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Light adaptation has been studicd using both aperiodic and periodic stimuli, Two well-documented
phenomena are described: the background-onset effect (from an aperiodic-stimulus tradition) and
high-temporal-frequency linearity (from the periodic-stimulus tradition). These phenomena have been
explained within two different theoretical frameworks. Here we briefly review those frameworks. We
then show that the models developed to predict the phenomenon from one tradition cannot predict the
phenomenon from the other tradition, but that the models from the two traditions can be merged into

a class of models that predicts both phenomena.
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INTRODUCTION

The nervous system of higher animals, including
humans, contains large sections dedicated to visual
perception. In primates, in addition to the retina of each
eye and a number of sub-cortical areas, a large portion
of the cerebral cortex is also involved in processing visual
information, perhaps as much as 25-40% in the case of
humans (van Essen, 1985). Although we are far from a
detaited understanding of how the nervous system per-
forms the computations necessary for visual perception,
a good deal of progress has been made. Over the last two
decades, modeis have been suggested for visual processes
that include relatively high-levet processes such as the
perceptual segregation of different regions in the visual
field and the extraction of three-dimensiona! shape (for
a sampling of a number of these, see Landy & Movshon,
1992,

Higher-level processes like these presumably occur in
the cortex of primates. Te make a model of these
higher-level processes truly computable, it would be
useful (and may be necessary) to have a satisfactory
quantitative account of the processing that goes on at
lower levels in the visual system. One very important
lower-level process, thought to be primarily determined
by retinal processing, is adaptation to different levels of
light. Humans, for example, can adjust to ambient light
levels that vary by a factor of 10° or more. Over much
of this range, the visual system remains exquisitely
sensitive to small differences in ambient light and the
response to any given contrast remains approximately,
but not exactly, constant. See reviews by Hood and
Finkelstein (1986) and Shapley and Enroth-Cugell
(1984). Tf this light-adaptation process is not properly
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modeled, it may be difficuit to model any higher-level
visual process satisfactorily since the input to that
higher-level process will be poorly understood.

Are existing models of light adaptation good enough
to serve in the formulation of models of higher-level
processes? We examined candidate models that came
from two traditions of investigation. The first and older
tradition used aperiodic stimuli (e.g. dots and lines
superimposed for a short period of time on back-
grounds of different light intensity); the second and
newer tradition used periodic stimuli {(e.g. sinusoidaliy-
flickering lights and spatially-sinuscidal gratings where
the mean intensity of the sinusoids was systematically
varied). The candidate models were chosen because
they were successful at explaining the phenomena in
the tradition in which they were developed. It was not
clear, however, that the models would be successful at
explaining the phenomena from the other tradition. In
reviewing these models here, we focus on two empirical
pheromena, one from each tradition and each as old as
the tradition that spawned it: (i) the background-onser

- effect from the aperiedic tradition (a test’s threshold is

highest near the onset of a background light and then
decreases) and (i) high -temiporal-frequency linearity
from the periodic tradition (when amplitude sensitivity
for flickering stimuli is plotted as a function of temporal
frequency, there is a common high-frequency envelope
for curves at different mean luminances). These phenom-
ena emerged early in our work as particularly useful for
diagnosing weaknesses of models.

As will be described below, none of the existing
models from either tradition could account for the
empirical phenomena from both traditions. It became
clear, however, that judicious merging of various pieces
of models from the two traditions could lead to a model
that can account for a wide range of empirical results on
light adaptation and which might, therefore, be good
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enough to serve in the formulation of models of higher-
level processes.

Comment about multiple  wavelength, Spatial, and
temporal channels

To reduce our review to manageable size, the models
we discuss will only be compared to experimental results
from photopic foveal vision. Further, the models exam-
ined will include only a single pathway or channel, In
particular, we do not include multiple channels sensitive
to different ranges of (electromagnetic) wavelength or of
spatial frequency in spite of the fact that evidence for
such channels is overwhelming. Indeed, the elegant work
of Stiles on light adaptation was designed in part to
explore the different channels sensitive to wavelength
(e.g. Stiles,
differential light adaptation of different spatial-
frequency channels; some of it will be discussed briefly
below. Because only a single channel is included in our
models, the set of parameters specifying one of these
models will probably apply only to stimuli of some
particular wavelength and spatial-frequency content.
If the set of wavelengths andfor spatial frequencies
contained in the stimuli is altered, then, at the least, the
values of the parameters specifying the model’s single
channel would be expected to change. More dramati-
cally, the very structure of the channel might change.

The models we consider also include only a single
temporal channel rather than multiple channels acting
in paralle] and sensitive to different ranges of temporal
frequency. The justification for and implications of
ignoring multiple temporal channels are somewhat
different than those in the case of multiple wavelength
and spatial-frequency channels. Although there is some
psychophysical evidence for temporal-frequency selectiv-
ity, there is undoubtedly much less selectivity for tem-
poral frequency than for spatial frequency or wavelength
{see review in Chap. 12, Graham, 1989). Thus starting
with a single temporal channel for simplicity is not
0o misleading even when one allows the temporal
content of the stimuli to vary arbitrarily. This is import.
ant because our goal is to produce a computable model
of light adaptation—that is, one which will predict the
response to any arbitrary function relating variations in
retinal illurninance to time.

THE APERIODIC-STIMULUS TRADITION

The use of aperiodic stimuli in investigations of light
adaptation has a long history. Weber’s law (the fact
that the difference threshold A7 is approximately pro-
porticnat to the background intensity £ for backgrounds
of moderate 1o high intensity) may have its roots in the
eighteenth century. [According to LeGrand (1957) this
fact was discovered for vision by Bouguer (1760) but
Weber extended it to many sensory modalities.) By the
19405, Stiles had presented an explicit and well worked
out quantitative model of adaptation designed to predict
the threshold of a test spot for test and adapting stimuli
of different intensities and wavelengths. Important in

1959). Less work has been done on the.
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Stiles” work was the quantitative specification of sensi-
tivity changes over a wide range of adapting intensities,
Stiles’ model did not, however, include time as a variabie
and thus did not attempt to predict the dynamics of light
adaptation. These dynamics were, however, being exten-
sively explored although not explicitly modeled (e.g.
Craik, 1938; Crawford, 1947; Baker, 1949). A review of
the aperiodic-tradition literature can be found in Hood
and Finkelstein (1986).

Background-onser effect

In one of the most influential of these experiments on
dynamics, Crawford (1947) measured the threshold for
a brief test light presented before, during, and after the
presentation of a larger background light (which he
called the conditioning flash). He found that the test
threshold was highest near the onset of the background
light and that threshold decreased substantially over the
next 200 msec or so. (Threshold increased again at the
offset of the light. The effect at offset, although smaller,
is interesting in its own right but will not be discussed
here.) Subsequent work by Baker (1949) and Boynton
and Kandell (1957) confirmed that threshald is highest
at background onset. During the 1970s, a number of
investigators compared the threshold at background
onset to thresholds for test lights delayed relative to
background onset (e.g. Alpern, Rushton & Torii, 1970;
Shevell, 1977, Geisler, 1978; Hood, Ilves, Maurer,
Wandell & Buckingham, 1978). These studies used a
paradigm, called the probe-flash paradigm by Hood
et al. (1978), that included a wide range of background
intensities and was designed to study nonlinearities
associated with light adaptation. Figure 1 shows data
collected using conditions favoring foveal wision
(Finkelstein, Harrison & Hood, 1990). In this figure, the
threshold for detection of the test probe is plotied as
a function of the intensity of the background light for
two different delays between background onset and test
probe onset (stimulus-onset asynchronies, abbreviated
SOAs. When the background is presented as a steady
light (SOA =0, solid circles), then the threshold of
the test probe increased along a slope of approx. 1.0
{Weber’s law). When the test probe is presented ai the
onset (SOA =0, open circles in Fig. 1) of a background
flash, however, the slope of the threshold vs illuminance
(tvi) curve is greater than [, usually between 1.5 and 2.
Notice that the threshold at the onset of the background
(SOA = 0) is always higher than the threshold for the
same light upon a steady field (S8OA = o). We will refer
to the results illustrated in Fig, 1 as the background-onset
effect.

This background-onser effect is the psychophysical
phenomena from the aperiodic-stimulus tradition that
we will compare to predictions from various models,
Specifically, we will attempt to account for the two major
features of the data in Fig. 1: the slope of the curves at
higher intensities and the relative position of the curves.
The SOA = 0 curve has a slope greater than 1 and sits
to the lefi of the SOA = oo curve, which has a slope of
about 1.
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FIGURE 1. Background-onset effect. Log threshold intensity for a
test stimulus as a function of log background intensity when the test
comes on at the same time as the background (SOA = ) or at a much
later time (SOA = oo). Points show data. Solid line is model prediction
described in text. Modified from Finkelstein et of. (1990).

Static nonlinear models of adapration from the aperiodic
tradition

A theoretical framework coming from an aperiodic
tradition is well able to account for this background
onset effect, as we will see below. This approach was
introduced by Geisler (1978, 1979) and by Hood
and colleagues (Hood, 1978; Hood ef al. 1978; Hood,
Finkelstein & Buckingham, 1979). It was further devel-
oped by Geisler (1981, 1983), Finkelstein and Hood
(1981), Hood and Greenstein (1982, 1990), Adelson
(1982), Hayhoe, Benimoff and Hood (1987) and
Walraven and Valeton (1984). The models in this frame-
work are also able to account for related and more
intricate phenomena of adaptations arising from more
elaborate experiments than those described here.
Reviews of this approach and the associated models can
be found in Adelson (1982), Hood and Finkelstein
(1986) and Hayhoe et al. (1987).

