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Non-linearities in texture segregation

Norma Graham

Departrnent of Psychology, Columbia University, New York, NY 10027, USA

Abstract. The existence of complex (non-Fourier, second-order) channels is
suggested by some characteristics of segrepation perceived between regions
distinguished by visual texture. These complex channels consist of two linear-
filtering stages separated by a rectification-type non-linearity. We have investigated
(1) the spatial frequency selectivity and orientation selectivity of their first-stage
filters; (ii) the relationship between the preferred valucs of erientation and spatial
frequency at the first and second filters; (iii) spatial pooling and its implications
for the non-linearity at the middle of the complex channel; and (iv) the dynamics
of complex and simple linear channels. An intensive non-linearity is also necessary
to explain perceived regicn segregation. This intensive non-linearity might arise
from an early local non-linearity preceding the channels (perhaps retinal light
adaptation) or from normalization among the channels themselves {perhaps due
to intracortical inhibition). Deciding between these two candidates has been more
difficult than we had hoped. It appears that: (1) this intensive non-linearity operates
for both simple and complex channels: (i) the effects on it of changing mean
luminance or spatial scale may be accounted for by a sensitivity parameter; (1i1)
it can be dramatically compressive even at contrasts less than 25% for high mean
luminances and large scales; and (iv) at even lower contrasts there is an accelerating
non-linearity that acts before the second filter of the complex channels.

1994 Higher-order processing in the visual sysitem. Wiley, Chichester (Ciba
Foundation Symposiuim 184) p 309-329

Patterns like those shown in Figs | and 2 have regions composed of the same
elements {in the same proportions) but differently arranged. I will refer to these
as ‘element-arrangement textures’ although they are hardly typical examples
of natural-language ‘textures’. Using these patterns, Jacob Beck, Anne Sutter
and [ tested a simple model composed of simple (linear, first-order, Fourier)
spatial frequency and orientation-selective channels and found it wanting {(Sutter
et al 1989, Graham 1991, Graham et al 1992a). Many of cur resuls could be
explained by the presence of simple channels, but other results suggested an
important role for at least two kinds of non-linearities—a spatial one and an
intensive one,

The spatial non-linearity may be modelled by invoking complex channels {non-
linear, second-order, non-Fourier processes). Each cemplex channel consists
of two linear filtering stages separated by a rectification-type non-linearity {a
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FiG.2. Two examples of element-arrangement patterns where the elements are Gabor
patches. In the bottom panel only one type of element is visible (i.e. elements of the
other lype have zero contrast). Reproduction will have distorted the stimuliin these figures
soimewhat.
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structure like that hypothesized for a complex cortical cell). Two possible
complex channels are illustrated in Fig. 3; they are distinguished by the kind
of receptive field characterizing their first stage,

The intensive non-linearity might be modelled either as a relatively local non-
linearity preceding the spatial frequency and orientation-selective channels, or
as an inhibitory interaction (a normalization network) among the channels
themselves. This intensive non-linearity is dramatically compressive even at
contrasts below 259,

Subsequent to the channels themselves, some further processing of the outputs
at different positions in different channels must oceur to produce the perceprual
segregation {or, operationally, the observer’s rating of the extent to which the
regions segregate immediately and effortlessly). Although these DProcesses are
extremely interesting (see, e.g. Nothdurft 1994, this volume), we make no
attempt in this work to model these processes. We do need to characterize the
information retained in these processes In order to calculate a prediction for
the observer’s segregation rating from our assumptions about the chanunels. Thus
we have considered a variety of ruies for the pooling across spatial positions
and across different channels that must enter into this compuration. As it turns
out, the particular rule makes very little difference to the conclusions here (see
Sutter et al 1989, Graham et al 19924 for more details),

In more recent studies, we have tried to characterize further the spatial and
intensive non-linearities involved in the perceptual segregation of element.
arrangement texture. Our progress to date is briefly summarized here.

