JERETRITTE

A H

18

Complex Channels,

Early Local Nonlinearities,
and Normalization in
Texture Segregation

Norma Graham

Since the work of Jacob Beck and Bela Julesz and their
colteagues in the 1960s and 1970s, it has been clear that
two-dimensional spatial-frequency content (ie., spatial-
frequency and orientation) is a critical stimulus variable in
how well differently patterned or textured regions of the
visual field segregats, that is, how well they are perceived
iremediately and effortlessly as separate regions. (An ex-
cellent review of the perceived texture-segregation work
can be found in Bergen, 1991) This dependence of per-
ceived segregation on spatial frequency and orientation
—coupled with the mounting psychophysical and phy-
siclogical evidence for low-level analyzers of spatial fre-
quency and orlentation in the visual system (reviewed,
e.g., in Graham, 1985, 1989b)—has led a number of people
to try to explain region (texture) segregation on the basis
of such analyzers or sometimes, contrariwise, to try to
prove that it cannot be so explained (e.g. chapter 17;
Beck, Sutter & Ivry, 1987; Bovik, Clark & Geisler, 1987;
Caelli, 1982, 1985, 1988; Chubb & Sperling 1988; Clark,
Bovik & Geisler, 1987; Coggins & Jain, 1985; Daugman,
1987, 1988; Fogel & Sagi, 1989; Klein & Tyler, 1986;
Landy & Bergen, 1988, 1989; Malik & Perona, 198%ak;
Nothdurft, 1985ab; Turner, 1986; Victor, 1988; Victor
& Conte, 1987, 1989ab). Heavily influenced by julesz's
original conjecture about texture segregation—which was
phrased in statistical language—discussions of texture
segregation have often been mathematically sophisti-
cated. (The relationship between such spatial-frequency
analyzer models and Julesz’s original statistical conjecture
has been discussed in some detail by Klein and Tyler,
1986, and Victor, 1988. Related issues have been con-
sidered by Yellott and Iverson, 1990.) Only in the last

-years, however, has there been an emphasis on explicit

and quantitative comparisons between psychophysical
data on the one hand and predictions from computable
maodels on the other.

Jacob Beck, Anne Sutter, and I calculated quantitative
predictions frem a simple spatial-frequency analyzers
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Fig. 18.1

Examples of element-arrangement textures. Identical elements are
contained in all three regions but they are arranged in a checkerboard
in the center region and in columns in the top and bottom regions.

model and compared these with quantitative measure-
ments of region (texture) segregation collected for pat-
terns like those in figure 18.1 (Graham, Beck & Sutter,
1989; Graham, Beck & Sutter, in preparation; Sutter, 1987;
Sutter, Beck & Graham, 1989). These patterns are mem-
bers of the class of element-arrangement texture patterns
used originally by Beck, Prazdny, and Rosenfeld (1983)
and explored further by Beck, Sutter, and Ivry (1987).
They are composed of a uniform background on which
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are superimposed two types of elements arranged in
stripes in the bottom and top regions and arranged in
a checkerboard in the middle region. The observer’s
task is to indicate (on a scale from 0 to 4) to what degree
the whole pattern seems effortlessly and immediately
to contain two different kinds of region (striped vs.
checkerboard).

Our simple spatial-frequency analyzers model is closely
related to the class Chubb and Landy (see chapter 19) call
back pocket models. We already knew on the basis of
previous research that the simple model would work well
but probably not perfectly. Our aim was to find out what
such a simple model could do and, on the basis of sys-
tematic discrepancies between it and the data, to add
further visual processes (either low- or higher-level) to the
model and then again test the enhanced model. As it
turned out, the comparisons between the predictions of
the simple spatial-frequency analyzers model and the data
from experiments using patterns like those in figure 18.1
were very revealing, showing both the simple spatial-
frequency analyzers model’s strengths and its weaknesses.
The systematic discrepancies we found suggested adding
two nonlinear processes to the simple model, where both
nonlinearities are presumably the result of low-level (e.g.,
cortical V1 and V2 or below) visual processes. The sec-
ond part of this chapter briefly describes these hypothe-
sized nonlinear processes and prefents some preliminary
predictions from the enhanced model for one kind of
experiment (a kind for which calculating predictions is
easy if one is willing to make some reasonable simplifying

Motion and Texture




assumptions). These predictions are in very good agree-
ment with the psychophysical results.

h
Simple Model

The simple spatial-frequency analyzers model we used
consists both of assumptions about the analyzers them-
selves (described in Graham, 19892, and Sutter, Beck &
Graham, 1989) and assumptions relating the outputs of
these analyzers to the responses produced by the observer
in an experiment (described in Sutter, Beck & Graham,
1989). As in all such models, both sets of assumptions are
crucial, although the second set is sometimes not explicit.

Characteristics of Simple Spatial-Frequency
Channels (Linear Filters)

Each spatial-frequency channel in the model discussed
first below is assumed to be a linear, translation-invariant
filter. We described the spatial weighting functions char-
acterizing each flter (the physiological substrate for which
might be the receptive-field sensitivity profiles of the
individual neurons) as a two-dimensional Gabor function
(as used, eg. by Bovik. Clark & Geisler, 1987 Clark
Bovik & Geisler, 1987: Daugman, 1987, 1988 Field 1987
Fogel & Sagi. 1989; Rubenstein & Sagi, 1989; Tumer,
198&6: Watson, 1983), but the precise function makes little
difference to these predictions (e.g. a pyramid computa
tion like that used by Bergen and Adelson 1988 and
Bergen and Landy. chapter 17, will produce similar en-
ough filter outputs that it should make no difference to
the conclusions here). The spatial-frequency and orienta-
tion half-amplitude full-bandwidths of each filter were 1
octave and 38" of rotalion respectively (as in Watson,
1983) and in good agreerent with results from near-
threshold psychophysics (reviews in Graham, 1985,
1989h), but again, within rather a large range. the precise
bandwidth makes little difference for anything said here.
The filters’ center spatial frequencies were separated by
the squareroot of 2 over the visible range. Three or-
tentations—vertical, horizontal, and half-way between
(obliquel—were used. (These three are sufficient for the
patterns under consideration here, and we used only three
to save computing time; but for more general purposes
one would want several more orientations) The spatial
weighting functions were all even-symmetric in the filter
computations. (Given our full model, however, using mul-

T

tiple symmetries of weighting function at each position—
that is. multiple phases—weould make little or no differ-
ence to the predictions if the phases were combined as
typically done by others. See discussion below.)

