the sum-of-outputs predictions was greater than seemed
worthwhile, so only the maximum-output rule predictions are
shown. For the other four distributions, however, predictions
for both the sum-of-outputs rule and the maximum-output
rule were computed. Therefore predictions for 11 models, 10
of which are distinet, were calculated.

METHODS

The detectability of gratings containing one {simple} or two
{compound} spatial frequencies was measured in two types
of blocks, using a two-interval forced-choice procedure. In
the alone blocks, only one stimulus (either a simple or a
compound grating) was presented throughout the block, so
the observer was certain which stimulus would be presented
on every trial. In the intermixed biocks, trials of three dif-
ferent stimuli (wo simple gratings and their compound) were
randomly presented, so the chserver could not know which
stimulus would be presented on any given trial.

Stimuli

The stimuli were vertically oriented sinusoidal gratings pro-
duced on the face of an oscilloscope using a conventional z -axis
modulation technique.?? The oscilloscope had a P31 phos-
pher and a mean luminance of 1.9 fL; it subtended 5.25 deg
horizontally and 4 deg vertically. A 12.5-deg circular sur-
round was used, which approximately matched the cathode-
ray tube (CRT) in hue and brightness.

The duration of each interval of the two-interval forced-
choice procedure was 150 msec; the intervals were separated
by 150 msec. An auditory cue was coincident with each in-
terval on each trial. A patterned stimulus, which was tem-
porally gated with an abrupt onset and offset, was presented
in one interval; a blank stimulus was presented in the other.
Whenever a patterned stimulus was not present, the sereen
was uniformly illuminated at the sarme mean luminance as the
pattern’s.

Spatial Frequencies

In each of the nine experiments, spatial frequencies were
chosen to be at least 1 octave apart in order to stimulate sep-
arate channels.%13 In seven of the nine experiments, a set of
two spatial frequencies was used. In two of the nine experi-
ments, a set of three spatial frequencies was used, but only the
three possible pairs of spatial frequencies were directly com-
pared. Thus there was a total of thirteen pairings for these
experiments. The spatial frequencies were (1 and 4) or (1, 3,
and 6) eycles per degree {cpd) for ohserver PK; (1 and 4), (1
and 16), (4 and 16}, (3 and 18) or (3, 9, and 18) epd for ohserver
CC; (1 and 8) epd for observer DT; {3 and 18) cpd for ohserver
MB.

Conlrasts

The contrasts of the spatial frequencies were chosen before
the running of an experiment. For a given observer in a given
experiment, the contrasts for the simple gratings were set at
values that yielded approximately equal detectability in the
alene blocks. For different experiments, however, that par-
ticular detectability level was varied in order to get a range of
performance levels. Compound gratings had components of
the same contrast as the simple gratings.
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Phase

The phase of each spatial frequency was varied randomly from
trial to trial to prevent observers from utilizing any local cues
in the task. Thus the phase of each spatial frequency in the
compound grating was varied independently,

Procedure

The cbserver initiated a trial by pressing a button and made
8 detection response by indicating the interval in which he or
she thought a patterned stimulus appeared.

Five sessions were run for each experiment. A session was
composed of an alone and an intermixed condition; generally,
one session was run per day. In the alone condition, each
stimulus was presented in a separate block of trials; there were
76 trials in each block. In the seven experiments with two
spatial frequencies in a set, the alone condition contained
three blocks, one for each simple grating (simple-alone trials)
and one for the compound grating (compound-alone trials).
In the two experiments with three spatial frequencies in a set,
an alone condition contained six blocks, one for each of the
three simple and each of the three compound gratings.

In an intermixed condition, trials of two simpie gratings
{stimple-intermixed f{rials) and their compound (com-

-pound-intermixed trials) were randomly presented within

one block, Each stimulus was presented 75 titnes, for a total
of 225 trials per block. In the seven experiments with two
frequencies per set, an intermixed condition contained one
block; in the other two experiments, an intermixed condition
contained three blocks, one for each of the three possible pairs
of spatial frequencies. The order of presentation of each of
the alone and intermixed blocks was random.

Before each block, 10 practice trials of each stimulus that
could appear in that block were presented. These practice
trials were identical to the experimental trials but were not
included in the data analysis.

To investigate the effects of feedback, feedback was used
in four of these nine experiments, As there were no system-
atic differences in the magnitudes of the summation and un-
certainty effects in those experiments that used feedback and
those that did not, this manipulation will not be discussed
further.

