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Probabilistic independence among multiple random variables (eg, among the outputs of
multiple spatial-frequency channels) has been invoked to explain two effects found with many
kinds of stimuli: increments in detection petformance due to “probability summation” and
decrements in detection and identification performance due to “extrinsic uncertainty.” Quan-
titative predictions of such effects, however, depend on the precise assumptions. Here we
calculate predictions from multidimensional signal-detection theory assuming any of several
different probability distributions characterizing the random variables (including two-state,
Gaussian, exponential, and double-exponential distributions) and either of two rules for com-
bining the multiple random variables into a single decision variable (taking the maximum or
summing them). In general, the probability distributions predicting shallower ROC curves
predict greater increments due to summation but smafler decrements due to extrinsic uncer-
tzinty. Seme probability distributions yield steep-enough ROC curves to actually predict
decrements due to summation in blocked-summation experiments. Probability distribution
matters much less for intermixed-sammation than for blocked-summation predictions. OF the
two combination rules, the sum-of-outputs rule usually predicts both greater increments due
to summation and greater decrements due to cxtrinsic uncertainty. Put another way, of the
two combination rules, the sum-of-outputs rule usually predicts better performance on the
compound stimulus under any condition but worse performance on simple stimuli under
intermixed conditions. € 1987 Academic Press, Inc.
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1. INTRODUCTION

Probabilistic independence among multiple channels (e.g., those selective for the
spatial frequency, orientation, and spatial position of visual patterns) has several
potential effects. The first of two of interest here is probability summation: The
greater the number of simple components in a compound {even though no one
component excites more than a single channel), the greater the detectability of the
compound. The second is exirinsic-unceriainty effect: The larger the pumber of
possible alternative simple stimuli that might appear on a single trial, the lower the
detectability or identifiability of a particular one. (For some recent reviews of and
references to empirical work see Ball & Sekuler, 1980; Green & Weber, 1980;
Green & Birdsall, 1978; Graham, 1981, 1985; Davis, Kramer, & Graham 1983;
Shaw, 1980).

Increments due to probability summation are small and decrements due 10
extrinsic-uncertainty are often even smaller. Our understanding of spatial vision
(and perhaps a number of other fields less well known to us) has progressed to a
point where neither of these effects is negligible, however. A high-threshold model
supplemented by a convenient analytic form for the psychometric function—called
the Quick pooling model here—has proved invaluable in taking into account
probability summation (e.g, Bergen, Wilson, & Cowan, 1979; Graham, 1977,
Graham, Robson, & Nachmias, 1978; Mostafavi & Sakrison, 1976; Quick, Mullins,
& Reichert, 1978; Robson & Graham, 1981; Watson, 1983). The interpretations of
pattern-vision experiments now depend, however, on differences that are as smali as
extrinsic-uncertainty effects. (See, for example, Thomas, Gille, & Barker, 1982 dis-
cussion of the calculation of spatial-frequency and orientation bandwidths from
two-by-two simultaneous detection and identification experiments). Unfortunately,
high-threshold models cannot explain the decrements due to extrinsic uncertainty
(Davis & Graham, 1981; Davis ef @f, 1983; Yager, Kramer, Graham, & Shaw,
1984} nor several aspects of the detection of simple sinusoidal gratings (Nachmias,
1981).

A model adequate to deal with all these effects would certainly be useful in pat-
tern vision and might be useful in other domains as well. We thought it might be
found in extensions of traditional signal-detection models to the multidimensional
case appropriate for multiple-channel models. These models share many
assumptions with the Guick pooling model but differ from high-threshold models in
the kind of probability distributions characterizing channels’ outputs. In this paper
we present numerical predictions from five other probability distributions as well as
the high-threshold distribution. These are sufficient to demonstrate a systematic
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relationship between the slope of the ROC curve and the predicted amounts of
probability summation and uncertainty effect. On the basis of this general
relationship, one would know a good deal about the predictions from any dis-
teibution (once its ROC curve is known).

Although some of these predictions are already available in the literature
{Creelman, 1960; Davis, et al., 1983; Green & Weber, 1980; Green & Birdsall, 1978;
Green & Swets, 1966; Klein, 1985; Kramer, Graham, & Yager, 1985; Johnson,
1980; Nachmias, 1972; Nolte & Jaarsma, 1967; Pelli, 1985; Shaw, 1982; Yager et al,,
1984), no systematic comparison of the predictions from different probability dis-
tributions and combination rules has been made. In general, in fact, multidimen-
sional signal-detection theory has been studied less well than unidimensional signal-
detection theory perhaps because the optimal decision rule is somewhat intractable
in the multidimensional case. Here we avoid that problem by studying two tractable
decision variables (the sum and the maximum). Their relationship to the optimal
decision rule is discussed where known.

2. DESCRIPTION OF MODELS AND EXPERIMENTS

2.1, Description of Stimulus Set

A set of stimuli, as referred to in these assumptions, contains (1) a neutral
stimulus which will be called “noise” (e.z., in pattern vision, z blank field of the
same mean Juminance as the sinusoidal grating), (2} a number N of simple stimuli
§; (=1, N) that are far apart on some dimension (e.g., grating patches, each of a
different spatial frequency or each at a different position} with intensities (e.g., con-
trasts of grating patches) chosen so that all are equally detectable, and {3) a com-
pound stimulus C that contains all the N simple stimuli {e.g, a grating patch con-
taining several spatial frequencies or a larger grating made up from the grating
patches ai different positions). Alternately, the compound stimulus can be thought
of as multiple observations of one particular simple stimulus as will be discussed
further in Section 2.6.

2.2, Assumptions Relating Stimuli to Channels’ Outputs

ASSUMPTION 1. MULTIPLE RANDOM VARIABLES R; (=1, N'). There are N' chan-
nels {where V' > N the number of simple stimuli). The output of the ith channei to
a stimulus “stim” is represented as a random variable R(stim), where the dis-
trubution of this random variable does not change across trials. For convenience
the particular stimulus will be omitted when it is not necessary for clarity.

Let f{z/stim) and Ffz/stim) be the probability density and probability dis-
tribution functions, respectively, of R {stim).

ASSUMPTION 2. PROBABILISTIC INDEPENDENCE. For a given stimulus, the outpuis
of different channels are probabilistically independent. That is, the random
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varizbles R/stim} and R(stim) are independent for all i, j and “stim.” The outputs
of the same channel on different trials are also probabilistically independent.

ASSUMPTION 3, COMPLETELY NON-OVERLAPPING AND NON-INTERACTING CHAN-
NELS FOR FAR-APART STIMULL  For simple stimuli that are far enough apart (e.g.,
of widely separated spatial frequencies or orientations or spatial positions) no chan-
nel is sensitive to more than one of them. (A channel “is sensitive to a stimulos” if
and only if the channel output’s probability distribution 10 that stimulus is different
from its probability distribution to the noise stimulus.) Further, if a channel is not
sensitive to any component in a compound stimulus, it is not sensitive to the com-
pound. If a channel is sensitive to one component in a compound, its probability
distribution in response to the compound is the same as that to that one com-
ponent. A channel can never be sensitive to more than one component for the
stimulus set considered here.

Ashby and Townsend (1986) discuss the relationships between Assumptions 2
{closely related to what they call “perceptual independence”) and 3 (closely related
to what they call “perceptual separability”} and several uses of the term
“orthogonality.”

ASSUMPTION 4. ONE RANDOM VARIABLE PER SIMPLE STIMULUS. We will further
assume that for each simple stimulus in the stimulus set under consideration here
(all of which are far apart and equally detectable), there is one and only one chan-
nel that is sensitive to it. This assumption is made without loss of generality if the
proper interpretations are made (see Section 2.5).

ASSUMPTION 5. IDENTICAL SIGNAL AND NOISE DISTRIBUTIONS IN DIFFERENT CHAN-
NELs.  All channels’ noise distributions—their probability distributions in response
to noise—are assumed to be identical. Consider those channels that are sensitive to
any of the equally detectable simple stimuli in the limited stimulus set being con-
sidered here. Their signal distributions—their probability distributions in response
to a simpie stimulus they are sensitive to—are assumed to be identical.

This assumption does reduce generality. It is plausible in the case of equally
detectabie far-apart simple stimuli, however. For spatial frequency and spatial
position of visual stimuli, at least, this assumption is made more attractive by the
strong similarities among the families of ROC functions and of psychometric
[unctions measured for sinusoidal gratings of any of a wide range of spatial frequen-
cies or spatial positions.

AsSSUMPTION 6. THE ExacT FORM OF THE PROBABILITY DISTRIBUTIONS. To com-
pute predictions, the signal and noise density functions must be specified. Predic-
tions from six one-parameter families of probability density functions are con-
sidered in this paper. Changes in the value of the one parameter characterizing each
of these families correspond to changes in stimulus intensity and, hence, detec-
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tability. No assumption will be made, however, about the relationship between

- physical stimulus intensity and the value of this parameter.

For ecach of these six families, Fig.1 illustrates the noise density function
fAz/noise} and one signal density function f{z/8)), where the stimulus-strength
parameter for the signal density function has been chosen for a moderate level of
detectability as described below.

ASSUMPTION 6A. HIGH-THRESHOLD FamiLy, The random variables are discrete
with only two possible values: 0 (the not-detect state) and 1 (the detect state). The
parameter p, is the probability of getting into the detect state and is taken to be the
signal-strength parameter. For the noise stimulus, p, equals zero; that is, the noise
density is entirely concentrated on 0 {the not-detect state). In symbols,

fdz)=(1-p)-8(z) + p;-8(z— 1),

where 8(z) is the delta function or impulse (see, e.g., Bracewell, 1965). In the top
row of Fig. 1, the signal and noise density functions have been offset horizontally
for clanty.
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Fic. 1. The noise density function f(z/noise) and one signal density function £(z/S,) are illustrated
for each of six probability distribution families.
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ASSUMPTION 6B. SPREAD-EXPONENTIAL FamiLy, The exponential densities used
here (second row Fig. 1) start at the same point but have different variances:

f{z)=0 for z<0
=k, exp(—k;-z) for z=0,

Here ;=1 for the noise density function and gets smaller with increasing detec-
tability. Rather than using & as a signal-strength parameter, we prefer

k'=2log 4(1/k).

The value of k' increases from zero (for noise) with detectability. Further, the ROC
curve generated with a particular value of &* has a negative-diagonal 4’ (defined
below) almost identical to the value of k' (see Table 2).

The next three are one-parameter Gaussian families, for which the signal-strength
parameter is taken to be

d1=1u.5'_1u’N,
Gy

where pg and g, are the means of the signal and noise density functions respec-
tively, and ¢ and ¢, are the standard deviations. The value of 4’ is zero for the
noise stimulus.

