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Several recent models of  texture segregation have proposed two mechanisms: simple, linear channels 
(first-order, Fourier mechanisms) and complex channels (second-order, non-Fourier mechanisms). We 
used the speed-accuracy tradeoff (SAT) method to examine the time course of texture segregation 
processing in simple and complex channels. The stimuli were texture patterns designed to segregate 
primarily as a result of  activity in one set of  channels or the other. We presented subjects with textures 
that were checked or striped arrangements of  either Gaussian-blob or Gabor-patch elements. Subjects 
were required to identify the orientation of  a rectangular texture region embedded in a background 
field of a different texture. A range of  contrasts and a control task were used to equate visibility of  
the Gabor and Gaussian textures. SAT functions were obtained by requiring subjects to respond within 
200 msec after an auditory cue. We found that when segregation depended primarily on simple 
channels, performance was faster than when it depended primarily on complex channels: the 75% 
correct level was reached 100-200 msec sooner and this extra speed was reflected both in smaller delay 
and higher rate parameters. 

Texture perception Processing dynamics Simple Complex 

INTRODUCTION 

Preattentive texture segregation has frequently been 
defined as the process by which adjacent areas of 
differing local spatial structure are perceived immedi- 
ately and effortlessly to be distinct regions in an image. 
For years, investigators have used the words "immedi- 
ate" and "effortless" to describe an important feature 
of texture segregation (e.g. Julesz, 1975; Beck, 1982; 
Bergen, 1991; Ben-Av, Sagi & Braun, 1992; Wolfe, 
1992). However, these words have referred to a phe- 
nomenological attribute of the perception of texture 
rather than to an empirically determined characteristic 
of the processes underlying the perception. Partly be- 
cause texture segregation seems 'immediate and effort- 
less', investigators have proposed theories of texture 
processing consisting predominantly of stages occurring 
relatively early in vision, usually linear filters and some 
early nonlinearities (Beck, Sutter & Ivry, 1987; Bergen & 
Landy, 1991; Bovik, Clark & Geisler, 1987; CaeUi, 1988; 
Chubb & Sperling, 1988; Clark, Bovik & Geisler, 1987; 
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Fogel & Sagi, 1989; Graham, Beck & Sutter, 1992; 
Landy & Bergen, 1991; Malik & Perona, 1989a, b; 
Nothdurft, 1985a, b; Sagi, 1990; Sutter, Beck & Graham, 
1989; Turner, 1986; Victor & Conte, 1987, 1989a, b, 
1991; Victor, 1988; Wilson, Ferrara & Yo, 1992; Wilson 
& Richards, 1992). Nearly all experimental tests of these 
models have used information about completed segre- 
gation processing, i.e. information about the final per- 
cept. Here we report explorations of this type of model 
based on investigations of the time course of texture 
segregation processing. 

Simple and complex channels 

Many models of texture and motion perception pro- 
pose mechanisms that include two stages of spatial- 
frequency and orientation selective linear filters 
separated by a rectification or similar nonlinearity (e.g. 
Chubb & Sperling, 1988; Sperling, 1989; Sutter et al., 
1989; Graham et al., 1992; Wilson et al., 1992; Wilson 
& Richards, 1992; Graham, Sutter & Venkatesan, 1993). 
We call our version of this mechanism a complex chan- 
nel; others have referred to this kind of non-linear 
mechanism as a non-Fourier or second-order mechanism. 
The first-stage filter of the example shown in Fig. 1 is 
tuned to a high spatial frequency and horizontal orien- 
tation. [That the first-stage filters are orientation and 
spatial-frequency selective has been shown by Graham 

2825 



2826 ANNE SUTTER and NORMA GRAHAM 

® 

First-stage filter 
e.g. horizontal, of 

high spatial 
frequency 

Second- 
stage 
input at 
position 
(x,y) 

I 
0 

First-stage output 
at position (x,y) 

Nonlinearity 
pointwlse, 

e.g. rectification, 
squaring 
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et al. (1993)]. The outputs of the first-stage filter are 
rectified or undergo a similar nonlinearity, and are 
passed to the second-stage linear filter which is depicted 
in Fig. 1 as tuned to a low frequency and vertical 
orientation. Other combinations of first- and second- 
stage filters are assumed to exist. Complex channels can 
be thought of as detecting low spatial frequency arrange- 
ments of high spatial frequency elements. 

In our model, information about the outputs of 
single-stage filters is available to segregation decision 
processes in addition to and independently of the out- 
puts of  the second-stage filters. We refer to such single- 
stage filters, considered by themselves, as simple 
channels. Others have referred to this kind of simple 
linear mechanism as a Fourier orf irs t -order  mechanism. 
Whether the single-stage filters are distinct filters or also 
serve as the first stage in the complex channels is not 
known. 

Gaussian and Gabor-patch Embedded-Rectangle textures 

In the experiment reported here, we used patterns 
composed of either Gabor  patches or Gaussian blobs to 
examine the time course of segregation processing, and 
specifically, to address the question of whether or not 
processing dynamics differ for patterns that are segre- 
gated primarily by simple channels compared to those 
segregated primarily by complex channels. 

Examples of the patterns that we used appear in 
Fig. 2. These patterns contain "element arrangement 
textures" (first used by Beck, Prazdny & Rosenfeld, 
1983). The ones used in this study were composed either 
of  Gaussian blobs of equal but opposite sign-of-contrast, 
or of Gabor-patch elements that were luminance-bal- 
anced with the background. These elements were ar- 
ranged into either checked or striped regions, with a 
rectangular patch of one type of texture embedded in a 
background field of  the other texture. According to our 
model, segregation of the embedded rectangle in these 
patterns is due to within-channel or within-filter differ- 
ences in the pooled responses to the checked vs the 
striped regions (see Sutter et al., 1989: Graham et al., 
1992 for details of the model). Also, according to the 

model, patterns composed of Gaussian blobs are segre- 
gated primarily as a result of activity in simple channels 
(one stage of linear filtering), whereas patterns composed 
of Gabor  patches are segregated primarily as a result of 
activity in complex channels (two stages of  linear filter- 
ing separated by a rectification or similar nonlinearity). 

Figure 3(a) illustrates why patterns composed of 
Gaussian blobs of opposite sign of contrast segregate 
mainly because of the activity they produce in simple 
channels. Consider the top row of Fig. 3(a), which shows 
the response of a simple channel tuned to the fundamen- 
tal frequency of the striped Gaussian-blob texture. The 
first box shows a small area of the striped region with a 
receptive field from this simple channel filter. The next 
box shows the output of this filter: note that there is a 
lot of modulated activity in response to the stripes. On 
the other hand, this filter will be unresponsive to the 
checked texture: thus this simple channel effectively 
discriminates between the two regions. 