All viewing was binocular with natural pupils, Small ver-
tical lines on the surround above and below the CRT screen
served as fixation marks, The observer was instructed to
fixate in the middle of these marks.

Session-to-Session Variahility

The variability in the data from session to session was some-
what larger than expected if the results from all sessions were
random, independent samples from the same population.
Therefore, the standard errors calculated from the five ses-
sions were slightly larger than predicted from the binomial
distribution (N = 375). Calculations showed that they were
as large as expected from 190 trials per point (or 380 trials per
point in the cases in which performance for the two simple
gratings have been averaged).

Observers

Four observers served in these experiments. Three were naive
Lo the purposes of the experiments and had normal or cor-
rected-to-normalvisual acuity, The fourth ohserver was one
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of the authors (PK) and had a residusl visual deficit {20/
40).

RESULTS

The empirical and theoretical resulis have been plotted in the
same figures (Figs. 3-6) for ease of comparison. In the next
subsection we discuss the empirical results, and in the fol-
lowing subsection we discuss the theoretical results and the
comparison with the data.

Empirical Results

In order to compare the relative magnitudes of the summation
and uncertainty effects, representative results from one of the
thirteen pairings of spatial frequencies are shown in Fig. 2 (3
and 18 ¢pd for observer CC). The three types of stimuli are
indicated on the horizontal axis. Proportion correct is plotted
on the vertical axis. Open symbols are from the alone con-
dition, and closed symbols are from the intermixed condition:
there were 375 trials per point. Four types of effects are il-
lustrated: two types of summation effects and two types of
uncertainty effects. (The results for all experiments are
shown in Figs, 3-6.)

Summation Effects
The blocked-summaiion effect is the amount by which per-
formance for the compound grating in the alone condition
{compound-alene trials) is greater than that for the simple
gratings in the alone condition (simple-alone trials); e.g., in
Fig. 2, the right-hand open symbol versus the left-hand and
middle open symbols. (This effect is referred to as blocked
summation because trials of each stimulus are presented in
separate blocks.) The intermixed-summation effect is the
amount by which performance for the compound grating in
the intermixed condition (cornpound-intermixed trials} is
greater than that for the simple gratings in the intermixed
condition (simple-intermixed trials); e.g., in Fig. 2, the right-
hand filled symbol versus the left-hand and middle filled
symbols. In general, the intermixed-summation effect is
greater than the blocked-summation effect.

The blocked -summation and intermixed-summation effects
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Fig, 2. Results from a representative simultaneous uncertainty and
summation experiment, Proportion correct is plotted for three
stirnuli (3 and 18 cpd and the compound) for alone blocks (open
symbols} and intermized blocks (filled symbols).
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Fig. 3. Blocked-summation effect: empirical results (symbols) and
theoretical predictions {curves). Proportion correct for simple-alone
trials is plotted againet proportion correct for compound-alone trials.
A, Theoretical results for the maximum-output rule; B, theoretical
results for the sum-of-outputs rule. The curves are labeled as the
families of density functions were in Fig. 1.

are summarized for all experiments in Figs. 3 and 4, respec-
tively. (In Figs. 3-5 the data plotted in the top panels have
been replotted in the hottom panels. For this subsection,
therefore, only the top panels need be referred te. The solid
curves are the theoretical predictions and will be discussed
in the next subsection.) The average proportion correct for
the two simple gratings is plotted along the horizontal axis.
The proportion correct for the compound grating is plotted
along the vertical axis, The straight Lne drawn (Fig. 3A, curve
{) indicates where the results would lie if there were no sum-
mation effects. For both the blocked-summation and the
intermixed-summation effects, the proportion correct for the
compound grating is always greater than (except for one case
where it is equal o} the proportion correct for the simple
gratings.

Uncertainty Effects

The simple-uncertainty effect is the amount hy which per-
formance on simple-intermixed trials is worse than that on
simple-alone trials; e.g., in Fig. 2, the left-hand and middle
filled symbols versus the left-hand and middle open symbols.
The magnitude of the simple-uncertainty effect is like that
found previously.121323 The compound-uncertainty effect
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is the amount by which performance on eompound-intermixed
trials [s worse than that on compound-alone trials; e.g., in Fig.
2, the right-hand fiiled symbol versus the right-hand open
symbol.

The simple-uncertainty effect is summarized for all ex-
periments in Fig. 5. The proportion correct on the simple-
alone trials is indicated on the horizontal axis, and the pro-
portion correct on the simple-intermixed trials is indicated
on the vertical axis. The straight line drawn (curve a) indi-
cates where the results would lie if there were no effect of
nncertainty; all the data points fall below that line.