The class of models from this tradition is schematized
in Fig. 2. Time is not explicitly included in these models
and therefore one cannot use these models to compute
responses to stimuli that are arbitrary functions of time.
Some temporal effects are included in an ad hoc manner,
however, and are crucial to the predictions of these
models. (The fact that temporal effects are only partly
included-—that time is not an explicit parameter of the
model—is why we refer to these as “static” models
betow.)

There are three component processes in these models:
(1) a static nonlinear process (that is a nonlinearity that
acts instantaneously and does not change over time);
(i) a multiplicative process that develops with time;
and (iii) a subtractive process that develops with time.
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As implied by Fig. 2, the multiplicative and subtractive
processes occur before the static nonlinearity and are
-assumed to be slow enough that they have no effect on
the probe when it occurs at the onset of the background

AS0A =0).

Figure 3 further descnbes these thrce component
processes by showing the response amplitude as a
function of intensity for subcases containing various
combinations of processes. The curve in Fig. 3(A) is the
responge function of the model in the dark and is
determined only by the static nonlineay process {equiva-
lently, therefore, it equals the response function for the
static nonlinear process by itself in the dark). The static
nonlinear function shown, and the one usually used, has
the form -

. T
R(I)=I_+'_"O_'Rmnx

8y
where [is the intensity of the light, o the semisaturation
constant, and R, the maximum response of the system
to that light.

Figure 3(B} considers the case where the static non-
linearity is the only process in the system. In this case,
the incremental responses (AR) to incremental probes of
intensity A7 upon adapting fields of intensity A4 are
given by

AR(AI) = R(AT + A) — R(A). 2
Figure 3(B) shows the incremental responses to the
probe as a function of the intensity of the probe A7 when
the probes are on a dark background [dashed curve—
identical to that in Fig. 3(A)] or when they are on a
background of intensity 4’ (solid curve). 4’ is the
intensity that, when presented in the dark, produces the
response shown by the dotted vertical line in Fig. 3(A).
Since 4" by itself produces a very large response, there
is little response range left for the incremental prabe
stimuli so the maximal response to a probe on top of this
background is much less than that in the dark. Indeed,
the responses to all probes are reduced.

DARK ADAPTED {SOA=0)

R

static

LIGHT ADAPTED (SOA= =) nonfinearity

multiplicative
process

subtractive

process

FIGURE 2. Schematic of static models of adaptation from the

apericdic tradition for the dark-adapted (SOA =0, top) and the
light-adapted state (SOA = w0, bottom),
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To fit the psychophysical data, a constant-response or
constant-AR assumption is usually made, In particular,
the test probe of intensity-AJ is assumed to be at
threshold when the incremental response AR to the test
equals a criterfon amount, §, as indicated by the dashed
horizontal lines in Fig. 3. Thus, the value of AJ at
threshold is AL, where

NORMA GRAHAM and DONALD C. HOQD

When the static nonlinearity is the only process in the
model, the incremental response is given by equalion (2).
Combining equations (2) and (3) gives

R(AIL+ 4) — R(4) = 6. )

Following the dashed horizontal lines in Fig. 3(B) shows
the effect for one value of the background field intensity,

AR(AL) = 6. (3) A’. Threshold, Af,, is substantially elevated relative to
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FIGURE 3. Nlustration of the effects of the static nonlinearity,
of adaptation from the aperiodic tradition. Log R is plotted on
(C) and (D). Log [ is plotted on the horizontat axis of {A) and |
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nece (Al)

multiplicative process, and subtractive process in static modsls
the vertical axis of (A) and log AR on the vertical axis of (B),
og Al on the horizontal axis of the (B), (C) and (D). Modified

from Hood and Finkelstein (1986),
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the threshold in the dark. Thus, when the static non-
linearity is the only process in the model the back.
ground light drastically reduces the response range and
also the sensitivity to incremental lights. This effect was
called “response compression” by Boynton and Whitten
{1970).

At the onset of a background, the static models of
Fig, 2 assume that only the static nonlinearity is effective,
thus Fig, 3(B) describes the situation at the onset of
background lights according to these models. Hence, the
reduced range due to response compression exhibited
in Fig. 3(B) is responsible for the large elevation in
threshold at background onset that is predicted by these
modeis. The smooth solid curve through the SOA =0
condition data points in Fig. 1 is an example of such a
prediction. [The psychophysical data for the SOA =0
condition can be fitted by combining equations (1) and
(4} and by estimating two parameters, ¢ and 8/K,,, ]

The smooth dashed curve through the SOA = o
data in Fig. 1 shows the predictions of the class of
static models of Fig. 2 for a steady background.
To understand these predictions, however, both the
muitiplicative and subtractive processes have to be
considered in addition to the static nonlinearity. The
multiplicative and subtractive processes are assumed to
come into play some time after the background has
been turned on. Figure 3 illustrates the effects of these
processes, singly [(C, D)] and together (E), on the
function relating incremental response to incremental
light intensity.

The solid curve in Fig. 3(C) shows the predicted
response function for a multiplicative process in con-
junction with the static nonlinearity. We mean by a
multiplicative process one that decreases effectiveness
of all lights by the same factor once the processs has
come into play. In effect, this process multiplies the
intensity of both background and probe lights by the
same number m(A), a number which is <1 and which
depends on the intensity 4 of the background light.
The multiplication is assumed to be effective in the
SOA = oo condition but not in the SOA = 0 condition
of experiments like those in Fig. 1. In particular,
the intensity AF of the probe becomes, in effect,
m(A)AL and the intensity A of the background becomes
m(d)A where m(A) is always between (or equal to)
0 and 1 and is equal to 1 in the dark or at SOA =0.
This class of adaptation mechanisms, called multi-
plicative by Adelson (1982), inciudes what others have
called von Kries adaptation, cellular adaptation, auto-
matic gain control, pigment depletion and dark glasses
(see the reviews by Macleod, 1978; Shapley & Enroth-
Cugell, 1984; Hood & Finkelstein, 1986). Figure 3
shows the effect on a background of intensity 4’ when
m{A")=0.1. Note that the addition of the multiplicative
process means that the response function on a back-
ground of intensity 4’ [solid curve in Fig. 3(C)] recovers
some of its response range and shifts to the left on
the log AT axis relative to the response function when
only a static nonlinearity was present [solid curve in
Fig. 3(B)). The lower value of AJ, for the solid curve
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in Fig. 3(C) relative to that for the solid curve in
Fig. 3(B) is the result of two opposing influences of the
multiplicative mechanism on threshold. The multipli-
cative mechanism decreases threshold by decreasing the
effect of response compression, since the effective inten-
sity of the background becomes m(4’)-4°. At the
same time, it incrcases the value of threshold since the
probe threshold has also become less effective, equaling
m(A")-AlL

Figure 3(D) shows the subtractive process in
conjunction with the static nonlinearity (and without a
multiplicative process). A subtractive process decreases
the effectiveness of prolonged lights (e.g. the background
in the SOA = co condition) by removing some of the
signal. This process does not change the effectiveness of
briefly presented lights (e.g. the probe in both conditions
and the background in the SOA =0 condition). The
class of subtractive adaptation mechanisms includes
what others have called discounting the background,
subtractive adaptation, or high pass temporal filtering
(e.g. Hurvich & Jameson, 1958; Jamsson & Hurvich,
[972; Walraven, 1976; Shevell, 1978). When a sub-
tractive process is present in conjunction with the static
nonlinearity, the intensity 4 of the background becomes,
in effect, A — 5 where s =0 in the dark (or at the onset
of the background) and is always between (or equal to)
0 and A at other times; but the intensity AJ of the
probe is always unaffected since the probe is presented
for only a short time. When subtraction is complete
(s=4) and there is no multiplicative process, the
response function on a background of intensity 4 at
SOA = o is identical to the response function on a dark
background. Thus, relative to the function in Fig. 3(B)
for the static nonlinearity by itself, this response function
has recovered all of its range, and the threshold on this
background will be unchanged from its dark-adapted
value. Figure 3(D) shows the effect when the subtraction
is incomplete. (In this case 95% of the background 4’
is removed via subtraction, that is, 5 = 0.95 4°.) Notice
that the response function at SOA = oo on a background
of intensity 4’ [solid curve, Fig. 3(D)] is shifted down
and to the right relative to the dark-adapted function
{dotted curve) but it is not shifted as far as the response
function for the static nonlinearity by itseif [solid curve,
Fig. 3(B)]. Thus, the system with incomplete subtraction
recovers some, but not all, of the sensitivity it lost due
to response compresston [Fig. 3(B)).