About the complex channels in texture segregation
First-filter bandwidihs

The property of the complex channel we have investigated in greatest detail is
the bandwidth of the first-stage filters on both the spatial frequency and
orientation dimensions (Graham et a 1992b, 1993). If, for example, the
physiological substrate for these first-stage filters were lateral geniculate nucleus
(LGN) neurons, the first stage should show little orientation selectivity (since
LGN receptive fields are approximately concentric, as shown in the top panel
of Fig.3). If, however, they were simple cortical cells, one might expect
substantial orientation selectivity (as shown in the bortom panel of Fig. 3). To
measure these bandwidths, we used patterns composed of Gabor-patch elements
(e.g. Fig. 2), varying the difference between the orientations or spatial frequencies
of the two types of elements. For a fixed contrast of one element type, the
contrast in the other was varied to find the maximal amount of interference.
While performance varied dramatically from person to person, the first-stage
filters of the complex channels were always selective for both spatial frequency
and orientation. In magnitude, the estimated bandwidths of the complex
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FIG. 3. Diagrams of complex channels with a non- -orientation-selective first stage (top
panel) and with an orientation-selective first stage (bottom panel}.

channels’ first-stage filters were always substantially wider than those for simple
channels (by at least a factor of two) but narrower than the bandwidth of LGN
cells.

Three comments are worth making here. First, to repeat, individuals differ
substantially on this task. This is reminiscent of the individual differences
recently described by Cannon & Fullenkamp (1993) in the effect of lateral
interactions on perceived contrast of grating patches surrounded by other
gratings. [ never saw individual differences of this magnitude or significance
in the near-threshold literature (Graham 1989, 1992).

Second, in studies measuring competition between motion paths, Werkhoven
et al (1992, 1993) reported a very different result, namely that there was no
spatial frequency or orientation selectivity in the second-order processes serving
this motion perception. '

Third, the quantitative estimate of the bandwidth depends substantially on
the assumed form of intensive non-linearity (although this dependence was not
as great as the individual differences). Thus, to estimate the bandwidth more
definitively for any individual, we would need to know more than we do about
that non-linearity.
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Relationship between preferred values at the first and second filters

What is the relationship between the value of spatial frequency or orientation
preferred by the first filter and that preferred by the second? For example, do
both filters tend to have the same orientation or do they tend to have
perpendicular orientations (as in the bottom panel of Fig. 3 and as used to explain
phenomena at texture boundaries, ¢.g. Wilson & Richards 1992)? We used
patterns where only one element type was visible and we varied the relationship
between the orientation of the grating-patch elements and that of the
stripes in the striped region so that the local and global orientations were either
identical or perpendicular (the latter is shown in Fig. 2 [bottom]). Both cases
segregated easily. Thus we assume that complex channels of both configurations
(and probably many others) must exist. In the one observer we studied
extensively, there was a slight bias for the identical case over the perpendicular
case,

Similarly, many different relationships between the preferred spatial
frequencies of the first and second filters must exist. A weak bias in
that relationship has been reported previously (using somewhat differen:
patterns) in favour of the configuration where the preferred frequency of

the first filter is three or four octaves higher than that of the second (Sutter
et al 1991).

The nature of the non-linearity at the middie of the complex channel

There are many questions one might ask about the rectification non-linearity
in the middle of the complex channels, The question we know most about is
this: is the embedded non-linearity a rectification of the absolute-value type
(made up of straight-line segments as drawn in Fig. 3) or is it better modeljed
as an accelerating power law with an exponent of two or more (e.g. squaring
or half-squaring)? We have done a number of spatial-pooling experiments using
grating-patch elements of different sizes and contrasts to determine the extent
to which contrast differences can compensate for area differences (Graham et
al 1992¢), analogous to the experiments using square and other aperiodic
elements in Sutter et al (1989).

The results of these experiments cannot be explained by complex channels
if the embedded non-linearity is an absoclute-value type rectification (unless
the second filter is no longer assumed to be a linear filter) but may be
explained if the middle non-linearity is a power law with an exponent of
at least two. (Some uncertainty results from the effects of spectral spread
for which we have not yet done sufficient calculations.) Thus, at this point,
I would bet in favour of a power law (e.g. squaring or half-squaring, or,

in the case of texture, both, as described by Speriing et al 1994, this
volume),
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Dynamics of processing

We have used a speed-accuracy trade-off paradigm to investigate dynamics by
comparing several discrimination tasks done with element-arrangement textures
mace either of Gabor patches (stimulating complex channels) or of Gaussian
blobs where the two element types are of opposite contrast (stimulating
nredominantly simple channels). The inital results suggest that the dynamics
of these complex channels are slower than those of the simple channels (Sutter
& Graham 1992).

