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To evaluate some of the consequences of including probabilistic processes (e.g. guantal noise) in a
computable model of light-adaptation dynamics, we considered the behavior of a general class of
maodels, These models contain four stages: (1) early noise; (2) a deterministic filtering and
gain-changing stage; (3) late noise; (4) a decision rule that is either an ideal (signal-known-exactly}
detector or a peak—trough detector. With the ideal detector and without late noise, the observer’s
sensitivity as a function of mean luminance and temporal frequency is not affected by the filtering and
gain-changing stage. Consequently, if the early noise is entirely quantal fluctuations, sensitivity will
always be a square-root function of mean himinance and a uniform (flat) function of temporal
frequency. This latter prediction is contradicted by all known data; either the ideal-detector is the
wrong decision rule or sensitivity is almost always limited by sources of noise other than quantal
fluctuations. With the peak—trough detector, however, with or without late noise, the observer's
sensitivity as a function of temporal frequency does reflect the sensitivity of the low-level filtering and
gain-changing stage. Late noise is needed, however, if the observer’s sensitivity as a function of mean
luminance is to go through both a square-root and a Weber region. Comparing these conclusions to
similar work on the spatial frequency dimension highlights differences between the spatial and temporal
frequency domains, Finally, on the basis of these analyses and evidence from the Literature, we question

whether quantal fluctuations limit visual sensitivity
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INTRODUCTION

In constructing models 1o account for the resubts of
psychophysical experiments, the question of whether to
include” probabilistic processcs arises. Probabilistic
processes can often be ignored with little loss in predic-
live power. Sometimes, however, they must be explicitly
included if predictions are to be even approximately
correct. The intrinsically probabilistic nature of light
(variously called photon noise, quantal fluctuations,
quantal noise) has often been suggested as a critical
component for a model of light adaptation. The stan-
dard deviation of guantal fluctuations grows as the
square-root of the light intensity. Psychophysical sensi-
tivity has been reported to decrease approximately in
proportion to the square-root of the adapting light
intensity over a limited range of light intensitics (e.g.
Hess & Nordby, 1986; Kelly, 1972; van Nes, Koen-
derink, Nas & Bouman, 1967}. Thus quantal fluctuations
have frequently been invoked as an explanation under
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these conditions (e.g. Barlow, 1956, 1957; DeVries, 1942;
Rose, 1942, 1948; see reviews in Hood & Finkelstein,
1986). Consequently, as part of a broader effort to
construct a computable and practical model of the
dynarnics of light adaptation (Graham & Hood, 1989),
we decided to investigate the properties of a rather
general class of models with and without probabilistic
processes. This brief report describes several obser-
vations made in the course of comparing the predictions
of such models to the psychophysical thresholds for
flickering stimuli that varied in temporal frequency and
mean luminance (e.g. the classic data of DeLange, 1952,
1954, 1958; see reviews of such data in Watson, 1986
Graham, 1989; Shapley & Enroth-Cugell, 1984). Some
observations reported here are not new, but together
they impose substantial and insufficiently-recognized
constraints on the classes of models that are viable and
useful descriptions of the visual processing of temporal
stimuli, Comparing these observations 1o similar work
on the spatial frequency dimension {particularly that of
Geisler er af, reviewed in Geisler, 1989) underscored the
differences between the spatial frequency and temporal
frequency dimensions.
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FIGURE t. Dviagram of class of models discussed here,

THE MODELS

A number of the models explicitly or implicitly
assumed by others can be schematically represented as
in Fig. 1 which shows the class of models we consider
here. Models in this class can predict the response to any
temporally-varying stimulus when other visual charac-
teristics (c.g. spatial and wavelength content) are held
constant. Each model in this class has four stages. The
first is an early source of noise (which is where quantal
noise can be included). The second is a deterministic
temporal filtering and gain-changing stage; this stage has
sometimes been identified with the recgplors or the
retinal ganglion cells, The third sta ge is ancther source
of noise; the role of this late noise will be discussad
briefly later. We will discuss here only the case where
both the early and later noises are uncorrelated across
time (g5 are quantal fluctuations). The fourth stage is a
decision-tule. This last stage takes the response of the
system, which is a function of time, and turns it into a
psychophysical response from the observer—yes or no.
A powntally infinite number of candidates for the
decision-rule stage exist. We will look primarily at two of
the most popular ones—the ideul abserver and the peak—
trough observer—which are described further below.*