The value of r distinguishing the three Gaussian families from one another
describes the rate at which the variance of the signal distribution increases as signal
strength increases:

ASSUMPTION 6C. INCREASING-VARIANCE (GAUSSIANS {r = 3). Third row Fig. t,
ASSUMPTION 6D. INCREASING-VARIANCE GAUSSIANS (r=34). Fourth row Fig. 1.
AssUMPTION 6E. CONSTANT-VARIANCE GAUSSIANS (r=0). Fifth row Fig, 1,

ASSUMPTION 6F. SHIFTED DoUBLE-EXPONENTIAL FaMiLy, 1In general, the double-
¢xponential density function (bottom row of Fig. 1) is

J{zy=exp(—alz—U>) exp(—exp{—alz+ U, >)).

The members of the one-parameter family used here all have the same variance
(the constant & will be set equal to one) but are horizontally translated with respect
to one another. U, is a convenient signal-strength parameter to use, letting it be
equal to zero for the noise distribution.
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Why these six. The high-threshold model is discussed in the Introduction. The
others are presented here because they turn out to span an interesting range of
possible distributions. The original reasons for studying them were as follows: the
constant-variance Gaussian case (r =0) was used because it is so frequently used by
others {often called the equal-variance case). The increasing-variance Gaussian
cases (r=4, and r=14) as well as the exponential were used because they predict
ROC curves like those found empirically for detection of simple sensory stimuli
(e.g., Green & Swets, 1966; Nachmias & Kocher, 1970; unpublished results from
Hirsch, Hylton, & Graham, 1982). The double-exponentiai distribution has some
intriguing properties (Yellott, 1977) including the fact that its predictions corres-
pond to those from choice theory in some sitvations, which have prompted
investigators to consider it (e.g., Lappin & Staller, 1981). See further discussion in
Section 3.1,

2.3. Assumptions Relating Channels’ Quiputs te the Observer's responses

ASSUMPTION 7. UNLIMITED SELECTIVE MONITORING. On each trial the observer
monitors only the relevant random variables, i.e., only the outputs from channels
sensitive to stimuli which might be presented on that trial. (The observer monitors
all these relevant random variables.) A random variable’s probability distribution is
not affected by whether it is being monitored. The number of relevant random
variables on a given trial will be called M".

This assumption excludes the possibility of a limited capacily o attention or
memory. It may work, however, quite well for near-threshold pattern vision (e.g.,
Davis et al, 1983; Graham, Kramer, & Haber, 1985; Kramer, er al,, 1985; Yager er
al, 1984) and probably in many other domains tapping lower-level processes. In
any case, before concluding that there are limits to attention of memory, one needs
to know what models postulating no limits to attention or memory could predict
(e.g., Egeth, 1977; Shaw, 1980; Sperling, 1984).

ASSUMPTION 8. DETECTION RULE. The decision variable R is assumed to be a
combination of the outputs from the monitored channels. The relationship between
the decision variable R and the observer's response is assumed to be given by stan-
dard unidimensional signal-detection theory:

Yes—no experiments. In a ves-no experiment, the observer is assumed to say
“yes” on a trial if and only if R on that trial is greater than some criterion level 4,
The predicted ROC curve for detection—which is Pr(yes/signal} plotted versus
Pr(yes/noise }—is generated by plotting a point for a number of different values of i,
{See Note 1.) For the high-threshold family varying the criterion 4 will produce an
ROC curve that is just three discrete points. Since such ROC curves are unrealistic,
it is conventional to generate a continuous ROC curve by connecting each pair of
neighboring points by a straight line segment. Such connection is equivalent to
assuming that the observer can adopt any of an infinite number of mixture
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strategies. According to each mixture strategy, the observer uses one criterion on
some proportion of the trials and on the rest of the trials he uses a criterion that
leads to the neighboring point.

Forced-choice experiments. In two-interval forced-choice, the observer is
assumed to say whichever interval yielded the larger value of the decision variable
R, For the high-threshold family, ties can sometimes arise; we assume that the
observer guesses without bias as to which alternative is correct.

Predictions described in this paper were calculated for two decision variables:

ASSUMPTION BA. THE MaxiMumM-OUTPUT RULE.

-
R=MAX R,.

i=1

AsSUMPTION 8B. THE SUM-0F-QUTPUTS RULE.

o
R=Y R,

=1

where the random variabies have been re-arranged if necessary so that those being
monitored are numbered from 1 to M.

ASSUMPTION 9. THE MaxiMUM-OuTPUT IDENTIFICATION RULE. An observer
identifies a stimulus as being the simpie stimulus that corresponds to whichever one
of the M’ monitored channels gives the maximum output on that trial. (For the
high-thresheld model, there may be ties; then the observer guesses. ) This rule is sen-
sible only when the observer is required to identify the stimulus on cach trial as
being a simple stimulus, This will be true in the identification experiments discussed
here (see Section 2.7).

Note that this identification rule uses which of the random variables R, (i= 1, ¥)
produced the maximum output. Assuming that such information is available at
higher stages is sometimes called an assumption of “labelled lines” or “specific nerve
energics.” (See discussion in, for example, Watson & Robson, 1981.) Knowing only
the value of the maximum output or of the sum of outputs (used in the detection
rules) without knowing which channel it came from would be of no use to the
observer in identifying the stimulus.

24. Assumptions in Combined and Abbreviated Form

(1,2). There are N" mutually probabilistically independent random variables.
(3.4,5). The whole set of N' random variables is numbered so that the ones
sensitive to the N simple stimuli come first and are in the same order as the simple
stimuli. (The compound stimulus C contains all N simple stimuli: S.f=1LNJ})
For the first N random variables (j= 1, ¥),

JAz/CY=f{2/S;) = filz/S))
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and, when i is not equal to j,

Jiz/8;}= fiz/noise) = f,(z/noise).

For the last N'— N randbm variables (j= N+ 1, N") and for any simple stimulus
(i=1,N),

SHe4C) = fAefS.)
= f{z/noise) = f,(z/noise),

(6). The specific form of signal and noise densities must be specificd—six alter-
natives listed above.

(7,8,9). The observer moniters (bases his decision on) all the (and only the)
random variables sensitive to stimuli that might have been presented. In detection
experiments, the observer's decision variable {used in the manner of standard signal
detection theory) is either the maximum or the sum of the monitored random
variables (to be specified). When the observer must identify which of several far-
apart simple stimuli is presented, the observer responds stimulus §; if and only if
the maximum of the moritored random variables is R;.

Ten distinct models. Of the 12 possible combinations of the six families of
probability distributions (Assumptions 6A through 6F) paired with two different
detection rules (Assumptions 8A and 8B) we present predictions from 11. The
12th-—the adding-of-outputs doubie-exponential—required more work than was
merited by what seemed likely to be learned from it.

Another combination—the sum-of-outputs rtule with the high-threshold
family—makes exactly the same predictions for the experiments considered here as
the maximum-output rule with that same family. Therefore, only 10 of the 11 sets of
predictions are distinct from one another.

2.5. More Than One Chanmel per Simple Stimulus

Sometimes more than one of the “channels” in a model have non-zero sensitivity
for a given simple stimulus—in apparent contradiction to Assumption 4—although
obeying the other assumptions. In many current models of pattern vision, for exam-
ple, there are multiple mechanisms each of which is analogous to a single neuron.
(See review in (Graham, 1985).) These mechanisms (“channels” in the original
model) are often thought to obey Assumptions 1 through 3 and 35 through 9, and
yet many of the mechanisms (those tuned Lo the same spatial frequency and orien-
tation but having receptive fields at different spatial positions) will all be sensitive
to a single sinusoidal grating in contradiction to Assumption 4.

If, however, a particular set of simple stimuli (e.g., gratings of different spatial fre-
quencies) are very far apart, then by Assumption 3 no mechanism is sensitive to
more than one of the simple stimuli in the set. Thus the outputs of all the
mechanisms that are sensitive to a particular simple stimulus can be combined to
form a new random variable, the output of a new “channel.” The outputs of the
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mechanisms must be combined in the manner consistent with whichever detection
rule is used by the observer (that is, either their sum or their maximum must be
taken appropriately). These new random variables—the outputs of new “chan-
nels™—will now satisly Assumption 4 as well as Assumptions [ through 3 and 7
through 9.

Given a particular original model, the question of whether or not the new ran-
dom variables have identical distributions (per Assumption 5}—given that the
original ones did—can be deduced.

Assumption 6—the specification of signal and noise densities for the random
variables—will need to be modified since the new random variables will not have
exactly the same probability distributions as did the original ones. Whether or not
these new random variables have the same kind of probability distribution as did
the original ones depends both on the combination rule and on the probability-dis-
tribution family. They will have the same kind for sum (or max} and high-
threshold, sum and constant-variance Gaussians, and maximum and double
exponentials, They will not have the same kind for the other models considered
here. (When unequal-variance Gaussian families are used, the sum-of-outputs has a
Gaussian distribution but the dependence of variance on signal strength will not, in
general, be the same as that of the original random variables.)

2.6. Stimulus Conditions

Table 1 summarizes the application of the selective-monitoring assumption (7)
and the sensitivity assumptions (3 and 4) to the stimulus conditions (first column)
and experiments (second column) described below. The third column gives M,
which is the number of random variables monitored on each trial under a given
condition, and the fourth cofumn gives P, which is the number of random variables
characterized by a signal distribution on any trial of the non-blank stimulus
indicated in the first column.

The simple-alone condition. All trials are sither of the noise stimulus or of one
particular simple stimulus, Under this condition the observer is assumed to monitor
only the one random variable appropriale to the stimulus (M'=1) and that one
random variable will have a signal probability distribution on stimulus trials
(P =1). On noise trials, of course, that random variable will have a noise
probability distribution. Note that both the maximum-output and the sum-of-out-
puts rules produce the same decision variable for this condition; according to
either, the one random variable being monitored is itself the decision variabie.

This simple-alone condition will be used here in detection but not identification
experiments {as described in the next section).

Simple-intermixed condition. A number (N} of far-apart simple stimuli—all
equated for detectability—as well as a noise stimulus are randomly presented on
different trials of the same block. Under this condition, the observer monitors N
random variables (M’ = N) but, on any trial of a simple stimulus, only one has a
signal distribution (P’ = 1).
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TABLE 1

Application of Assumptions 3, 4, and 7 to
Different Stimulus Conditions and Kinds of Expetiments

Number of
Number of channels
channeis with signal
Stimulus Kinds of monitored distributions
Row conditions experiments M P
1 — — ~ Compound-alone — N N
: N components Blocked-
| summation
| experiment
2 : Simple-alone b‘-%*_[*—-l 1 1
| Simple-
| uncer?ainty
| experiment
3 | Simple-intermixed — N 1
I N simple stimuli
[
[
: : Compound-and-
' simple intermixed
1 W simple stimuli
4 | = — - Simple stimulus ——— N 1
| Intermixed-
| summation
1 experiment
5 L. — —Compound-stimules ——! N N

N components

This simple-intermixed condition will be used in detection and identification
experiments (as described in the mext section).