About the intensive non-linearity in perceived texture segregation

Because the intensive non-linearity is of interest in itseif and because knowledge
of it is frequently required to draw conclusions about the complex channels,
we have undertaken a number of experiments intended to characterize its
properties. Most of these experiments used constant-difference series of stimui.

In such a series, the two element types in any given stimulus have the same
spatial characteristics but differ in amount and/or sign of contrast (i.e. both
element types may be squares that are lighter or darker than the background
by various amounts, or both may be grating patches that are 180° out of phase
and/or of different contrast). All the stimuli in a given series have elements
of the same spatial characteristics (e.g. all squares) and the difference between
the luminances of the two element types is held constant in a series (hence the
name). But the absolute luminances of the two element types vary together from
one stimulus to another in the series. In such a series, therefore, patterns exist
where both element types have the same sign of contrast (e.g. square clements
where both types are darker or both are lighter than the background), where
one element type has zero contrast so there is one element type only apparent
(e.g. either dark or, as in Fig. 1, light) and where the two element types are
of opposite sign of contrast (e.g. dark squares and light squares as in Fig. 1).

These constant difference series are interesting because, according to models
containing only simple (linear, first-order) channels, perceived segregation of
all patterns in a constant difference series is aimost identical. (Briefly, perceived
segregation is predicted to be close to identical because the energy at the
fundamental frequency is close to identical. Further explanation can be found
in Graham 1991 and Graham et al 1992a.) The empirically measured segregation,
however, is far from being identical across members of a series but tends to
be highest for the one-element-only patterns.

Adding complex channels to the simple channels reconciles the modgls to the
data for opposite-sign-of-contrast patterns (relative to one-element-only
patterns), but the problem with the same-sign-of-contrast patterns remains.
Empirically, the farther the luminances in the same-sign-of-contrast patterns
get from the background luminance, the worse the segregation gets. It is this
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FIG.4. The best-fitting carly local non-linearities (ELNs) from an experiment using
clement-arrangement textures with square elements in 12 conditions (three spatial
scales X four background luminances} with one observer. The highest background
luminance was approximately 200 trelands, td (18 foot-Lamberts seen through an artificial
pupil of 2 mm diameter); the other three background luminances were 0.6, 1.2, and 1.8
log units below this level. Spatial scale was varied by proportionately scaling down both
the size of the square elements and the inter-element spacing while keeping the same
number of rows and columns in the pattern (as if one viewed the patterns of Fig. 1 from
three different viewing distances). For the results shown here, both the width of the square
and the inter-square spacing were the same and were 0.5° (16 pixels), 0.25° (8 pixels),
or 0.125° (4 pixels), depending on condition. The three different scales were mixed within
a session while mean luminance was changed between sessions. Other methodological
details as in Graham et aj (1993); the observer m# in that study is the observer here,

The top panel plots the output of the non-linearity (scaled to equal 5.0 at the highest
contrast used in each condition) against Weber contrast {AL/L). If the strong version
of the early local non-linearity hypothesis were true, the three functions for the different
scales at a given mean luminance would be identical. In fact, those for the smallest scale
(circles) are always less compressive than for the largest scale (squares}).

The bottom panel plots the output (scaled to equal 1.0 at the segregation-threshold
contrast ¢,) against relative conirast (contrast divided by segregation-threshold contrast
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result that can be explained by a compressive non-linearity, which can be either
relatively local and occurring before the channels (e.g. retinal light adaptation) or
relatively global and occurring at the level of the channels in the form of a normal-
1zation network (e.g. inhibitory interaction among V1 neurons). The intuition
behind these explanations is described in more detail in the original papers
(Graham 1991, Graham et al 1992a). For the results of our original studies,
models embodying either of these explanations fit the empirical results well.

For simple and complex channels

We have consistently found that the results are similar for same-sign-of-contrast
stimuli affecting predominantly simple channels (e.g. square elements or blobs)
or affecting predominantly complex channels (e.g. grating-patch elements),
tmplying that the compressive non-linearity is active for both kinds of channels.

Increments versus decrements, approximate symmeiry

When using square or blob elements, the results for same-sign-of-contrast patterns
where both element types are decrements (darker than the background) are quite
similar to the results when both element types are increments. Thus, for simplicity,
we assume here that the compressive intensive non-linearity acts identically on
increments and decrements (i.e. the degree of compression depends on the
absolute value of the difference between the element luminance and the back-
ground, or the compressive function is odd-symmetric when plotted against
deviation from the background luminance). In fact ¢lose examination of our recent
data shows that there is a small asymmetry with stimuli composed of decrements
being more easily segregated than those with increments of the same magnitude.