*If one were to consider Further decision rules, an attraclive class
would be those rules that pool responses at different points in time
according to the following formuta:

J-Ir(r)J* di

whete r(2) is the response at time ¢ {as suggested by Quick, 1974,
and used by many since them; see review in Graham, 1989},
With an exponent in the range of aboul 3-5, the above rule is
often used 10 model “probability summation”, Briefly, let r(r)
be the average over many trials of a response that varics from
trial to trial (and assume that the variability at different moments
of time is independent). Let the abave rule act on the
average response r{t} with an exponent (usually between 3 and 5)
dictated by the slope of the psychometric function. Then this
application of the above rule is a gogd approxitnation (o what
happens if the peak or peak-trough obscrver acts directly on each
trial's noisy response. A peak-trough observer ucting on a noisy
waveform is computed here using Monte Carlo methods f{e.g.
middle panet, Fig. 3). Although the noise characteristics are
somewhat different in the two cuses, the predictions are probably

quite similar,

With an ¢xponent & = co, the above rule is cquivalent o a peak
detector acting on #(t}, which, for sinusoidally flickering stimuli, is
equivalent to the peak-trough detector we have considered.

Notice there is only a single tempaorai filter in the class
of models in Fig. 1 rather than multiple filters sensitive
to different ranges of temporal frequency acting in
patrallel. To make the andlogous assumption about
spatial frequency would be foolish. The available evi-
dence, however, suggesis there is much less temporal
frequency selectivity than there is spatial frequency
selectivity. Thus starting for simplicity with a single
temporal filter does not seem too misleading, (For a
review of the evidence to this point see, e.g. Graham,
1989}

Devision rules

In this paper we consider amplitude thresholds for
sinusoidal flicker. The amplitude threshold is the minj-
mal amplitude (the minimal difference between peak and
trough luminances) at whick an cbserver can just dis-
criminate hetween a sinusoidally-flickering stimulus and
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a blank stimulus. The luminance profiles for such stimuli
are shown on the top right and top left of Fig. 2,
respectively. The middle of Fig. 2 shows three examples
of reponses from the model at the input to the decision

*In fact, the idezl observer for anyihing less than an infinite mmber
of cycles departs slightly from this description. See, e.g. Geisler
(1988) for more details. However, for the purposes of the present
argument, this departurc is insignificant, If phase as well as
frequency were known, the ideal observer would sxamine only the
component al the correct frequency and phase.

tFor cach frequency and mean luminance, 20 Irials were run of a
blank slimulus and 20 of the flickering stimulus at a given contrast,
The value of d° was computed. (For the deterministic model, | trial
was run ai the given contrast and the value of the peak—trough
compuled.) Ideally, we should have used 3 number of different
contrasts to find that value yielding the critevion value of & (or
peak—trovgh difference) al cach temporal frequency and mean
luminance. In fact, however, 10 de so would have required a good
deal of time and seemed unwarranted since these caleulations were
done only to confirm the logical argument illostraled in Fig. 4.
Instead, therefore, we let the amplitude of the fiicker vary as the
square-root of the mean luminance. (If predicted sensitivity were
described exactly by a square-root law, this manipulation would

- have led to the same & at all mean luminances. But predicled
sensitivily is not described exactly by a square-root law.} And we
then extrapolated to find the contrast producing a eriterion .
Before trying to quantitatively compare predictions of models like
these to psychophysical thresholds, one would wish to aveid this
extrapelation and actually do the predictions at different contrasts,

The culculations were programmed using MATLAB (from Math
Waorks Inc.—on a Macintosh lci}. The Rzedback model was cai-
culaled incrementally across time using difference-equation ap-
proximalions to differential equations. (The differential equalions
can be found, e.g. in Sperling & Sondhi, 196%.) The equation lor
cach stage of feedback was:

LA =i = N+ (Arfr)

L li = D=L D g £,U -0
where i indexes the discrete time stops. At is the length of each
discrete (ime step, # is the total number of feedback stages, "}
ffor § = I~n}is the response of the jih feedback stage at the ith
time step, fy(i) is the stimulus at the ith time step, 1 i3 the time
constanl of cach feedback stage, and g is the strength of the
feedback from the last s1age’s oulpul lo each preceding stage.