Figure 18.2 (middle and right panels) shows the out-
puls of two of these simple spatial-frequency channels
(linear filters) to the pattern in the left panel In this pat-
tern, the two element types are squares, one had four
times the area of the other, and the contrasts of the two
clement types were equal The filter that is sensitive to
the vertical orientation and to the fundamental spatial
frequency of the striped regions (middle panel) has a
spatial weighting function (ie. receptive field) that will
cover one column of squares with its center while cover-
ing the adjacent columns of squares with its inhibitory
surround, This filter responds well in the top and bottom
striped regions but responds little in the middle checker-
board region. A similar-sized obliquely oriented filter
responds well in the checkerboard region and not at
all well in the striped region. Thus these filters tuned
to the fundamental frequency could easily contribute to
an observer's ability to segregate the striped from the
checkerboard regions.

Any filter tuned to spatial frequencies much higher
than the fundamental (e.g. that producing the oubput in
right panel of figure 18.2) has a weighting function much
smaller than the period of the pattern. It will respond well
{and, considering the whole of each region, about equally
wellj in both the checked and striped regions because:
(1} its output is ample at the edges of all the individual
elements (is proportional to edge contrast in facth and
(2) the total amount of element edge is the same in both

PATTERN FILTER FILTER
Vorlical lusdamental Wertical Variiesl
LI efscrasn Tefininmm B0 et reen
Fig. 18.2

A pattern ileff) and the responses to it from two simple channels
{retalille arscd mighifl.
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the striped and checkerboard regions in these element-
arrangement patterns. Thus simple linear channels sensi-
tive to higher spatial frequencies can contribute little to
segregation of the striped versus checked regions if any
contribution depends on the difference between the total
responses in the two regions (as it does in our simple
model and in all models of the back pocket type).

Consider what happens, however, when the pattern in
the left panel of figure 18.2 is replaced by one in which
contrast of the small squares is raised to be a factor of 3
or 4 grealer than the contrast of the large squares so that
the product of area and contrast is approximately the
same for the two sizes of squares. Now the channels
sensitive to the fundamental do not respond at all well in
either the checked or striped regions because excitation
and inhibition balance out within each spatial weighting
function {i.e, within each single neuron’s receptive field).
Thus these channels cannot contribute to perceived re-
glon segregation. Channels responsive to the higher spa-
Hal frequencies cannot contribute either, for the same
reasons they could not for the pattern in figure 18.2.
(They continue to respond well and equally well in both
regions, since their response is to the edge of individual
elements and the amount of and contrasts of element
edges continues to be the same in both regions.} In short,
neither the channels at the fundamental nor those at high-
er frequencies can contribute to segregation of the two
regions. Thus our simple model (and all similar models)
predicts that there should be a trade-off between contrast
and area so that two regions differing in arrangement
of elements (i.e., the striped versus the checkerboard re-
gions) will not segregate well when the product of area
and contrast is the same for the two types of elements.
{Photographs illustrating the outputs of all the simple
channels can be found in Graham, 1989a, and Sutter,
Beck, and Graham 1989}

From Channels’ Outputs to an Observer's
Responses

To turn the channel outputs into a quantitative prediction
of the observer's ratings of perceived region {texture)
segregation, we computed various measures of the degree
to which there are gross differences in overall activity
between the outputs of the filters to the checkerboard
versus to the striped regions.
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The first step is to compute a spatially pooled response
from each channel in both the checked region and the
striped region. Let the output at position (x, y) of the
channel tuned to the ith frequency and jth orientation be
called Oy(x, ). The spatially pooled response of the ifth
channel to the checked region is taken to equal:

J N W 1O, {x y_}:— A?
R’i'( h) = i/ —LL - i _2 -, I
o (x.y};:p%ckcd N, N, ()
Tegion

where N, and N, are the numbers of spatial positions in
the x and y directions in one period of the pattern and the
summing is done over one period in the checked region.
Ay, 1s the average value of O(x, ) over this one period.
{The construction of the patterns assures that for each
filter the values of A, are very similar in both the checked
and striped region, and the fact that the filters are all
bandpass means that these values are all very close to
zero.) When the exponent k' is set equal to 2 the above
measure is equal to the standard deviation of the outputs at
different positions in one period of the given region. By
crude analogy to other situations, this measure is also
sometimes described as energy. We used exponents k' =
L, 2,3,4, in the above formula as well as using the maxi-
mum output, the minimum output, and the maximum-
minimurn difference between the outputs at different posi-
tions. All conclusions given below held for all choices,
The spatiaily pooled response in the striped region is
exactly analogous to the definition in equation 1 for the
checked region.

The difference between each filter's spatially pooled
responses to the checked and to the striped regions is
then computed yielding a within-channel difference for the
i filter of

D*’ﬁu = |Rij(Ch) - R.—,—(sf)f‘ (2)

Finally, after weighting each within-channel difference
by the observer's sensitivity to the corresponding spatial
frequency and orientation, the within-channel differences
are pooled across all channels to form R poot given by the
following definition:

Dfﬁfj'sobs.i_f}k» (3)
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where 5, . is the observer's contrast sensitivity to the
ith frequency and jth orientation, Nipeq 1s the number of
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frequencies (usually 13—from 2 to 128 cycles/screen in
steps of the square root of 2) and N, is the number of
orientations (usually 3: horizontal, vertical, and oblique).
With the exponent k = 2, Rypor is the root-mean-square
difference between regions. We also use exponents of 1,
3. and 4 as well as infinity (taking the maximum of all the
differences), All conclusions below hold for all chaices.
(Victor, 1988, and Chubb and Landy (chapter 19), also
consider a whole family of rules, but typically calculations
in the texture segregation literature have used pooling
with an exponent equal to 2. An exponent of infinity
corresponds to taking the channel that best discriminates
the two regions which has sometimes been done in the
psychophysical discrimination literature and was done in
the multispatial-frequency filter model of Fogel and Sagi,
1689