Effect of spatial scale and mean luminance

To try to disentangle the two suggested mechanisms for the compressive non-
linearity, we did several experiments using constant-difference series with solid-
square elements at several different spatial scales. With the observer whose results
are shown in Fig. 4, we used three different scales and four different background
luminances (for details see figure legend). We fit these results both using models
assuming a normalization network and using models assuming an early, local
non-linearity (with a modification of the procedure used by Graham et al 1992a).
As with our earlier studies, when restricting our attention to a single spatial

Co). The segregation-threshold contrast ¢, is the contrast of the one-element-only pattern
at the given spatial scale and background luminance that yields a mid-range texture rating.
Now the 12 functions juxtapose as expected if the weaker version of the early local non-
finearity hypothesis is true.
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scale and & single mean luminance, both kinds of models fit well and fit equally
well (e.g. explaining 97 or 98% of the variance in each of the 12 conditions
represented in Fig, 4),

How early could the early local non-{inearity be?

The inferred intensive non-linearities at different scales, however, were not
identical as a function of contrast. This is tlustrated in the top panel of Fig. 4
for the model assuming an early local non-linearity. The output of the best-
fitting early local non-linearity for each of the 12 conditions is plotted as a
function of physical contrast. Since the output for each condition is only
specified up to a multiplicative factor, it was set equal to 5.0 at the highest
contrast used in each condition to allow £asy comparison of curve shapes. (We
used the same contrasts for the three spatial scales at a single background
luminance but used different contrasts for each of the four background
luminances. Thus the 12 curves in Fig. 4 top panel fall into four sets of three,)
The three functions at a given background luminance have quite different shapes:
the function for the smallest scale (circular symbols) is the most linear and that
for the largest scale (square symbols) is the most compressive,

This difference between the early local non-linearity functions at different
scales rejects one very strong version of the early local non-linearity hypothesis:
namely, that the compressive non-linearity acts directly, point-by-point,
on the luminance values. To put it another way, which makes it clear just
how over-strong this version 1s, these results reject the hypothesis that
the compression occurs before optical blurring. (Over-strong as this may be,
some of us slip into a similar hypothesis when we forget that black-white
stimuli presented to the observer become multiple grey-level stimuli on the retina
with the distribution of grey levels depending on the spatial characteristics of
the stimuli.)

However, the results from varying spatial scale cannot reject a weaker version
of the early local hypothesis. In this version, the compression still occurs
relatively locally but after some process which sets overail sensitivity to the spatial
frequencies and orientations composing the pattern. To see the explanatory
power of this hypothesis, consider the bottom panel of Fig. 4. Here the inferred
best-fitting early local non-linearities from the top panel are replotied against
physical contrast divided by a ‘segregation-threshold contrast’, This is the
contrast which, in a one-element-only pattern at the given background luminance
and spatial scale, produced a mid-scale rating of perceived segregation. Also,
the vertical scale in the bottom pane! of Fig. 4 was adjusted to equal 1.0 art the
segregation threshold for each of the 12 corditions to be consistent wirh the
assumption that the sensitivity setting occurs before the early, local non-linearity,
Note that the curves now juxtapose extremely well for different spatial scales
and also for different mean luminances.
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In short, although the compressive non-linearity cannot be so local and SO
early that it operates directly on the luminance, it could be local and operate
before the channels but after a sensitivity-setting stage. If so, the degree to which
it compresses its input is the same at al background luminances in the 1.8 log
unit range that we studied. Further, as a semilog plot would show, over the
range of contrasts studied in Fig. 4 (but not at lower contrasts, see below) the
shape of the inferred early loca] non-linearity is very close to logarithmic.

How local could the early, local non-iinearity be?

There is some evidence that the compressive non-linearity cannot be too local,
or alternatively that the same compressive non-linearity cannot act on the same
elements in different tasks. In one study, we compared region segregation
Judgements of element arrangement textures (like those we have been describing)
with population-segregation judgements (how well the elements of one type stood
out from among elements of the other type when the elements were randomly
mixed rather than arranged in stripes and chequerboard). If the compressive
non-linearity that acts in region-segregation judgements of element arrangement
textures were Jocal enough to act on single elements, one might expect it to show
up in the population-segregation Judgements as well. But these two kinds of
judgements were very different for same-sign-of-contrast patterns {Beck et a] 1991).