We used four stages of feedback in the model (2 =4) where the
time-constant of each stage (z) was 45 msec. The model's response
was calculated every 0.5 msec (A = 0.5 masec) For u period of 1 sec
of a flickering stimulus. There were always an integral number of
cycles of fiicker in this 1 sec period. The models response to the
flickering grating had settled down belore this 1 sec period {which
avoids transient effects due 1o the onset or offser of either the mean
luminance or the flicker). We checked that the time interval and
number of samples was great enough thal the model's behavior wus
stable at the mean luminances and lrequencies reported. The unils
of luminance wsed in the calculatious were such that 1 umit
correspands to 10 td. In these units, the strength of the feedback
£ was set equal to 10. The verticul position ol the curves in each
panel (the absolute level of amplitude sensitivity for each panel)
was essentially set arbitrarily by changing a multiplicative constanm
to make Lhe curves occupy a range correspending (o Lypical paycho-
physical data. (Choosing this multiplicative constant corresponds
o manipulating the fixed duration of the stimulus andfor the
overall gain of the filters andfor the thresheld criterion depending
on which panel is under consideration.)

On each trial new samples of independent Gaussian noise were
added at each point in time. Quantal fluctuations are actually
Poisson rather than Gaussian but the Gaussian iy  satisfactory
approximation in the situation here,

rule stage. Due to early and/or laie noise, these responses
are irregular functions of time.

The peak-trough observer rule is illustrated for the
lower right response in the middle panel. Tt simply takes
the maximum of each response and subtracts from it the
minimum of each response, As is clear in the examples
of Fig. 2, the particular moment in time where the peak
or trough occurs varies from trial to trial, as does the
peak-trough difference.

The ideal observer is the observer who performs as
well as possible in the face of the noise in the system. We
are going to consider the case where the observer knows
the frequency of the stimulus on a given trial, (The case
where the observer knows both the frequency and the
phase of the stimuius is similar.) For sinusoidal flicker
and noise that is uncorrelated across time, this ideal
observer is essentially equivalent to an observer that first
Fourier analyzes the response and then looks onfy at the
Fourier component at the signal frequeney.* The ideal
observer ignores all the components at other frequencies.
Such components are just as likely to have come from
the blank stimulus as from the flickering stimulus and
thus bave no diagnostic power. The lower panel of
Fig. 2 shows the components at the signal frequency for
the six examples of response waveforms in the middle
panel. Because these are noisy responses, the amplitude
of the component at the signal frequency varies from
trial to trial just as did the peak—trough difference.

Ta reiterale, there is an important difference between
the behavier of the (frequency-known-exactly) ideal
observer and the peak-trough observer. For the ideal
observer, the only noise that matters is the noise at the
signal frequency, But, as you can see in these middle
waveforms, the peak—trough detector is potentially con-
fused by noise at all temporal frequencies because the
peak-to-trough difference is dependent on the response
components at all temperal frequencies.

QUANTAL NOISE PREDICTIONS

This difference between the two decision-rules has a
profound effect on their predictions for sinusoidally
flickering stimuli as illustrated in the results of Monte
Carlo simulations shown in Fig. 3. For these simu-
laticns, thresholds were computed for various temporal
frequencies and mean luminances of sinuscidally Bicker-
ing stimuli. The duration of the flicker (measured in
seconds, not in cycles) was the same for all stimuli, The
early noise stage was entirely quantal fluctuations and
thus was independent of the stimulus frequency but
increased with the square-root of the mean luminance.
The deterministic stage consisted of four stages of
feedback filtering of the kind used, for example, in
Sperling and Sondhi (1968) and Matin {1968). And there
was no late noise. Predictions were computed using both
the peak—trough decision rule and the frequency-known
ideal observer decision-rules (more precisely, using the
amplitude of the Fourier component at the signal fre-
quency, which is an extremely good approximatien to
the ideal observer in this situation).t
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FIGURE 3. Predictions of three versions of the model as a function of the temporal frequency and mean luminance of

flickering stimuli. The predictions of the deterministic stage in the absence of early or later noise is shown in the leht panel.

The predictions of the peak-trough observer and the ideal observer in the presence of quantal early noise are shown in the
middle and right panels respectively.