Now consider the second row of Fig. 3(a), which 
shows the response of a particular complex channel to 
the striped Gaussian-blob texture, This complex channel 
has a first-stage filter of high spatial frequency and 
oblique orientation, and a second-stage filter of low 
spatial frequency and vertical orientation, with a rectifi- 
cation (half-wave here) between the two stages. Notice, 
as represented in the second box, that the frequency of 
the first-stage filter is too high for the filter to signal the 
presence of the blobs, thus this complex channel does not 
to segregation of  the checked and striped regions. The 
second-stage filter in this channel is unresponsive 
because it has no first-stage output to work with. It 
so happens that for these Gaussian-blob patterns, 
no complex channel will do a better job of signaling 
the difference between the checked and striped 
textures than does the simple channel illustrated in the 
top row. 

Figure 3(b) illustrates why patterns composed of 
Gabor  patches that are luminance-balanced with respect 
to the background segregate mainly because of the 
activity they produce in complex channels. Consider the 
first row of Fig. 3(b), which shows the response of a 
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(b) 

FIGURE 2. Two examples of Embedded-Rectangle patterns. (a) A pattern composed of Gaussian blobs of equal-but-opposite 
sign-of-contrast. (b) A pattern composed of Gabor patches luminance-balanced with the background. Reproduction will have 

VR 35,2~-B distorted the images somewhat. 
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FIGURE 3. Diagram of responses of simple and complex channels to the striped portion of textures composed of Gaussian 
blobs (a), and textures composed of Gabor patches (b). 
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simple channel tuned to the fundamental frequency of 
the striped Gabor-patch texture. Notice that there is no 
response from this simple channel because its receptive 
fields are too large to detect these luminance-balanced 
patches. It so happens that no simple channel or single- 
stage filter will show a difference between the spatially- 
pooled responses to the checked and striped regions of 
these Embedded-Rectangle Gabor-patch textures. (As 
will be discussed later, however, a rectangle of texture 
containing Gabor-patch elements can be segregated 
from a blank surround by simple channels.) 

Now consider the bottom row of Fig. 3(b), which 
shows the response of a complex channel consisting of 
a first-stage filter tuned to a high spatial frequency and 
oblique orientation, followed by a rectification and a 
second-stage filter tuned to the fundamental frequency 
and orientation of the striped Gabor-patch texture. The 
small receptive fields of the first-stage filter are of a size 
appropriate to detect the Gabor patches. There will be 
activity in both the checked and striped regions in the 
outputs of this first-stage filter, but after rectification, a 
second-stage filter (tuned to the fundamental frequency 
of the striped texture) will respond strongly to the striped 
region, but not to the checked region. 

The speed-accuracy tradeoff paradigm 

In this paper we investigate differences in the time 
course of texture segregation processing for Gaussian- 
blob (simple channel) and Gabor-patch (complex chan- 
nel) patterns using the method of cued response to 
generate speed-accuracy tradeoff (SAT) functions. 

SAT functions have been used for years by investi- 
gators of cognitive processes such as semantic and 
recognition memory (Reed, 1973; Dosher, 1976; Wickel- 
gren, Corbett & Dosher, 1980; for overviews of the SAT 
method see Wickelgren, 1977 and Dosher, 1979). How- 
ever, they have seldom been used to study visual or 
perceptual processing, and the few published studies we 
know of(e.g. Schouten & Bekker, 1967; Lappin & Disch, 
1972; Wandell, 1977) have not investigated texture segre- 
gation or any related pattern discrimination processes. 
An SAT function gives some accuracy measure as a 
function of some response-time measure. The basic 
method for obtaining SAT functions requires the subject 
to make responses during several different time intervals 
through the manipulation of response cues, deadlines, 
payoffs, etc. By causing the subject to respond at differ- 
ent points in time during the processing of a stimulus, 
one can obtain data regarding the amount of infor- 
mation available to decision processes at those points in 
time. 

At the very least, the SAT method gives the investi- 
gator a good chance of discovering differences in the 
processing of various stimuli which may be obscured 
when using other response methods. The advantage of 
causing subjects to respond during specific intervals in 
time is that they can be forced to make a response before 
they would ordinarily choose to in, for example, simple 
reaction time or the usual forced-choice discrimination 
experiments. Forcing a response during particular time 

intervals yields a measure of performance in a task 
before the final percept has been established, that is, at 
various stages of completion of processing. In this way, 
one may discover differences between two texture stimuli 
that would produce equivalent performance if responses 
were delayed until completion of processing. This infor- 
mation may then be used to test models of these 
processes. 

We measured subjects' ability to discriminate between 
two orientations (vertical and horizontal) of a rectangu- 
lar patch of texture (either checked or striped arrange- 
ment) which was embedded in a background field of the 
other arrangement. The patterns were composed of 
either Gaussian blobs (for simple channels) or Gabor 
patches (for complex channels). We investigated the time 
course of processing for these two types of patterns by 
requiring the subjects to respond within 200 msec after 
an auditory cue which could occur at several different 
times (response cue lags) after the onset of the stimulus 
(which was 50 msec in duration). 

Other investigators have chosen to control the pro- 
cessing of a stimulus by manipulating the duration of the 
stimulus and/or by using post-stimulus masking (see e.g. 
Arsenault & Wilkinson, 1993; Ben-Av et al., 1992; Caelli 
& Julesz, 1978; Nothdurft, 1985b; Bergen & Julesz, 
1983b). The effects of these manipulations are then 
determined by measurements of the outcome of process- 
ing, that is, of the final percept. One difference between 
those methods and the cued-response method used here 
is that by masking or varying the duration of the 
stimulus one limits the amount of information available 
for processing while allowing processing to proceed to its 
conclusion before taking a measurement. The SAT 
method, on the other hand, measures performance at 
various stages of completion of processing. We chose not 
to mask the stimulus, as other investigators have, be- 
cause although it may indeed limit processing of the 
original stimulus, it does so by interference and replace- 
ment with a new stimulus (the mask), which might have 
its own time-dependent effects on processing of the 
original stimulus. By choosing not to use a post-stimulus 
mask, we allowed the possibility that on the trials with 
longer cue delays, subjects could use information in 
iconic storage, but this is part of the natural process of 
perception that we are investigating. 