Compound-alone condition. Al trials are either of the noise stimulus or of the
compound stimulus containing N equally detectable far-apart simple-stimulus com-
ponents. The observer monitors N random variables (M’ =N), therefore, all of
which are characterized by a signal distribution on trials of the stimulus (P’ = N).

This compound-alone condition will be used in detection but not in identification
experiments.

Compound-and-simple intermixed condition. Trials of ecach of N equally detec-
table simple stimuli as well as of the compound made up from them are randemiy
intermixed along with trials of the noise stimulus. According to Assumption 7 the
observer always moniters all ¥ random variables (M’ = N). On trials of simple
stimuli, only one random variable has a signal distribution (#'= 1) but on trials of
the compound stimulus, alt ¥ of them do (P'=N).
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This condition will be used here only in detection experiments. It can also be
used in some very interesting identification experiments but they are beyond the
scope of this paper. (See, for example, Ashby & Townsend, 1986; Graham es al,
1985; Klein, 1985).

The detection task. In detection experiments, the observer is to say whether a
non-blank or a blank stimulus occurred on a trial (in the yes-no procedure) or
which interval contained the non-blank stimulus (in a forced-choice procedure).

The identification task. In the only identification experiments considered here,
the observer is to say on each trial which of several simple stimuli occurred. (If
blank trials are included, the observer is still to say which simple stimulus was
prescnted. )

Rephrased in terms of multiple observations. The above conditions were
described in terms of presentations of various simple stimuli and one compound
stimulus. For some readers it might be useful to redescribe the above experimental
conditions in terms of an observer's having multiple opportunities to observe a
single stimulus. This description leads to a formaily identical situation. To be con-
crete, let us suppose an observer is listening for a signal during a-number (M} of
different listening intervais. (The intervals are so far apart it is reasonable to assume
that events in different intervals are independent and non-interacting. } During some
number {P) of these intervals a stimulus may occur (that is, the event will be from
the signal distribution) while during all the other intervals {M'—P'} the stimulus will
not occur (the event will be from the noise distribution).

Under the simple-alone condition the observer is iistening during only one inter-
val (M'=1} and only during that one interval may a stimulus occur {(P'=1). The
observer doing the detection task is, in effect, testing between the hypothesis that
one signal sample (with zero noise samples) occurred and the hypothesis that zero
signal samples {with one noise sample) occurred.

Under the simple-intermixed condition, the observer is listening during many
intervals (M’ =N} during only one of which a stimulus may occur {(P'=1}. The
observer doing the detection task is testing between the hypothesis that one signal
sample (and M’ — I noise samples) occurred and the hypothesis that zero signal
samples (with M’ noise samples) occurred. (The observer doing the identification
task is testing among many hypotheses, each of the form that the signal sample
occurred during a specified interval and noise samples occurred during ali the other
intervals.}

Under the compound-alone condition, the observer is listening during tnany
intervals (M’ =N) during all or none of which a signal may occur (P’ =N =N ).
The observer doing the detection task is testing between the hypothesis that A’
signal samples (with no noise samples) occurred and the hypothesis that zero signal
samples (with M’ noise samples) occurred,

Under the simple-and-compound intermixed condition, the observer is listening
during many intervals (M’ = N) during one of which (P'=1) or during all of which
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{P"'=M' = N) a signal may occur. The observer is testing between one composite
and one simpie hypothesis. The composite hypothesis is that either one¢ signal sam-
ple (with M’ — 1 noise samples) occurred or that A signal samples (with zero noise
sampies) occured. The simple hypothesis against which it is tested is that zero signal
samples (with M" noise sampies) occurred.

2.7. Kinds of Experiments

Simple unceriainty experiments (detection and identification). The detectability
of a simple stimulus is typically measured under a simple-alone condition {M' =1
and P'=1) and compared with its detectability measured under simple-intermixed
conditions (M’ =N and P =1).

We will use the symbol D to denote the detectability of the stimulus and con-
dition in the nth row of Table 1.

The uncertainty effect (in detection) is D2-D3—that 15, the difference in detec-
tability between a simple stimulus measured under an alone condition and that
stimulus measured under a simple-intermixed condition.

When identification performance is measured by having the observer say which
of the N simple stimuli was presented on each trial, it makes little sense to have
simple-alope blecks. Usually simple-intermixed blocks of several values of N are
used instead. (The trials of the noise stimulus are sometimes omitted in these simple
uncertainty identification experiments although there are advantages in retaining
them.) The uncertainty effect in identification is the difference in proportion correct
identification between two simple-intermixed conditions using different values of N.

Summation experiments (detection). In summation experiments, the detectability
of a compound made up of several components is compared to the detectability of
each component alone,

In blocked-summation experiments, the deteciability of each component is
measured under a simple-alone condition (M’ =1 and P =1) and the detectability
of the compound is measured under a compound-alone condition (M'=N and
P'=N).

The blocked-summation effect is D1-D2—the difference in detectability between
the compound under a compound-alone condition and a component under a sim-
ple-alone condition,

In intermixed-summation experiments, the detectability of each component and of
the compound is measured simultaneously under a simple-and-compound inter-
mixed condition (3’ =N on all trials, P’=1 on trials of the simple stimulus, and
F'= N on trials of the compound stimulus).

The intermixed-summation effect is D5-D4—that is, the difference in detectability
between the compound and a component both measured under a simple-and-com-
pound intermixed condition, :

Interrelationships among experiments. 1f the same stimuli were used throughout
all the experiments in Table 1, two equivalences are implied by the assumptions
here and indicated by the dashed brackets in Table 1. First, D4 = D3; that is, the
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detectability of a simple stimulus when measured under the simple-and-compound
intermixed condition is the same as that when measured under the simple-inter-
mixed condition. Second, D5 =D1; that is, the detectability of the compound when
measured under the simple-and-compound intermixed condition is the same as that
when measured under the compound-alone condition.

The intermixed-summation effect (D5-D4) will, therefore, equal (ID1-D3). Thus
D5 —D4=D1—-D3=(D1 - D2)+(D2 - D3), or, in words:

the the the
intermixed-summation = blocked-summation + simple-uncertainty
effect effect effect

An immediate consequence of this relationship is that the intermixed-summation
effect should be, in general, larger than the blocked-summation effect.

3. METHODS FOR CALCULATING PREDICTIONS

The reader can skip to Section 4 without loss of continuity. (See Note 2.)

Let f{z/stim) be the probability density function for the decision random variable
R (see Assumption 8) and let the distribution function F for R be F(z/stim).
Similarly, let f; and F, be the density and distribution functions, respectively, for the
random variable R; (see Assumption 1). Let y be the hit rate and x be the false-
alarm rate. Then the ROC curve for “stim” can be generated by varying 1 in

x=1— F{ifstim)

1
y=1— F(i/noise). )

Simple-alone condition. It will be convenient to let x, and y, stand for the false-
alarm and hit rates in the case where A’ (the number of monitored random
variables} equals P’ (the number of random variables sensitive o the stimulus)=1,
In this case, according to either decision rule, the decision variable R will have the
same distribution as the single relevant random variable R,. Therefore,

1 =y, = F,(4/stim)

1 —x, = F,(/4/noise).

{2)

Note that, for the simple-alone condition, the models here reduce to ordinary
unidimensional signal-detection theory where combination rule is irrelevant.

3.1, Maximum-Cutput Detection Rule

When the maximum-output detection rule is used (Assumption 8a), the decision
variable R will be below a criterion A if and only if every one of the monitored ran-
dom variables is. For convenience, rearrange the R/s (if necessary) so that the ones
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being monitored are numbered from 1 to M’ and those having a signal distribution
are numbered from 1 to P’ (where P is less than or equal to M’ '). Then,

R<giA iff R,<Aforallifrom1! to M

Because the random variables R, are all independent {Assumption 2) and have
identical distributions {Assumption 5),

Flz/stim) = ﬁ F{z/stim)
. (3}
= |F1(2f5tim)|”' |F1{2/‘n0is6)!M‘—P'.

Substituting x, and y, (Eq.(2)) into this equation and then substituting the
result into Eq. (1) for x and y gives

I—y=(0~3) (1—x)¥ ¥ 4
l—x=(1—x)™. [

Thus, fer the maximum-ocutput rule with any probability distribution and for any
condition of the summation and uncertainty experiments (ie., any values of Af' and
P’) the ROC curve that would be generated by varying A can be generated from the
ROC curve for the simple-stimulus alone case using Eq. (4). (For discrete
probability distributions, the straight line segments between the discrete points
generated by varying A will not necessarily obey Eq. (4) although they do for high-
threshold models.)

The predictions from all the maximum-output meodels discussed here were
numerically generated using a program that embodied Eg. (4) above, In three cases,
some analytic results were used to check the numerical calculations. For the
exponential case, this amounted to using the above equation with symbols sub-
stituted for the numbers. For the high-threshold case, the maximum has again a
high-threshold distribution, and one can solve for the new signal-strength
parameter describing the maximum. Similarly, the maximum of doubly exponen-
tially distributed random variables is again doubly exponentially distributed (and
with the same variance) and one can solve for the new signal-strength parameters.

About the maximum-ouiput double-exponential model and choice theory. The
predictions from the maximum-output double-exponential model and from stan-
dard choice theory are identical for situations where the observer’s response is
based on which of several distributions produced the maximal value as in the for-
ced-choice detection and the identification tasks used here (Yellott, 1977). The yes-
no ROC curves predicted by the maximum-output double-exponential model here,
however, are not the same as those predicted by the standard application of choice
theory (Luce, 1963). The choice-theory ves-no ROC curves are symmetric around
the negative diagonal quite unlike the maximum-output double-exponential model
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here as is shown in Section 4.1. (It is the logistic distribution which predicts ROC
curves like those predicted by choice theory, e.g., McNichol (1972)).

Yellot discusses a property he calls “invariance under uniform expansions of the
choice set,” a property which is slightly weaker than Luce's choice axiom, (The
prediction in Section 4.2 by the maximum-output double-exponential model of no
increment in the blocked-summation experiment is an example of it.) The double
exponential is the only distribution which has this property when inserted into a
class of Thurstonian models (essentially equivalent 1o the set of assumptions used
here) and thus the only distribution which can predict choice probabilities satisfy-
ing Luee’s choice axiom (Yellott, 1977).

3.2. Sum-of-Outputs Detection Rule

When the decision variable is the sum of M’ random variables (Assumption 8B),
there is mo solution for the general ROC curve when M’ > 1 and/or ' > 1 in terms
of the ROC curve for the simple-alone condition.