The normalization modet

Arte the results at different scales and different mean luminances consistent with
predictions based on inter-channel interaction, as modelled by a normalization
network? The answer seems to be yes (although it is less clear what that mode]
predicts). Normalization networks normalize everything relative to the total
responses in some part of the system. By adjusting the contrasts at the two scales
10 equalize the extent of segregation at the two scales, you have probably also
adjusted total response in the relevant subsystem to be much the same. Then,
all aspects of performance should be the same. They do seem to be (as is reflected

in the bottom panel of Fig. 4, although those functions were derived by fitting
the other model).

Comparison with other compressive non-linearities

The coemparison of several non-linearities in Fig. 5 provides some perspective
ot the nature of thijs non-linearity. The top panel of Fig. 5 shows two non-
linearities from models for psychophysical results usually thought to reveal ‘light-
adaptation’ processes, The bottom panel of Fig. 5 shows four functions that
represent physiological results. The function inferred from Fig. 4 (at a contrast
appropriate to large scale and high mean luminance) is repeated in both panels,
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FIG. 5. The best-fitting early local non-linearity (ELN) from the study of Fig. 4 plotted
against Weber contrast (at the appropriate level for the largest spatial scale at the highest
mean luminance) and compared to the compressive non-linearities from other sources,
All the functions are vertically scaled to be equai to 1.0 at a contrast of 25%.

The top panel shows two non-linearities from models predicting psychophysical results
usually thought to reveal the dynamics of ‘light-adaptation’ processes: the model of
Sperling & Sondhi (1968) and that of Wiegand et al (1992) (also see Graham & Hood
1992, Wiegand 1993). The peaks in the responses to increments (both models) and
decrements (the Sperling & Sondhi Model) from a background luminance of 00 trolands
are plotted. The bottom panel shows four functions that represent physiological resuits
for single neurens from four visual areas. The functions were computed from the median
values of the parameters given by Sclar et al (1990},
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Clearly, the functions from light-adaptation psychophysics and from
parvocellular LGN and from V! cells are not as compressive as the function
inferred from texture-segregation results, but those from magnocellular LGN
and area MT are. Handle these comparisons with care.

Acceleration at very low contrasts

We have now done several experiments using constant-difference series with very
small differences (N. Graham & A Sutter, unpublished results). Thus, the patterns
sometimes contained elements that were of very low contrast and might be barely
if at all detectable, In fitting the models to these data, two clear results emerged:
the best-fitting early local non-lingarity was strongly accelerating at the very low
contrasts and, probably as a direct result of this, the best-fitting model assuming
early-local non-linearity fitted substantially better than that assuming normalization.

Thus, even if normalization turns out to be the better explanation of the
compressive effects, it would need to be augmented by something more like
an early, local acceleration at low contrasts. The relationship of this acceleration
to that discussed above in connection with the non-linearity at the middle of
the complex channels is not vet clear to me,

A parting comment

Putative ‘higher-order processes’ {here meaning processes that paste together
information on a relatively local scale into information on a more global scale)
have been suggested as components in a number of perceptual tasks—perceived
segregation of texture regions, deciding between competing motion paths, finding
a path through static multi-element patterns, and others. All these tasks, while
sharing some component processes, may also be strongly dependent on unshared
processes. To put it another way, the ‘higher-order processes’ by themselves
cannot explain the whole journey from stimulus to the observer’s reported
perception. As the characteristics of the higher-order processes involved in cach
task become known in greater detail, it should become easier to compare the
higher-order processes involved in different tasks and then to use the differences
among tasks to suggest further hypotheses about visual mechanisms.
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DISCUSSION

Wiison: It’s clear that you need some form of compression somewhere. You
considered either a front-end pointwise non-linearity or the possibility of using
pooling and normalization after all the filtering rectification. You chose
normalization after rectification (which I'm sure will work), but would pointwise
(one-per-filter) simple compression after the rectification also work?

Graham: 1 don’t think that a pointwise non-linearity at the back end (after
the filtering) will work. The filter output at the fundamental frequency is the
same for all the same-sign-of-contrast patterns in a series, $0 you can’t COIMPTess
it and hope to produce any differences—you would be compressing them all
from the same point. .