Rectangle-Only patterns--control for visibility 

In order to be able to compare directly the processing 
dynamics for the Gaussian-blob and Gabor-patch pat- 
terns, we needed some way of equating the visibility of 
the two types of pattern. Simply equating the physical 
contrasts of the elements would not work because the 
spatial frequency composition of the two types of el- 
ements is different--the Gabor patches contain higher 
spatial frequencies than the Gaussian blobs. At equal 
physical contrasts, and especially at low contrasts, the 
Gabor-patch textures were frequently harder to see 
than the Gaussian-blob textures. To equate the Gaussian 
and Gabor patterns for visibility, we ran a control 
condition in which we presented subjects with blocks of 
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(b) 

FIGURE 4. Two examples of Rectangle-Only patterns. (a) A pattern composed of Gaussian blobs of equal-but-opposite 
sign-of-contrast. (b) A pattern composed of Gabor patches luminance-balanced with the background. Reproduction will have 

distorted the images somewhat. 
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Rectangle-Only patterns. Examples of these patterns are 
presented in Fig. 4. The Rectangle-Only patterns were 
identical to the Embedded-Rectangle patterns except 
that they contained no background texture. Detection of 
the orientation of these rectangles without a background 
should be accomplished by simple channels, or one stage 
of filtering, precisely because there are no background 
elements. No segregation of regions of different element 
arrangements is necessary in these patterns, and any 
channel sensitive to the individual elements will signal 
the presence of the rectangle. We presented the patterns 
at several different contrasts (six for the Gabor and six 
others for the Gaussian patterns) in order to find 
contrasts at which the Gaussian and Gabor Rectangle- 
Only patterns produced identical, or nearly identical, 
performance across the entire measured time course. 
Once a pair of "matched contrasts" has been found for 
the Rectangle-Only control, one asks whether differences 
exist between the time courses for the Gaussian and 
Gabor Embedded-Rectangle patterns at these same con- 
trasts. Any such differences may then be taken as 
reflecting differences in the operation of segregation 
mechanisms rather than differences in the visibility of the 
two types of patterns. 

By matching performance of the Gabor and Gaussian 
patterns in the Rectangle-Only condition, we also con- 
trolled for the tendency of high spatial frequency stimuli 
(in this case the Gabor-patch patterns) to produce longer 
reaction times than stimuli of lower spatial frequency (in 
this case the Gaussian-blob patterns). Longer response 
times to higher spatial frequency stimuli have been found 
by several investigators (Breitmeyer, 1975; Tolhurst, 
1975; Gish, Shulman, Sheehy & Leibowitz, 1986). Such 
a difference between high and low spatial frequency 
response times would potentially manifest itself in this 
experiment (everything else being equal) as a lower 
proportion of correct responses to the Gabor patterns 
than to the Gaussian-blob patterns at any given response 
cue lag. Matching the two types of pattern for perform- 
ance in the Rectangle-Only condition controls for this 
difference between response times to high and low spatial 
frequency stimuli. 

Patterns and channels 

The Rectangle-Only patterns not only served to con- 
trol for visibility but also to provide further information 
about the dynamics of processing of simple channels. In 
summary: we used four kinds of patterns, one of which 
stimulates complex channels and three of which stimu- 
late simple channels. 

The Embedded-Rectangle Gabor-patch pattern pri- 
marily stimulates complex channels (as explained earlier, 
see Fig. 3). The complex channels under investigation 
have first-stage filters that are sensitive to the spatial 
frequency and orientation of the Gabor patch elements 
(this spatial frequency was 8 c/deg and the orientation 
oblique). They have second-stage filters that are sensitive 
to the spatial frequency and orientation characterizing 
the arrangement of elements. (The spatial frequency 
equals the fundamental frequency of the pattern, which 

was 1.5 c/deg in the striped region and x/2 higher in the 
checked region; the orientation was vertical, horizontal 
or oblique depending on whether a vertically-striped, 
horizontally-striped or checked region was under con- 
sideration.) 

The Rectangle-Only Gabor-patch pattern stimulates 
simple channels at the same spatial frequency and orien- 
tation as the first stage of the complex channels under 
investigation (i.e. at the spatial frequency and orien- 
tation of the Gabor patches). 

The two Gaussian-blob patterns (Rectangle-Only and 
Embedded-Rectangle) both stimulate simple channels at 
the same spatial frequency and orientation as the second 
stage of the complex channels under investigation (i.e. at 
the spatial frequency and orientation characterizing the 
arrangement). 

Thus we can compare low spatial frequency simple 
channels (the Embedded-Rectangle and Rectangle-Only 
Gaussian-blob patterns) with high spatial frequency 
simple channels (the Rectangle-Only Gabor-patch pat- 
terns) and the complex channel of high spatial frequency 
first stage and low spatial frequency second stage 
(Embedded-Rectangle Gabor-patch) can be compared 
to both simple channels. 

METHOD AND PROCEDURES 

Apparatus 

The stimuli were presented on a standard Apple 
monochrome monitor. Stimulus generation, experimen- 
tal control, and luminance linearization of the monitor 
were accomplished using a Macintosh IIci with Pascal 
programs based on software generously provided by 
Hugh Wilson. 

Subjects 
Three young adults participated in the experiment. 

One was an author (AS) and the other two were naive 
(CS and JH). The subjects had normal (AS and CS) or 
corrected-to-normal (JH) vision. 

Stimuli 

Examples of the stimuli appear in Figs 2 and 4. The 
patterns were composed of either Gaussian-blob or 
Gabor-patch elements. The elements were arranged into 
striped or checked texture regions, and appeared in 
either Embedded-Rectangle (Fig. 2) or Rectangle-Only 
(Fig. 4) patterns. 

The arrangements of the elements. Forty-eight Embed- 
ded-Rectangle patterns were constructed, consisting of a 
field of either checks or stripes (17 × 17 elements, 
6.12 x 6.12 deg) in which was embedded a rectangular 
patch (7 x 11 elements, 2.52 × 3.96 deg) of the other type 
of texture. The rectangular texture patch was oriented 
either vertically or horizontally. It occurred at one of 
three different locations in the background texture 
field--near the top, at the middle, or near the bottom for 
horizontal patches, and near the right edge, at the 
middle, or near the left edge for vertical patches. There 
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were always at least three rows or columns of back- 
ground elements between the embedded-rectangle and 
the nearest edge of the pattern. There were four assign- 
ments of checked and striped arrangements into the 
rectangle and the background, namely: horizontally- 
striped rectangle with checked background; vertically- 
striped rectangle with checked background; checked 
rectangle with horizontally-striped background; and 
checked rectangle with vertically-striped background. 
Thus, the 48 Embedded-Rectangle patterns included all 
possible combinations of  two rectangle orientations, 
three locations, two element types (Gaussian blob or 
Gabor  patch) and four striped/checked assignments. 

Thirty-six Rectangle-Only patterns were constructed, 
consisting of a rectangular patch (7 x ll elements, 
2.52 x 3.96deg) of either checks or stripes. The rec- 
tangular texture patch was oriented either vertically or 
horizontally, and occurred at one of three different 
locations; top, middle, or bottom for horizontal patches, 
and right, middle, and left for vertical patches. The 
positions of these rectangles corresponded exactly 
with the positions of the rectangles in the Embedded- 
Rectangle patterns. The 36 patterns included all possible 
combinations of two rectangle orientations, three lo- 
cations, two element types (Gaussian blob or Gabor  
patch) and three arrangements in the rectangular region 
(checked, horizontally striped, and vertically striped). 

The elements. The Gaussian-blob patterns [Figs 2(a) 
and 4(a)] contained two types of elements which were of 
equal but opposite sign of contrast. The Gaussian blob 
elements had a concentric Gaussian window with a 
half-width half-height of 8 pixels (0.167 deg at viewing 
distance of 0.91 m). The elements were truncated at 16 
pixels to avoid overlapping with adjacent elements. The 
center-to-center spacing between adjacent elements was 
16 pixels (0.33 deg); thus the fundamental frequency of 
the striped texture was 1.5 c/deg (one period of the 
striped texture consisted of two elements, i.e. 32 pixels). 
These patterns are opposite-sign-of-contrast patterns in 
the terminology of Graham et al. (1992). 