The compcund-uncertainty effect is summarized for all
experiments in Fig. 8. The magnitude of this effect is smaller
than that of the simple-uncertainty effect; however, even here
all but one of the data points fall below the positive diag-
onal.

Effect of Separation of Frequencies

Olzak and Thomas?* reported that the amount of summation
for a compound grating compoesed of two spatial frequencies
that differ by a factor of 6 (3 and 18 cpd} was less than the
amount of summation for a compound grating composed of
spatial frequencies that differed by a factorof 2or4 (3 and 6
or3and 12 cpd). Inthe present study, the magnitude of the
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summation effect for spatial frequencies that differed by a
factor of 6 and 16 was compared with that for spatial
frequencies that differed by a factor of 2, 3, or 4. There were
no systematic differences in the summation results for these
Lwo cases.

Theoretical Results and Corzparison with Empirical
Results

For a given model and signal strength, a predicted ROC curve
was generated by computing the hit and false-alarm rates for
each type of trial: simple-alone; simple-intermixed; com-
pound-alone; and compound-intermixed. The predicted
pruportion correct in two-interval forced choice is the area
under that ROC curve.!! The predicted performance in one
type of trial was then plotted against predicted performance
in another type. By using this procedure for all models and
various signal strengths, the theoretical curves shown in Figs.
3-5 were generated. Figures 3A, 4A, and 5A give the predic-
tions for the maximum-output rule, and Figs. 3B, 4B, and 5B
give the predictions for the sum-of-cutputs rule; the curves
are labeled as the families of density functions were in Fig, 1.
(See Refs. 18 and 25 for more details.)

Monitoring More Than One Channel:  Effect of Density
Function
When the observer monitors more than one channel, as in the
case of the intermixed and the compound-alone blocks, there
are always two consequences——extra hits and extra false
alarms—relative to when an observer monitors only one
channel as in the simple-alone blocks. Briefly, an uncertainty
effect is predicted by these models whenever the harmful ef-
fects of extra false alarms outweigh the helpful effects of extra
hits. Similarly, summation effects are predicted whenever
the helpful effects of extra hits outweight the harmful effects
of extra false alarms. {See Refs. 19 and 25 for more de-
tails.)

Models with shallow ROC curves predict larger summation
effects and smalier uncertainty effects than do models with
steep ROC curves.1%26  The families of density functions were
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Fig. 7. ROC curves. The ROC curve is shown for each of the six
pairs of density functions in Fig. 1. The Z score of a hit is plotted
against the Z score of a false alarm,
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Table 1. Summary of Models’ Fit to Data®

Simple Blocked Intermixed

Model Uncertainty Surmmation Summation
High-threshold O** Pkl 7*
Maximum-exponential 2+ T+ 7t
Maximum-Gaussian fided T 8+
R=1/3
D. Maximum-Gaussian 3* g+ g+
R=1/4
E. Maximum-Gaussian at 1% 2
R=0
F.  Maximum-double- 10* 12+ 11**
exponential
Sum -of-exponentials a* 5+ Tt
C. Sum-of-Gaussians 5+ gt &t
R=1/3
D. Sum-of-Gaussians a* g+ 5t
R=1/M
E. Sum-of-Gaussians 9 a* 2%
R=0

7 "The jeftmost column liste the models. The letters next to the names of the
maodels correspond Lo those in the figures. The other three columns give the
number of data points that fell above each theoretical curve for the simple-
uncertainty, blocked-summation, and intermixed-summation effects. Models
{hat can aceount for the data are indicated by a plus (+). Models that are re-
jected by g sign-test (n = 13) are indicated by one (p = 0.07) or twe (p < 0.019)
agterigks.

ordered in Fig. 1 according to the slopes of their ROC curves,
with the high-threshold model {row A.) having the shailowest
slope and the double-exponential model (row F.) having the
steepest slope, as illustrated in Fig. 7. Thus the predicted
curves in Figs. 3-6 are in the same order as the density func-
tions in Fig, 1. This systematic relationship between ROC
slope and the predicted magnitude of these effects can be
understood in terms of the trade-off between the extra hits
and extra false alarms.!?