For. comparison, predictions were also computed
from a stripped-down model consisting only of the
deterministic stage and the peak—trough observer.*

Predictions as a function of temporal Sregquency

For all paaels of Fig. 3, amplitude sensitivity (the
reciprocal of the amplitude at threshold) is plotted
logarithmically on the vertical axis, and temporal fre-
quency is plotted logarithmically on the horizontal axis.
Different curves come from different mean luminances.
The left panel of Fig. 3 shows the predictions of the
stripped-down deterministic model, These predictions
resemble the psyckophysical results, (This resemblance is
no accident since it is why this kind of deterministic
stage has been of interest in the past) The predictions
for the two decision rules differ dramatically from one
another when quantal noise is included. For the peak-—
trough observer in the middle panel, the predictions
are rather like those of the deterministic stage although
they differ in ways mentioned below. For the ideal
observer in the right panel, however, the predicted curves
are entirely flat. That is, in spite of the fact that the
deterministic stage dramatically attenuates higher fre-
quencies as shown in the left panel, the ideal observer is
equaily sensitive to all temporal frequencies. How can
that be?

Figure 4 attermpts to provide the necessary insight,
Here amplitudes are plotted logarithmically on the verti-
cal axis and temporat frequency is plotted logarithmi-
cally on the horizontal. In the top row of graphs, the
dotted lines represents all potential sine-waves of a
particular amplitude, with the 2 and 16¢/sec signals

*Since there is no noise in this stripped down model, the true ideal
observer also responds perfectly. An observer thal caleylates the
amplitude of the Fourier component at the signal frequency leads
to predictions exactly like those of the peak—trough observer,

iltustrated as solid points in the left and right panels
respectively. The solid horizontal lines represent the
noise. Since the noise is assumed to be quantal noise
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FIGURE 4. The top row shows the amplitude as a function of
frequency for stimuli—the solid lines showing that for noise and the
dotted lines for potential flickering stimuli 2l of the same amplitude,
The solid points represent a 2g/sec stimulus (left column} and a
F6cisec stimulus (right column). The second, third, and fourth rows
show the amplitude functions for the noise and stimuli afler they have
passed through the deterministic filtering stage. The third and fourth
rows then illustrate the action of an ideal observer and a peak—trough
observer, respectively, for discrimination of a 2 efsec (left column) or
16 c/sec (right colomn) signal from a blank.
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(and the sinusoidal flicker is of the same duration for
all frequencies), the noise has the same amplitude for all
frequencies.

The graphs in the second row show the outputs after
the deterministic-filter stage of the model. Both the
signals and noise have gone through the same filter and
thus have been multiplied by the same factor at a given
frequency. Hence, the dashed line showing the ampli-
tudes of filtered signals is simply a vertical translation on
this log axis of the solid line representing the filtered
quantal noise spectrum.

In the third row, the ideal observer, which is only
concerned with noise at the signal frequency, com-
pares the signal at 2c/sec with the noise at 2c/sec
and compares the signal at 16 cfsec with the noise at
16 c/sec. Notice that the log distance between signal
and noise is the same at 2¢/sec as it is at 16 ¢/sec.
That is, the signalfnoise ratios are equal for these
two frequencies (and, more generally, all frequencies);
hence these signals are equally detectable for the ideal
observer.

The fourth row iltustrates the situation for the peak—
trough observer. Remember that this observer can be
affected by the noise at all frequencies. This noise will
tend to be dominated by the least atienuated noise—the
noise at the peak of the functien, (The fact that noise at
all other frequencies also matters to some extent is
ignored in Fig. 4.) So the peak—trough observer is com-
paring signals of al! frequencies to much the same noise.
Since the filtered 2 cfsec signal is bigger than the filtered
16 ¢fsec signal, the signalfnoise ratio will be greater for
2 than for 16 cfsec, and so wili the observer’s sensitivity.
In fact, since the peak—trough observer compares all
filtered signals to much the same noise, the peak-trough
observer's predicted sensitivitics might be expected to
closely reflect the filtered signal amplitudes. We saw in
Fig. 3'that this was, in fact, true. In particular, the shapes
of the curves in the left and middle panels are rather
similar.

To summarize the points above: when there is
no late noise, the ideal observer's predicted sensitivity
does not depend on the deterministic stage at all; it
is determined entirely by the carly neise spectrum,
For the case shown in Fig. 3—where the early noise
is entirely quantal noise and the signals are sine-
waves of constant duration—the early noise spectrum
is flat and, therefore, so is the predicted sensitivity.
This prediction is contradicted by large amounts of
psychophysical data and makes the ideal observer in
conjunction with quantal neisc very unattractive as
a component of computable model of the dynamics of
light adaptation.