The Gabor  patch patterns [Figs 2(b) and 4(b)] were 
composed of one type of element having a concentric 
Gaussian window with a half-width half-height of  8 
pixels (0.167 deg at a viewing distance of 0.91 m). Each 
element was truncated at 16 pixels. The oscillation of the 
Gabor  patch was in sine phase with respect to the 
Gaussian window so that the space-average luminance 
across the Gabor  patch was equal to the background 
luminance. The spatial frequency of the Gabor  patch 
elements was 8 c/deg (a period of six pixels), and the 
orientation of the patch was 45 deg oblique. The center- 
to-center spacing between adjacent elements was 32 
pixels (0.67 deg); thus the fundamental frequency of the 
striped texture was 1.5 c/deg. The patterns composed of 
these Gabor  patch elements may be thought of as 
patterns composed of  two element types (like the Gaus- 
sian-blob patterns) but with the contrast of the second 
type of element set to zero. Thus, these patterns are 
one-element-only patterns in the terminology of Graham 
et al. (1992). 

Luminance and contrast. The background luminance 
was 17.6 ft-L. Stimulus patterns were presented at six 
different contrasts. For the Gaussian blob patterns, the 
contrasts were 0.04, 0.08, 0.12, 0.15~ 0.33 and 0.67. The 
contrasts for the Gabor  patch patterns were 0.18, 0.26, 
0.33, 0.41, 0.82 and 1.0. 

Procedures 

Subjects were seated 0.91 m from the CRT screen. 
They wore their normal vision correction if needed. 
Head movements were unrestrained, but subjects were 
instructed to avoid making them. The room was dimly 
illuminated by a partially obscured lamp on the floor 
behind the subjects. 

A trial. Figure 5 illustrates the procedure for a single 
trial. The subject initiated a trial by pressing a key, after 
which the following sequence of events occurred: A 
fixation "'X" (10% contrast, 0.17deg wide x 0.33 deg 
high) appeared on the screen for l sec and then was 
replaced by one stimulus pattern which was presented 
for 50 msec with abrupt onset and offset. After a variable 
interval of time following the onset of the stimulus (the 
cue lag, which was 50, 100, 150, 200, 250, 300, 500 or 
800msec), the subject received an auditory cue (a 
50 msec beep). The subject was then required to respond 
within 200 msec after the cue onset by pressing one ot" 
two keyboard buttons depending on whether the texture 
rectangle was oriented horizontally or vertically. Im- 
mediately after the subject's response, auditory feedback 
indicated a correct response, an incorrect response, or a 
missed response deadline (a response occurring more 
than 200 msec after the cue onset). The subject was then 
free to initiate the next trial. Trials on which the response 
deadline was missed were re-randomized into the se- 
quence of trials. During the periods between stimuli, the 
screen remained blank at the mean luminance of the 
stimulus patterns. 

Structure o f  blocks and sessions. The experiment was 
run in sessions, each session consisting of  two blocks of 
192 trials. Embedded-Rectangle and Rectangle-Only 
patterns were presented in different sessions. Within each 
block, the 192 trials represented a complete crossing 
of two types of pattern element (Gabor patch or 
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FIGURE 5. The cued response trial procedure. 
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FIGURE 6. Proportion of correct responses as a function of cue lag (msec) for subject CS. (a) Results for Rectangle-Only 
patterns composed of Gabor patches. (b) Results for Embedded-Rectangle patterns composed of Gabor patches. (c) Results 
for Rectangle-Only patterns composed of Gaussian blobs. (d) Results for Embedded-Rectangle patterns composed of Gaussian 
blobs. Each panel contains six SAT functions (curves) representing results for the six different levels of contrast. Each point 
represents the proportion of correct responses in 100 trials. Open symbols indicate the functions for which contrast matches 

were obtained. These contrast-matched functions are replotted in Fig. 9. 

Gaussian blob), two rectangle orientations (vertical or 
horizontal), six possible contrasts and eight cue lags. 
The other variables (three rectangle locations and four 
background/rectangle texture assignments) were not 
completely crossed with the other factors within each 
block, but combinations of these variables were counter- 
balanced within each block to avoid possible cues based 
on them. Trials were randomly intermixed. 

Subjects completed between one and four sessions 
per day. Each session took 30-40 rain to complete, 
and subjects took a break of at least 15 min between 
sessions. Each subject completed 25 sessions in each of 
the Embedded-Rectangle and Rectangle-Only con- 
ditions, subject AS over the course of 6 weeks, CS over 
the course of 5 weeks, and JH over the course of 14 
weeks. 

RESULTS 

Figures 6-8 present SAT functions (proportion of 
correct responses as a function of cue lag) obtained from 
the three subjects (CS, AS and JS respectively). Results 
for patterns composed of Gabor-patch elements are 
presented in the top halves of Figs 6-8 and results for 
the Gaussian blob patterns are presented in the bottom 
halves of Figs 6-8. The right and left halves of Figs 6-8 
present data for the Rectangle-Only and Embedded- 
Rectangle patterns respectively. Each panel contains six 

SAT functions (curves) representing results for the six 
different levels of contrast as a function of the delay to 
the cue (cue lag). Each point in these figures represents 
the proportion of correct responses in 100 trials col- 
lapsed across all other variables not explicitly plotted 
(i.e. rectangle orientation, rectangle location and 
checked/striped assignment). 

Several general characteristics of the results are easily 
seen in Figs 6-8. One feature shared by all of the curves 
is a positive, generally monotonic relationship between 
response accuracy and response cue lag. The form of 
these curves is characteristic of SAT functions in general 
(see Wickelgren, 1977). Second, there is a general ten- 
dency for performance to improve as pattern contrast 
increases, everything else being equal. 

A quick inspection of the four panels of each figure 
reveals that performance is generally best for the pat- 
terns composed of Gaussian blobs (bottom halves of 
Figs 6-8). In addition, performance is also frequently 
good for Rectangle. Only patterns composed of Gabor 
patches (top left panels of Figs 6-8) especially when the 
contrast of the patterns is high. On the other hand, 
performance is generally worse for Embedded-Rectangle 
patterns composed of Gabor patches (top right panels of 
Figs 6-8). Thus, even before contrast-matching to 
equate visibility of the Gabor and Gaussian patterns, 
there are indications that patterns gregated primarily 
through activity in simple channels (the Gabor and 
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Gaussian Rectangle-Only patterns, and Gaussian Em- 
bedded-Rectangle patterns) are segregated faster and 
better than the patterns segregated primarily through 
activity in complex channels (the Gabor  Embedded- 
Rectangle patterns). 