Acceptance-Rejection of Models

Examination of Figs. 3-5 reveals that the magnitude of the
hlocked-summation, intermixed-summation, and simpie-
uncertainty effects in these experiments are in the range
predicted by the models considered here. (The compound-
uncertainty effect is discussed below.) The following para-
graphs compare the theoretical predictions with the data;
these comparisons are summarized in Table 1. A given model
was rejected if the number of the thirteen data points that fell
abouve the theoretical curve for that model was less than four
ot greater than nine. For a two-tailed sign test (n = 13), the
pmhg?hility of such an oceurrence is less than or equal to
0.07.

Blocked-Summation Effect

The predictions in Fig. 3 compare performance on simple-
alone trials—in which the observer is assumed to monitor the
one channel sensitive to the one simple grating, M = 1 and
F = 1—with that on compound-alone trials—in which the
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observer is assumed to monitor the two channels sensitive to
each of the components of the compound grating, M = 2 and
P=2

Note the orderly relationship in the models’ predictions;
the high-threshold model (shallow ROC curve)} predicts the
largest amount of blocked summation, with the other models
predicting progressively less (as ROC slope increases). The
double exponential (steep ROC curve) with a maximum-
autput rule predicts no blocked-summation effect.

In accounting for the empirical data (see the summary in
Table 1), the high-threshold model (Figs. 3A and 3B, curves
a) prediets too much blocked summation. The constant-
variance Gaussian and the double exponentizl with a maxi-
mum-output rule (Fig. 3A, curves ¢ and f) predict too little.
All the other models predict the appropriate amount of
blocked summation: the exponential and increasing-variance
Gaussians with either ruie (Figs. 5A and 3B, curves b—d) and
the constant-variance Gaussian with a sum-of-outputs rule
{Fig. 3A, curve e).

Intermixed-Summaticn Effect

The predictions in Fig. 4 compare performance on simple-
intermixed trials—in which the observer is assumied to mon-
itor two channels {M = 2}, only one of which is sensitive to a
simple grating on a given trial (P = 1)—with that on com-
pound-intermixed trials-—in which the observer monitors two
channels {M = 2), both of which are sensitive to the compound
grating (P =2). All models make very similar predictions for
this effect.

The ordering of the models for the maximum-output rule
(Fig. 4A) is in the same direction as the blocked-summation
resubts. However, the ordering is reversed for the sum-of-
outputs rule (Fig. 4B),

In accounting for the data (see the summary in Table 1), the
congtant-variance Gaussian with the sum-of-outputs rule (Fig.
4B, curve e} predicts too much intermixed summation, and
the double exponential with a maximum-output rule (Fig. 44,
curve f} predicts too little. The constant-variance Gaussian
with the maximum-output rule (Fig. 44, curve e) slightly
underpredicts the amount of intermixed summation (with
nine points above the curve). The models that predict the
appropriate amount of intermixed summation are the high-
threshold, the exponential, and the two increasing-variance
Gaussians with either rule (Figs. 4A and 4B, curves a—d}.

Simple-Uncertainty Effects

The predictions in Fig. 5 compare the perfcrmance on sim-
ple-alone trials (M = 1 and P = 1) with that on simple-inter-
mixed trigls (M = 2and P = 1).

The same type of orderly relationship in the predictions
occurs, The high-threshold model (shallow ROC slope)
predicts no uncertainty effect. The predicted magnitude of
the effect progressively increases (as ROC slope increases),
with the largest uncertainty effect predicted by the double
exponential (steepest ROC slope).

In accounting for the data (see the summary in Table 1), the
high-threshold and exponential models with either rule (Figs.
HA and 5B, curves a and b) and the increasing-variance
Gaussian models with a maximum-output rule (Fig. 54, curves
c and d} predict too small a simple-uncertainty effect. The
double-exponential (Fig., A, curve f) predicts too much. The
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constant-variance Gaussian with a sum-of-outputs rule (Fig.
5B, curve e) slightly overpredicts the amount of simple un-
certainty (with nine points ahove the line). The constant.
variance Gaussian with a maximum-output rule (Fig. 54,
curve e) and the increasing-variance Gaussians with an sum-
of-outputs rule (Fig. 5B, curves ¢ and d) predict the right
amount of a simple-uncertainty effect.

Compound-Uncertainty Effect

By the assumptions given above, the performance for the
compound grating on compeund-alone trials should be equal
to that on compound-intermixed trials. In hoth types of
block, the number of ehannels monitored (M = 2} and the
number of channels sensitive to the compound grating (P =
2) are the same, and—hy assumption (5)—the same decision
rule is used. Therefore none of the models can account for
the compound-uncertainty effect, since ali models predict that
the data should fall on a straight line (Fig. 6, curve a); that is,
no compound-uncertainty effect is predicted. (The other
solid curves in this figure are discussed below.)