On the other hand, the predictions for the peak-
trough observer (in the middle panet Fig. 3) do reflect
the deterministic stage and hence can plausibly mode!
psychophysical sensitivity even if quantal Auctuations
are the only noise source.

However, as is described below, the peak-trough
observer’s predictions have a major problem when
considered as a function of mean luminance.

Predictions as a function of mean luminance

Both the ideal and the peak-trough observer have the
same problem, in fact, when predictions are considered
as a function of mean luminance. Note that, in either
the middle or right panels of Fig. 3, the low-frequency
end of each funclion is displaced only half a log unit
downward from the function above it. However, the
meas luminance changes by a log unit from cne function
to the next. En other words, at low temporal frequencies
the observer is predicted to always show square-root
{DeVries-Rose) behavior as a function of mean lumi-
nance. (The square-root behavior is predicted no matter
what the deterministic filter is. Notice that the deter-
ministic filter in Fig. 3 is predicting something closer to
Weber's-law behavior.)

Human observers, however, only display square-root
behavior over a limited range of mean luminances. They
tend toward Weber's law at high mean luminances
(particularly for low temporal frequencies) and towards
linear behavior at low mean luminances (particularly for
higher temporal {reguencies).

Essentially the models always predict square-rcot
behavior for the following reason. If the only noise
source is early (before the gain control, as is true of
quantal fluctuations), then the gain control always turns
down the signal and noise by the same amount, and thus
the gain centrol can produce no change in the observer's
performance. If the only noise is early and it is quantal
noise, then the behavior is predicted to always be
square-root behavior. One will never get Weber's law at
high mean luminances or linear behavior at low. This
particular problem with including quantal fAuctuations
in a model has been commented on before {e.g. Barlow,
1965; Cohn & Lasley, 1986, Hood & Greenstein,
1990; Shapley & Enroth-Cugell, 1984: Sperling, 1985;
Walraven & Valclon, 1984). Notice that this probiem is
quite analogous to the problem that the ideal observer
has only the temporal frequency dimension.

DISCUSSION

Improving the predictions for flicker

As we saw above, when the only noise is quantal
fuctuations, the predictions from the ideal observer
rule will be wrong considered both as a function of
temporal frequency and as a function of mean lumi-
nance. The predictions from the peak-trough decision
rule, while more realistic as a function of temporal
frequency, will be wrong as a function of mean lumi-
nance. These conclusions hold not only for the specific
model shown in Fig. 3 but for all models of the class
shown in Fig. 1.

Suppose one wanted to include quantal fluctuations in
a medel of temporal sensitivity at different mean lumi-
nances, however. To include them in a non-trivial way
(that is, to make them responsible for a decrease of
sensitivity that is proportional to the square-root of
mean luminance under some conditions) requires solving
three other problems.
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(1) Something must be done to move the
predicted behavior out of the square-root (De-
Vries—Rose) region into the Weber region at the
appropriate luminances and frequencies. As men-
tioned above, a standard solution is to include
late noise that dominates at relatively high mean
luminances and particularly for low frequencies.
(S¢¢, c.g. Shapley & Enroth-Cugell, 1984, This late
noise needs to act in conjunction with a suitable
deterministic filter that predict’s Weber's law under
the correct conditions. Once late noise is dominant,
the observer’s semsitivity by either decision rule will
be controlled by the deterministic filter.)

(2) Something must also be done to produce the
linear region that oceurs in human psychophysical
results. That is, at relatively low mean iuminances,
particularly at high temporal frequencies, ampli-
tude threshold is unaffected by mean luminance.
This can be accomplished by invoking more
tailor-made early noise (e.g. dark/light) andjor
tailor-made late noise. For example, Shapley and
Enroth-Cugell (1984, p.294) suggest getting high-
temporal frequency linearity by using late noise
biased toward high temporal frequencies {in con-
junction with a deterministic filter that shows
high-temporal frequency linearity).