To calculate the general ROC, one needs to compute the distribution function of
the decision variable R, that is, of the sum of the R, from 1 to M". Of these M’ ran-
dom variables, P’ will have signal distributions and the other M'—P’ will have noise
distributions. In general, the probability density and distribution functions for the
sum of independent random variables can be calculated as the appropriately
defined convolution of the individual random variables’ density or distribution
functions. (See, for example, Feller 1966, Vol. 2, Chap. ], Sec.2, p. 6, and Chap. V,
Sec. 44, p. 142)) We did this convolution analytically for the high-threshold and
exponential case. The sum of Gaussianly distributed random variables is well
known to be Gaussian. Numerical methods could have been used for the double-
exponential case, but the amount likely to be learned did not justify the cost.

3.3. Forced Choice

The proportion correct in a two-interval forced-choice procedure is predicted to
equal the area under the ROC curve (Green & Swets, 1966) given continuous den-
sities and the assumptions here. (Importantly, nole that we are assuming that there
is no bias toward saying one interval rather than the other; that is, the observer
always says whichever interval yielded the highest value of the decision variable.
And there is no correlation between the outputs on the two intervals). For the dis-
crete high-threshold distribution, the forced-choice proportion correct can be easily
derived from the distribution of the decision variable and the assumption about
guessing. As it turns out, it also equals the area under the yes-no ROC curve.

34. Idenrtification

The observer’s task was to say which of the several possible simple stimuli had
been presented on each trial under a simple-intermixed condition. In calculating
proportion correct identification, trials of the blank stimulus (if there were any) are
ignored and the proportion of all trials of simple stimuli on which the observer
correctly identified the simple stimuius is counted.
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Compared to detection under the simple-alone condition. Given a probability dis-
tribution such that the complete ROC curve is generated by varying 4 and
Assumptions ! through 5 and 7, 8, and 9, then proportion correct identification
under a simpie-intermixed condition can be predicted from the ROC curve for
detection under the simple-alone condition (M' =P =1) by the well-known area
theorem (e.g., Green & Birdsall, 1978; Green & Swets, 1974, pp. 45-51). In the case
of the high-threshold discrete distributions, the probabilities of correct identification
are easy to derive from the distribution and the assumption of guessing in case of
ties. These probabilitics are, in fact, equal to the integral given by the area theorem.

For the constant-variance Gaussian case, the numerical values of integrals can be
obtained from Elliot’s table in Swets (1964) which was recently improved by
Hacker and Ratcliff (1979) and an algorithm for extending them suggested by
Smith (1982).

For the double exponential, the equivalence to choice theory allows quicker com-
putations (although we did, in fact, do the area-theorem integration numerically as
well).

Compared to detection under simple-intermixed. The ROC curve for detection
under the simple-intermixed condition (assuming a maximum-output detection
Tule) can be directly related to identification performance under that same inter-
mixed condition {Starr, Metz, Lusted, & Goodenough, 1975; presented and dis-
cussed in, for example, Green & Rirdsall, 1978; Swensson & Judy, 1981). The
known theorem makes a prediction for the joint probability of saying “yes” and of
correctly identifying conditional on the presence of the signal and a particular
criterion A To prove that theorem, the hit and false-alarm probabilities are
assumed to be differentiable functions of 1 (as they are for familics B through F
here-—see Note 3) and assumptions 1 through 5 above as well as the maximum-out-
put detection rule {(Assumption 8A) and the maximum-ouiput identification rule
(Assumption 9) are assumed to hold (Green & Birdsall, 1978). The theorem can
apparently not be extended to the case of discrete distributions. The theorem was
not used in computing calculations for the maximum-output models here, but its
use would presumably have led to the same predictions as those done directly from
the simple-alone ROC curves.

4. PREDICTIONS

4.1. Predicted ROC Curve Slopes

Simple-alone condition. Figure 2 (top panel) shows the ROC curve for the sim-
ple-alone condition from each of the six pairs of density functions shown in Fig. 1.
The plot is conventional (but see Note 4 for an argument against this convention).
The probability of a yes given a stimulus (the hit rate} is plotted on the vertical axis
and the probability of a yes given noise (the false-alarm rate) is plotted on the
horizontal axis. In this figure, the axes give the normal deviate (the z-score)




SIGNAL-DETECTION MODELS FOR MULTIDIMENSIONAL STIMUL] 383

corresponding to the probabilities. On z-axes fike these, many empirical and
theoretical ROC curves are approximately linear.

The signal-strength parameter for each family in Fig. 1 was chosen to make the
full ROC curve intersect the negative diagonal at z-scores of —1 and + 1 as can be
seen in the top panel of Fig 2. For the constant-variance Gaussian family (curve
E), twice the ordinate of this intersection with the negative diagonal (2.0 in this
example} always equals the value of that family’s signal-strength parameter d’ as
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Fii. 2. ROC curves for the simple-alone condition from each of the six pairs of density functions
shown ir Fig | (top panel) and for pairs from the same six families but yielding lower detectability
vaiues (bottom panel). The probability of a yes given signal {hit rate) is plotted against the probability
of a yes given noise (false-alarm rate) on axes that are linear with the corresponding z-scare {the stan-
dard normai deviate). Curve A is for the high threshold, B for the exponential, C for the increasing-
variance Gaussign (r=14), D for the increasing-variance Gaussian (r = i}, E for the constant-variance
Gaussian, and F for the double-exponential probabitity distribution families. Curve A in the top panel
and curve B in the bottom panel are dashed for clarity.
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defined above. Since values of d' now have intuitive meaning for many people, we

find it useful to use the following quantity in discussing predictions from any dis-
tributions:

DeriNTioN.  The negative-diagonal d* value for any pair of signal and noise
densities is equal to twice the ordinate at the intersection of the negative diagonal
with the ROC curve generated by that pair of densities. We will call that value 4 -

The values of signal-strength parameter necessary in each of the six distribution
families to give negative-diagonal d’ values of I, 2, and 3 under the simple-alone
condition are given in the left half of Table 2.

Figure 2 (bottom panel} shows another set of ROC curves for the six probability
distribution families, this time at a lower detectability level (negative-diagonal d’
values of 1.0). For families A through D (high-threshold, exponential, increasing-
variance Gaussians), the ROC curves become steeper as detectability decreases. In
the constant-variance Gaussian family (E), the slope stays constant. In the double-
exponential family (F), the curves become shallower as detectability decreases. For
these six families of probability distribution, however, the relative ordering of the
slopes stayed constant throughout the range of detectabilities studied (up to
negative-diagonal d’ values somewhat above 3.0 under the simple-alone condition)
except for some minor reversals among those having very similar slopes (the
exponential and the increasing-variance Gaussians—see Note 5).

Other experimental conditions. Full ROC curves were plotted from the 10
models at many levels of detectability for two or four (N =2 and 4) simple stimuli
intermixed under simple-intermixed conditions (M'=N; P' = 1) and for a com-
pound stimulys containing two or four components (N =2 or 4) under the com-
pound-alone condition or, equivalently, under the simple-and-compound inter-
mixed condition (M* = P'= N on trials of the compound stimuius under either con-
dition). In general the slopes predicted by any one model with a given value of
signal-strength parameter do change with condition (but see Note 6}, but the
refative ordering of slopes stays the same as that in Fig 2 with minor reversals
among the ones with similar slopes.

4.2. Predicted Uncertainty and Summation Effects

The values of signal-strength parameters in Table 2 were used for the predictions
shown in Figs. 3 through 5. Values of M’ and P’ are given on the horizontal axes.
For uncertainty experiments, predicted proportion correct identification (Fig. 3)
and detectability measured as negative-diagonal d' (Fig. 4) are plotted against the
number of intermixed simple stimuli (N=M"). For blocked-summation
experiments, detectability measured as negative-diagonal 4' (Fig. 5) is plotted
against the number of components in the compound (N = P’ = M’). For Figs. 4 and
3, the sum-of-output predictions are shown in the left panel and maximum-output
predictions in the right, .

Figure 6 shows predicted detectability in intermixed-summation experiments as a
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Fig. 3. For extrinsic-uncertainly experiments, predicted proportion correct identification is plotted
on the vertical axis. The horizontal axis shows M’ (the number of channels monitored) and £’ (the num-
ber of channels characterized by the signal probability distribution). The number of intermixed simple
stimuli equals M". Curve A is for the high threshold, B for the exponential, C for the increasing-variance
Gaussian (r=4), D for the increasing-variance Gaussian {r=1), E fot the constant-variance Gaussian.
and F for the double-exponential probability distribution families. Some curves are dashed for clarity.

function of number of components (¥ = P'). In this figure, the negative-diagonal 4’
of each of the components is equal to 1.0, 2.0, or 3.0 (as in Fig. 5) but this detec-
tability is measured under an intermixed condition. Hence the values of signal-
strength parameter necessary to obtain these negative-diagonal 4' values must be
computed separately depending on whether the number of components is 2 or 4;
these values are given in the right hand sections of Table 2. (The predicted negative-
diagonal d' levels for a2 compound containing four components (N = P’ =4) when
the negative-diagonal 4' for each component alone was 3.0 all exceeded 6.0, and so
are not plotted in Fig. 6. Some of the points in Fig. 6 were obtained by inter-
polation between plotted ROC curves spaced about 0.14" units apart rather than by
direct calculation at the desired signal-strength levels.)

Conclustons about the predictions in Figs. 3-6 are discussed at length in Sections
4.3 and 4.4. For the moment, however, note that the curves in each group tend to
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FiG. 4. For extrinsic-uncertainty experiments, predicted detectability measured as negative-diagonal
d’ is plotted on the vertical axis. The predictions using the sum-of-cutputs rule are shown in the left
panei and those using the maximum-output rule are shown in the right panel. Curve A is for the high
threshold, B for the exponential, C for the increasing-variance Gaussian {r=1), D for the increasing-
variance Gaussian (r=1), E for the constant-variance Gaussian, and F for the double-exponential
probability distribution families, Other conventions as in Fig. 3.

be ordered from top to bottom much the way the distributions themselves were
ordered in Fig. 1 which is also the ordering of their ROC slopes in Fig, 2.

Forced-choice detection predictions. When figures analogous to Figs. 4, 5, and 6
are drawn with percentage correct in two-interval forced-choice plotted on the ver-
tical axis (rather than the negative-diagonal 4’ from the yes—no ROC curve), the
figures look remarkably similar to Figs. 4-6 and so are not shown, Instead, plots
giving predicted forced-choice proportion correct for a wide range of signal-strength
levels are shown in Fig. 7 for each of the 10 distinct models and five experimental
conditions individually.