In Fig. 3(E) both multiplicative and subtractive
processes have been added to the static nonlinearity.
The effective intensity A4’ of the background after it
has been on for some time becomes m(A') (A’ —s)
and the effective intensity AJ of the probe is m(4 )AL
Notice in Fig. 3(E) that, although the value of AT
for prolonged viewing (SOA = ) of background 4’ is
above the value for AZ, in the dark, it is substantially
lower than the value of AJ, at SOA =0 [Fig. 3(B)].
The combined effect of the multiplicative and sub-
tractive time-dependent processes is to decrease the
value of Al after background onmset, although never
decreasing it to the level in the dark. If subtraction is
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complete, then the elevation in AL, at SOA = oo is due
to the multiplicative effect on the probe intensity [e.g.
m{A" )AL,

In short, static models of the class shown in Fig. 2
successfully predict the background-onset effect in the
following way: threshold is greatly elevated at back-
ground onset by the response compression resulting
from the static nonlinearity but, as the background stays
on, multiplicative and subtractive adaptation processes
pull the response to the background back down to a
lower level leaving more response range for the response
to the probe. Multiplicative and subtractive processes
differ in that multiplicative, but not subtractive, also
reduce the sensitivity of the system to the probe itself.
If subtraction is complete, it is the multiplicative
process that accounts for any threshold elevation in the
SOA = o (steady-state condition), e.g. for the Weber’s-
law-like behavior.

THE PERIODIC-STIMULUS TRADITION

The earliest use of periodic stimuli to study light
adaptation was to measure at various mean illuminances
the ‘“critical fusion frequency”—the highest rate at
which the observer could still see flicker when a rapid
series of flashes was presented. It is now well known that
this critical fusion frequency increases with increasing
light levels although there is still some question about
the exact form of this increase (see, e.g. Tyler & Hamer,
1990; Revamo & Raninen, 1988, for some discussion
and earlier references.) Subsequently, many studies
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measured contrast thresholds as a function of the fre-
quency of sinusoidal modulation in either time or space
{for reviews see, c.g. Graham, 1989; Shapley & Enroth-~
Cugell, 1984; Watson, 1986.) Our major interest here
is in temporal vision, and the spatial case will be only
briefly mentioned.

Figure 4 illustrates four ways of plotting the effects
of mean illuminance on an observer's sensitivity to
sinusoidal stimuli. The upper left panel shows a plot
analogous to the plot of aperiodic results in Fig. 1.
The amplitude threshold AL is the difference betweern
the peak illuminance and the mean illuminance or,
equivalently for sinusoidal stimuli, equal to one-half
the peak-minus-trough illuminance. The value of Al
is plotted logarithmicaliy on the vertical axis and { (the
mean illuminance) logarithmically on the horizontal
axis. Different curves give the results for different fre-
quencies, As with aperiodic stimuli at SOA = 20, ampli-
tude threshold (Af,) is first constant and then increases,
at first slowly, and then more quickly until, proto-
typically, Weber’s law is reached and A, becomes
approximately proportional to 7, yielding a line of slope
of I on log-log coordinates. (Thresholds for sinusoidal
stimuli—either spatially or temporally-sinusoidal—are
typically collected when the observer has been viewing
the mean illuminance for some time, ie. like the
SOA = oo condition in Fig. 1.)

As indicated by the labels on the plots in Fig. 4(AJ,
we will sometimes talk about these changes with mean
illuminance as falling into rhree regions. At low mean
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FIGURE 35, Sensitivity of a human observer to sinusoidal flicker.
Amplitude sensitivity (vertical axis) is plotted as a function of the
temporal frequency (horizontal axis) for different mean illuminances
(different curves). Results from de Lange {1958).

iluminances, there may be a linear region where
amplitude threshold Af, is constant [hence a horizontal
line segment in Fig. 4(A)). This kind of behavior is
expected from a linear system as long as certain auxiliary
assumptions are made, ¢.g. the constant-A R -assumption
described above. At somewhat higher mean illumi-
nances, there is a de Vries—Rose range (so-called because
of theoretical considerations of guantal fluctuations
associated with de Vries (1942) and Rose (1942, 1948)
where amplitude threshold is increasing, as a square-root
function of I [hence, a line segment with slope +0.5 in
Fig. 4(A)]. Finally, there may be a Weber range at the
highest mean illuminances where Al increases approxi-
mately proportionally to J [hence a slope of approx. 1.0
in Fig. 4(A)]. A function for a particular stimulus
may not contain all three regions, however, and pure
examples of these regions usually exist for only a limited
range of mean illuminances with smooth transitions in
between, See, e.g. Kelly (1972) for examples.

The other panels of Fig, 4 show the same results as
those in (A) but plotted in three different ways. The plot
that we will find most useful here is shown in Fig. 4(B).
The vertical axis shows the reciprocal of the amplitude
threshold (1/Al—usually called amplitude sensitivity)
plotted logarithmically and the horizontal axis shows
logarithmic frequency. Different curves now give the
results for different mean illuminances. On this kind
of plot the linear region (where Al is independent
of I) can be identified by the superposition of the
curves for different mean illuminances [see points
enclosed by dashed line in Fig, 4(B)]. Figure 5 shows
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an example of psychophysical results from de Lange’s
classic studies plotted in this manner (de Lange, 1952,
1954, 1958).

In the periodic-stimulus tradition, stimuli are often
described in terms of their contrast, which is the
amplitude divided by the mean illuminance, that is,
A/l Coutrast varies between proportions of 0 and 1
for sinusoidal gratings, or, alternately, between per-
centages of 0 and 100%. (For other stimuli, however,
notice that the analogous definition of contrast can
go from zero to infinity.) Figure 4(C} shows contrast
threshold AR/l plotted vs mean illuminance (both
logarithmically) where different curves give the results
for different frequencies. Here the linear region corre-
sponds to a slope of — 1, the de Vries-Rose region to a
slope of —0.5, and the Weber region to a horizontal line
segment.

Perhaps the most common plot in the periodic-
tradition literature is that shown in Fig. D), The
vertical axis of this plot gives contrast sensitivity
({/Af—-the reciprocal of the contrast threshold) logar-
ithmically—and the horizontal axis shows frequency
logarithmically. The lowest measurable contrast sensi-
tivity for a sinusoidal stimulus is 1.0 (corresponding to
the maximal possible contrast of 1 or 100%). On this
kind of plot the Weber region (where contrast threshold
is independent of mean illuminance) is easily detected
because the curves for different mean illuminances are

superimposed [see points enclosed by dashed line in
Fig. 4(D)].
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van Nes ef al. (1967).
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How does this effect of mean illuminance interact
with frequency? The typical effect is very similar for
both spatial and temporal frequency and is illustrated in
Figs 4 and 5. The interaction of mean illuminance and
frequency can be described in terms of the illuminances
at which the transitions between regions occur. In
particular, the transition from linear to de Vries—Rose or
that from de Vries-Rose to Weber behavior can be
estimated for individual frequencies. It is well established
that the higher the frequency, the higher the mean
illuminances at which a given transition occurs. This can
be seen in the left panel of Fig. 4 where curves are shown
for four different frequencies, f, being the lowest and Fa
the highest. For both spatial and temporal frequency,
van Nes, Koenderink, Nas and Bouman (1967) sug-
gested a simple and elegant summary of the relationship
between frequency (plotted on the horizontal axis of
Fig. 6) and the mean illuminance at which the transition
from the de Vries—Rose to the Weber region occurrad
{plotted on the vertical axis of Fig. 6). To a first
approximation, the data are well represented by straight
lines with a slope of 2 on log-log axes. That is, letting
Ly be the illuminance at which the transition from
de Vries—Rose to Weber behavior occurs and f be the
frequency, then

Ly =af?. (5)

High-temporal-frequency linearity

The interaction between mean illuminance and fre-
quency can be described in other ways. One can say,
for example, that Weber behavior occurs at lower mean
luminances for low frequencies than for high. Notice

Input Response of
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FIGURE 7. Responses to impulses, steps, and sinewaves by cascaded
exponential filters.
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that the curves in the contrast sensitivity vs frequency
plot of Fig. 4D) superimpose at the low-frequency end.
Or, of particular interest in this paper, one can point
out that the curves in the amplitude sensitivity vs
frequency plot [e.g. Fig. 4(B) and Fig, 5] tend to
superimpose at the high-frequency end. Or, if not
actually superimposing, they come much closer together
at the high-frequency end so there is a clear high-
frequency envelope. Superposition is more regularly
found for temporal frequency than for spatial fre-
quency, but even for spatial frequency, there is clear
convergence. Many references can be found in Watson
(1986} and Graham (1989). This behavior is often
spoken of as high-frequency linearity, since super-
position occurs whenever the amplitude threshold for a
particular frequency stays constant over a range of mean
illuminances, or, in other words, superposition occurs
within the linear range for each frequency. Even though
the linear range for each frequency may extend only over
a small range of mean illuminances above threshold, the
fact that both the linear and de Vries-Rose ranges shift
with frequency means that there tends to be an overall
high-frequency envelope to ail the curves. We wilt refer
to this phenomenon below as high-temporal-frequency
linearity or the high-temporal-freguency envelope.

Dynamic models of adaptation Jrom periodic-stimulus
tradition

Several models of light-adaptation dynamics have
been proposed to explain the interaction between tem-
poral frequency of periodic stimuli and intensity (Baylor,
Hodgekin & Lamb, 1974; Dodge, Knight & Toyoda,
1968; Fuortes & Hodgekin, 1964; Kelly, 1961; Matin,
1968, Sperling & /Sondhi, 1968; Sperling, 1989;
Tranchina, Gordon & Shapley, 1984; Tranchina & Pe-
skin, 1988). We will look at one of these models in some
detail, showing its predictions of high-temporal-fre-
quency linearity, and then attempt to give some insight
into why such a prediction is made.