Lennie: I’ve no idea whether the grouping effects you’ve described are actually
confined to the intensity domain. You can imagine chromatic analogues of all
the experiments you’ve described—it’s not clear to me that the results would
be different.

Graham: 1t’s not clear to me, either. Jacob Beck has done some work
(unpublished results) with coloured versions of the sorts of patterns I showed,
but it’s very hard to say one way or the other at this point.

Movshon. Relating a transducer function deduced from a psychophysical
experiment to a transducer function measured in a neuron is probably perilous
for many of these junctions, specifically for the reason that the psychophysics
transducer function has absorbed the variability. If the noise is constant at all
neural response magnitudes, then you might make the comparison a little less
perilously. But we know for all the classes of cortical neurons (the bottom part
of Fig. 5) that variability changes very sharply with response. It does not for
the geniculate cells. If you want a comparison, you should plot a Z transform
signal from the cortical cells. This will give a very different answer.

Lennie: Are you saying that the variance of the response of an LGN cell
doesn’t change with amplitude?

Shapley: Keith Purpura, Rudi Kaplan and [ have said that this is additive
(Purpura et al 1989), but that’s in a stabilized image situation. If you do it,
as these experiments were done, not with stabilized images, then the effective
noise might actually grow with contrast.

Lennie; That’s what I would have expected.

Movshon: Why?

Shapley: Because you might get variance introduced by eye movements as
a consequence of the dithering of the eyes around the borders.

Movshon: On the other hand, your eye movements might be more precise
in the higher-contrast cases.

Shapley: You need to take it into account,

Georgeson: If you plot your non-linear response function on log-log axes,
what sort of slope or exponent do you get?
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Graham: Log-log isn’t as useful as semilog. Except for very low contrasts (lower
than in the experiments I showed here), the function is extremely close 1o
logarithmic. Plotting it on semilog paper gives an almost straight line.

[ would like to say something about the comparison between two sets of
results. One is a set of results for motion perception that were published by
Werkhoven et al (1993) and which Charlie Chubb mentioned in his talk (Chubb
¢t al 1994, this volume). These results show no selectivity for spatial frequency
(and, perhaps, for orientation—Werkhoven et al 1992) at the first stage of the
non-Fourier channels for motion. Or, as they phrase it, you need only a single
motion channel because the same channel is sensitive to all (visible) spatial
frequencies. On the other hand, our results in a texture region-segregation task
(Graham et &l 1993), showed a great deal of selectivity for both spatial frequency
and orientation. Thus one needs multiple complex channels {with different
orientation and spatial frequency selectivities) for the texture case. In other
words, the bottom panel of Fig. 3 is correct for the texrure case,

I have been worrying about what the difference could be. Is it really a case
of different channels for texture than for motion? Perhaps. But some other
things need to be considered first. For one thing, there is the problem of
differences among observers.

The Werkhoven et 3] (1993) data, which Charlie Chubb didn’t show although
he mentioned their results, are convincing and clear. But the data are from only
IWO observers (and rather experienced observers at that). Qur published results,
from a few more observers, showed rather larger differences (Graham er al 1993,
Perhaps observers just differ in bandwidth (but have the same bandwidth in
both the motion and texture situations) and Werkoven et al (1993) happened
to get two of the broadest-bandwidth observers,

The recent Cannon & Fullenkamp (1993) paper is interesting in this regard.
As they explain in their introduction, they had used three subjects in an earlier
study and found only suppression, not enhancement (in a task measuring
perceived contrast under conditions of spatial interactions). But they were
worried because Ejima & Takahashi (1985) had reported some enhancement
under similar conditions. So they tried to track down any changes in condition.
For a new study they ran 10 subjects. Of these 10, eight showed enhancement,
with some of the eight showing a great deal! The other two observers showed
only suppression—these were the authors MC and SF. Thus, there is a reason
to worry about possible individual differences in the texture versus motion
comparison. On the other hand, we have now run about 10 subjects in our
texture task and never found one with bandwidths nearly as broad ag those for
the motion task!