The degree to which two regions (textures) segregate
perceptually (as reflected by the ohserver's ratings of per-
ceived segregation) is assumed to be a monsfonic function
of Rpoot-

Before looking at some predictions of this model, let
me briefly discuss alternatives to these assumptions relat-
ing the channels’ outputs to the observer's responses,

Relationship of Our Pooling Measures to
Other Approaches and Boundary Extraction

Instead of pooling across exactly one period of the pat-
tern, which is like pooling with an abrupt-edged window
exactly one period wide, one might use a gradual-edged
window of about one period’s width (about twice the
width of the excitatory center of the corresponding filter's
receptive field). With an exponent of 2, this is the local-
energy measure which has been recently used in models
of texture segregation and motion perception (e.g., chap-
ter 17; Bergen, 1988; Bergen & Adelson, 1986, 1988
Landy & Bergen, 1988, 1989).

Instead of using only even-symmetric spatial weight-
ing functions, one might use both odd-symmetric and
even-symmetric ones (or any other pair having phase
characteristics 90° apart) and then take the Euclidian
(Pythagorean} sum of the outputs of the pair located at
any internal position in the texture region (e.g. Adelson
& Bergen, 1985; Bovik, Clark & Geisler, 1987; Clark,
Bovik & Geisler, 1987: Fogel & Sagi, 1989, Turner, 1986},
This will again produce essentially the same predictions
as the pooling across a region using an exponent &' = 2
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in the above. Either of these two alternative approaches
can lead naturally into a model of how the boundaries
between texture regions can actually be computed. In
essence, one first computes, for each position in the pat-
tern, the spatially pooled response or the sum of odd and
even receptive fields. One then needs a process that en
sures that all positions for which the set of these numbers
from all channels is much the same belong to the same
texture region (see, eg. discussions in Bergen, 1997,
Bovik, Clark & Geisler, 1987; Fogel & Sagi, 1989). This is
an extremely interesting topic that has been discussed by
a number of people (in addition to these just mentioned;
Caelli, 1985, 1986, 1988; Grossberg, 1987; Grossherg &
Mingolla 1985) although not explicitly studied here. Gra-
dients at the boundary between two regions may well
be important {chapter 17: Nothdurft, 1985b; Landy &
Bergen, 1988, 1989). For simplicity, we currently ignore
these gradients; this seems at least moderately safe for the
results reviewed here since the spatial extent of the gra-
dient in any one filter (the distance over which a local
energy measure changes as one goes from the checked to
the striped region, for example) is much the sarme for all
the patterns used,

Contrast-Area Trade-off Experiments

In one series of experiments (Sutter, 1987; Sutter, Beck
& Graham, 1989), we investigated the tradecff between
contrast and size of elements that is predicted by the
simple spatial-frequency channels model (as discussed in
connection with figure 18.2 above). The patterns all con-
tained two element types that were the same shape but
generally differed in size as in figure 18.1. The mean
luminance of all the pattems in a given experiment was
the same. Then the luminance {and hence contrast) of the
larger element type was held constant while that of the
smaller elements was varied and perceived texture se-
gregation was measured. We did this for squares of differ-
ent sizes, for different fundamental frequencies of patterns
{different scalings of the overall pattemns), for different
duty cycles of patterns (different relationships between
element size and interelement spacing), and for line-shaped
elements as well as square-shaped elements. In each case.
minimal segregation as rated by the observers occurred
when the product of area times contrast was approx-
imately equal for the two element types.

Complex Channels, Early Local Nonlinearities, and Nermalization



The predictions of the simple spatial-frequency chan-
nels model were computed for all the patterns used in all
these experiments. As expected from the intuition dis-
cussed in connection with figure 18.2 above, the model
always predicts minimal segregation when the product of
area times contrast {s approximately the same for the two
element types (the exact contrast ratio producing the
minimum depends on the duty-cycle of the pattern). In
this respect the predictions of the model agreed with the
experimental results,

However, the model did not predict all of the details of
the experimental results correctly. While the contrast ra-
tio at which the minimal segregation should occur was
correctly predicted, the amount of segregation at this
minimum was incorrectly predicted for many patterns. As
is described briefly below and in much more detail in
Sutter, Beck, and Graham (1989), we think we know how
to modify the model by adding a “spatial nonlinearity” so
that the enhanced model will make the correct predictions
for the contrast-size tradeoff experiments,

Complex Channels: A Spatial (Rectification-type)
Nonlinearity

The following modification of the simple model seems to
resolve the discrepancies between our simple model and
the contrast-area trade-off experimental results: Replace
or supplement the totally linear spatial-frequency chan-
nels (simple channels as above) with “complex channels,”
as shown in figure 18.3. (The assumptions relating the
channels’ outputs to the observer's responses remain the
same as in the simple model) These complex channels
have three stages: two stages of linear filtering with a
pointwise nonlinearity (that is dramatic near zero) in be-
tween. For our purposes to date, the nonlinearity might
be a full-wave rectification (that takes the absolute value
of the first filter's output at each pgint in space), a half-
wave rectification (that substitutes zero for the negative
values and leaves the positive values untouched), a
squarer (that squares the output at each point), or some
other similar function. (See Heeger, chapter 9, for some
discussion of the differences among these nonlinearities
however.) These proposed complex channels are more
complicated than the simple linear channels discussed
earlier in much the same way that complex cells in area
V1 of primate visual cortex are more complicated than

278

First Stage‘

A translation-iavarlan
linear filtar
e.4. of high spatiet
frequency, ang
harizontal

Second Stage
Bacond-
alage
output al A point-by-peint
pasiilon nontinearily,
(%) dramatlc near
0 z8r0,
e.9. rectilicallon,
squating

First-slage putput at
posliion {x,y)