Sperling and Sondhi’s model, We explore the model
of Sperling and Sondhi (1968) in detail because: it is a
model that is computable for arbitrary temporal stimuli;
its substages appear in both physiological and psycho-
physical models; and, as the original investigators
showed, it does quite well at accounting for many
aspects of psychophysical detection thresholds, including
sensitivity as a function of temporal frequency at
different mean illuminances.

A basic component of Sperling and Sondhi’s temporal
model, and one that appears in many other models as
well, is a low-pass filter of the sort sometimes catled an
RC stage, or a Jeaky integrator, or an exponential filter.
Figure 7 top shows n of these exponential filters con-
nected so that the input of one is the output of the one
before it. {The Appendix contains equations describing
these filters.) Underneath the sketch of the filters are
shown the responses out of the first and nth filters to
several stimuli (impulse, step, and sine—sketched at the
left in different rows). The responses of one filter by itself
(see middle column labeled “Response of first filter™) to
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FIGURE 8. Diagram of Spetling and Sondhi’s (1968) model of the dynamics of light adaptation, a model from the periodic
. tradition.

an impulse of light has an abrupt onset followed by an
exponential decay to. baseline (the time-constant of the
decay is a parameter describing the filter). The response
of a cascade of » such filters to an impulse has a less
abrupt onset and a somewhat different shaped decay
(mathematically, it is described by a gamma Function).
The response of one filter to a step gradually increases
to some asymptote as does the response of the cascade
of  such filters (but with somewhat different shapes).
The response to.a sine-wave is, as for all lingar time-
invariant systems, a sine-wave, but the amplitude of the
response- wilk depend on the frequency as well as the
amplitude of the sine-wave stimulus. This dependence is
shown in the second row from the bottom of the figure
by the transfer functions that give the amplitude of the
sinusoidal response as a function of the frequency of
the stimulus sine-wave. (where the amplitude of the
sine-wave stimulus is held constant). Notice that either
the single exponential filter or the cascade of » filters
responds well to all low temporal frequencies but begins
to respond. much less well as the frequency gets higher.
The slope of the high-frequency decline on these log—log
plots equals —»n The very bottom row sketches the
phase of the response.

The exponential filters just described are linear
systems. Sperling and Sondhi’s model is compesed of
such filters with one very important added nonlinearity.
Following Fuortes and Hodgekin (1964) and others,
Sperling and Sondhi posiulated that the time-constants
of some of the exponential filters would be shortened
{(and their gain would be decreased) by feedback or
feedforward signals. Their full model is diagrammed in
Fig. 8. It contains four modules. Difference equations
describing the first three of these modules are contained
in the Appendix. (1) The first module is a feedback
module that consists of two stages of exponential filter-
ing. The input to this module is the stimulus itself.
The output of the module feeds back into the module
to shorten the time constants of each of the individual
filters. (2) The second module, whose input is the output
from the feedback module, is a feedforward module
which contains one stage of exponential filtering. The
time constant of this filter is modified by a control signal,
which is a filtered version of the input to the module.
(3) The third module is a pure low-pass module consist-
ing of six stages of exponential filtering, (4) The fourth
module is a detector stage that produces a “yes” or “no™
from the observer depending on whether the output

from the previous modules was above or below a
criterion; the behavior of this detector stage is consistent
with the constant-response assumption of equation (3)

if maxAR()>& then observer says “yeg"
r <90 then observer says “no” (6)
or, equivalently, at threshold
max AR(1) = 6. (N

Several properties of this model are worth making
explicit. First, it assumes only a single channel (see

2+
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FIGURE 9. Predictions of Sperling and Sondhi’s model for detection
of sinusoidal flicker, Amplitude sensitivity (vertical axis) is plotted as
a function of temporal frequency (horizontal axis) at different mean
Hluminances (different curves). The parameter values were similar to
those used by Sperling and Sondhi (1968) and were as follows: in the
feedback module, the time constant for each of the two exponential
filters was 25 msec (in the dark). In the feedforward module, the time
constant of the filter on the straight-through path was also 25 msec (in
the dark) and that of the filter delaying the control signal was 15 msec.
In the low-pass module the time constant of cach of the six exponential
filters was 6 msec. The criterion AR used for the predictions in this

figure was 0.002.
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comments in the Introduction). Second, there is no
“noise,” i.e. no source of variability from trial to trial
(see Discussion). Third, there is no static nonlinearity
(although the feedback and feedforward modules intro-
duce some nonlinearity between the response to a probe
and the probe intensity),

Predictions from Sperling and Sondhi’s model. Sperling
and Sondhi (1968) compared the predictions of their
model to several sets of psychophysical results, including
sensitivity as a function of the tereporal frequency and

the mean intensity of flickering stimuli. In particular,

they compared their model's predictions to de Lange’s
flicker data, some of which is shown in Fig. 5. Figure 9
shows our recaleulation of their predictions for the
temporalflicker data. (using parameters in the satne
range they used) displayed as amplitude sensitivity vs
flicker frequency. The fit between model predictions
and empirical results was rather good although there
were some problems, particularly at low frequencies, as
pointed out by the authors. For our purposes here, the
most important point is that the predicted functions
of amplitude sensitivity vs temporal frequency share a
common high-frequency envelope.

Sperling and - Sondhi ( 1968) also compared the
medels’ predictions to several sets of thresholds from the
aperiodic-stimulus literature (in particular, thresholds
on a steady background as a function of duration of
the probe). The model did quite well. But they did not
attempt to predict the background-onset effect,

Why high-frequency linearity. The general idea behind
how this kind of model produces the high temporal-
frequency envelope is as follows. For high temporal
frequencies, two different effects of light adaptation
balance each other; in particular, the shortening of the
time constants compensates for the reduction of gain

nf /N
1 d
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FIGURE 10. Responses (o impulses and sine-waves on backgrounds
of low intensity {middle column) or high intensity (right column) as
predicted by typical models from the periadic tradition.

(of area under the impulse-response). This effect is
visible in Fig. 10, which sketches the responses to three
stimuli in the left column (impulse, low-frequency sine,
and high-frequency sine) on a low-intensity background
(middle column) and again on a high-intensity back-
ground. (right. column), In models like Sperling and
Sondhi’s, increasing the adapting intensity shortens
the time—course of the impulse-response (perhaps even
causing a monophasic impulse-response: to become
biphasic). In such models, this shortening of time—course
is accompanied by a decrease in the area underneath the
impulse-response. (This decrease occurs even when the
height of the impulse—response is refatively unaffected as
in the example of Fig. 10—compare the top middle to
the top right response. In fact, the height may also be
decreased for a further decrease in area underneath the
impulse-response.) Thus there will be less gain at high
light levels than at low (each photon will have less effect
since the area under the impulse-response is smaller),

i% Area

drk

Area/k?

dik

Log freguency

FIGURE 11. Effects of changing area, height, and duration of impulse-respense on transfer function,
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FIGURE 12. Predictions of Sperling and Sondhi's model for an
aperiodic test stimulus superimposed on an aperiodic background
stimulus when the test comes on at the same time as the background
{80A =0) or at a much later time (SOA = o0). Parameter values are
as in Fig. @ except that criterion AR was 0.05. (Using other values for

criterion AR did not produce a bigger background-onset effect.)

but there will be increased temporal resolution (the
duration of pulse-response is shorter). For lower tem-
poral frequencies, the decreased gain (decreased area
under the impulse—response) at high illuminances means
a decreased amplitude of response at high illuminances.
(Note that the middle-row, right-hand response is
smaller than the middle-row, middle-column response.)
For high temporal frequencies, however, the increased
temporal resolution can cottpensate for the decreased
gain so that the amplitude of the response can remain the
same at quite different intensities as if the system were
linear. (Note that the lower middle and lower right
responses have the same amplitude.)

Graphs of the impulse-responses at many different
background intensities are given in Fig. 7 of Sperling and
Sondhi (1968) for parameters very similar to the ones we
used for Fig. 9 here. The width at half-height of the
initial excitatory phase of the impulse-response is about
100 msec long on a 7 x 10 td background and about
15msec on a 7 x 10° td background.

An alternative illustration in ierms of transfer functions.
(This paragraph can be skipped without loss of con-
tinuity.) In Fig. 11, log sensitivity is plotted as a function
of log frequency. First, consider the effect of a pure
time—course reduction with no change in gain, that is, the
effect of reducing the duration of the impulse-response
while keeping the area underneath it—the total effect
of each photon—constant (implying an increase in the
height of the impulse—response). This simply shifts the
functien horizontally on log-log coordinates rightward
toward higher temporal frequencies as in the shift from
curve 1 to curve 2 in Fig. 11. On the other hand, a pure
gain change with no time-constant change, that is,
a reduction in the area of the impulse—response while
keeping its duration constant {(which implies a reduction
in height), moves the function straight down as in the
shift from curve 1 to curve 3 in Fig. 11. Models like
Sperling and Sondhi’s assume both a time-constant
reduction and a gain change, that is, a decrease in both
the duration and the area of the impulse-response.
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If the decrease is exactly the same for both (so that
height of the impulse-response remains exactly con-
stant), then the transfer function moves over and down
by equal amounts (as in the shift from curve 1 to
curve 4 in Fig. 11). If the area underneath the impulse
response decreases even faster than the duration (as it
does in many models), the curve moves down more than
it moves over (scc curve S). Whether such movement
produces a common high-temporal-frequency envelope
(and therefore the phenomenon we called high-tem-
poral-frequency linearity) between the function at a low
mean illuminance (e.g. curve 1) and that a higher mean
Hluminance (e.g. curve 4 or 5} depends both on the exact
relationship between gain and time-course changes as

well as on the steepness of the high-frequency decline in
both curves.