(3) A suitable decision rule must be used.
It cannot be an ideal observer. Although that
observer may scem most natural when thinking
about quantal fluctuations as an unavoidable
limitation imposed by the physical world, it does
not predict realistic temporal filtering. Throughout
the luminance range where quantal fluctuations
dominate, the observer's predivted sensitivity will
simply reflect the quantal noise spectrum.

Modifying the ideal observer to consider a constant
number of cycles at each frequency (rather than the full
stimulus which we arc assuming was on for a fixed
duration in seconds) will produce the desired results.
But as will be discussed further below, it does not seem
justifiable for the temporal case on the basis of known
visual processes, although the analogous modification
for the spatial case may be.

A peak-trough observer is a good candidate. This,
unfortunately, may seriously hinder cfforts to have a
practical computable model of the dynamics of light
adaptation because extensive use of Mante Carlo tech-
niques will often be required. In some situations it can
be adequately approximated by usc of the pooling
formula suggested by Quick (1974) and explored since
then by a number of investigators (see Graham, 1989,
Chap.6).

Spatial frequency is differems

Using a model in which there are only quantal
fluctuations, low-level visual processes, and an ideal
observer, Banks, Geisler and Bennert (1987, Fig. 2;
also sec Fig. 13 in Geisler, 1989), predict a reasonably
shaped high-spetial-frequency decline. We, however,

failed to get a rcasonably shaped high-temporal-
frequency decline using a similar approach (e.g. Fig. 3
right panel). The question naturally arises: what did
Banks et ol do differently? As is discussed further below, -
the answer is twofold. First, the lower-level visual mech-
anisms in their approach include receptor aperature and
optical blur. Such preneural processes are intrinsically
different from the temporal filtering in our model (and
from spatial neural filtering as well). Second, the sinu-
soidal stimuli in their study contain a constant number
of cycles at all spatial frequencies rather than being of
coustant extent,

Pre-neural factors (optical blur, receptor aperature),
‘The receptor aperature directly integrates light (“counts
quanta’) over some area. This integration contributes
slightly to the high-frequency decline in the visible
spatial frequency range. However, since there is no
fixed physical temporal aperature to a receptor (no
“shutter™), this kind of effect cannot contribute at all to
a high-temporal-frequency decline.

Optical blur produces a substantial amount of the
high-spatial-frequency decline in the Banks ez af. (1937}
calculation. However, in spite of what one might think
at first, optical blur is not (particularly not in the context
of an ideal observer) a spatial filter analogous to the
temporal filter in our model. Nor, in fact, is optical blur
analogous to the spatial filtering produced by receptive
fields. Optical blur attenuates the contrast of high spatial
frequency gratings more than of low spatial frequency,
but optical blur does not change the amount of high-
spatial-frequency content in the quantal noise {quite
unlike the filtering stage in Fig. 3 which attenuates the
noise as much as the signal). For, after the light has gone
through a lens and been blurred, it is still light. Light
(except in some extremely unusual circumstances) is a
Poisson process—that is, the probabilities of quanta
occurring at different points in time and space are
independent of one another. Thus, although optical blur
rearranges the average value of photons coming from
sinusoidal gratings in 2 way thal attenuates the contrast
of high spatial frequency gratings more than of low
spatial frequency gratings, it does not introduce corre-
lations among neighboring points, and thus it does nat
attenuate the amount of high spatial frequency content
in the quantal noise.

The temporal filtering in our model and the king of
spatial filtering produced by receptive fields act quite
differently from optical blur. Like optical blur, they do
attenuale the (average) contrast at high temporal or
spalial frequencies more than at low. But in so doing
they introduce correlations between responses at differ-
eat points in time or space. To sec this, consider the
following. Consider 4 moment when ther¢ happens to be
an unusually large number of photons caught by one
receptor (relative 1o the average expected). This unusual
event is guaranteed to produce unusually large responses
from several neurens (those having receptive fields con-
taining the one receptor) af several moments in time {all
the momenls in time through which the response from
the first moment lzsts). These resulting correlations
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across neurons and across times change the character-
istics of the noise itsetf. Indeed the correlations attenuare
the high frequency content (relative to the low) in the
noise to the same extent as the filter attenuated high
frequency signals. Thus, the fact that optical blur con-
tributed to the high-spatial-frequency decline of Banks
et al. (1987) does not mean that spatial and temporal
“neural” filtering like the deterministic stage in Fig, |
can contribute to either a high-spatial or a high-
temporai-frequency decline.