Still another form of plot, where for each type of experiment predicted
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BLOCKED SUMMATION
3UM OF OUTPUTS MAXIMUM OUTRUT

50

Py
o

L
(=]

NEGATIVE DIAGONAL o'

20

1 z
1 2

Fi6. 5. For blocked-summation experiments, predicted detectability is plotted on the vertical axis.
The number of components in the compound equals P'. Curve A is for the high threshold, B for the
exponential, C for the increasing-variance Gaussian (r=4), D for the increasing-variance Gaussian
{r=}), F for the constant-variance Gaussian, and F for the double-exponential probability distribution
families. Other conventions as in Fig 4.

probability correct at one value of NV is shown as a function of predicted prebability
correct at another value of N, can be found in Kramer (1984}

4.3. Conclusions about Predictions

Four conclusions about the prediction of Figs. 2 through 7 are described in this
subsection, An attempt to give some insight into the first three conclusions is given
in subsequent subsections. These conclusions as stated apply only to the particular
probability distributions studied here. The extent to which they may or may not
generalize is discussed in Section 5.

ConcLusioN t. The shallower the ROC curve, the smaller the decrement in
extrinsic-uncertainty experiments, the greater the increment in summation
experiments.
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Fic. 6. For intermixed-summation experiments, predicted detectability is plotted on the vertical axis.
For each combination rule, there are separate curves for experiments with different numbers of com-
panents in the compound. Those for two components are on the left of each panel and those for four
components are on the right. Curve A is for the high threshold, B for the exponential, C for the
increasing-variance Gaussian (r = 4), D for the increasing-variance Gaussian (r = 1), E for the constant-
variance Gaussian, and F for the doubie-exponential probability distribution families. Other conventions
as in Fig 4.

In general, the curves in Figs 2 through 6 are in the same order—top to bot-
tom—as are the probability distribution families in Fig. I. The predictions go from
the extreme of no decrement due to extrinsic uncertainty but a large increment due
to summation (the high-threshold model—A) to that of no increment due to sum-
mation in a blocked-summation experiment but a large decrement due to extrinsic
uncertainty (the maximum-output double-exponential model-—F). The trade-off
between increments in summation experitments and decremenis in uncertainty
experiments is particularly orderly for blocked-summation experiments and the
maximum-output detection rule. .

The trade-off is less orderly with the sum-of-outputs rule than with the
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maximum-output rule even when just considering blocked-summation experiments,
and it breaks down rather completely in intermixed-summation experiments (rever-
sing, in fact, for forced-choice).

Although we have not tried to specify a set of assumptions that would necessarily
entail this relationship between ROC slopes and changes due to extrinsic uncer-
tainty and summation, this relationship is much more than a peculiar coincidence,
Some insight into the reasons behind this refationship—why it usually occurs but
might break down—is presented in Section 4.4.

A Consequence gf Conclusion 1. The effect of probability distribution is less in
intermixed- than in blocked-summation.

Overall, there is less difference due to probability distribution in the intermixed-
summation than in the blocked-summation. As indicated in Table I and discussed
carlier, the effect in an intermixed-summation experiment equals the cffect in a
blocked-summation experiment plus the absolute value of the decrement in the
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FiG. 7. Proportion correct detection in forced-choice predicted by each of the 10 distinet models
described here (10 panels) plotted as a function of signal-strength parameter. The sum-of-output modeis
are in (a) and the maximum-output models are in (b). Each panel shows predictions for five experimen-
tal conditions. For the eight panels which have five distinct curves, these conditions are two compounds
(uppermost curve assumes M’ = P' =4 and next uppermost assumes M’ = P'=2), simple-aione (middle-
curve, assumes M =P —1), and two simple-intermixed (the second from the bottom curve assumes
M’ =2 and P’ =1, the lowest curve assumes M’ =4 and £ =1). For the high-threshold model, the com-
pounds are as above but the curves for the simple-alone and the twe simple-intermixed conditions coin-
cids. Fot the maximum-cutput double-exponential model, the two simple-intermixed are the two bottom
curves {as in the first eight models) but the curves for the simple-alone and the two compounds coincide.




SIGNAL-DETECTION MODELS FOR MULTIDIMENSIONAL STIMEULI 391

b H1BH-THRESHOLD EXPONENTLRL

PROPORTION COARECT

DOUELE EXPONENT [AL

@ 1.8 7.8 3.8 4.8 5.0 6B 1.0 2.8 3.8 4.0 5.8 6.9
g g
SIGNAL STAENGTH PARAMETER

Fiz. 7—Continued.

uncertainty experiment (using the same stimuli). Changing the probability dis-
tribution has oppasite effects on these two terms which, therefore, tend to cancel
one another out.

This cancellation may explain why the Quick pooling model (see references in
Introduction and Note 9 for more description}, which is a high-threshold model as
usually derived, has dome so well predicting experimental results in pattern vision.
Most of the experimental sumtation results to which the Quick pooling model
have been applied have been collected under intermixed conditions.

Concrusion 2. The sum-of-outputs rule tends to predict both greater
increments due to summation and greater decrements due to extrinsic-uncertainty
than does the maximum-output rule.
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In Figs. 4 through 6, the curves in the left panels (for the sum-of-outputs rule) are
usually steeper than the corresponding curves in the right panels (for the maximum-
output rule). Loosely speaking, summing the outputs makes an observer more sus-
ceptible to cither the effects of added noise distributions (in uncertainty
experiments) or added signal distributions (in summation experiments).

Optimal sirategies. In other words, of the two combination rules the sum-of-
outputs rule predicts better detection performance on the compound stimulus under
any condition and the maximum-output rule predicts better performance on simple
stimuli under the intermixed conditions, Thus, if an observer has control over his
combination rule, he ought to exercise it. He ought to use the sum-of-outputs rule
undet the compound-alone condition and the maximum-output rule under simple-
intermixed conditions. Which he should use under the compound-and-simple inter-
mixed conditions will depend on presentation probabilities, etc. Of course, under all
conditions, he ought only to monitor the relevant channels.

This finding is quite consistent with previous results about optimality, although
they have been derived only for constant-variance Gaussians. For constant-variance
Gaussians, the optimal combination rule for detection of the compound is already
known to be the sum-of-outputs rule (Green & Swets, 1974, Appendix 9A) and the
optimal rule for detection under the simple-intermixed condition is known to be
very well approximated by the maximum-output rule (Nolte & Jaarsma, 1967; see
also Klein, 1985, and Note 7 here). The optimal rule for detection (of ali stimuii)
under the simple-and-compound intecrmixed condition is neither of these rules but
lies inbetween as one would expect (calculated by James P. Thomas 1979, personal
communication ).

ConcLusioN 3. Combination rule and probability distribution interact.

The relative effects of the two different combination rules are not the same for ail
probability distributions. Consider, for example, the exponential family (B} and the
increasing-variance Gaussian families (C and D) of probability distributions, They
always make very similar predictions when combined with the maximum-output
rule. (They must since their RQC curves under the simple-alone condition are so
similar. See Section 3.1.) The effect of changing to the sum-of-cutputs rule, however,
is different for the two types of distributions. For uncertainty predictions {Fig. 4),
there is almost no effect of changing rules for the exponentials {curves B) although
there is a large one for the increasing-variance Gaussians (curves C and D). The
opposite is true for blocked-summation experiments (Fig, 5), where the effect of
changing rules is bigger for the exponential than for the increasing-variance
Gaussians,

Concrusion 4. Tdentification performance predicted from simple-alone detec-
tability depends little on distribution, particularly when two simple stimuli are
intermixed (N =2).
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Consider first the N =2 case. When detection performance measured as negative-
diagonal ¢’ under the simple-alone condition is equated for, all six probability dis-
tributions predict rather similar identification performances for two far-apart
equally detectable stimuli (the N = 2 predictions in Fig. 3) particularly at low detec-
tabilities. (Remember that any trials of blank stimuli are ignored in calculating
proportion correct identification.) This similarity is not surprising, for—when for-
ced-choice detection performance under the simple-alone condition is equated for
{not shown}—all six distributions predict exactly the same identification perfor-
mance at any level of detectability as is easy to prove from our assumptions. Both
two-interval forced-choice detection under the simple-alone condition (N=1) and
identification under a simple-intermixed condition with two far-apart simple stimuli
(N =2) have the same structure according to our assumptions: Each is a choice
between one random vatiable described by the signal distribution and one random
variable described by the noise distribution. In two-interval forced-choice detection
(N=1), these two random variables correspond to the two outputs of a single
channel in two intervals. In identification of two simpie stimuli (¥ = 2—remember
that triais of the blank stimulus are ignored), the two random variables correspond
to the outpuis from two channels. In both the detection and the identification cases,
the observer is assumed to pick the maximum of the two random variables. And, in
both cases, the observer’s probability correct eguals the probability that the
maximuim of the two comes from the signal rather than the noise distribution. Both
probabilities correct are, in fact, predicted to equal the area under the yes-no ROC
curve.

When four far-apart stimuli (equated for detectability under the simple-alone
condition) are intermixed, identification performance does depend on probability
distribution to some extent; such a dependence must exist to be consistent with the
earlier conclusion that the size of the identification uncertainty effect depends on
distribution.

Predicting identification performance from detectability under intermixed con-
ditions. Identification performance after equating for detection performance in
intermixed blocks (not shown here) does show a clear pattern of dependence on
distribution. The best performance is predicted by the double exponential and worst
by high threshold because the larger detection uncertainty effects dominate the
smaller identification uncertainty effects.

4.4 Some Insight into the Effect of Probability Distribution (Conclusion 1)

When an observer in a detection task monitors additional random variables
while keeping the criterion A constant, there are always two effects—extra hits (due
to above-criterion values of the decision variabie on stimulus trials) and extra false
alarms (due to above-criterion values of the decision variable on noise trials).
Figure 8 shows an example. Suppose that under a simple-alone condition the obser-
ver's false-alarm and hit rates for a particular simple stimulus were (.3085 and
0.6915 as plotted by the closed circle. The three lines through this point show three
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Fic. 8. Anillustration of why the sizes of uncertainty and summation effects depend an ROC slope.
An observer's predicted performance for a constant leve] of the criterion A assuming the maximum-out-
pot detection rule is shown in three situations: simple-alone (closed circle), that same simple stimulus
when trials of two simple stimuli are intermixed (open circle), a compound stimulus cantaining that sim-
ple stimulus and another equally detectable one (open triangle), These calculated points do not depend
on probability distribution. The extra hits and extra false alarms resulting from monitoring more than
one channel are indicated by the horizontal and vertical arrows. The vertical arrow marked “M = 2" is
for the comparison between the simple-intermixed (open circle) and the simple-alone (closed circle} con-
ditions; the vertical arrow marked “#=2" is for the comparison between the compound stimulus (open
triangle) and simple-alone condition (closed circle). The three lines through cach point show three
possible ROC curves {with slopes of 4, 1, and 2} coming from three different hypothetical families of
probability distributions.

possible ROC curves (with slopes of 4,1, and 2} coming from three different
hypothetical families of probability distributions.