Third Stage
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fraquency, and
vattical
Fig. 18.3

Diagram of a complex channel.

simple cortical cells (e.g., Hochstein & Spitzer 1985),
However, the bandpass nature of the third-stage filtering
in the complex channels proposed here may not be con
firmed for cortical complex cells; and, in any case, it is . -
premature to take the possible physiological analogue of
the complex channels too sericusly. A number of other
people have suggested the use of complex-cell-like com-
putations in tasks like texture segregation (chapter 17
Bergen & Adelson, 1988; Chubb & Sperling, 1988; Fogel
& Sagi, 1989; Grossberg & Mingolla, 1985; Robson, 198¢;
Sagi, 1989; Sperling, 1989; Sperling & Chubb, 1989), Some
of these suggested complex-cell like computations, how-
ever, may be more like our simple model (simple linear
channels followed by the nonlinear pooling operations
contained in the assumptions relating channel outputs to
observers’ responses) than like our complex model {com-
plex channels consisting of a linear-nonlinear-linear sand-
wich followed by the nonlinear pooling operations).

A qualitative description of how (ie, insights into _
why) complex channels might explain all the discrepan-
cies between the results of area-contrast trade-off experi~
ments and the simple model's predictions can be found in
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Examples of element-arrangement textures used in on-off experiment.
(A) An opposite-sign-of-contrast pattern. (B) A one-element-only
pattern. (C) A same-sign-of-contrast pattern.

Sutter, Beck, and Graham (1989), but we have not yet
done quantitative predictions. Briefly, the intuition is this:
the kind of complex channel where the third-stage filter
responds to much lower spatial frequencies than does the
first-stage filter (as in the diagram of figure 18.3) will
respond to low-spatial-frequency patterns composed of high-
spatial-frequency elements. (To put it in terms of an auditory
analogue that may be helpful to some people: this kind of
complex channel is sensitive to the “missing fundamen-
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tal”.) Thus complex channels responding to higher har-
monics can contribute to perceived segregation (although
simple channels sensitive to higher harmonics do not,
as was discussed in connection with figure 18.2). As it
turns out, this response of the complex channels to higher
harmonics can account for the discrepancies between the
area-contrast trade-off experimental results and the pre-
dictions of the original simple model.

It is important to note that although a two-stage chan-
nel—just a pointwise nonlinearity followed by a linear
filtering—works in principle to explain many previously-
noted failures of simple linear channels (e.g., Peli, 1987), it
will not work here.

On-Off Experiments

The rest of this chapter will describe another type of
experiment—which we will call an on-off experiment—in
somewhat more detail than were the area-contrast trade-
off experiments. The results of the on-off experiments
suggest the existence of (at least) two rather different
nonlinearities: (I) the “spatial nonlinearity” embodied in
the complex channels just described, and (2) an “intensity-
dependent nonlinearity,” for which we can propose at
least two candidate processes known to occur at rela-
tively low levels in the visual system.

For the patterns used in the on-off experiment (exam-
ples are shown in figure 18.4), the two types of elements
were always squares of the same shape and size but differ-
ing in sign of contrast (i.e., lighter or darker than the
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background—hence the “on” and “off” in the name of
these experiments) and/or in amount of contrast. In the
experiment described here, we used the set of stimuli
diagrammed in figure 18.5, where each dot represents a
stimulus; that is, we used the texture patterns defined
by all possible pairs of a number of different contrasts.
(Equivalently, since the background luminance was kept
constant, all possible pairs of a number of different
luminances were used.) There is only hall a matrix of
possibilities shown because the other half is presumably
redundant, Notice that the contrast of any individual ele-
ment relative to the background was never greater than
25 percent; this value is small for the literature on texture
segregation (where black/white patterns, i.e., pattemns of
100 percent contrast, predominate) but large for the li-
terature on detection and identification of near-threshold
patterns (from which much of the best evidence for the
properties of spatial-frequency and orientation analyzers
derives). (For the results shown here, the background lu-
minance was 16 ft-L and the fundamental frequency of the
striped texture pattern was 1 cycle/degree. The squares
were slightly wider than the inter-square spaces.)

Constant-Difference Series and Simple-Model
Predictions

Series of patterns like that illustrated in figure 18.6 are
particularly interesting. In such a series the difference be-
tween the luminances of the two element types is held
constant. The absclute luminances of the two element
types vary together. In such a constant-difference series,
which generally contains more patterns than the five
shown here, there are patterns where both element types
have the same sign of contrast (both darker or both lighter
than the background), patterns where one element type
has the same luminance as the background so there is one
element type only apparent (which can be either dark or
light), and patterns where the two element types are of
opposite sign of contrast.

In the matrix-of-stimuli diagram (figure 18.5) any such
series where L, — L, is constant occurs along lines paral-
lel to the positive diagonal (bottom right). Notice also
(bottom left) that all patterns on a line through the origin
have the same incremental luminance ratio (AL, /AL,} and
also the same contrast ratio. For example, the patterns on
the negative diagonal have element types with opposite
(but equal) contrasts and thus a ratio of — 1. all patterns

280

[

Aly=Ly- Ly (ft-L)
-3].0 -1'!.5 0.0 1.? 3.‘0

'7
77 »

|

-

w

o
1

i A

-y
o
L4

I
T
ey

w

Ly ( ft-L}
Luminance of other set of elements
>
(=1
1

-

R

in
1

(1) P19 -2

—
“
L=
I
T
'
w
=Y

]

T T T T L) T T T T T T
13.0 145 160 175 19.0

L, (ft-L}
Luminance of ane set of elements

7

\Lz-L1=Oonm .

Fig. 18.5
Diagram of stimuli used in on-off experiment.