COMPARING ONE TRADITION’S MODELS WITH
THE OTHER TRADITION'S RESULTS

As expected, a typical static model from the aperiodic-
stimulus tradition does predict the background-onset
effect and a typical model from the periodic-stimulus
tradition does predict the high-temporal-frequency
linearity, Now we ask whether models from one
tradition can predict the phenomena from the other
tradition, phenomena against which they have never
been tested. They cannot, as is particularly clear in the
case of the two phenomena we are focussing on here.

The periodic-tradition models and the background-onset
effect

As shown in Fig. 1, the psychophysicai threshold for
a probe is highest when it is coincident with the onset of

SOA=D S0Azw
Stimulus 1 # O
Response
to impulse
and
background

Sensitivity
to impulse

Time — =

FIGURE 3. The pericdic-tradition model’s 1esponse to test stimuli
coincident with the onset of the background (SQA =0) or at a much
later time {SOA = «c). The stimuli arc skeiched in the top row, the
responses of the model in the middle row, and the underlying
sensitivity of the model (the reciprocal of the test intensity necessary
to produce a criterion amplitude of response) in the bottom row.
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the background and then decreases for longer SOAs,
Further, the log AZ vs log J curve rises much more steeply
when the increment is coincident with onset than when
it occurs on 2 steady background.

As Fig. 12 shows, the Sperling and Sondhi model does
not predict this background-onset effect, Instead, it
predicts that the thresholds for probes coincident with
the onset of the background are lower, not higher, than
the threshold for probes that come later. Further, both
predicted curves rise in approximate proportion to the
background illuminance 7, but in psychophysical results
AT at onset is approximately proportional to I? and AJ
in the steady state is approximately proportional to [, In
retrospect, it is easy to understand why models like
Sperling and Sondhi’s do not predict the background-
onset effect. As sketched in Fig. 13 bottom row, this
model predicts that sensitivity to an impulse decreases
monotonically with time after step onset. (Indeed, it is
this reduction in sensitivity that catches up with the
system’s response t0 a step and causes it to come
down to produce the transient in the step response at
high mean luminances shown in the middle row.) This
monotonic decrease in sensitivity after onset means that
a response to an increment of constant Al is greatest at
step onset and monotonically decreases thereafter as
shown by the sketched impulse-responses in the middle
row of Fig. 13

The aperiodic-tradition  models and high-temporal-
Jrequency linearity

Making the aperiodic static model dynamic in time—
MUSNOL. To ask whether the class of models from
the aperiodic tradition can predict high-frequency
linearity requires specifying these models in time at
least to the extent necessary to predict their responses
to sinusoidally-varying stimuli. We know of only one
model in this aperiodic tradition that adds time as an
explicit variable. For the dark-adapted case, Geisler
(1981) added two low-pass filters as shown in Fig. 14 by
the little boxes labeled LP (for “low pass'”). His low-pass
filters were one-stage exponential filters but more gener-
ally they might be cascades of exponential filters. The
first filter LP, largely sets the time—course of the response
as it has a time constant considerably longer than the
second filter.

This final low-pass filter LP,, might be thought of
either as more temporal filtering occurring at a relatively
low level in the visual system or as an integrator in the
decision mechanism designed to prevent detection of
very brief responses. Without this filter, detection occurs
for very brief responses to the probe at earlier and earlier
times on the leading edge of the step responses. Without
the LPy, these very brief responses are detected by
the observer. Then the background-onset effect is not
predicied to occur because these brief responses are
occurring before the response to the background is
large enough to produce response compression. But,
these responses are very brief and the smail amount of
temporal integration produced by LP, makes them
undetectable. (See Geisler, 1979, p. 175, for discussion.)
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DARK ADAPTED {SOA=0): Gelsler {1981)

iy

Rit)
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FIGURE 14. Diagram of MUSNOL (for multiplication-subtraction-

nonlinearity), the dynamic version of the aperiodic-tradition model

illustrated in Fig. 2. The boxes marked LP here are low-pass modules
containing 1 or more exponential stages.

In the following, we will sometimes refer to the final
low-pass filter as the Geisler fix,

Geisler’s dynamic version of the aperiodic-tradition
model was only designed to account for brief aperiodic
stimuli in the dark. Thus, Geisler did not make the
time-dependent muitiplicative and subtractive adap-
tation processes computational in time. With help from
Mary Hayhoe and in accord with a suggestion from
Adelson (1982), we attempted to make the full model
shown in Fig. 2 explicit in time. Instead of Just assuming
that the multiplicative and subtractive processes were
ineffective at SOA =0 and fully effective in the steady
state (SOA = o0), we now explicitly added temporal
filters in the multiplicative and subtractive processes as
shown in Fig, 14. These temporal filters, called LP,, and
LP, for the multiplicative and subtractive processes
respectively, were assumed to be cascades of exponential
filters (in general, more complicated filters could be
considered). The signal r,(z) leaving the first low-pass
filter stage (LP,) is multiplied by () which is a
nonlinear transformation of o), a slowed-down version
of r,(¢). Specifically, as indicated on the diagram, r,(t)is
the output of the low-pass filter LP,, in the multiplicative
loop and, at each point in time, the value of m(t)
depends nonlinearly on r,(¢). In particular,

m{t) = CJ[C +ry(1)] (8)
where C is a constant. The signal r{E)=m(e) r(t)
leaving the multiplicative stage is then reduced in size by
the signal %r,(7), which is subtracted point by point in
time from ry(r) to produce r(r). The signal kr,(1) is
produced by low-pass filtering ri(t) by the filter LP,,
The filter’s output is normalized such that when k =1.0
the steady-state response kr,(c0) out of LP, is the same
as the steady-state response ry(co) and complete sub-
traction occurs [i.e. r5(c0) = 0], Next the signal ry(¢) goes
through the static nonlineari ty. The final low-pass filter
LP, is the same as in the upper panel of Fig. 14.
Detection of the test probe occurs when the peak of the
response exceeds a fixed criterion.




MODELING THE DYNAMICS OF LIGHT ADAPTATION

Log increment threshoid AL,
L*]
1

-3 -2 A Y] 1 2 3
Log background illuminance 1(tds)
FIGURE 15. Predictions of MUSNOL for an apertodic test stimulus
superimposed on an aperiodic background stimulus when the test
comes on at the same time as the background (SOA = 0) or at a much
later time (SOA = o0). Parameter values are as follows. The low-pass
filter labeled LP|, had 1 exponential stape with a time constant of
300 msec. That labeled LP), had 5 exponertial stages each at § msec,
LP; had 5 stages each at !5 msec. And LP, had | stage with a time
constant of 20 msec. The constant C of the multiplicative fanction m )
in equation (8) was 10, The subtractive constant & was 1.0. The static
nonlinearity had the form of equation (1) with a semisaturation
constant o of 0.1625 and R, = 1.0. The criterion AR was 0.05.

This dynamic version of the static model from the
aperiodic-stimulus tradition will be called “MUSNOL"
for multiplicative, subtractive, nonlinear model,

MUSNOL and the background-onset effect. Figure 15
shows some successful predictions from MUSNOL for
the background-onset paradigm. It turned out to be
a good deal harder to make MUSNOL predict the
background-onset effect that we had anticipated,
After the model is made dynamic with the multiplicative
and subtractive processes developing over time, it is
still nontrivial to arrange the parameters so that the
threshold is elevated sufficiently at SOA = 0. For one
thing, as mentioned earlier, the final low-pass filter (the
Geisler fix) is crucial to prevent detection of very brief
responses occurring at background onset. To simulate
this model, we used Geisler's valugs for LP, and LPp and
specified the parameters of the other components. The
legend of Fig. 15 contains the values of these parameters.
The value of the constant k in the subtractive stape
was set so that in the steady state r; equaled & -7, and the
signal attributed to the background was completely
removed, This is referred to in the literature as complete
subtraction or completely discounting the background.
The value of C in equation (8) was estimated from the
SOA = oo data in Fig. 1. Since the background signal
was completely removed, the only factor increasing
threshold for prolonged backgrounds is the multiplica-
tive mechanism. Therefore, the SOA = o data in F ig. 1
provide an estimate of the value m(0) in equation (8).
The number of stages and time constants of LP,, and LP,
were set so that the muliiplicative process was fast
relative to the subtractive process.

As shown in Fig. 15, MUSNOL captures the two
key aspects of the background-onset effect. First, the
threshold is always higher at the onset of a background.

1385

Second, the slopes of the high intensity limbs are
approximately correct; for the SOA = «© curve, the slope
is 1.0 and it is substantially steeper than 1.0 for the
S0A =0 curve,

MUSNOL does not predict high-temporal -frequency
Imearity. Figure 16 shows the predictions of MUSNOL
for amplitude sensitivity as a function of the temporal
frequency and mean illuminance of flickering stimuli.
A comparison with the data in Fig. 15 reveals that
MUSNOL completely fails to capture the high-
frequency-linearity effect. The curves for different mean
illuminances do not share a common high-frequency
envelope. Indeed, they do not even begin to converge—
they remain exactly parallel to one another out to the
highest frequencies measurable. Further, the slope of
the high-frequency decline is too shallow, aithough this
problem is easily fixed by adding more stages in the final
low-pass filter.