An estimate of  the " immediacy" of texture segregation 
can also be found in Figs 6-8. For the fastest conditions 
involving a region segregation (lower right panels) dis- 
criminating the orientation of the Gaussian blob Embed- 
ded-Rectangle at high contrast, performance did not 
reach 75% correct until the cue signaling the observer to 
respond came at least 120msec (for AS and CS) or 
180msec after stimulus onset (for JH). Asymptotic 
performance was not reached until the cue came at least 
250 300 msec after stimulus onset. (The actual times at 
which the response was initiated by the observer may 
have been even later. The buttons tended to be pushed 
150-200 msec after the cue.) For the slower conditions 
involving a region segregation (lower contrast Gaussian- 
blob Embedded-Rectangle, all contrasts Gabor-patches 
Embedded-Rectangle), performance did not reach 75% 
correct until the response cue came many hundreds of  
milliseconds after stimulus onset. 

Also visible in these figures (although perhaps easier 
to see in the later curve-fitting results) is the following 
comparison: the times for even the fastest region segre- 
gation (the Embedded-Rectangle Gaussian-blob) are 
50-100 msec longer than those for the corresponding 

Gaussian-blob Rectangle-Only conditions in ~vhich the 
observer did not have to segregate two regions of 
texture. See Discussion lbr the theoretical implications 
of  this comparison. Whether these times correspond to 
one's ideas o f" immedia te"  may depend on one's history. 

Match contrast conditions 

Recall that in order to equate the visibility of  Gaus- 
sian and Gabor  patterns we presented the patterns at 
several different contrasts (six for Gabor  and six others 
for Gaussian patterns). This allows us to match the 
contrast levels producing roughly equal performance in 
the Gaussian and Gabor  Rectangle-Only patterns. In 
other words, contrast levels for the two types of  pattern 
(Gabor  and Gaussian Rectangle-Only) were considered 
a match (i.e. equally visible) if they produced SAT 
functions that juxtaposed well. The matching of per- 
formance between pairs of  contrast conditions was done 
by eye, without knowledge of the corresponding per- 
formance for Embedded-Rectangle patterns of  the same 
contrasts. Matches were determined for each subject 
separately and are shown in Table 1. Three matched- 
contrast conditions were obtained for subject CS, four 
for subject AS, and two for subject JH. As can be seen 
from Table 1, the contrasts of  the Gabor-patch patterns 
had to be much higher than the contrasts of the 
Gaussian-blob patterns in order for the two types of  
patterns to produce equal performance. 
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Figures 9-11 present the matched-visibility SAT func- 
tions for subjects CS, AS and JH respectively. Each 
panel presents one matched-contrast condition. Here the 
horizontal axis shows response time rather than cue lag 
(as in Figs 6-8). Each of these response times equals the 
average response time for 100 trials per point at a given 
cue lag, and most of  them are 150-185 msec longer than 
their respective cue lags. Because subjects were required 
to wait for the auditory cue before responding, and were 
then required to respond within 200 msec, these response 
times are not the same as typical reaction time measures 
(which are usually not constrained by response cues or 

TABLE 1. Contrasts of  pairs of  Rectangle-Only 
Gabor-patch and Rectangle-Only Gaussian-blob 
patterns that were matched for equal performance 

Contrast 

Subject Match Gaussian Gabor 

JH 1 0.04 0.82 
2 0.08 1.00 

CS 

AS 

1 0.04 0.33 
2 0.08 0.41 
3 0.12 0.82 

1 0.04 0.33 
2 0.08 0.41 
3 0.12 0.82 
4 0.15 1.00 

deadlines). We present the results (and the curve fitting 
to follow) in this form because processing is more easily 
thought of in terms of these response times than in terms 
of cue lag times. 

The four curves in each panel of Figs 9 11 are the SAT 
functions for the contrast-matched Gabor  and Gaussian 
Rectangle-Only patterns (thin lines), and the corre- 
sponding Gabor  and Gaussian Embedded-Rectangle 
patterns (thick lines). The thin dashed line shows per- 
formance for the Gabor-patch Rectangle-Only patterns, 
and the thin solid line shows performance for the 
Gaussian-btob Rectangle-Only patterns. It can be seen 
that for each matched visibility condition displayed in 
Figs 9-11, these two curves superimpose or are very 
close to each other, indicating that the chosen contrast 
matches were good ones. 

Simple vs complex channel patterns 

The most important feature of Figs 9-11 are the 
locations, relative to the other three curves in each panel, 
of the SAT curves for the Gabor-patch Embedded- 
Rectangle patterns (thick dashed lines), which pre- 
sumably reflect primarily the action of complex 
channels. (Recall that the Gaussian-blob Embedded- 
Rectangle patterns are segregated primarily by simple 
channels, just as the Rectangle-Only patterns are.) In 
every panel of Figs 9-11 performance is worst for the 
patterns reflecting the action of complex channels: it 
takes longer to reach a given level of accuracy, and in 
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Embedded-Rectangle patterns. Curves are replotted from Fig. 6. 

some panels, performance never reaches an asymptote or 
even a high level of accuracy even after 900 msec. One 
other trend is also visible--the performance on the 
Embedded-Rectangle Gaussian-blob patterns (solid 

thick curve) seems to be worse than performance on 
both Rectangle-Only patterns. These comparisons of 
simple vs complex channel action will be discussed 
further. 
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Curve fitting 

To quantify the differences among conditions, we fit 
a function to each of  the SAT functions in Figs 9-11 
(to the proport ion of correct responses as a 
function of response time). At this point, we do not 
strongly suggest an interpretation of this function in 
terms of any underlying process, but use it primarily as 
an objective and concise means of summarizing the data. 
The function we used is a delay followed by an exponen- 
tial approach to a limit (see inset of  Fig. 12). It is 
horizontal at chance performance (probability cor- 
rect = 0.50) for a period of  time (called delay), and then 
the function rises exponentially to a maximum value 
(called Rmax). We used the algebraic form: 

F(t) = 0.5 for t ~< delay 

=Rmax'[1 - e  ~(t-/0)] for t ~> delay (1) 

where ~ and to are the rate and intercept parameters 
respectively, of  the exponential function describing the 
rise from chance to maximal value. The value of delay 
(the time at which the exponential function crosses 0.50) 
is related to the other three parameters: 

,n(] 
delay = to 

c( 

The function F was fit separately to the 36 different data 
sets (nine matched-contrast  sets, each containing four 
conditions) in Figs 9-11. The function F(t)  turned out 

overall to be an excellent description of our data, as 
shown in the example in Fig. 12, which displays the best 
fits (lines) and the proport ion of correct responses 
(symbols) for the third matched-contrast  condition for 
subject CS (Fig. 9, Match 3). See the Appendix for 
further discussion of the curve-fitting procedure and the 
goodness of  the fits. 