Both Oneonly, Opposite  Oneonly, ggih light '
dark dark sign of light

coentrast
Fig. 18.6

Luminance profiles of the two element types from each of five
patterns in a constant-difference series from an on-off experiment.

on the vertical ray upwards from the origin have one
element type only, and that element type is bright. Rather
than using L, and L, to describe a pattern, two other
numbers have proved very useful: {1) the luminance
difference L, — L, and (2) the angle, which we wil call
the contrast-ratio angle, between the negative diagonal ina.
plot such as figure 18.5 and the line going through the
point representing a stimulus. (Some examples of contrast
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ratio angles are indicated in the bottom left of figure 18.5
on the left and top edges of the square.}

The constant-difference series of patterns are of partic-
ular interest because models of texture segregation in-
volving multiple, linear, spatial-frequency and orientation
chanrels (like cur simple model) make a particularly sim-
ple prediction for such a series. These models predict that
all members of a constant-difference series of patterns
should show segregation to approximately the same de-
gree {Graham, Beck & Sutter, 1989, and in preparation).
Why do these simple linear models make this predicticn?
Aceording to these models, segregation is based on the
degree to which the linear spatial-frequency and orien-
tation-selective channels show differences in amount of
activity in the different texture regions. In other words,
segregation depends approximately on the difference be-
tween the Fourier transforms” amplitudes in the checker-
board vs. the striped regions. For element-arrangement
patterns like those used here, as mentioned earlier, the
only substantial difference is at the fundamental frequency
of the texture regions. And the fundamental frequency’s
amplitude is approximately constant throughout a con-
stant-difference series of patterns: thus segregation is pre-
dicted to be approximately constant.

In terms of receptive fields (spatial weighting func-
tions) the above explanation goes as follows. According
to the simple models, segregation in element-arrangement
texture patterns such as those of figures 18.1 and 18.4
is determined primarily by the receptive fields that are
just big enough so that when a column of one element
type stimulates the receptive field's excitatory center,
then columns of the other element type stimulate the
inhibitory surround. (This is the size of weighting func-
Hon associated with the filter having the output displayed
in the middle parel of figure 18.2.) Since for this size of
receptive field the background is stimulating both the
excitatory center and inhibitory surround to approxima-
tely the same extent, the effects of the background cancel
out and it is only the two element types that contribute
to the response. Further, for this size of receptive field
in the appropriate position {that position producing the
maximal response and thereby being the largest determi-
nant of the whole channel’s spatially pooled respense),
one element type stimulates the excitatory center and the
other element type stimulates the surround; hence this
receptive field essentizlly subtracts the effect of one ele-
ment type from that of the other. Since in the on-off
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experiments the two element types have the same shape
and size and differ only in luminance, this size of receptive
field responds preportionally to the difference between
the two element types’ luminances.

In symbols; letting Rg be the pooled response of the
simple channels {called R, earlier but distinguished here
for reasons that will become clear later) and wy the pro-
portionality constant, then the following is true approx-

imately {and the approximation is very good; Graham,
Beck & Sutter, in preparation)

Ry =wg L, — L] = ws|AL, — AL,|. (4}

The absolute value sign occurs because the quantity Ry is
the value pooled across all such channels of the absolute
value of the difference between each channel's spatially
pocled response to one region (e.g., striped) and that to
the other (e.g., checkerboard). Note that Ry is essentially
entirely determined by the simple channels sensitive to
the fundamental frequency of the texture regions. As
mentioned earlier, the pooled response is assumed to be
monotenic with {but not necessarily proportional to) the
observer's segregation rating.

Empirical Results

Some empirical results are shown in figure 18.7. Each
curve in the figure connects points representing patterns
in a constant-difference series. The size of that constan!
difference increases from the bottom to the tep curve.
The horizontal axis shows the contrast-ratio angle of cach
pattern. The vertical axis gives the average observer rat-
ing of segregation.

As discussed above, the simple model predicts that all
members of a constant-difference series segregate to the
same extent approximately. Thus the predictions of the
simple model would be approximately horizontal lines on
this kind of plot. The results do not look at all like the
predictions: First, each curve sinks dramatically at both its
ends, with different curves actually converging for same-
sign-of-contrast patterns when both element types’ lumi-
nances are far from the background. (Thus, for the pat-
terns at the ends of the curves, only the ratio of the
contrasts in the two element types matters for segrega-
tion; the size of the difference between the contrasts or
luminances does not.} Second, there are “ears” in the
curves since there is maximal segregation for the one-
element-type-only patterns with somewhat less segrega-
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Results from on-off experiment. The average rating from 10
observers is plotted vertically. The contrast-ratio angle s plotted
horizontally. Each curve connects points representing patterns in a
constant-difference series,

tion for the opposite-sign-of-contrast patterns in the
middle of the curves (as well as much less segregation for

the same-sign-of-contrast patterns at the ends of the
curves),

Role of the Complex Channels in On-Off

Experiments

Our explanation of these results rests on two different
nonlinearities. The first we have already discussed. It is
the spatial nonlinearity in the complex channels that was
needed to explain the discrepancies between the simple
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model’s predictions and the contrast-size trade-off experi-
ments’ results, These complex channels can also account
for part of the discrepancies between the simple model's
predictions and the on-off experiments’ resuits, namely,
for the fact that one-element-only patterns segregate bet-
ter than opposite-sign-of-contrast patterns. The remain-
der of this paragraph attempts to describe (in the spatial
rather than the frequency domain} the intuition behind
this prediction. Consider a complex channel in which the
first-stage filter is at relatively high spatial-frequencies (as
in the diagram of figure 18.3) and the third-stage filter is
at the fundamental frequency of the pattern. (To have
name for this type of channel in the following, we will call
it a high-low complex channel} No matter what the pattern,
the high-frequency first-stage filter of such a high-low
complex channel responds well at the edges of all ele-
ments, giving little Mach-bandlike responses, both posi-
tive and negative (cf. the right panel of figure 18.2). The
second-stage rectification-type nonlinearity turns these
positive and negative Mach-bandlike responses at the
edges of every element info entirely positive responses,
What happens then at the third-stage filtering, done at the
fundamental frequency of the pattern? Think of a vertical
receptive field superimposed on the output from the
sccond-stage nonlinearity in the striped region. It is tuned
to the fundamental frequency of the striped region and so
can be placed with its center lying on a column of rectified
responses to bright elements and its surround either on
ermpty columns (in the case of one-elerent-type-only pat-
terns} or on columns of rectified responses to dark ele-
ments (in the case of opposite-sign-of-contrast patterns).
Thus this receptive field (and hence the overall complex
channel) will respond strongly to the one-element-only
patterns (since only its excitatory center is stimulated—it
is getting no inhibition from its surround). But it will not
respond at all to the opposite-sign-of-contrast patterns
since both its center and surround are stimulated and
stimulated equally (since the second-stage's rectified re-
sponses to both the bright and the dark elements are the
same)!