Constant number of cycles in the stimudi. The sinusoidal
stimuli used by Banks er «l. contained the same number
of cycles regardless of frequency, and the height of the
grating equaled the width. Thus, stimulus area was
inversely proportional to the square of spatial frequency.
As is well known, the effectiveness of quantal fuctu-
ations is inversely proportional to the square-root of the
area considered by the ideal observer {¢.g. Barlow, 1958).
Thus, for the stimuli of Banks et !, the effectiveness
of the quantal fluctuations for an ideal cbserver will
be directly proportional to spatial frequency. To put it
another way, for these stimuli and the idcal observer, the
effective spectrum of the quantal noise is not flat as in
Fig. 3, but increases in proportion to frequency. Conse-
quently, for these stimuli (in the absence of the other
preneural factors}), the ideal observer's sensitivity will
decline in proportion to spatial frequency (that is, the
high-spatial-frequency decline wil! have a slope of —1
on log-log coordinates). This represents the second
substantial contribution to the high-spatial-frequency
decline predicted by Banks ef al. The analogous choice
of flickering stimuli with a constant number of cycles
would produce an analogous high-temporal-frequency
decline in the predictions of an idez] observer (but with
aslope of —? rather than —1 since the temporal stimulus
has only one dimension of extent while the spatial had
two). While not steep enough to be consistent with
psychophysical flicker results, it would certainly be
better than the predictions in Fig. 3.

Banks et al,, justify their choice of stimuli on the basis
of psychophysical results showing that, as the number of
cycles in a grating is increased, the human observer's
sensitivities continue to impreve only for a limited
number of cycles. And that limit is about the same for
all spaiial frequencies and about the same both perpen-
dicular to and parallel to the bars, The ideal observer on
the other hand continues to improve indefinitely a5 more
arca is added. Thus the ideal observer cannot possibly be
correct for large number of cycles; some other factor is
limiting performance at large number of cycles. In an
attempt to minimize this other factor (“neural sum-
maticn™), they choose stimuli of constant number of
cycles, Indeed, they discuss the case of stimuli of con-
stant extent and point out that their approach could not
predict the shape of the high-spatial frequency decline
for those stimuli {see, e.g. Geisler, 1989, p.2§7). Their use
of a restricted set of stimuli is consistent with the overall
goals of their investigation, one of which is te explore the
stimulus realms where the ideal observer and quantal
fiuctuations might be the limiting factor. But for our
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purposes it is not sufficient to make predictions correctly
for one set of stimuli only {those with constant numbers
of cycles); we also need the predictions to be correct for
others (e.g. for those lor constant extents) if we are to
have a computable model for arbitrary stimuli.

Modifying the ideal observer 1o consider a constant
nwmber of cycles. The faci that, in psychephysical results,
sensitivity increases up to a fixed number of cycles
regardless of frequency and the success of the Banks
et al., predictions for constant-number-of-cycles stimuli
suggest a modification of the ideal observer. This
maodified ideal observer is one that is ideal except that
1t can only consider some fixed number of cycles no
matter what the extent or frequency of the stimulus;
in other words, the extent it considers varies inversely
with frequency. (Such a suggestion is reminiscent of the
suggestion of different summation areas for different
spatial or temporal frequencies that was made in a
related context by van Nes, 1968; van Nes & Bouman,
1967, van Nes ef al., 1967.)

But does the suggestion above make any sense in
terms of mechanism or is 1t merely an ad Aoc rescue of
the model by specifying an odd decision rule? One can
make some sense of this suggestion for the spatial
frequency dimension but justification is mere difficult for
the temporal frequency dimension, and on neither
dimension can it completely rescue the ideal observer.
To make sense of this suggestion, one might start by
expanding the framework in Fig. | to include multiple
frequency-selective channels acting in parallel rather
than a single channel as shown there. (These channels
would be spatia! frequency or temperal frequency selee-
tive depending on which case one has in mind.) Then one
can postulate that the bandwidths of the channels are all
equal in logarithmic frequency, that is, the weighting
functions characterizing the different channels all have
the same number of cycles and thus have extents that
vary mversely with frequency (or frequency-squared if
one considers both dimensions in the spatial case). With
such a model, even with stimuii of a constant spatial or
temporal extent, this ensemble of multiple channels
might act very much as if they were stimuli of a con-
stant number of cycles (with some caution—see next
paragraph}. For spatial frequency, there is compelling
psychophysical evidence that frequency selective chan-
nels exist and further that their bandwidths are all much
the same in logarithmic frequency. The available psycho-
physical evidence suggests, however, that temporal fre-
quency selectivity is much less than spatial frequency
selectivity. (The evidence is reviewed in Graham, 1989,
Chap.12). While there may be a small number of differ-
ent channels on the temporal frequency dimension, they
are much more broadly tuned than those on the spatial
frequency dimension and they would probably not be
effective in the rele envisioned for them here.