This summer I got 1o wondering whether the difference hetween the motion
and texture results was something intrinsic to the tasks involved: a region-
segregation task in our texture experiments versus a path-competition task in
the motion experiments of Werkhoven et al (1993). So I made a statjc analogue




Pl 1 (Graham) This is formally analogous (o the Werkhoven, Snerling & Chubi
sohemie shown in Fig, 1 of 1he paper by Chubb e al (1994, this volume)

(shown in Fig. 1 {Graham|) ot the kind of path-competition stimuli used by
them 11 vou compare it (o Fig. 1in Charlic Chubb’s paper {Chubb e ul 1994,
s volumed, vou will see thie anatogs, "A" and "B in his figure are the high
and ]cm—5;1;.11j;‘-\l-r'a'cqucncy patches nere. (Rementber that in the MOLION Case,
cach row represents a frame; also, each row was wrapped around an annulus
O that motion was circular either anticlockwise or clockwise ) In qur static
andlogue, we used patterns Just like those shown in Fig. ' {Graham). (in the
ane showi o this figure, the homogencous path is down towards the right wad
Containy only high-spatial-frequency patches; the heterogencous path s down
towards the left, containing alternaiing low- and high-spatial-frequency parches. i
Wosimply asked the observers o judge to what extent the homogencous path
ar the heterogeneous path dominates i the perception.

Fhe really astonishing result Werklioven et 4 (1993) found for their motion
eNperinients using patches of sinusoidal gratings is this: if you adjust the
Comrastn the two spatial {requencies (no matter how far anpart they are) so
hat the torel energy on the heterogeneous  path s greater than tha
a1 the honnoseneous. the heterogencous patl is what people see all the time
Inshos their motion PEFCCPUON IS INCETAlNg ACTOsS CHOTMOLS spatal trequencs
ditterenges!
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Chubb: Yes, in particular, a texture-defined motion display which pits a
homogeneous motion path against a heterogeneous path composed of alternating
high-frequencey texture patches and low-frequency patches (equal in contrast
to the high-frequency patches) will consistently elicit motion in the direction
of the heterogencous path. .

Graham: But in the static analogue, as you can probably see for yourself (Fig,
b [Graham]), the result isn’t even close to that for motion! A person may see
both the homogeneous path and the heterogeneous path, but nobody [ asked
said that the heterogeneous path dominated (except for at very close spatial
frequencies).

We repeated exactly the Werkhoven et al (1993) experiment using these static
analogue patterns with one of the subjects run earlier on the texture region-
segregation task (CV in Graham et al 1993). As expected from the informatl
observations, her static path-competition results didn’t look like those for
motion. She showed selectivity for spatial frequency (that is, the heterogeneous
path could only dominate when the spatial frequencies were very close). In fact,
her inferred bandwidth on this texture path-competition task was just like her
bandwidth on the texture region-segregation task. So, I don’t think that the
difference between the results of Werkhoven et al (1993) for motion and our
results for texture is only a consequence of some difference between region-
segregation and path-competition tasks (although I stil] think some differences
between those tasks could exist).

Shapley: One thing that strikes me as different is that this is a task where
the temporal modulation is low frequency—that is, it is one second or two
seconds temporal exposure—and the whole essence of the motion task is that
it’s temporal modulation of some moderate temporal frequency. if you reversed
the contrast of your textures at moderate temporal response, perhaps the
difference would disappear.

Graham: 1 don’t know—do you think that would work? [s this a temporal
frequency problem as opposed to a motion texture problem?

Speriing: Whether temporal modulation improves or impairs spatial region
segregation is an interesting question. However, when you create a dynamic
stimulus, you not only affect the discriminability of differently textured spatial
regions, you also produce motion paths according to the spatiotemporal
modulation pattern. In terms of channels, 1 think the difference between
perfermance in motion tasks and in texture-segregation tasks can be summed
up simply in this way: there’s lots of evidence of separate frequency channels
in texture vision; however, Werkhoven ¢t al (1993) find that second-order
motion perception seems to be served primarily by a single, low-pass frequency
channel.

Graham: But this gets back to something that I didn’t understand about the
discussion following Hugh Wilson’s paper (Wilson 1994, this volume), which
was about the orientation bandwidth,
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Wilson: At the time we developed the model, there were no data one way
or the other concerning non-Fourier orientation bandwidth and so we chose
oriented filters. The first evidence on non-Fourier bandwidths is very recent
{Werkhoven et al 1993).

Burr: We measured orientation bandwidths in two ways: with a masking
paradigm {Anderson et al 1991) and by summation (Anderson & Burr 1931,
with similar results from the two techniques. The bandwidths vary considerably
with spatial frequency, from around 45° at 10 cycles/degree to 80° at 0.1
cycles/degree (full width at half height).