Effect of Combinution RBule
The predicted magnitude of simple-uncertainty, blocked-
summation, and intermized-sumnmation effects was somewhat
greater with the sum-of-outputs rule than with the maxi-
mum-cutput rule. {Exceptions were the high-threshold
maodel. for which the predictions are identical for the two rules,
and the double-exponential model, for which the sum-af-
outputs rule was not caleulated.)

Another way of leoking at this effect of combination rule
Is useful at this point.  First, with most probability distribu-
tions, a maximum-output rule predicts better performance
on simple gratings in an intermixed block than does a sum-
of-outprts rule.*® In faet, for constant-varianece Gaussians,
the maximum-output rule has been shown to be almost opti-
mal in the simple-intermixed condition (i.e., nearly identical
to the performance of an ideal observer who maximizes like-
lihood ratios). 17

Second, with most probability distributions, a sum-of-
outputs rule predicts better performance on a compound
grating than does a maximum-output rule.® For constant-
variance Gaussians in a blocked-summation experiment, the
sum-of-outpuis rule is optimal (App, 9-A of Ref. 11).

Modification of the Decision-Rule Assumption
Consider, therefore, the possibiiity that the observer can use
different combination rules in different conditions (2 modi-
fication of assumption (5)). Since the better combination rule
for the compound grating is the sum-of-outputs rule, the ob-
server ought to use that rule in the compound-alone hlocks.
The guestion of which eombination rule is better in blocks
where both simple and compound gratings are intermixed is
more complicated; the maximum-output rule is better for the
simple gratings, but the sum-of-outputs rule is better for the
compound gratings. Since simple gratings occurred on two
thirds of the trials in the intermixed conditions reported here,
an observer might well use a maximum-output rule here.
This use of different combination rules in different conditions
predicts lower performance for the compound grating in the
intermixed condition than in the alone condition, that is, a
compound-uncertainty effact.

Faor each of the five families of density functions for which
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the predicticns from both combination rules were calculated,
Fig. 6 compares the predicted performance for a compound
grating from the sum-of-outputs rule (horizontal axjs) with
that from the maximum-output rule (vertical axis). The
predicted lower performance from using a maxitnum-output
rule relative to a sum-of-outputs rule is the amount by which
the predictions fall below the positive disgonal. This effect
is relatively small; the high-threshold predicts no difference,
and the exponentisl and the two increasing-variance Gauss-
ians predict a very small difference. However, the con-
stant-variance Gaussian predicts a difference in performance
that aceounts quite well for the observed compound-uncer-
tainty effect. Furthermore, for the constant-variance
Gaussian, use of the maximum-output rule in the intermixed
blocks and the sum-of-outputs rule in the compound-glone
block will also account rather well for simple-uncertainty.
blocked-summation, and intermixed-summation effects (see
Table 1},

DISCUSSION

Using the original assumptions, of the ten models considered,
the two ineressing-variance Gaussians with a sum-of-outputs
rule provided the best overall fit, accounting for the simple-
uncertainty, blocked-summation, and intermixed-summation
results. None of the original models was able to account for
the eompound-uncertainty effect. However, a constant-
varignce Gaussian model in which a sum-of-outputs rule is
used in compound-alone blocks and a maximum-output rule
15 used in intermixed blocks can aceount for all four effects,

Cemparisons with Previous Uncertainty Results

The results of previous simple-uncertainty experiments are
in agreement with the results reported here.121328 I ail these
studies, when the number of alternative stimuli increases from
one to a higher number, the size of the uncertainty effect is
in the range predicted by the following four models: the
constant-variance Gaussian with a maximum-output rule,
either increasing-variance Gaussian with a sum-of-cutputs
rule, and the constant-variance Gaussian with a sum-of-put-
puts rule. These four models predict the largest uncertainty
effects, with the exception of the double-exponential with the
maximum-output rule.