Uncertainty experiments. The observer’s performance on this same simple
stimulus under a simple-intermixed condition with N =2, assuming the observer
continues to use the same criterion 4, is plotted by the open circle in Fig. 8. The
observer 1s now monitoring two random variables on each trial (M'=2); the
original random variable plus one that is sensitive to another simple stimulus but
not to the orginal one (P =1).

On noise trials, both these random variables have a probability of 0.3085 of
exceeding criterion (or 0.6915 of not exceeding it), and the probability that at least
one (and therefore the maximum) exceed the criterion is (1 —0.6915%)=0.5218
which is plotted as the horizontal coordinate of the open circle. This increase from
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0.3085 to 0.5218 in false-alarm rate is indicated by the horizontal arrow at the bot-
tom of the drawing labelled “extra false alarms.”

On trials of the original simple stimulus, the original random variable (the one
sensitive to the stimulus) exceeds the criterion with a probability of 0.6915 but the
other random variable exceeds the critetion with a probability of only 0.3085. The
probability that at least one (the maximum) exceeds the criterion has a value,
therefore, of (1—0.3085x0.6915)=0.7867 which is plotted as the vertical coor-
dinate of the open circle, {On trials of the second simple stimulus, the random
variables reverse roles but the probability is the same.) According to the maximum-
output ruie, in short, the hit rate has increased from 0.6915 to 0.7867 as indicated
by the short vertical arrow at the left hand edge of the drawing labelled (M =2)
where M indicates the number of simple stimuli intermixed.

Note that the coordinates just computed for the open circle do not depend on
probability distribution at ail.

The slope of the ROC curve through the open cirde will depend on the
probability distribution, however. The three straight lines again illustrate three
possible ROC curves and have the same slopes as those through the solid point.
They are labelled by the same letters (although primed) as the curves through the
simple-alone condition point to represent the fact observed in our calculations that
the relative ordering across probability-distribution families of ROC slopes
remained the same under all conditions.

Suppose now that the observer changes his criterion 4 under the simple-inter-
mixed condition (M’ =2 and P’ = 1) to reduce the false-alarm rate to the rate under
the simple-alone condition (M= P’ =1). The performance predicted by a par-
ticular probability distribution is found by travelling leftwards in Fig. 8 from the
open circle along the appropriate ROC curve to its intersection with the dashed
vertical line through the closed circle. Note that that intersection is generally below
the closed circle—the hit rate under the simple-intermixed condition is less than the
hit rate under the simple-alone condition when false-alarm rates have been equated;
that is, a decrement due to uncerlainty is predicted. Note also that the shallower
the ROC curve, the higher the intersection and the smaller the amount of predicted
deerement due to uncertainty.

Inspection of Fig. 8 shows that the conclusion about the relationship between
ROC siope and size of the decrement due to uncertainty applies also to the relative
positions of intersections with the negative-diagonal (which give the value of d.).
Further, given curves that are close to linear on these axes and maintain the same
relative slopes under all conditions (as the hypothetical curves in Fig. 8 do), the
conclusion can also be extended to the relative positions of the full ROC curves
(cutve X is entirely below curve X, for example, but by less than curve Z' is below
Z), and hence to forced-choice performance as well.

Blocked-summation experiments. An entirely analogous argument holds for
blocked-summation experiments. Briefly, the open triangle shows the predicted
faise-alarm and hit rates under a compound-alone condition where the compound
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contained two equally detectabic components (N = M'= P'=2) agsuming the same
ctiterion A as that for the solid and open circles and assuming the maximum-output
fule. The false-alarm rate is 0.5218 = {1—0.6915%). The hit rate is 09048 {one minus
the probability that neither random variable exceed 4 in response to the compound
to which both are sensitive—that ig 1 — 0.3015%). The extra hits are indicated by the
long vertical arrow labelled P =2 (where P is used to indicate number of com-
ponents in a compound),

When travelling leftwards from the open triangle zlong some ROC curve, the
intersection is generally above the closed circle showing that the hit rate under the
compound-alone condition will be greater than that under the simple-ajlone con-
dition when false-alarm rates are equated. Similarly, performance under the com-
pound-alone condition measured as d; is better than that under the simple-alone
condition. Further if ROC curves are reasonably linear and maintain the same
relative slopes under all conditions, the full ROC curve for the compound-alone
condition will be higher than that for the simple-alone (cutve X7 is higher than
curve X). In all these comparisons, the shallower the ROC curve, the greater the
predicted effect of summation (curve X” is higher than curve X, for example, by
more than curve Z” js higher than curve Z).

Intermixed-summation experiments. As illustrated previously in Tabie 1, the
comparison between a compound-alone condition (c.g., the open triangle in Fig. 8)
and a simple-intermixed condition (e.g., open circle in Fig. 8) is equivalent to the
comparisen in an intermixed-symmation experiment. Thus the difference between
the hit rates of those two points is the predicted size of the intermixed-summation
effect at a constant false-alarm rate and is given directly by the kind of calculations
done for Fig. 8, caloulations which made no assumption about probability dis-
tribution or ROC slope {although they do assume the maximum-output rule).
Thus, the size of the intermixed-summation effect at a constant false-alarm rate is
the same for all probability distributions!

Other measures of relative performance (e.g., hit rate at the intersection with the
negative-diagonal, forced-choice) will produce some effect of distribution (RQC
slope) in intermixed-summation experiments although not as great as that in
blocked-summation experiments.

An abbreviated argument. Loosely speaking, on a shallow ROC curve, each hit
is worth several false alarms. { You can add several extra false alarms for every extra
hit and still stay on the same ROC curve,) The summation effect is the effect of
extra hits on compound-stimulus trials “minus” the effect of extra false alatms on
noise trials. So, the more effective a hit is relative to a false alarm (the shallower the
slope of the ROC), the bigger the increment due to summation.

Conversely, on a steep ROC curve, each false alarm is worth several hits. The
extrinsic-uncertainty effect is the effect of extra false alarms on noise trials “minus”
the effect of extra hits on simple-stimulus trials (the hits of which are spurious hits
by insensitive channels). So, the more effective a false alarm is relative to a hit (the
steeper the slope of the ROC curve) the bigger the extrinsic-uncertainty effect.
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Generalizability of argument. At best the argument illustrated in Fig. 8 is far
from compiete or rigorous. For example, if performance under the simpie-aione
condition (the solid point) were considered in a very different part of ROC space, a
figure corresponding to Fig. 8 would show somewhat different relative positions of
the three points. The exact ROC slope necessary to get no uncertainty effect, for
¢xample, would change. (It changes, in fact, in exactly the way that ROC slopes
from the high-threshold model change.)

Further, the argument assumes that ROC curves from different probability dis-
tributions tend to have the same relative slopes under different experimental con-
ditions. They do (see Section 4.1 and Note 6), but this argument provides no insight
into why.

In spite of the argument’s lack of rigor, the argument makes it clear that slope
will matter everywhere in ROC space. As long as the slopes of different probability
distributions maintain the same relative order in different parts of ROC space and
under different conditions, their predicted uncertainty and summation effects will
retain the same order in different parts of ROC space and thus in Jorced-choice.

It is also clear from this argument that probability distributions producing ROC
curves that have vastly different slopes in different parts of ROC space and/or
under different conditions will have no invariant position in an ordering of
probability distributions like that in Figs. 1 through 6. Whether they predict more
or Iess of an effect than some other distribution will depend on what part of the
ROC space is being considered and exactly which effect is being considered. See
Section 5.3 for examples,

Note that, although the argument as shown in Fig. 8 assumes linearity on nor-
mal-normal probability axes {z-axes), the argument can clearly be used on any
kind of axes where there was approximate linearity.

The argument in Fig. § is for the maximum-output decision rule but can be
applied in a watered-down version to the sum-of-outputs rule. Using the sum-of-
outputs rule, the ROC curves from different distributions for the simple-intermixed
or for the compound-alone condition will not all intersect at the same point as they
do in Fig. 8, and thus the argument will involve more approximation and depend
on particular probability distributions.

4.5, Some Insight into the Effect of Combination Rules

With the sum-of-outputs rule, the additional random variables monitored as ¥
gets larger affect the decision variable (the sum) on every trial. With the maximum-
output rule, however, the additional random variables affect the decision variable
{the maximum) only on those trizls on which one of them happens to produce the
maximum output. Looked at this way, it seems not unrcasonable that both
decrements due te uncertainty effects and increments due to summation—both of
which are effects of monitoring additional random variables—should tend to be
greater with the sum-of-outputs than with the maximum-output rule.

That the effects of changing from the maximum-cutput to the sum-of-output rule
are different for different. probability distributions is not surprising either. The
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maximum-output predictions depend only on the ROC curve for the simple-alone
condition or, to put it another way, only on the ratios of the noise and signal
probability densities at various criteria. If one takes a given pair of signal and noise
density functions and then non-unifermly stretches the z-axis underneath both, the
maximum-output predictions stay the same. The sum-of-output predictions do not
stay the same after non-uniform stretching, however, for the distribution of the sum
depends on the actual magnitudes of ail the numbers that went into it.

5. DiscussioN

The argument in Fig. 8 suggests that Conclusion I should generalize to all
models predicting ROC curves that are approximately linear on z-axes and of the
same slope under all experimental conditions. Section 5.1 below presents some
further examples which are of interest also on their own.

We wondered if models could be found with such shallow or such steep ROC
curves that they would predict the opposite of the usual extrinsic-uncertainty or
probability-summation effects. We know of no cases with ROC curves shallower
than the high-threshold models, that is, no cases where increasing uncertainty
(increasing the number of intermixed simple stimuli} actually improved perfor-
mance. But we did find two cases with ROC curves steeper than the double-
exponential maximum-output model. These two cases do indeed predict a
decrement in the detectability of a compound stimulus as the number of com-
penents is increased (in a blocked-summation experiment); that is, a compound
stimulus is predicted to be less detectable than any of its components (although the
components stimulate independent and non-overlapping channels). These two cases
are described in Section 5.2 below,

Conclusior: ! cannot generalize as originally stated to models where the slope
changes dramatically in different regions of the ROC space or across experimental
conditions. We asked two questions therefore: (i) Can models be found that predict
radically different effects in different regions of the ROC space? (ii) For such
models, will behavior in local regions of ROC space show the relationship described
in Conclusion 17 Yes is the answer to both questions as described in Section 5.3
below. _

As our insight into the effect of combination rule (Conclusions 2 and 3 above) is
even less rigorous than that into the effect of probability distribution, we wondered
whether cases could be found where the sum-of-outputs rule or the maximum-
output rule was always the better. Reading Green and Birdsall (1978) and further
computation of our own convinced us the answer was yes as described below in
Section 5.4.