In fact, one can write the following equation to (ap-
proximately) describe R., the pooled response of the
high-low complex channels (the complex channels in
which the first filtering is at higher harmonics of the
pattern and the second filtering is at the fundamental
frequency):
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Rc:wc'||AL1| _|AL2“- (5)

This is just like equation 4 for the simple channels {(domi-
nated by the simple channels at the fundamental fre-
quency) except that |AL;j has replaced AL, Why is this
equation (approximately) correct? The first-stage filter of
a high-low complex channel responds in proportion to
the edge contrast AL;, which the second-stage nonlinear-
ity then rectifies to |AL;} before sending it on as an input
to the third-stage filtering done at the fundamental. Then,
by an argument analogous to that given earlier for the
simple channel at the fundamental frequency, the third-
stage filtering in these high-low complex channels will
respond in proportion to the difference between its in-
puts, that is to the difference between |AL,} and |AL,). 1t
might be useful to consider what a plot of R in the
format of figure 18.7 would look like. Each constant-
difference curve would be flat for all same-sign-of-
contrast patterns (for contrast-ratio angles greater than
+ 45 or less than —45). But as the contrast-ratio angle
moved in toward zero from either +45 or —45, the
value of R drops steadily reaching zero at a contrast-
ratio-angle of zero (zero segregalion for opposite-but-
equal patterns}.

If the only channels that existed were these high-low
complex channels (higher frequency at the first stage and
fundamental frequency at the third stage), the opposite-
sign-of-contrast patterns would not segregate at all. That
they do segregate to some extent in figure 18.7, although
not as well as the one-element-only patterns, can be ex-
plaired by assuming that, in addition te high-low com-
plex channels, there are either simple channels at the
fundamenta! frequency or complex channels whose first
filtering is at the fundamental frequency. (Such complex
channels will act much like the simple channels at the
fundamental, both kinds obeying equation 4.) These chan-
nels respond as much to the opposite-sign-of-contrast as
to the one-element-only pattemns and thus will contribute
to the segregation of both.

Patterns Lacking Energy at the Fundamental

If one removes all the energy at the fundamental fre-
quency from the pattern, however, neither the simple
channels at the fundamental nor the complex channels
having a first-stage filtering at the fundamental are stimu-
lated. The high-low complex channels can segregate
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some patterns lacking energy at the fundamental (eg.
one-element-only patterns), but these high-low channels
cannot segregate opposite-sign-of-contrast patterns at all.
We used some patterns lacking energy at the fundamental;
they were much like those in figures 18.1 and 18.4 but the
individual elements had balanced sub-areas of positive
and negative contrast and thus averaged out to the same
luminance as the background. Indeed, the opposite-sign-
of-contrast patterns made from such elements did not
segregate at all although the one-element-only patterns
segregated very well indeed; this result provides more
and quite direct support for the notion of high-low com-
plex channels (Graham, Beck, and Sutter, in preparation).

The Intensity-Dependent Nonlinearity:
Two Candidate Processes

The second nonlinearity used to explain the on-off results
(figure 18.7) will be called the intensity-dependent non-
linearity. This nonlinearity is needed to explain why the
segregation decreases so sharply at the ends of the curves
in figure 18.7. We will discuss two possible candidates
for this second nenlinearity: (1) a local (pointwise) non-
linearity occurring early (before the channels}, and (2) a
normalization process, which might result from intracor-
tical interaction, operating at the level of the channels
themselves.

An Early Local Nonlinearity: One Possibility

Suppose, for example, that early local light adaptation
processes readjust the operating range of the visual sys-
tem to be centered on the recent mean luminance—the
background luminance in this case—maximizing discri-
minability between luminances near that level, and, there-
fore. sacrificing discriminability for luminances far away.
Figure 18.8 shows a hypothetical early local nonlinearity
of this sort. {“Early” is meant only to imply that it occurs
before the channels, that is, at the retina or lateral genicu-
late nucleur [LGN}, presuming the channels are cortical;
“local” is mean to imply that it is a process that is quite
localized compared to the filtering done by the channels
and can thus be assumed to act at each point on the
stimulus.) Indicated on the horizontal axis of figure 18.8
are five pairs of luminances corresponding to five differ-
ent patterns in a constant-difference series. Vertical lines

Complex Channels, Early Local Nonlinearities, and Normalization
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Diagram of early-local-nonlinearity explanation of on-off
experiment’s results.

extend from these luminances up to the nonlinear curve
and then horizontal lines extend over to the vertical axis
to show the outputs for each pair of luminances, Note
that the difference between the two outputs for the same-
sign-of-contrast patterns is much smaller than that for the
one-element-type-only patterns or for the opposite-sign-
of-contrast patterns, In general, as the luminances get
further from the background in either direction, this out-
put difference gets smaller. (It is interesting to note that
once you get fairly far from the background, the early
local nonlinearity would need to be a logarithmic function
of |AL| to make the curves for constant-difference series
converge at their ends, that is, to make the amount of
segregation depend only on contrast ratios and not on
luminance differences, as is the tendency in the empirical
results of Hgure 18.7.)