The reason MUSNOL fails to predict high-temporal-
frequency linearity is somewhat difficult to see. First
notice that high-temporal-frequency linearity (or a com-
mon high-frequency envelope) requires that thresholds
for different temporal frequencies be affected differently
by changes in mean level; in particular, the amplitude
thresholds for the very high temporal frequencies should
remain constant over a range of mean luminances while
those for lower temporal frequencies are increasing.
In MUSNOL, only the static nonlincarity and the
multiplicative process are capable of producing changes
in amplitude threshold with changes in mean illumi-
nance. (The other components of the mode!, including
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FIGURE 16. Predictions of MUSNOL for detection of sinusoidal
flicker, Amplitude sensitivity (vertical axis) is plotted as a function of
temporal frequency (horizontal axis) at different mean luminances
(different curves). The parameler values are as in Fig. 15.
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the subtractive mechanism, are linear systems.) But,
the static nonlinearity is frequency-independent and the
multiplicative process’s effect is largely frequency-
independent, being primarily determined by the recent
time-averaged luminance. [Although the value of m(i)
will fluctuate somewhat when the stimulus is flickering
at a very low temporal frequency, when the stimulus is
flickering at a high temporal frequency the value of m(i)
will be effectively constant across time and dependent
only on the mean illuminance. Thus the multiplicative
process’s effect will be the same for all but the lowest
temporal frequencies, ]

An alternative way to express the faiture of MUSNOL
to predict linearity at high temporal frequencies is in
terms of the changes in the impulse-response of the
system with increases in mean luminance as seen sche-
matically in Figs 10 and 11. In MUSNOL, at high mean
luminances there is no decrease in the duration of the
impulse-response to compensate for the decrease in area
of the impulse-response caused by the multiplicative
process. That is, the multiplicative process reduces the
height of the impulse-response but there is no offsetting
change in its shape that is dependent upon mean level,

MERGING THE TWO TRADITIONS' MODELS

The MUSNOL model (based on the static models
from the aperiodic tradition) can predict the back-
ground-cnset effect (from the aperiodic-stimulus
tradition) but cannot predict the high-temporal-
frequency linearity {from the periodic-stimulus
tradition). The Sperling and Sondhi model (from the
periodic-stimulus  tradition) can predict the high-
temporal-frequency linearity (from the periodic-stimulus
tradition) but cannot predict the background-onset
effect (from the aperiodic-stimulus tradition).

One would like to merge the models from these two
traditions in a way that retains the successes of each
while eliminating the failures. There are various ways to
merge the models that do not accomplish this ain; we
discuss several below. There are also ways of merging
them that do accomplish this aim; we present two below.
In order to conveniently mention a number of auxiliary
points, we present the first successful merged model by
starting from the model of the aperiodic tradition and
modifying it. We then present the second by starting
from the model of the periodic tradition and modifying
it. In fact, however, as will become clear, these successfil
merged models have more in common than the initial
presentation might sugpest.

Starting with the aperiodic-tradition model

Remember that MUSNOL fails to predict high-
frequency linearity because the multiplier turns down
the responses to all {requencies of stimulation equally,
including the high temporal frequencies, thus producing
Weber's law at all frequencies at high enough mean
tuminances. This way of explaining MUSNOL’s failure
suggests making the multiplicative process explicitly
frequency-dependent so that it affects only the lower
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temporal frequencies of stimuli (where one wishes to
obtain Weber’s law at high mean luminances) without
affecting higher temporal frequencies of stimuli,

Making mudtiplicative process Jrequency -dependent
Jails. One might think that, to accomplish this, the filter
in the multiplication loop in MUSNOL should be made
band pass instead of high pass so that it would respond
neither to the mean luminance nor to the high-frequency
flicker in a high-frequency flickering stimulus [Fi{t)=0
and thus m(f) =1.0 for such stimuli]. But then the
multiplicative process would also not respond to a brief
probe on a steady background and thus could not
correctly predict Weber’s law for such probe stimuli.

Replacing the front end with a Jrequency-dependent
gain-changing process succeeds, Many models from the
periodic tradition, in particular, Sperling and Sondhi’s
model discussed above, exhibit high-frequency linearity
because, as mean luminance increases, temporal
resolution increases in a way that compensates for
the decreasing overall gain (i.c. the area under the
impulse-response or the amplitude sensitivity at d.c.).
Thus the degree to which mean luminance changes
amplitude threshold is highly dependent on temporal
frequency. It is exactly this property that the MUSNOL
multipicative process lacks since the MUSNOL process
changes gain uniformly for all frequencies but the very
lowest. This observation suggests that replacing the
multiplicative process in MUSNOL with a frequency-
dependent gain-changing process from the periodic-
tradition would work. A particularly simple process with
the desired frequency-dependence is a feedback module
like that in the Sperling and Sondhi model—that is, a
cascade of exponential filters with feedback from the
output of the last filter to each of earlier filters. Similar
feedback schemes occur in other models (e.g. Matin,
1968). Since a feedback module incorporates tow-pass
filtering, we used it to replace both the first low-pass filter
and the multiplicative process of MUSNOL, (Allowing
the time-constant of the initial filters to change has been
mentioned previousty as one way of changing the gain
for an aperiodic test stimulus; see Geisler, 1981, p. 430
for example. Here such a change is incorporated in a
computable process) This replacement produces the
mode] sketched in Fig. 17(A), which has a feedback
module followed by the subtraction, static nonlinearity,
and final low-pass filtler of MUSNOL, We used four
stages of feedback in the feedback module as a COmpro-
mis¢ between two other desired features. The fewer the
stages the smoother and less complicated the step and
probe responses produced by the module. But the
greater the number of stages the closer one can get to
Weber's law at low temporal frequencies or for probes
on steady backgrounds (see, e.g. Sperling & Sondhi,
1968, p. 1135). We used six stages in the final low-pass
filter in order to produce a more realistic high-frequency
slope. The other parameters of the model were chosen
to produce reasonably successful predictions of both
phenomena and are given in the figare legend.

As can be seen in Fig. 17(B), the amplitude-sensitivity
vs frequency curves predicted by this model are much
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FIGURE 17. (A) Shows a sketch of the first merged model where a feedback module is followed by subtraction, a static
nenlinearity, and a final low-pass filter. (B) Shows its predictions for sinusoidal flicker. (C) Shows its predictions for an aperiodic
test stimulus superimposed on an aperiodic background stimulus, Parameters values for this model are as follows, In the
feedback moedule there were 4 stages of exponential Alters each with a time constant {in the dark) of 20 msec. The subtraction
was identical to that in MUSNOL (i.e. the subtractive constant & was 1,0 and the low-pass filter had S exponential stages
cach with a time constant of 15 msec). The static nonlinearity had the form of equation (1) with a semisaturation constant
o of 0.065 and R,,,= 1.0. The final low-pass filter was identical to that ysed in the Sperling and Sondhi model predictions
{i.e. it had 6 stages each with a time constant of 6 msec). The criterion AR was 0.02 for the periodic stimuli {B) and 0.05 for
the aperiodic stimuli {C).

closer together .at the high-frequency end than at the
low-frequency end: In other words, unlike the predic-
tions of MUSNOL, they show high-frequency linearity.
Further, as can be seen in Fig. 17(C), this merged
model does predict the background onset effect. Thus,

qualitatively at least, this merged model can predict the
phenomena from both traditions.

Starting with the periodic-tradition model

The Sperling and Sondhi model from the periodic
tradition (and also the feedback module by itself } fails
to predict the background-onset effect. What is needed
for the background-onset effect? Based on the preceding
discussion, the response that goes into the static nen-
linearity needs to be much larger at the onset of the
background than later. If it is, the response to the probe
at SOA = 0, which occurs simultaneously with TEsponse
to the onset of the background, will be more compressed
than the response to the probe at SOA = c0, which
oceurs after the response to the background has reached
its steady state.

-Adding only a static nonlinearity fails. The step
responses out of the Sperling and Sondhi model do
have a transient component at high mean luminances.
But there is no static nonlinearity after these responses
(although both the peak and the steady-state responses
are compressive nonlinear functions of intensity). Thus

it seemed worthwhile to try a static nonlinearity inserted
in the Sperling and Sondhi model to see if this modifi-
cation would allow the model to successfully predict the
background-onset effect. We tried the same function
used in MUSNOL [see equation (1] with several differ-
ent values of the semi-saturation constant. We also tried
the static nonlinearity in two different places, before and
after the final low-pass filter. There was never any hint
of a background-onset efiect. The reason seems to be
that the peak/steady-state ratio in the step responses of
Sperling and Sondhi’s model is never very large (<2
when the background intensity is high enough to have
elevated threshold on a steady background by 3 log units
above the dark-adapted value and no transient com-
ponent at all when the background intensity is high
enough to have elevated threshold by 1.5 log units), This
does not leave much room within which the static
nonlinearity can have an effect. (By contrast, in the
MUSNOL calculations we did, the sybtraction was
complete so the steady-state response was zero, Thus the
peak/steady-state ratio is infinite in our calculations.)
Although we tried only static nonlinearities of the form
of equation (1), it seems unlikely that any static non-
linearity inserted into the Sperling and Sondhi model
¢ould produce the background-onset effect.