5.1. Other Distribution Families That Fit into the Ordering of the Original Six

Other Gaussian families. Gaussians with other ratios of signal/noise variance
certainly would fall into place in the orderings shown in Figs. 1 through 6. In fact,
for a sum-of-outputs rule, it is easy to prove amalytically that they do.
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Poisson families. Poisson distributions are particularly interesting to visual
scientists as they describe the probabilistic nature of light. Nachmias (1972; also see
Nachmias and Kocher, 1970) computed the predictions for uncertainty detection
experiments from two families of Poisson distributions combined with the
maximum-output rule (M =1, 4, and 16). In one family, the mean of the noise den-
sity function was 1.3 and in the other it was 40. The slopes of the ROC curves
under the simple-alone condition are approximately equal to 1, and the predicted
uncertainty effect is very similar to that of constant-variance Gaussians.

The mean and variance of a Poisson are always equal to each other, and in the
limit a Poisson is well approximated by a Gaussian. Thus if the noise distribation is
Poisson with a high mean and the signal distribution is Poisson with slightly higher
mean, the pair will be well approximated by Gaussian distributions of constant
variance and will act accordingly (e.g., see Note 7).

Intrinsic-uncertainty distribution. Some inability of the observer to completely
ignore non-informative sources of information can be represented by building some
“intrinsic uncertainty” into the random variable R, corresponding to a single simple
stimulus (e.g., Tanner, 1961; Nachmias and Kochar, 1970; Nachmias, 1972; Pelli,
1981, 1985). The random variable R; is itself taken to be the maximum of many
(M") probabilistically independent random variables R;;, most of which represent
the outputs of “micro-channels” that are not sensitive to the stimuius:

-
R,=MAX R,.

=1

In Pelli’s (1981, 1985) extensive calculations, one of these random variables (let it
be R;) has a unit-variance Gaussian distribution with a mean that increases
linearly with the intensity of the stimulus. All the other micro-channels’ outputs
(Ry, j=2 to M") have unit-variance Gaussian distributions with means always
equal to zero. We will call the distribution of R, under these assumptions the
“intrinsic-unceriainty distribution.”

Pelit’s calculations showed that this intrinsic-uncestainty distribution predicts
quite well the shapes of psychometric functions for simple visual patterns. (More
precisely, it predicts that the psychometric functions are well approximated by the
formula suggested by Quick with parameters changing with false-alarm rate in the
manner found empirically— see Nachmias, 1981.) It must also predict, therefore,
ROC curves like those for simple visual patterns, and these ROC curves get
shallower with increased detectability in the way those from the exponential (B) or
increasing-variance Gaussian (C and D) families do. Hence, multiple random
variables R; that are each described by the intrinsic-uncertainty probability dis-
tribution—particularly when the observer’s performance obeys the maximum-out-
put detection rule (Assumption 8A)}—must predict increments due to summation
and decrements due lo extrinsic uncertainty much like those predicted by the
exponential or increasing-variance Gaussian family. For intermixed-summation
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experiments the intrinsic-uncertainty distribution family shouid predict much the
same increments due to summation as do high-threshold models, in patticular, the

Quick pooling model. Some explicit calculations of Pelli (1985 ) show that they do.
{See Note 8).

Other extreme-value distributions. The double exponential is one of three dis-
tributions that can arise as the asymptotic distribution for the maximum of a large
number of independent and identically distributed random variables (Gumbei,
1958; Galambos, 1978; a short and readable introduction appears in Wan-
dell & Luce, 1978). The double exponential is the asymptotic distribution in the
case of distributions with exponential upper tails (normal, gamma, exponential, and
the lognormal) and is sometimes referred to as the extreme-vaiue distribution. We
will call the two other asymptotic distributions the “high-tailed limit distribution™
and the “bounded-from-above limit distribution” reflecting the kinds of dis-
tributions for which they are the asymptotic function. {Fquations can be found in
the references above.) We formed two families of distributions from each of these
{see Note 2). In the “shifted” family, the member distributions all had the same
variance but different central tendencies (like the double-exponential distributions
of Assumption 6E); in the “spread” family, the member distributions all had the
same anchor point but different variances (like the exponential family of
Assumption 6B). Predictions were computed from the maximum-output rule for
detection under three conditions: simple-alone {M' =P =1), simple-intermixed
(M'=4, P'=1), and compound-alone (M’ = P’ = 4), As expected, the relationships
between ROC slope and sizes of uncertainty and summation effects (Conclusion 1)
held for all four families. The shifted bounded-from-above family fell into the order-
ing of probability distributions at approximately the same place as the constant-
variance Gaussians. (See Note 9 for a comparison with the Quick pocling model.)
The two spread families fell into place with the shifted double-exponential family.
(In fact these two families turn out to be exactly equivalent to that family. See
Note 2.} The fourth case was by far the most interesting, however, as described in
the next subsection.

5.2. Distributions That Are Even Move Extreme

Shifted high-iailed limit family. The shifted high-tailed limit family fell into place
below the shifted double-exponential family. That is, it predicted very steep ROC
curves (slopes of aboui 2.5, 5, and 10 at negative-diagonal ¢’ values of 1, 2, and 3,
respectively ). It predicted an uncertainty effect even larger than the shifted double-
exponential family does. And it predicted the opposite of summation in a blocked-
summation experiment-—that is, it predicted lowered detectability as the number of
compenents became larger. The extra false alarms due to monitoring the extra
channels more than cancelled out the extra hits!

We found a second distribution that predicts decrements due to summation in a
blocked-summation experiment—a low-threshold two-state discrete distribution—
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but that was a case that predicted different behaviors in different regions of ROC
space and is, therefore, discussed in the next section.
’

5.3. Different Behaviors in Different Regions of ROC Space

Low-threshold two-state discrete distributions. The low-threshold two-state dis-
crete distributions are like the high-threshold distributions {Assumption 6A) except
that p{noise) is greater than Q. This distribution has been studied frequently (c.g.,
Luce, 1963a, b; Atkinson, Bower, & Crothers, 1965, pp. 199-200; Green & Birdsall,
1978; Green & Swets, 1974, pp. 140-145; Krantz, 1969). When combined with a
sum-cf-outputs rule, Green & Birdsall (1978) called this model the discrete-sum
model. When combined with 2 maximum-output rule, they called it the discrete dis-
junctive model. Since the decision variables are discrete, mixture strategics are
invoked to complete the ROC curves.

We did calculations for a particular one-parameter family of low-threshold dis-
tributions, sometimes called the symmetric two-state model, where the probability
that noise not exceed the threshold is assumed to equal the probability that the
stimulus exceed the threshold. (See Note 2.) This model predicts that the limb of
the ROC curve 1o the left of the negative diagonal under the simple-alone condition
(which is what determines behavior at the negative diagonal for other conditions) is
very steep, steeper than that of the double exponential in fact. And it turns out that
with the maximum-output rule the symmetric two-state distribution does predict
very large uncertainty effects and a decrement duc to summation {at the negative
diagonal and throughout the range of low false-alarm rates). In other words, at low
false-alarm rates the maximum-output symmetric two-state model falis into place
below the maximum-output double-exponential model in the ordering of Figs, 2-6.
With a sum-of-outputs rule, comparison with the double-exponential sum-of-out-
puts is not possible (since calculations were not done for it), but the symmetric two-
state distribution does fall into place below the next distribution (the constant-
variance Gaussian) for low false-alarm rates.

At very high false-alarm rates, the ROC curve for both the sum- and the
maximum-cutput rules with the symmetric-two-state disiribution is the same and is
very shallow, Indeed, both the sum and the maximum symmetric-two-state models
act like the high-threshold model at high false-alarm rates, predicting no uncer-
tainty effect and a good deal of summation.

For forced-choice behavior, that depends on the full ROC curves, one might
expect some intermediate behavior from this distribution, Green and Weber (1980)
showed that the predicted uncertainty effect in forced-choice detection is very close
to that predicted by the constant-variance Gaussian. We calculated identification
uncertainty effects (they also depend on the full ROC curve} and found that they
too were like those from constant-variance Gaussians,

Piecewise-continuous  high-threshold distributions. In general, piecewise-con-
tinuous (rectangular) two-state density functions have the form
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Hz)=0 for zx0
={l—-pyw for O<zgw
=0 for w<zgl
= pjw for l<zgt+w
=0 for z>t+w

We initially considered this kind of distribution because (Green & Swets, 1966) if
p{noise) equals zero, it is equivalent to standard high-threshold theory under the
simple-alone condition and yet will produce a full ROC curve when criterion 2 is
varied, avoiding the necessity of postulating mixture strategies. (In general,
however, when more than one channel is involved these piecewise-continuous den-
sity functions turn out not always to be equivalent 10 the corresponding discrete
ones. See Note 2. For the maximum-output rule and high-threshold case, the
equivalence continues, however.)

Of interest in this section is the fact that with the sum-of-outputs rule, the above
equation with p(noise)=0 and w =1 predicts different behavior in different parts of
ROC space. At a false-alarm rate of zero, the ROC slopes for ¥ equal to 2 are very
steep, and this model acts like the maximum-output double-exponential model
(predicting no increment at all in a blocked-summation experiment and a very large
decrement in an intrinsic uncertainty experiment). For high false-alarm rates, on
the other hand, the ROC slope is shallow under all conditions, and this model
behaves like the discrete high-threshold model (predicting a large increment due to
summation and no decrement due to uncertainty).

54. Limiations on Conclusion2 about Combination Rules

Both models providing examples above of locat variations in ROC space also
provide cxamples limiting ocur previous conclusion about combination rules (Con-
clusion 2).

Low-threshold discrete models: Sum better than maximwm even under a simple-
intermixed condition. With discrete low-threshold distributions, no matter what
the condition, the ROC curve for the sum-of-outputs rule is always further from the
positive-diagonal (chance performance) than the maximum-output ROC curve
except at high faise-alarm rates where they are identical. In fact, not only is the
sum-of-cutputs rule better than the maximum-output rule, Green and Birdsall
{1978, p. 203} proved that the sum-of-outputs is monotonic with the likelihood
ratio and hence is better than any rule (is an optimal detection rule) for this dis-
tribution.

Piecewise-continuous high-threshold: Maximum better than sum even for the com-
pound stimulus. The rectangular high-threshold distribution limits our earlier
generalization about combination rules in the opposite way: for this distribution the
maximum-output rule always predicts detectability that is at least as good as that
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predicted by the sum-of-outputs rule even on trials of the compound stimuolus! This
lower performance with the sum-of-outputs rule occurs because a sum greater than
1 sometimes occur (as it should) when one or more channel outputs are in the
detect state (between 1 and 2) but it aiso sometimes occurs even though all channel
outputs are in the not-detect state (between 0 and 1). Thus combining the outputs
into a sum loses diagnostic information.

Although limiting the generality of Conclusion 2 about the effect of combination
rule (the blanket statement that the maximum was better for simple-intermixed
conditions and the sum for the compound stimulus), the distributions in this sub-
section are further examples buttressing Conclusion 3—that the effect of com-
bination rule depends on distribution {and vice versa). It is, regrettably, the usual
condition of models that the effect of one assumption depends on another.