Quick-Weibullf i ts .  In addition to fitting the above 
function, we fit a Quick-Weibull function to the 36 data 
sets. The fitted Quick-Weibull functions were extremely 
similar to the functions we report here and the goodness 
of  fit was equally good. However, the actual values of  the 
parameters were less clearly related to features of  the 
data (in particular to the delay evidenced before per- 
formance rises from chance). Therefore, we will restrict 
our discussion to the fits produced by the above function 
which incorporate a delay followed by a rise. 

The rate, delay and asymptote parameters 

Figure 13 summarizes the result of  curve-fitting by 
showing, for the fitted functions F(t), the response 
time at which performance reaches 75% accuracy 
IF( t )=0 .75]  for all conditions (horizontal axes of  
Fig. 13) and subjects (different panels) for the matched- 
contrast sets (different curves) shown earlier in 
Figs 9-11. Notice that in all the curves, the time for the 
Embedded-Rectangle task with the Gabor-patch pat- 
terns (the condition involving complex channels) was the 
slowest, the time for the Embedded-Rectangle task with 
the Gaussian pattern was the second longest, while the 
times for the Rectangle-Only conditions were very much 
the same (as expected since they had been chosen as such 
in the process of  matching for visibility). 

Furthermore,  Fig. 13 shows a general effect of  con- 
trast, with performance for patterns of  relatively lower 
contrasts taking longer to reach 75% accuracy than 
similar patterns of  higher contrast. This contrast effect 
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function of the form of equation (1) with parameters marked. 
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is mos t  not iceable  for  the naive subjects  (JH and 
CS).  

Figure  14 displays,  in separa te  panels ,  the rate (a),  
delay,  and  a sympto te  (Rmax) parameters ,  as a funct ion of  
the s t imulus class, for  the 36 fitted funct ions  F(t). The 
nine curves in each panel  represent  the nine matched-  
con t ras t  condi t ions .  I t  can be seen in the first panel  
[Fig. 14(a)] that  for  all nine matches ,  the rate  (c 0 
pa rame te r s  for  Embedded -Rec t ang l e  G a b o r  pa t te rns  

( involving complex  channels)  are consis tent ly  lower 
than rates for pa t te rns  involving only simple channels  
(Rectangle-Only  G a b o r ,  Rec tang le -Only  Gauss ian ,  and  
E mbe dde d -Re c t a ng l e  Gauss i an  pat terns) .  The two 
dashed  curves are somewhat  misleading,  however,  as 
discussed below. 

Figure  14(b) d isplays  the delay pa ramete r s  for all nine 
ma tched-con t r a s t  condi t ions .  The delay pa rame te r  
marks  the response t ime at  which each fitted funct ion 
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conditions depicted in Figs 9-I 1. 
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departs from 50% accuracy. Consider first the seven 
solid curves: the delay is longest for Embedded- 
Rectangle Gabor (complex) patterns; the delays for the 
three other patterns are similar although there is a 
tendency for the Embedded-Rectangle Gaussian delay to 
be longer than those for the two Rectangle-Only patterns 
as discussed further below. 

However, two matched-contrast sets (represented by 
dotted lines in Figs 13 and 14) do not show the same 
results for the delay parameter: the delay parameters for 
the Embedded-Rectangle Gabor (complex) patterns 
from these two matched-contrast sets are much lower 
than for the other seven matched-contrast sets. These are 
the two matched sets at the lowest contrast for subjects 
JH and CS. Looking back at the SAT curves for these 
two matched sets, one sees that the SAT function for the 
Embedded-Rectangle Gabor patterns is very shallow as 
it rises out of the 50% chance baseline (thick, dashed 
lines in Fig. 9, Match 1 panel, and in Fig. 11, Match 1 
panel). With a shallow function, accurate estimation of 
the delay and rate parameters is not possible because the 
effects of these parameters interact so greatly. The effect 
of shortening the delay parameter can be counteracted 
by decreasing the rate parameter so that the resulting 
function (and hence its fit to the data) will remain much 
the same. Consistent with this, notice that not only were 
the fitted delay parameters unusually short for those two 
functions, but also that the fitted rate parameters were 
unusually low [see the rightmost points of the dashed 
curves in Fig. 14(b) and (c)]. Increasing the rate par- 
ameter and decreasing the delay parameter over wide 
ranges would still produce good fits to these two func- 
tions. Some of these fits would make the two dashed 
curves in Fig. 14(b, c) like the solid curves. Since any of 
a wide range of parameters fit these two SAT curves 
equally well, however, these two conditions are not 
informative about the delay and rate parameters which 
is why they are shown as dashed lines in Fig. 14. Note, 
however, that all acceptable fits will predict much the 
same response-time-to-75%-correct (plotted on the ver- 
tical axis of Fig. 13) since the 75% point is on a steeper 
part of the SAT function. Hence, although the curves 
are also shown as dashed in Fig. 13 for uniformity's 
sake, they can be considered as seriously as the solid 
lines. 

Figure 14(c) displays the asymptote (Rma x) parameters 
for all nine matched-contrast conditions. The asymptote 
parameter marks the proportion of correct responses, 
F(t), at which performance levels off. Notice that even 
though an asymptote may be determined by curve- 
fitting, it is not necessarily true that this asymptote is 
reached by 1000msec (the maximum response time 
allowed in this experiment). Most of the fitted asymp- 
totes are above 0.98. 

DISCUSSION 

In the experiment reported here, we explored the time 
course of texture segregation processes in simple 
(Fourier, first-order) and complex (non-Fourier, second- 

order) channels. Using the method of cued response, we 
obtained speed-accuracy tradeoff SAT functions for 
patterns segregated primarily through activity in one 
type of channel or the other (after choosing contrasts so 
that the patterns were matched for visibility). The SAT 
functions (proportion accuracy vs response time) were 
well described by a function combining a delay with an 
exponential approach to a limit. 

Simple vs complex channels 

The SAT functions for the Embedded-Rectangle 
Gabor-patch patterns (segregated primarily by complex 
channels) were in general slower than those for the other 
three kinds of pattern (segregated primarily by simple 
channels). The time-to-75%-correct was longer by 
100-200 msec (Fig. 13) depending on observer and con- 
trast. This lengthening seemed to come both from a 
slower rate [Fig. 14(a)] and a lengthening delay 
[Fig. 14(b)]. 

Other information about the dynamics of simple vs com- 
plex channels 

Many investigators of texture and motion perception 
(e.g. Chubb & Sperling, 1988; Sperling, 1989; Wilson 
et al., 1992; Yo & Wilson, 1992; Lin & Wilson, 1994) 
have invoked similar nonlinear, two-stage processing 
mechanisms in their work. Several of these investigators 
have also found evidence that processing involving 
non-Fourier (complex, second-order) mechanisms may 
take longer than processing involving Fourier (simple, 
first-order) mechanisms. Lin and Wilson (1994) com- 
pared pattern discrimination performance with Fourier 
and non-Fourier stimuli (Gaussian windowed, sixth 
derivative of Gaussians (D6s) and cosine gratings con- 
trast-modulated by D6s). They found that orientation 
and spatial frequency discriminations with Fourier stim- 
uli were unaffected by changes in stimulus duration 
(33.3, 100 or 500 msec). However, performance with the 
non-Fourier stimuli was poorer at the shorter stimulus 
durations. 