However, even if there are multiple chanaels, it is not
possible to adequately modet human psychophysical
results with an ideal observer, For, as mentioned above,
an ideul observer (limited only by noise that is homo-
EENLous across space or time) would continue to show
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substantial improvement in sensitivity as the number
of cycles in & stimulus of a particular frequency was
increased even beyond that number of cycles included in
the weighting function. Human observers do not show
such a dramatic increase in sensitivity although they do
show a lesser one (see below). This again is reason for
concluding that, iff one wants a computable modet that
ome cen use lo predict the responses to arbitrary stimuli,
one cannot use an ideal abserver unless one postulates
noise with specific qualities.

On the other hand, the spatial poeling results are
another good reason for considering the use of a
peak-trough observer, For, while not showing as much
improvement with increasing spatial extent as predicted
by an ideal observer, human observers do show some
increased summation as number of cyclies is ingreased,
and the amount they show is consistent with that
predicted by retinal inhomogeneity and a peak—trough
observer (¢.g. Robson & Graham, 1981; Graham, 1989,
Chap.6).

Conclusion

Of course quantal fluctuations exist as a source
of noise in the visval stimulus, and we accept the
ideal observer’s usefulness as a benchmark for visual
behavier. However, within the framework in Fig. 1,
predictions like those in Fig. 3 lead us to the following
tentative conclusion. Either the source of noise limiting
human sensitivity is almost always noise other than
quantal fluctuations andfor the ideal observer is the
wrong decision rule to describe actual visual procassing,

There seems no compelling reason (o believe that
quantal fluctuations with or without an ideal observer
are an important factor in understanding the effects of
light adaptation on the visual performance of humans,
In Gcisler er als’ calculations for example, although
the predictions from a model incorporating quantal
fluctuations, pre-nevral factors, and an ideal abserver,
parallel the human psychophysical thresholds, the
human results are at least a factor of 5 and often a
factor of 20 less sensitive than the predicted (see, c.g.
Geisler, 1989). Hood and Greenstein {1990} concluded
that adding quantal noise as a limiting factor on rod
sensitivity produced implausible predictions for changes
in the rod system with some discases. Pelli (1990, p.16)
does suggest tentatively that absorbed-photon noise
can account for the observer's equivalent noise at most
spatiotemporal frequencies, His conclusion depends on
several assumptions however, and on one particular
psychophysical task, Until those assumptions and that
task are evaluated further, the wei ght of the evidence is
against quantal noise as a limiting factor on perform-
ance. (Quantal fluctuations may, of course, have played
a role in the course of evelution.}

Therefore, for many purposes, quantal Auctuations
and other probabilistic processes might be ignored
entirely and the output of a deterministic stage com-
puted {c.g. the left panet Fig. 3). Of course, getting
a deterministic stage to exactly mimic sensitivity as a
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function of temporal frequency and mean luminance is
not trivial. Several candidates exist in the literature,
however, in addition to the feedback module used here,
Sperling and Sondhi (1968) used a combination of
feedback, feed forward (and linear lowpass) 1o obtain
rather successful predictions although one that has some
trouble at low temporal frequencies, More recently,
Tranchina and Peskin {1988) have produced two differ-
ent noniinear models whose output can be computed for
arbitrary input functions of time. Perhaps one of these
deterministic stages would be a satisfactory model for
S0IE pUrposes.

The question of the role of quantal fluctyations in
limiting human vision is still not settled. 1t is safe to
say, however, that if one wishes to incorporate them
into 2 mode! of temporal vision that can be apphed to
arbitrary stimull, one cannot do so without appropriate
altention to a number of other features in the model.
Also, it would be unwise to cavalierly invoke them as an
explanation for the apparent square-root behaviour seen
in some psychophysical results.
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