However, Yager et al.!? have also shown that when the
number of alternative stimuli goes from two to a higher
number, the uncertainty effects for either detection or iden-
tification are too small to be predicted by the above four
models. Rather, these effects are in the range predicted by
the following four models: the exponential with the maxi-
mum-output rule, the exponential with the sum-of -outputs
rule, and both increasing-variance Gaussians with the maxi.
mum-output rule. These latter four models predict the
smallest uncertainty effect, other than the high-threshold
which predicts no effect,

The reason for this discrepancy is far from clear. Two
possible reasons suggested by Yager et af. 12 are ruled out by
the results of this study. TnRef, 13 the intermixed and alone
conditions were run on alternzting days; possibly day-to-day
variability accounted for the large decrement going from one
to two relative o two to four. [n the present study, however,
alone and intermixed conditions were run on the same day.
In Ref. 13, only detection responses were required by the ob-
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server in alone conditions; however, both detection and
identification responses were required in the intermixed
conditions; perhaps this double response caused the dis-
crepancy in the magnitude of effects. In the present study,
only detection responses were ever required. A third possi-
hility that they mention—greater criterion variability in the
intermixed than in the alone conditions—remains, although
they present some evidence against it and it seems unlikely
here, where a two-interval forced-choice procedure was used.
(Yager et al. used a single-interval ves—no procedure.)

Another intriguing possibility is that as soon as the number
of alternative stimuli is greater than one, the observer’s un-
certainty increases dramatically and thus the observer mon-
itors more additional channels than there are additional al-
ternative stirnuli. When the number of alternatives increases
from two (thus the observer is already monitoring more than
one channel) to a higher number, however, the cbgerver will
menitor only as many additional channels as there are addi-
tional alternative stimuli. This discrepancy deserves further
study.

Intrinsic Uncertainty

The models tested here considered only extrinsic uncertainty,
arising from the number of alternative stimuli in a given set.
The observer was assumed to ignore perfectly all irrelevant
sources of information, that is, all irrelevant channels. To the
extent that the observer does not ignore this irrelevant in-
formation, it is necessary to incorporate intrinsic uncertainty
into these models (See Refs. 20 and 29-32 for discussions of
intrinsic uncertainty). One way to do this is to let each
channel in the above presentation (one channel for each
simple stimulus) be a megachannel composed of many mi-
crochannels. For a given simple stimulus, the sensitive
megachannel will contain some microchannels that are not
gensitive to that simple stimulus at all. {These insensitive
microchannels reflect the observer’s intrinsic uncertainty
about which microchannels are relevant.)

For example, let each microchannel be characterized by the
constant-variance Gaussian family of density functions: The
means of the sensitive microchannels are assumed to be in-
creasing linearly with contrast. The means of the insensitive
microchannels are assumed to remain at zero regardless of
contrast. Letthe megachannel's output be the maximum of
the microchannels’ outputs; the megachannel’s output will
have & mean that increases as an accelerating function of
contrast and have a variance that also increases. As Pelli’®
shows, such a megachannel can quantitatively account for
several important detection resuits. In particular, it can ac-
count for the way in which empirical ROC curves get shallower
as detectability increases,

This approach allows us to relate others’ work on intrinsic
uncertainty to cur own on extrinsic uncertainty. The expo-
nential and increasing-variance Gaussian families also predict
ROC slopes like those found empirically.11-2® Further, the
ROC slope is a primary determinant of the multiple-channels
models’ predictions for uncertainty and summation experi-
ments.!®23 Therefore a multiple-channels model fassump-
tions {1)-(5) for expaneniial and increasing-variance Gaussian
density functions] in which a channel is & megachannel like
that described in the preceding paragraphs would predict
uncertainty and summation effects like those shown in Pigs.
3-h.
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Comparisons with Previous Summation Results
One summation result of the present study that is not in
agreement with previous findings24 is that the amount of
summation for a compound stimulus did not depend upon the
separation of spatial frequencies comprising the compound.
Two resulfs are in agreement with previous studies. First,
alihough there have been no quantitative comparisons of
models in predicting blocked or intermixzed-summation ef-
fects, previous studies have found that the intermixed-sum-
mation effect is well predicted by the high-threshold model
and is in agreement with the results found here.3 Second, g
comparison across previous studies shows that the hlocked-
summation effect is smaller than the intermixed-summation

“effect (e.g., corpare the results of Graham and Nachmias3?

with those of Graham et al.%).

Viability of the Quick Pooling Model

The success of the Quick pooling model in predicting pattern
threshoids seems to rest with the fact that it has been em-
ployed in intermixed-summation experiments. All 10 models
considered here make remarkably similar predictions for the
magnitude of this effect. That is, the predicted magnitude
of an intermixed-summation effect does not depend on either
probability density function or combination rule. (This
similarity in the models’ predictions alsc holds when the
compound contains four components.1?25) Therefore, even
though the Quick pooling model is clearly wrong, since it
predicts no uncertainty effect and too much blocked-sum-
mation effect, it is a viable predictor of an intermized sum-
mation effect.
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