To calculate approximately the predictions from such
an early local nonlinearity applied before the channels,
one can start with equation 4 for the channels at the
fundamental and equation 5 for the high-low complex
channels but then substitute the outputs of the early local
nonlinearity for the luminances in those equations and
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Predictions of on-off experiment from a model incorporating complex
channels and an early local nonlinearity.

combine the two pooled responses. In symbols, let Ry be
the pooled response over all the simple and high-low
complex channels that contribute to segregation of the
checkerboard versus the striped region; let k be the pa-
rameter that describes the manner in which outputs of the

different channels are pooled as in equation 3. Then
R.\'ey = [R‘S(' + RE’} l.fk, (6}

where outputs from the early local ronlinearity have been
substituted for luminances in equations 4 and 5. The
texture-segregation ratings given by the observer are
assumed to be a monotonic function of Reep-

Figure 18.9 shows some predictions from equation 4
where the top panel shows the R, values themselves and
the bottom panel shows R,,, transformed by a monotonic
transformation f to produce a better fit of R,., to the data
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of figure 18.7. (Remember that the observer's ratings are
only assumed to be a monotonic function of R,,,.) As
intended, there are ears in the prediction (due to the
presence of high-low complex channels), and the ends of
the curves drop and different curves converge. Indeed, as
comparison of figures 18.7 and 18.9 will show, these
predictions fit the data very well. (The r? between f(R,,)
and the average observer rating across all 66 stimuli was
0.9873.) The parameter values are given in the figure inset
but should not be overinterpreted as there are strong
interactions among parameters and a wide range of any
one parameter can work well given the correct value of
other parameters.!

The good fit between the predictions of figure 18.9 and
the data of figure 18.7 is pleasing on the one hand. On the
other hand, one needs to think carefully about just what
visual process this early local nonlinearity might corre-
spond to. The heavy solid curve in figure 18.10, which
shows the early local nonlinearity that was used for figure
18.9 (the dotted curves show alternatives that were clear-
ly less good), is already strongly compressed at 18 or
i4 ft-L, which—on a background of 16 fi-L—is a con-
trast of 13 percent. This seems too much compression
for the light adaptation processes generally talked about
in the retina {see reviews in Hood & Finkelstein, 1986;
Shapley & Enroth-Cugell, 1985; Walraven, Enroth-Cugell,
Hood, et al, 1989). 1t is also rather more compression
than commonly reported for retinal-ganglion and LGN
cells, although not extraordinarily more than that reported
for some retinal and LGN M cells {e.g., Derrington &
Lennie 1984; Sclar, Maunsell & Lennie, 1990; Shapley &
Perry, 1986; Spekreijse, van Nomen & van den Berg,
1971).
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Early-local nonliearity used in predictions of figure 189
Normalization Across Channels—Another Possibility

Perhaps a better candidate for the intensity-dependent non-
linearity displayed in our texture segregation results lies
in some known properties of cortical cells. Experiments
on cortical cells produce results often described as involv-
ing cross-orientation or cross-frequency inhibition le.g.
Bonds, 1989; De Valois & Tootell, 1983; Morrone, Burr
& Maffei, 1982). Further, the relationship between con-
trast and cortical cells’ responses is known to be very
compressive; some cortical cells do show compression at
10 or 20 percent contrast (e.g. Albrecht & Hamilton,
1982; Ohzawa, Sclar & Freeman, 1982; Sclar, Lennie &
DePriest, 1989; Sclar, Maunsell & Lennie, 1990). As has
been recently peointed out (see chapter 9; Heeger &
Adelson, 1989; Robson, 1988ab), both the intracortical
inhibition and the response compression may result from

1. The eatly-local-nanlinearity model of equation has the following parameters:
Wy, We, k and the values of the early-local nonlinearity at the five different
incremental luminances used in the experiment. {The nonlinearity was assumed
to be odd-symmetric around the background luminance) The normatization
model of equation & and ¢ has the following parameters: w, we, iy, 0, k', and k.

For each of the models, a crude grid search was done over the above
parameters, varyitg each parameter by a factor of about Z over a reasonable
range. {For the normalization model, the value of &' was arbitrarily set at 1 in
the calculations done so far} For each chosen set of values of these parameters,
the values of R,,, for the &6 stimuli in the experiment were caleulated.

The observer's rating of perceived segregalion is assumed to equal f(R,.,)
where f is a monotonic function otherwise unspecified. In the fits shown here,
however, we assumed that f was a member of a particular four-parameter family
of functions. (This family is a slight generalization of the Weibull distribution
function. the Quick psychometric function, and the asymptetic regression func-
tion. It was picked merely because it contained the right variety of shapes to fit
far the task at hand }
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fiay = alb + 1 — 27F2] 7

The Nelder-Meade algorithm (which is nicely deseribed in Numerical Recipes
by Press. Flannery, Teykolsky, and Vetterling, 1986} as instantiated in MAT-
LAB favailable from The MathWorks Inc., 21 Bliot St., South Matick, MA
01760) was used to find the four parameters for f producing the smallest
mean-square error {over the 66 stimuli in the experiment) between f(R,,,} and

_the average rating of the observers.

The fits shown in figures 18.9 and 18.11 are the best ones found using this
procedure, but many others wete just as good, since there are strong interac-
tions between these patameters. Trivially, making all the weights w larger by
some factor or making the outputs of the early-Jocal nonlinearity larger by
some factor will be exactly compensated by making 4 smaller by that factor, Of
patticular note for the normalization model, it is generally only the ratio of w,
to o that matters rather than the values of either one. The predictions are not.
overall, very sensitive to the value of k for either model.
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the same process, a normalization process which keeps
the total response from some set of neurons at or below
a ceiling. It accomplishes this by doing something like
dividing {normalizing) each individual neuron's response
by the total response from the set {once thresholds have
been exceeded) as is discussed in some detail in chapter 9.
Normalization-type processes have also been used in visual
models by, among others, Grossberg (1987), Grossberg
and Mingolla (1985), Lubin, (1989), and Lubin and
Nachmias (1990).