Wilson et al. (1992) and Yo and Wilson (1992) 
investigated the perception of motion in two-dimen- 
sional patterns composed of cosine gratings (plaids). 
They presented observers with patterns in which motion 
was signalled in two different directions, one direction 
resulting from processing by a Fourier mechanism and 
the other direction resulting from processing by a non- 
Fourier mechanism. At short stimulus durations (less 
than 60 msec), subjects perceived motion in a direction 
consistent with processing by Fourier (first-order, 
simple) mechanisms. At longer stimulus durations 
(around 140msec), the perceived direction of motion 
was consistent with processing by non-Fourier (second- 
order, complex) mechanisms. Similarly, Derrington and 
his colleagues (Derrington, Badcock & Holroyd, 1992; 
Derrington, Badcock & Henning, 1993) investigated the 
perceived direction of motion of various spatial patterns. 
They found that the temporal resolution of second-order 
(non-Fourier, complex) motion-detection mechanisms 
was poorer than that of first-order (Fourier, simple) 
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mechanisms. They determined that second-order (non- 
Fourier, complex) mechanisms did not contribute to 
perceived direction of motion when stimulus durations 
were less than 100 msec. 

One difference between our results and those of the 
investigations described above is that we found evidence 
that even at short stimulus durations (all of  our patterns 
were presented for 50 msec) complex channels (second- 
order, non-Fourier processes) led, albeit slowly, to 
reasonably accurate performance in most cases. In the 
motion literature, it appears that a minimum stimulus 
duration of  about 100 msec is necessary for second-order 
processes to have any influence on perception. This 
difference between motion and texture perception is not 
too surprising considering the time-dependent nature of 
motion. 

Possible explanation o f  a methodological problem 

When we initially tried to replicate some experiments 
reported by Graham et al. (1992), we were unable to 
fully replicate the effects in those experiments which 
suggested complex channels. (These were rating exper- 
iments in which the observer simply had to indicate, after 
each trial, the extent to which the regions appeared to 
segregate perceptually.) After many months of tedious 
comparisons, the following seemed to be the crucial 
difference: in Graham et al.'s experiments, due to limi- 
tations in the equipment, the subjects had had to write 
down their responses after each trial, thereby introduc- 
ing a 1- or 2-sec delay between the stimulus and the 
actual response. In the attempted replication, the pro- 
cedure was entirely computerized and the subjects just 
pushed a button, which they did much faster than they 
could have written a response. Indeed, in the automated 
procedure, they raced through trials four or five times 
faster than in the Graham et al. experiments. We then 
tried requiring a I-sec delay between the end of the 
stimulus and the subject's button push. This enforced 
delay re-established the signature of the complex chan- 
nels where it had been weak. Several possible reasons for 
this effect were briefly discussed in Graham et al. (1993). 
The reason that now appears most likely to us is 
supported by the SAT study here. Perhaps observers 
who can go as fast as they want (as they were initially 
allowed to do in the attempted replication) answer as 
soon as any information is available. Then, according to 
the results of this SAT experiment, they will tend to 
answer on the basis of simple-channel output before the 
complex-channel output is fully available. Thus any 
effect of  complex channels will be attenuated in their 
responses. When a l-sec delay is enforced before re- 
sponding, however, they will have both simple- and 
complex-channel outputs available at the time of 
their response and effects of complex channels will be 
visible. 

Edge effects 

It is very unlikely that edge effects (information 
particular to the boundaries between the texture regions) 
have contributed in any significant way to the results 

reported here. Sutter et al. (1989) described the results of 
experiments in which they employed stimulus patterns 
very similar to the ones presented in the present study, 
i.e. checked-vs-striped texture regions. Sutter et al. pre- 
sented the results and a discussion of extensive filtering 
of their patterns, and over a wide range of spatial 
frequencies and orientations found no responses at 
the boundaries sufficient to support segregation of the 
regions. 

Embedded-Rectangle vs Rectangle-Only 

Three SAT functions in each matched set presumably 
reflect the action of simple channels (those for the 
Embedded-Rectangle Gaussian-blob, Rectangle-Only 
Gaussian-blob, and Rectangle-Only Gabor-patch pat- 
terns). The functions for the two Rectangle-Only pat- 
terns were quite similar to one another, as expected since 
the matching was based on performance in that 
condition. However, the function for the Embedded- 
Rectangle Gaussian-blob pattern seems to be slightly 
slower than either of the Rectangle-Only cases. In par- 
ticular, the response time to 75% correct is longer in nine 
out of nine cases (Fig. 13), the fitted delay parameter is 
longer in six of the seven reliable cases [Fig. 14(b)] and 
the fitted rate parameter is slower in six of the seven 
reliable cases [Fig. 14(a)]. 

Within the framework of our current model, this 
difference between the two Gaussian-blob patterns 
(Embedded-Rectangle and Rectangle-Only) presents a 
problem since both ought to be primarily segregated by 
the same simple channels (the simple channels sensitive 
at the fundamental frequency of the pattern). To under- 
stand this problem, consider a concrete example: a 
vertically-striped rectangle of Gaussian blobs embedded 
in a checkerboard background (Embedded-Rectangle) 
compared to a vertically-striped rectangle of Gaussian 
blobs surrounded by a blank screen (Rectangle-Only). 
The overall orientation of the rectangle is irrelevant so 
it will be ignored. In the Rectangle-Only version, one set 
of simple channels (those sensitive to a vertical orien- 
tation and to the fundamental frequency of the striped 
arrangement) have a large output inside the rectangle 
and zero output outside. All other channels have zero 
output everywhere. What happens in the Embedded- 
Rectangle case? The same set of simple channels (those 
sensitive to a vertical orientation and the fundamental 
frequency) again have a large output inside the rectangle 
and zero output outside [at least by current estimates 
of the orientation bandwidth of simple channels, e.g. 
Graham et al. (1993)]. Now there is a second set of 
simple channels (those sensitive to an oblique orientation 
and to the fundamental frequency) which are active: they 
have a large output outside the rectangle and zero input 
inside, and if anything, they ought to augment the 
perceived segregation of the regions. The Embedded- 
Rectangle Gaussian-blob segregation ought to be better, 
if anything, than the Rectangle-Only case, opposing the 
trend in the results. 