Adding subtraction plus a static nonlinearity succeeds.
We next tried adding both the subtractive process and
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FIGURE 18. (A) Shows a sketch of the second merged model where subtraction and a static nonlinearity was inserted into
the model of Sperling and Sondhi (1968) before the final low-pass filter. (B) Shows its predictions for sinuscidal flicker.
(C) Shows its predictions for an aperiodic test stimulus superimposed on an aperiodic background stimuius. The parameters
for the feedback and feedforward modules (found at the front end of this model) and for the final low-pass filter are identical
to those used for the Sperling and Sondhi model. See legend of
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Fig. 5. The subtraction, static nonlinearity, and criterion ARs

were identical 1o that used with the first merged model. See legend of Fig. 17.

the static nonlincarity to Sperling and Sondhi’s model.
As shown in Fig. 18(A), we inserted them before the
final low-pass filter since we knew from simulations of
MUSNOL that Tow-pass filtering after the static non-
linearity is necessary to predict the background-onset
effect (see earlier discussion of Geisler fix).

As can be seen in Fig. 18(B), the amplitude-sensitivity
vs frequency curves predicted by this second merged
model are much closer together at the high-frequency
end than at the low-frequency end, that is, they show
high-frequency linearity. Further, as shown in Fig.
18(C), this second merged model does successfully pre-
dict a background-onset effect. Thus, qualitatively at
least, this second merged model can predict the phenom-
ena from both traditions.

DISCUSSION

The merged models that can predict the phenomena
from both traditions contain four parts: (1) a frequency-
dependent gain-controlling process as in the periodic-
tradition model; (2) 2 subtractive process as in the
aperiodic-tradition model; (3) a static nonlinearity that
follows the subtractive process as in the aperiodic-
tradition model; and (4) more low-pass filtering as in
both traditions’ models, While not being able to claim
that all four of the parts are essential, or that the

ordering must be exactly as specified above, we have
discovered that many other combinations of the com-
ponent parts from the periodic-tradition and aperiodic-
tradition models will not predict: the two phenomena
discussed here; high-temporal-frequency linearity and
the background-onset effect.

Nomne of the parts of the merged models, however, is
necessarily correct in detail. Many modifications or
substitutes would clearly work just as well at this
qualitative level. For example, rather than the feedback
or feedback—feedforward gain-changing modules used
at the front end of the models in Figs 17 and 18,
one might use a medule incorporating one of Tranchina
and Peskin’s (1988) wiring diagrams. Also, one could
certainly expand the model to include more parts.
For example, some investigators talk of more than
one subtractive process (one slower and one faster, e.g.
Hayhoe, 1990). Similarly, the initial gain-controlling
process might be composed of several processes having
somewhat different properties; for example, one process
might change the time-constant of the impulse-response
but leave unchanged the area underneath it (the gain)
while another process might affect the height of the
impulse-response {and thus the gain) while leaving the
time-constant unaltered (e.g. pigment depletion at very
high uminances), Conversely, two of the above parts
could be combined; in principle, for example, the sub-
tractive process and the gain-changing process could
probably be combined into a unitary process.
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While both the merged models described above are
able to qualitatively predict the two phenomena focussed
on here, no attempt was made to fine-tune either model
to predict all the details in any one set of psychophysical
data (e.g. Figs I and 5), much less in all the other
psychophysical results that such a model might bear on
(e.g. the background-offser effect, systematically varying
the SOA between the background and the test, detection
thresholds for various kinds of aperiodic stimuli, exper-
iments using combinations of periodic and aperiodic
stimuli). To attempt such a project in the future tnight
be worthwhile, particularly if the experimental resuits
were all collected on the same subjects using the same
psychophysical methods and stimuli identical on the
dimensions not under consideration (spatial dimensions
and wavelength).

Physielogical correlations. 1t is premature to discuss
at any length the possible physiological substrates for
these processes; at this point there are many pieces of
knowledge but few definitive conclusions. However,
the output of retinal ganglion cells in response to
sinusoidally-flickering lights shows a strong interaction
between temporal frequency and mean luminance quite
similar to human psychophysics (Lee, Pokorny, Smith,
Martin & Valberg, 1990; Purpura, Tranchina, Kaplan &
Shapley, 1990). Probably, therefore, the front end gain-
changing process of the model occurs at the retinal level
in the primate. The subtractive and static nonlinear
stages might come later than the retina, although at this
point one cannot rule out the possibility that they also
occur in the retina. The placement of the extra low-pass
filtering (the fourth part of the merged models listed
above) is arbitrary, and it seems likely to be distributed
throughout retinal and later processing. [See Hayhoe
(1990) for further discussion of the physiological sub-
strate as well as its possible connection to the early
nonlinearities recently described by Pelli (1986) and
MacLeod, Williams and Makous (1992),]

Noise and decision rules

There are a number of ways in which the assumptions
of the merged models are too limited and might be
extended. Here we discuss twa: (1) The merged models
are deterministic, that is, they contain no explicit prob-
abilistic processes. However, there is noise (variability)
both in physiological results and psychophysical results.
Indeed, this noise is often taken to be the limiting factor
that determines thresholds (se¢ discussions in, e.g. Cohn
& Lasley, 1986; Geisler, 1989; Graham, 1989). (2) It
would be naive to assume that any particular simple
decision rule, like the constant-AR rule used above, is a
good description of all the processing that occurs at
higher levels in the nervous system, except perhaps in
very limited circumstances.

Quantal noise. Quantal noise exists in the visual
stimulus, as is well known (see Pelli, 1990, for a current
discussion). Should this quantal noise be included explic-
itly in models of light adaptation dynamics? Our current
answer is a cautious no, as we discuss at some length in
Graham and Hood (1992). Quantal noise seems rarely to
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be a limiting factor, nor can it straightforwardly explain
the effects of light adaptation it is often called upon to
explain, Hayhoe (1990) also believes that quantal noise
need not be explicitly included. Her reasoning is that the
noise can be subsumed in the final static nonlinearity
unless that nonlinearity changes with adaptation state,
The success of these models suggests it does not.

Multiplicative late noise and the AR R rule. Late noise
can be at least approximately multiplicative (increasing
as response magnitude increases). The variance of corti-
cal neurons, for example, increases as the mean increases
(Dean, 1981; Tolhurst, Movshon & Thompson, 1981).
If late noise is approximately multiplicative, then, when-
ever there is a transient peak at the onset of a step-
response, most models will predict a transient increase
in increment threshold at that onset. Rather than
modeling this multiplicative noise directly, one can
approximate its effects by using the following constant-
ratio rule (see, e.g. Matin, 1968) as an alternative for the
constant-AR rule of equation (7). In any case, this seems
a reasonable alternative rule to consider. In particular,
at threshold,

max [AR(1)/R ()] = 6. ()

In models like that of Sperling and Sondhi (1968),
the peak of the transient response at the onset of a
stimulus is indeed greater than the steady-state response,
that is, R{¢) is greater at onset than later, We asked
whether this transient response coupled with the con-
stant-ratio rule could predict the background-onset
effect. Thus, we computed some predictions from
Sperling and Sondhi's model with the constant-ratio
decision rule of equation (9). Although there was a slight
threshold elevation at some mean luminances for low
S0As relative to SQA = oo, the effect was much less
marked than the background-onset effect (Fig. 1). This
failure to predict correctly the background-onset effect
probably comes from the fact that the peak/steady-state
ratio is not large in models like those of Sperling and
Sondhi’s. (A similar explanation was put forth above for
the failure to repair Sperling and Sondhi’s model by
simply adding a static nonlinearity.)

Probability summation across time and Minkowski
metrics (Quick Pooling Formula). If a response is noisy,
there will be “probability summation across time” (as
well as across other dimensions). Rather than explicitly
including noise in the model of the response, however,
one can sometimes use a deterministic model of the
response and calculate these probability-summation
effects (see, e.g. Graham, 1989; Quick, 1974; Watson,
1986). A more complicated decision rule than the con-
stant-response or constant-ratio decision rules used here
is needed. In particular, the appropriate measure of
response at each moment in time is raised to some power
(usually in the range 3-3) and then integrated across
time. This kind of computation is sometimes referred to
as the Quick Pooling Formula or the use of a Minkowski
metric. It is relatively straightforward to justify (as an
approximation to a model with noise) in the case of
simple detection, that is, when a stimulus eliciting a
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non-baseline average response is being discriminated
from a stimulus eliciting a baseline response. The
thresholds for sinusoidal flickering stimuli and, to a
lesser extent, for an aperiodic test probe at an SOA = o«
might be viewed as examples of simple detection. But the
threshold for the aperiodic test probe at SOA =0 is
clearly not (see further discussion below). On the other
hand, some variant of this computation might serve as
an alternative decision rule, It seems unlikely to alter any
of our basic conclusions, however. All four parts of the
merged model would still need to be included.

Yet more complicated decision rules and higher-fevel
processing. In an experiment where an aperiodic test
probe stimulus is superimposed on a background a
discrimination is made between two suprathreshold
stimuli, that is between two stimuli which are themselves
each discriminable from a blank, One is the background
alone and the other is the background plus test probe.
In fact, the SOA =0 resembles a masking paradigm
where the background onset is the masking stimulus and
the test probe is the test stimulus. This suggests thinking
of the threshold ¢levation at SOA = 0 as due to “mask-
ing”. In a way, this is just using one phenomenon’s name
to label another similar one, but it does suggest to some
people that it should be explained with a AR /R decision
rale or multiplicative noise (without the subtractive and
static nonlinearity stages). However, as we saw above,
this possibility can be ruled out.