Graham: Are we able to conclude from a combination of Anderson & Burr
(1991) and Werkhoven et al (1993) that Hugh Wilson’s wiring diagram was
wrong? In Hugh’s wiring diagram, the same filters that go up the Fourier path
form the first stage in the non-Fourier path. If so, however, are those filters
oriented when Anderson & Burr (1991) study them, and not when Werkhoven
et al (1993) study them?

Shapley: They’re not that oriented, that’s the issue.

Burr: They’re fairly broad.

Shapley: What is the actual orientation tuning of the front end for this
channel? It might be that they would agres.

Speriing: In the first paper (Werkhoven et al 1993), we didn’t study orientation
tuning at all. [n the second paper (Werkhoven et al 1994), we did find a small
amount of orientation tuning but not enocugh to measure a bandwidth for
orientation.

Burr: Do you get different results with the rotating stimulus and the
displacement stimulus?

Chubb: We haven’t done experiments with the horizontal displays.

Shapley: 1f you are actually measuring the orientation tuning for motion,
it was quite broad in those experiments (Anderson & Burr 1991).

Burr: Yes, quite broad: around 60° (full width at half height) for the spatial
frequencies used here. The other point to remember is that haif height is quite
an arbitrary descriptor; the filters will respond to high-contrast stimuli of most
orientations.

Wilson: For full bandwidth at half height, I used 45° in the model I discussed
(Wilson 1994, this volume): I referred to +22.5°.

Morgan. There are other indications that individual differences in high-order
filtering might turn out to be quite profound and interesting. An example
concerns the ability of observers to locate the positions of the centroids of dot
clusters. The dots are randomly thrown into a notional circle, and the task is
to locate the centroid. We know this is a second-level task because they do just
as well with balanced clusters which would be invisible to first-order filters.
Thresholds decrease (or performance improves) as a function of the square root

of the number of elements, as you would expect, and relative efficiency is pretty
high.
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I had one subject who totally baffled me, she had extremely low efficiency
on this task. She did not benefit from having extra dots, so the efficiency
fell drastically as dots were added. For most subjects it is about constant
up to 20 dots and then starts to fall off. 1 could detect no other problems
with her vision. Her thresholds for Vernier alignment of two dots (or spatial
mterval between two dots) were in the normal range—what she couldn’t do
was 1o integrate positional information across dots (Morgan & Glennerster
1991). -

Graham: George Sperling told us that in the motion case, five of his 15
observers see the motion carried by half-wave stimuli, the other 10 don’t
(Sperling et al 1994, this volume).

Sagi: Some of the inter-subject variability may arise from them having
different thresholds. These second-stage filters may start to operate only above
some contrast level and this critical contrast may vary across subjects. In the
type of experiments Cannon & Fullenkamp (1991) were running, one may get
enhancement or suppression depending on how far the stimulus contrast is from
the threshold. This is certainly true for contrast-discrimination experiments where
at low base (pedestal) contrasts you get just-noticeable difference values that
are lower than absolute threshold (enhancement) and at higher base contrasts
you get just-noticeable difference values that are larger than the absolute
threshold (suppression).

Graham: | think Cannon & Fullenkamp’s (1993) fourth experiment was
actually measuring contrast thresholds and saying that individual differences
were not just a matter of sensitivity differences.

There is something else [ have wondered about in the Cannon & Fullenkamp
studies. The first two observers (who seem to have been themselves)
were probably the most practised observers—most practised by vears,
I would think, not just by 10-20 sessions, Is that perhaps why they were different
from the next eight? Another study where there was a big individual difference,
Gurnsey & Browse (1992), seemed to be a difference between practised
and unpractised observers. When a difference showed up between a naive
observer and a practised observer, they ran one relatively naive observer
for 10 or more sessions on a set of the patterns. That observer showed
improvement on at least one of the patterns but still couldn’t do one or
more patterns as well as the very highly practised observer (the author RG),
The take-home message here seems to be that there is learning and the
learning can go on for a very long time. Karni & Sagi (1991) and Fiorentini
& Berardi (1981) are two other studies that make the point about learning even
more clearly and then begin to study it in some detail. So maybe differences
in amount of effective practice on a task contribute to differences among

observers on tasks like those we are discussing—tasks using suprathreshold
stimuli incidentally.
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