There are several possible explanations of the 
superior segregation for the Rectangle-Only relative to 
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the Embedded-Rectangle  Gauss ian-b lob  patterns.  Per- 
haps the or ienta t ion  bandwid th  of  the simple channels  
operat ing here is substant ia l ly  broader  than  previously 
estimated [Graham et al. (1993) were working at much  
higher spatial frequencies]. Then  in the Embedded-  
Rectangle case, the channels  that  are sensitive to the 
pa t te rn  inside the rectangle would also respond outside 
(and vice versa) and  thus their abili ty to signal the 
differences that  lead to segregation would be reduced. A 
second possibility arises from the possible existence of 
cross-channel  inhibi t ion,  perhaps as modelled by a nor-  
mal iza t ion  network that  we have proposed to explain 
other texture results (Graham,  1991; G r a h a m  et al., 

1992; G r a h a m  & Sutter, 1995). Indeed, even if there were 
only a small subset of  channels  that responded some- 
what  to bo th  or ienta t ions  (perhaps channels  tuned to an 
intermediate  orientat ion) ,  these other channels  would 
inhibi t  (or "mask" )  the response of the channels  sig- 
nal l ing segregation. The latter scenario brings up a third 

possibility. Perhaps, even though the or ienta t ion  band-  
width is so nar row that  no channel  at all responds either 
inside or outside the rectangle, there is inhib i t ion  that 
occurs with some substant ia l  spatial spread (see e.g. Sagi, 
1990). Then  the fact that  some channels  are responding 
outside the rectangle (in the Embedded-Rectangle  case) 
might  reduce the responses of the channels  inside the 
rectangle (even though they are channels  sensitive to 
different spatial frequencies and  orientat ions)  and  thus 
reduce perceived segregation (relative to the Rectangle- 
Only  case). A final possibility, vague but  entirely reason- 
able, is that  the Embedded-Rectangle  vs Rectangle-Only 
segregation compar i son  reveals a level of visual process- 
ing that is no t  well represented in the f ramework of our  
current  model  (one of  the inevitable mul t i tude  of pro- 
cesses hidden in our  simple decision-rule stage). 
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A P P E N D I X  

Details ~/' the ('urve ~/itting Procedure 

The function F [equation ( 1 )l was fit separately to the 36 different data 
sets (D) corresponding to the nine matched-contrast  sets depicted in 
Figs 9 I I. each containing four conditions. To find the best fitting 
functions of the form of equation ( l ), a grid search was conducted over 
values of  the parameter Rm,,~ (which was not allowed to exceed 0.9999), 
and the Nelder Meade algorithm (as instantiated in MATLAB: see, 
e.g. Press, Flannery, Teukolsky & Vetterling, 1986) was used to find 
the two parameters t 0 and ~ from equation (1) in the text. To take into 
account the heterogeneity of  variance in proportions, the error term 
that we minimized was: 

e r ro r=  i ( [D( t ) -F ( t ) ] )  ~- (Al l  
I 1 \  O'r 

where a, is the standard deviation of the data proportion D(t ) on the 
assumption that the true proportion is F(t), namely: 

= /F(t) I[1-F(i)]  

where the eight values of  t are the eight values of  the average response 
times produced by the eight different cue lag times (50, 100, 150, 200, 
250, 300, 500 and 800msec after the stimulus onset), D(t) is the 
proportion of  correct responses given by the subject at cue delay t, F(t ) 
is the value at time t of  the fitted function, and n is the number  of  trials 
per data point D (t). The value of n was 100 for all the results reported 
here. 

Generally, the goodness of  fit can be assessed by considering the 
errors [equation (A1)] obtained for our fits. They confirm that the fits 
were good. If the number  of  trials n was large enough and if the data 
were indeed describable by functions of  the form in equation (1) then 
each data proportion D(t) would be normally distributed with a mean 
o fF( t )  and a standard deviation ofa~. If so, each term in equation (A1) 
would be the square of a standard normal deviate. Since the sum of 
independent squared standard normal  deviates is X 2 distributed, the 
error expression in equation (A l) would be X 2 distributed. If not only 
was n large enough, but the parameters had been estimated by 
maximum likelihood methods, the number  of  degrees freedom /d.f.) 
would be 5 (d.f. = 8 - 3 ) .  This 7.2 distribution has a mean of 5, a 
median of 4.35, a standard deviation of 4.35, a 95% cut off of  11.07 
and a 99% cut off of  15.09. The distribution of sum-squared errors 
[equation (AI)] for the 36 fits performed for the experimental results 
reported here is presented in Fig. A1. This distribution was very close 
to the 7.'- distribution with d . f . -  5 with perhaps a hint of  being 
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somewhat higher; in particular, for the distribution of  sum-squared- 
errors from the experimental results the mean was 5.8, the median 4.9 
and the standard deviation 3.7; also four of  the 36 values were above 
the 95% cut off value (although two were barely above) and one was 
above the 99% cut off. Thus  considered as a whole, the fits here are 
as expected from the hypothesis that  the true population proportions 
are given by functions of the form in equation (1). 

Monte Carlo simulations 

However, given the extreme probabilities generated by F(t) for most  
of  our curves, the expected number  of  incorrect responses is much  less 
than one at many  cue lags, and the normal  approximation may well 
be inadequate. To investigate this possibility, we ran some Monte- 
Carlo simulations using true probabilities F(t) like those describing 
our data and generating the data proportions D(t) randomly. (We ran 
seven different simulations, each composed of  1000 simulated replica- 
tions of  an experiment involving eight cue lags with 100 trials at each 
lag. We did not go so far as to fit each of  the 7000 simulated sets of  
data, however, as the time required did not seem worth the gain.) We 
computed the error expression in equation (A1) from the true pro- 
portions. If n were large enough, this computed sum-squared error, 
which consists of  eight independent terms and no parameter estimates, 
would be expected to be X 2 distributed with 8 d.f. This Z 2 distribution 
has a mean of 8 and a standard deviation of  4. While the distributions 
of  sum-squared errors from the simulations did turn out  to have means  
near 8, their s tandard deviations were larger than 4, sometimes 

substantially (by a factor of  3 or 4). The standard deviations were 
larger for the following reason: in the simulations, there were rare 
occasions on which the simulated observer made a mistake at the long 
cue lags even though the true probability of  being correct at those lags 
was very high (e.g. 0.9999). When such a mistake occurs, the sum- 
squared errors computed from equation (A 1) is very large indeed; these 
rare occasions lead to a somewhat bimodal distribution of  sum- 
squared errors (most contained down near zero in a distribution that 
looks like a Z 2 but  a few very large error terms that tend to be 
concentrated together) with an elevated standard deviation. 

Of  course, if instead of using the true proportions in equation 
(A1), one used fitted functions to the results and used those 
proportions (as we did for the data from the experiment but not 
for the simulations), the effect of  these rare mistakes would have 
been attenuated (because the asymptote estimated would have 
been lower than the true proportions). But the direction of  the 
effect would remain: the actual distribution of sum-squared errors 
would be more spread out  than that given by the asymptotic theory 
(more spread out than the Z2 with 5 d.f. in short). In particular, 
the appropriate 0.05 and 0.01 cut off would be somewhat higher. 
This could only make the obtained fits look even better than they 
already appear. 

In summary,  the results of  the Monte Carlo simulations confirm that 
the obtained fits are good- - in  other words, the distribution of  the 
obtained error terms is what one would expect on the hypothesis 
that the true functions are of  the delayed exponential form F in 
equation (1). 