The more vaguely-stated possibility suggested by this
observation, however, is that any decision rule of the
kind considered above may be in principle inadequate
for the suprathreshold-discrimination case. It may be
impossible to explain suprathreshold discriminations
withoul more explicit modeling of higher-level visual
processes than is necessary to explain detection {where
detection is a discrimination between a stimulus and a
neutral stimulus). In the suprathreshold discrimination
case, the observer is trying to discriminate between two
sets of neural responses (the set in response to stimulus
A vs the set in response to stimulus B), both of
which sets contain many non-baseline responses. In the
detection case, on the other hand, the observer is simply
trying to detect some non-baseline response in either set
(since that is the set most likely to be the non-blank
stimulus). Thus a simple decision rule may be suitable in
the detection case simply because all the higher-level
processes are reduced to such simple action that they
become transparent. But no such simple decision rule
may ever be discovered for a suprathreshold case (see a
similar discussion in Graham, 1989, pp. 12 and 309 for
the case of spatial vision). Bowen (1989) makes a similar
argument for a three-flash experiment,

However, at this moment in time, we seem to be able
to explain the background-onset effect with a subtractive
process and a static nonlinearity. Thus, we can just leave
as a marker for the future—should troubles in fully
explaining the data arise—the possibility that the back-
ground-onset effect in particular (and perhaps all the
results) wiil not be explained in detail without including
more about higher-level visual processing,

NORMA GRAHAM and DONALD C. HOOD

Spatial models from periodic -stimulus tradition—multiple
channels and the constant-flux hypothesis

In addition to pointing out the empirical refationship
that describes the interaction between spatial or tem-
poral frequency and transition luminance (Fig. 6), van
Nes and Bouman (1967) suggested a possible mechanism
to explain this relatiouship. For the spatial case, ¢labo-
rated forms of this mechanism appear in Shapley and
Enroth-Cugell (1984) as the “channels™ hypothesis and
in Chap. 13 of Graham (1989) as the “constant-flux”
hypothesis. This mechanism suggested for the spatial
case is very different from the processes suggested for the
temporal case in dynamic medels of light adaptation like
those we have been discussing.

This mechanism for the spatial case relies on the
existence of different spatial-frequency channels with
different sizes of receptive field and with each showing
a transition (e.g. that between the de Vres—Rose and
Weber regions) at a constant flux and, therefore, at a
different mean luminance. (Flux is luminance summed
over the receptive field’s excitatory center.) In the spatial
case, as much physiological and psychophysical evidence
has confirmed, different sizes of receptive field are pre-
sumably involved in the detection of different spatial
frequencies with at least 7 or 8 different sizes serving
any one retinal position. Physiological evidence for the
constant-flux hypothesis about transition luminances
has also been reported (Shapley & Enroth-Cugell, 1984).
The value of this multiple-channel, constant-flux idea
remains to be determined, however. Problems occur in
attempting to generalize it across retinal position (see
Graham, 1989, Chap. 13) and there is at least one
competing hypothesis for spatial vision (Chen, MacLeod
& Stockman, 1987),

Since the interaction of temporal frequency with mean
luminance is much like that of spatial frequency, it is
tempting to develop an analogous explanation. Psycho-
physical evidence, however, strongly sugges:s that tem-
poral-frequency channels are much more broadly tuned
than spatial-freguency channels, so broadly that there
are effectively only two or three of them across the whole
temporal-frequency range at any constant spatial fre-
quency (sce e.g. Graham, 1989, Chap. 12). This seems an
insufficient rumber to explain the dramatic and appar-
ently continuous change in temporal transition lumi-
nance that oceurs with change in temporai frequency. To
put it another way, although psychophysical contrast
sensitivity functions of spatial frequency and of temporal
frequency are very similar and change similarly with
mean luminance, the processes acting on the two
dimensions are probably quite dissimilar. The multiple-
channel, constant-flux hypothesis is tenable only for the
spatiai-frequency case. A different kind of explanation
(e.g. the one embodied in the above dynamic models of
light adaptation)} probably needs to be found for the
temporal-frequency case. Consistent with this sugges-
tion, temporal properties of individual striate cortical
neurons are affected by mean luminance in much the
same way as ar¢ psychophysical results (e.g. Fig. 5 here),
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but the spatial properties are affected little if at all
(Kaufman & Palmer, 1990).

CONCLUSION

Although the merged models are successful at captur-
ing the two important phenomena that the original
models failed to describe, they have not been fine-tuned
1o account in quantitative detail for any particular set of
flicker-sensitivity or background-onset effect results nor
to account for other psychophysical results such models
might bear on. Undoubtedly the parameters and perhaps
other characteristics of the merged models’ components
will be modified in the future. It seems likely, however,
that future models of the dynamics of light adaptation
will need to contain the basic features of these merged
models.
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APPENDIX

Details of Model Predictions

The calculations were programuized using MATLAB (from Math
Works Inc.—on a Macintosh Tlci). A the predictions can be caleu-
lated using the three different kinds of modules for which equations are
given below: a linear low-pass module {a case of cxponential filters),
a fecdback module, and & feedforward module.

The predictions were caloulated incrementally across time using
difference-equation approximations to differential equations. (The
differential equations can be found, e.g. in Sperling & Sondhi, 1968.)
In the equations below / indexes the discrete tirme steps, and Af is the
length of sach discrete time step. kn the predictions shown here, Ar was
equal 1o 0.5 msec for the flickering stimuli and for the MUSNOL's
response to the aperiodic stimuli; it equaled 0.1msec for the first
merged model’s response Lo the aperiodic stimuli; and it equaled
0.05 msec for the Sperling and Sondhi modsl's and for the second
merged model’s response to aperiodic stimuli. We ensured that the time
sampling used here was adequate by checking that further decreases in
At did not affect the predictions.

For the predictions involving flickering stimuli, we checked that the
responses of the models had settled down before the interval over
which max AR(f) was computed (to avoid transient effects due to the
onsel or the mean luminance or of the flicker). For predictions
involving aperiodic stimuli, we checked that the whole response to the
test was included in the interval we considered.

Some other parameters values for the modules are given as examples
below but most are in the figure legends.

It may be useful to point out that the three equations below—those
for the linear, the feedback, and the feedforward modules—are very
similar, differing only in the quantity that multiplies (i — 1) at the far
right side; this quantity is | for the linear case and incorporates the
feedback and feedforward control signals in the other cases,

Linear lowpass module (cascaded exponential Filters)

The linear low-pass medule considered here contains n stages, cach
of which is an exponential filter. This module is illustrated in Fig. 7.
The equation for each stage of exponential filtering is

SAD = LG = D+ @/ [ £ = D= i ~ 1)

where # is the total number of exponential-filiering stages. f(i) (for
f = 1-n) is the response of the jth stage at the fth time step [so f,(f}
is the output of the whole module at the éth time step); 7,(i) is the input
to the low-pass module {(e.g. the left column in Fig. 7, or the output
from the feedforward module in the model of Sperling and Sondhi of
Figs 8, 9and 12) at the ith time step; and 1 is the time constant of each
stage,

In MUSNOL the low-pass modules LP,, LPy, LP,, and LP;, are
all cascades of stages of exponential filters and described by the above
equation. See the legend of Fig, 15 for parameters, In the Sperling and
Sendhi model and in the merped models, there is a final low-pass
module containing six stages {n = &) each having a time constant of
6 msec (t =€)
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Feedback module equarion

The equation for each stage of feedback was
SO =L D+ @y {fi i — D= L — 1) [l +g £ — 1))

where # is the total number of feedback stages; Sy tfor j=1-n)is
the response of the jth feedback stage at the ith time step [so fii)is
the output of the whole feedback module at the ith time step]; £.(D)
is the input 1o the feedback module {which is the stimulus in all the
models considered here} at the ith time step; 7 is the time constant of
each feedback stage; and g is the strength of the feedback from the last
stage’s oulput to each preceding stage and was always set equal to 1.0
in the calculations reported here,

In the Sperling and Sondhi model {Figs 8, % and 12) which was also
incorporated in the second merged modei (Fig, 18), there was an initial
feedback module that had two stages (# = 2} and the time-constant of
each stage (1) was 20 msec. In the first merged model (Fig. 17), the
feedback module contained four stages (n = 4) where the time-constant
of each stage {r) was 20 msec.
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Feedforward module equation

In the feedforward module of the Sperling and Sondhi model, there
was only one stage (v = 1). The equation for the main path through
this stage (j = 1} was

L= LU =D+ Ak 0= D — 56 = D[l + f0 - 1}

where /,(7) is the response of the one feedforward stage (and hence the
output of the feedforward module) at the ith time step; f,(iY is the
input to the feedforward module (which is the output of a feedback
module in all the models considered here) at the ith time step, 1 is the
time constant of each feedforward stage; and f,(7) is the delayed
control signal at the ith time step.

In the model of Sperling and Sondhi (Figs 8, 9 and 12 and
incorporated in the second merged model, Fig. 18), the delayed contegl
signal was the output of one stage of linear exponential filtering (as in
the first equation of this Appendix).