5.5. Concluding Remarks

As shown above, the decrements due to uncertainty (sometimes called set-size
effects} and the increments due to surmmation (sometimes cailed probability sum-
mation effects) that are predicted to arise from multiple, independently variable
channels are remarkabiy dependent on the assumed form of the probability dis-
tributions characterizing the channels’ outputs. Or, to put it another way, they are
remarkably correlated with the slope of the predicted ROC curves. Indecd, the
dependence on assumed probability distribution is as farge as the effects themselves.
Predictions range from absolutely no uncertainty effect and 2 good deal of sum-
mation {in blocked-summation experiments) to a good deal of uncertainty effect
and no summation or even anti-summation (in blocked-summation experiments).

On consideration (iilustrated in Fig. 8} it became obvious why these particular
effects of assumed probability distribution occur. They result from the trade-off
between the helpful effect of extra hits and the harmful effect of extra false alarms
that oceur when the observer monitors additional channels,

These large effects of assumed probability distribution make it dangerous to use
any particular assumed distribution (e.g, constant-variance Gaussian) in one’s
models without at least some evidence as to the form of the probability distribution
or the slope of the ROC curve. To put it another way, the assumed probability dis-
tribution can affect one’s substaative conclusions dramatically. On the high-
threshold model, any decrement at all due to uncertainty suggests that there is a
limit to altention capacity: but, on the double-exponential model, very large
decrements due to wncertainty reflect nothing but noisy channels. Similarly, on the
double-exponential model, any increment due to summation (in blocked-sum-
mation experiments) suggests that individual channels are overlapping (sensitive to
two or more components in the compound) while on the high-threshold model,
considerable increment is consistent with non-overlapping channels. As these are
examples of substantive conclusions that investigators have often wanted to make,
their dependence on probability distribution must be taken very seriously.

The predicted decrements and increments also depend on the combination rule,
both tending to be larger when the outputs of the channels are summed than when
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the maximum output is taken. Or, to put it the other way, the sum-of-outputs com-
bination rule is better for the compound-stimulus and the maximum-output rule is
better for intermixed simple stimuli. (Exceptions to this rule can be found, however,
when two-state distributions are considered.)

The systematic nature of the effects of probability distribution and combination
rules leads one to wonder what other effects might depend in a systematic but
dramatic way on the assumed probability distribution or ROC slope.

These results also make us wonder what features of the shape of probability dis-
tributions correlate with the predicted slope of the ROC curve (on z-coordinates).
It is well known, of course, that for ROC curves entirely generated by varying a
criterion 4 the slope of the ROC curve on linear coordinates at any point equals the
likelihood ratio F(J/stim)/F(4/noise) at the criterion A which led to that point. This,
however, does not seem to be a complete understanding of why various shapes of
distributions (e.g.,, those in Fig. 1) lead to different slopes and hence to different
uncertainty and summation effects.

Situations that are less susceptible to the assumed probability distribution and
Jjustification for use of the Quick pooling model. Interestingly, the effect of assumed
probability distribution is a pgood deal smaller in intermixed-summation
experiments (when the observer is monitoring the same set of channels on every
trial) than in blocked-summation experiments (when the observer is monitoring dif-
ferent sets of channels on trials of different stimuli).

This insensitivity to distributional assumptions under intermixed conditions may
explain the success of the Quick pooling model—which in its most straightlorward
formn is a high-threshold model—and is thus demonstrably wrong for pattern vision.
(See Introduction and Note 9 here for more description, but the other sources given
in the Introduction will have to be consulted for a fuller description.) The
thresholds to which this model has been quantitatively compared have generally
been collected under what are essentially intermixed-summation conditions (the
observer is monitoring all the channels sensitive to any of the stimuli being com-
pared). The insensitivity of intermixed-summation predictions to assumed
probability distribution provides some justification for the continued use of the
Quick pooling model (as an approximation to more reasonable models that predict
both uncertainty effects and ROC curves of the appropriate slope). Since the Quick
pooling model is an exceedingly convenient way to do calculations when multiple
channels are involved, thus justification for its continued use is desirable.

APPENDIX: NoTes

1. Criterion variance. In comparing experimental ROC curves to theoretical
predictions (which we do not do here) the value of the criterion A is almost always
assumed to be constant throughout the trials from which results are pooled to get
an empirical ROC curve. Implications of criterion variance across trials {random
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and systematic) have been considered by Nachmias and Kocher (1970), Treisman
and Williams (1984), and Wickelgren (1968).

2. Suppiemental manuscript. Many details omitted from this manuscript are
given in an unpublished manuscript available from the authors.

3. Differentiability of hit and false-alarm rates. The hit and false-alarm rates are
just one minus the appropriate probability distribution (see Eq. (1) in Section 3)
and hence will be differentiable functions of the criterion . whenever the dis-
tribution function is. If f(x) is continuous at a value, the distribution function F(x)
is differentiable at that value. For the Gaussian and double-exponential families (C
through F) considered here, the density functions f(x) are continuous everywhere.
For the exponential family (B} the densities are continuous everywhere except at
zero, a discontinuity of ne consequence here as a criterion of zero produces hits and
false alarms equal to 1.0, The high-threshold family is discussed in the text.

4, Objection to conventional ROC plots. Sperling and Dosher (1986, Sec. 3.3)
argue against this convention on the grounds that it counter-intuitively plots good
performance on signal trials against bad performance on noise irials. They prefer
mirror ROC curves in which hit rates are plotted against correct rejections (1-false-
alarm rates) so good performance is plotted up and to the right, This also is the
convention used for other types of “performance operating characteristics.”

5. Comparison of the exponential and unequal-variance Gaussian families. The
exponential (B in Figs. |-6) and the two unequal-variance Gaussian families con-
sidered here (C and D) lead to ROC curves under the simple-alone condition (and
thus under any condition using the maximum-output rule) that are very similar. In
particular, the relationship between the slope of the ROC curve on z-axes and
detectahility is very much the same for all three families when both slope and detec-
tability are measured in the mid-range of the ROC plot—in the range from the
negative horizontal axis to the positive vertical axis. Furthermore, throughout the
mid-range the exponential curves are very straight on z-axes although departures
from straightness will occur across the whole range. (More examples of exponential
ROC curves can be found in Green & Swets, 1974, p. 80)). The unequal-variance
Gaussian ROC curves are completely straight on z-axes, of course.

In the exponential family, likelihood ratie is actually monotonic with the channel
output but it is not monotonic for the unequal-variance Gaussian families. Thus,
the ROC curve plotted on linear coordinates for the exponential distribution will
have a slope that is continually decreasing from left to right (so the curve is always
bowed downwards on these axes) but the ROC curves plotted on linear coordinates
for the unequal-variance Gaussians will have a slope that decreases for most of the
range (so the curve is bowed downwards) but increases again in the upper right (so
the curve is bowed upwards at very high hit and false-alarm rates}. See illustrations
on p. 63 of Green & Swets (1974},

6. Invariance of signal-strength families of ROC curves.  For any one probability
distribution and any one experimental condition, consider the family of ROC
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curves generated by plotting an ROC curve for every value of the signal-strength
parameter. We will call this infinite family of curves a signal-strength family, One
can ask whether two signal-strength families from the same probability distribution
family for two different conditions are identical even if, in general, different values
of signal-strength parameter are required under the two different conditions to
generate the same member of the family. In other words, one can ask whether the
ROC curve going through any arbitrary point (any particular combination of false-
alarm rate and hit rate) is the same under both experimental conditions although it
may require a larger signal-strength parameter to generate that curve under one
conditient than under the other.

This kind of invariance can be shown to hold across all values of ¥ nnder the
conditions considered here (Table 1) for 3 of the 10 distinct models being con-
sidered here: for the high-threshold model {with either combination rule—6A with
8A or 8B), for the maximum-output double-exponential model (6F with 8A), and
for the sum-of-outputs constant-variance Gaussian model {(6E). It does not hold for
the others. See discussion of Assumption 6 in Section 2.5.

7. Optimality ar low intensities. For asymptotically low intensities and for both
constant-variance Gaussian and Poisson distribution families, the optimal rule for
detection under the simple-intermixed condition has been reported to equal the
sum-of-outputs rule {Cohn, 1978). Combining this result with that of Nolte and
Jaarsma mentioned above, one would expect the sum-of-outputs rule and the
maximum-output rule to make similar predictions for the constant-variance
Gaussian family at low detectability levels under the simple-intermixed conditions
ol uncertainty experiments as they did in our calculations {curves E in bottom
panels of Fig. 4). '

8. The pedestal effect, Of less relevance here, but potentially quite important,
the assumption about the changes of the intrinsic-uncertainty distribution with ¢on-
trast leads it to also predict the “pedestal effect”  the fact that intensity dis-
crimination near threshold is better than detection (e.g., Nachmias & Kocher, 1970;
Pelli, 1985). If all the predictions just reviewed turn out to be obtainable with the
same parameter M” (when data are collected from the same observer under the
same conditions) this intrinsic-uncertainty model will indeed be a marvelously goad
description of the detection process, at least for visual patterns,

9. The Quick pooling model and extreme-value distributions. There is an
interesting and potentially confusing relationship between the maximum-output
shifted bounded-from-above model and the Quick pooling model {(which is one of
the reasons we investigated these extreme-value distributions).

The Quick pooling model (¢.g., Graham ef al, 1978} is the high-threshold model
above with the additional assumption that the signal-strength parameter P, (the
probability that the channel’s output is in the detect state) grows with signal
strength ¢ according to the function

p=1—e¢% (5)
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The equation for the bounded-from-above limit density function (the asymptotic
density function of the maximum of independent and identically distributed random
variables that are bounded from above) is

JF{z)=0 forzz¢;

k-1
= —k—«-(z 2 exp {—

z—¢,f*
Vi

} for z <e,,

where V, <0 and k> 0.

In the shifted family of these density functions, the signal-strength parameter is ¢,
and the spread parameter V, siays constant. Suppose that the signal-strength
parameter ¢; is directly proportional to signal strength. Then the probability of a
channel's output being above zero is a function of signal strength that has the same
form as the right hand side of Eq.(5). Thus this model—the maximum-output
bounded-from-above limit model with the added assumption that signal-strength
parameter grows linearly with signal strength—can have the same “channel psy-
chometric function” as the Quick pooling model. The rest of these twe models’
predictions are not the same, however; the full ROC curves for high-threshold
models {(e.g., the Quick pooling model) are much shallower than those for the
maximum-output bounded-from-above limit model.

The function on the right side of Eq. (5) 1s itself a candidate for a probability
distribution function since it goes from zero to one. As such, it is commonly called
the Weibull distribution.
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