How could normalization act to produce the aspects of
our results on texture segregation that suggest intensity-
dependent nonlinearity? One first needs to assume that
the set over which normalization occurs consists of
neurons responsive to rather a broad range of spatial
frequencies in the same region. The general idea is then
that the greater amount of higher harmonics present in
the same-sign-of-contrast patterns (relative to both one-
element-type-only and opposite-sign-of-contrast pattems}
produces larger responses to the same-sign-of-contrast
patterns (than to other patterns) from certain channels,
henceforth called other channels. These other channels can
be either simple channels at higher harmonics or complex
channels having their first-stage and third-stage filterings
at higher harmonics. Notice these other channels are not
capable of segregating the texture regions because they
do not respond differentially overall to the two texture
regions. The larger responses from the other channels to
the same-sign-of-contrast patterns (than to one-element-
type-only or opposite-sign-of-contrast patterns) would
enter into the denominator of the normalization process,
however. This larger denominator then leads to a smaller
postnormalization response to the same-sign-of-contrast
patterns {than to the other pattems) from all channels
over which normalization occurs, in particular, from the
channels that do lead to segregation of the texture re-
gions {the simple channels at the fundamental and high-
tow complex channels).

The simplistic approximating approach of equations 4
to 6 can be extended to model normalization instead of
early local nonlinearity. To do this we need an expression
for Ry, the responses of the other channels. Since these
channels respond to the higher harmonics (and thus rough-
ly in proportion to the edge contrast of the individual
elemnents), the total response of all such channels in any
not-too-small region of the pattern can be approximated
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by the following expression (and the approximation is
very good; Graham, Beck, and Sutter, in preparation):

Ro = wo {[|AL 1M + |AL| [}, (8)

In words, Ry is proportional to a power-sum of the abso-
lute values of the incremental luminances at the edges of
the two types of individual elements, where the constant
of proportionality is called wq and the exponent ¥’ is from
the spatial-pooling asssumption of equation 1. It might be
useful to think through what a plot of R, vs. contrast-
ratio angle looks like for a constant-difference series of
patterns: It is flat for angles between —45 and + 45 and
then increases precipitously as the angle gets smaller than
— 45 or larger than +45.

To finish the prediction of perceived segregation one
puts the response of these ofther channels into a denomina-
tor that normalizes the responses of all the channels but
does not put it into the numerator (representing the fact
that the other channels do not respond differentially in the
two texture regions):

R - (R RO o
seq '[U _]l‘ R;c‘ + RE( + Ré'}l,ﬂk"

The parameter ¢ is necessary to keep the equation from
blowing up at zero. When ¢ is so large that it dominates
the rest of the denominator, this equation is equivalent to
equation & above (except that the weights have been
divided by o).

As an aside, notice that one might just take equation 9
to be a formulation of some kind of “masking” of the
responses at the fundamental frequency by responses to
the higher harmonics. It is not clear that this last sentence
has much content but it does suggest that one might
profitably search for analogies between these psycho-
physical results and others commonly called “masking,”

Figure 18.11 shows some predictions from equation 9
where the top panel shows the R,,, values themselves and
the bottom panel shows R,,, transformed by a monotonic
transformation to produce a better fit of R, to the data
of figure 18.7. These predictions fit the data of figure 187
very well, almost exactly as well as those of figure 18.9
from the early local nonlinearity. (The r? between f (R,ep)
and the average observer rating across all 66 stimuli was
0.9874.) Again the parameter values are given in the
figure inset but should not be overinterpreted. See note 1
for further details.
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Predictions for on-off experiment from a model incoporating complex
channels and normalization {perhaps a result of intracortical
inhibition).

To decide between early local nonlinearity and norma-
lization on the basis of their predictions’ fits to this data
would be foolish. Te decide between them totally on the
basis of properties of their presumed physiological sub-
strates (that the early local nonlinearity may not be plau-
sible for the retina or the LGN) is at least premature.
However, the processes differ it so many other properties
(in particular, their spatial properties), not tested by this
data, that further psychophysical experiments should be
able to decide between them. The relationship of either of
these processes in conjunction with complex channels to
other nonlinear relationships that have been or are being
suggested by others (e.g., the opponency in Bergen and
Landy's model in this volume, the spatial inhibition in
Malik and Perona 1989a,b, the thresholding in Victor and
Conte 1989b) needs also to be made clearer conceptually
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and/or experimentally. Certain other experimental results
{e.g.. Victor & Conte 1987, 1989%ab) suggest that even
more complicated nonlinearities may be necessary to
explain texture discrimination and perhaps also texture
segregation.

Perceived Lightness

Whatever the process underlying the intensity-dependent
saturating nonlinearity in the region segregation judg-
ments, the same kind of saturation may not appear in
judgments of the perceived lightness of individual ele-
ments in the pattern, For the relationship between region
segregation judgments and perceived lightness judg-
ments is not simple for element-arrangement texture pat-
terns such as those in figure 18.7 and 18.4 (Beck, Graham
& Sutter, 1991; Beck, Sutter & Ivry, 1987).

Summary

Although much of what determines whether different re-
gions in the visual field segregate immediately is accoun-
ted for by linear spatial-frequency channels models, there
is clear nonlinear behavior. The nonlinear behavior exhi-
bited in our experfments can probably all be accounted
for by two different nonlinearities of types we know to
exist at relatively low levels in the visual pathways: (1) A
rectification-type (spatial) nonlinearity quite like that used
to describe complex cortical cell behavior; (2) a very dra-
matic compressive nonlinearity, occurring at contrasts far
less than 25 percent, which can be quantitatively pre-
dicted either by an early local nonlinearity occurring be-
fore the channels or by normalization among the channels
(perhaps intracortical inhibition). In any case, ignoring this
dramatic compressive nonlinearity in future attempts to
explain region {texture) segregation would seem unwise,

Thus, as we and others are currently showing, models
involving well-known low-level visual processes can ex-
plain a great deal about perceived region {texture) se-
gregation and at a quantitative level. This is not to deny
that still higher-level processes—perhaps more like that
grouping processes of the Gestalt psychologists and even
perhaps acting at a more categorical level—play a role in
region segregation but only to suggest that such proces-
ses should not be invoked until they are needed. (For
further discussion down this line, see Bergen, 1991)
Perhaps, after all. such higher-level processes may not
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play a substantial role in region segregation if region
segregation is a quick and easy computation done early in
visual processing in order to ease the overload on higher
processes by delimiting regions beyond which a given
computation need not be done.
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