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Perceived segregation between element-arrangement textures is affected both by spatial scale and
background luminance. The effects on the spatial nonlinearity are consistent with the proposed
structure for complex (second-order) channels. The effects on the intensive nonlinearity are not
consistent with an early, local nonlinearity but are consistent with either (i) a relatively early, local,
nonlinearity occurring before the spatial frequency channels but after a sensitivity-setting stage, or
(ii) inhibitery interaction among channels modeled as a normalization network. Thus the texture
intensive nonlinearity comes after sensitivity to spatial frequency and background luminance has
been determined. For six of seven observers, the texture intensive nonlinearity was compressive by
10% contrast for both increments and decrements (at high background luminance, large spatial

scale). Copyright © 1996 Elsevier Science Ltd.

Adaptation Gain Inhibition Nonlinear

Texture

INTRODUCTION

Models incorporating spatial frequency- and orientation-
selective channels explain many aspects of perceived
segregation among regions distinguished by texture,
particularly when known nonlinearities are included.
[For an excellent review of the earlier texture literature,
see Bergen (1991).]

One such nonlinearity is the spatial nonlinearity
involved in complex channels. A complex channel
consists of two stages of linear filtering separated by a
rectification-type nonlinearity. A number of investigators
have invoked such processes in the study of texture and
motion perception, often calling them non-Fourier or
second-order or simply nonlinear processes (e.g. Rob-
son, 1980; Grossberg & Mingolla, 1985; Shapley &
Gordon, 1985; Chubb & Sperling, 1988; Sutter et al.,
1989; Fogel & Sagi, 1989; Sperling, 1989; Turano &
Pantle, 1989; Victor & Conte, 1991; Wilson et al., 1992).

A second nonlinearity—the intensive nonlinearity—is
necessary also. It depends more directly on the intensities
(or perhaps contrasts) than on the spatial characteristics
of the pattern (e.g. Sperling, 1989; Graham, 1991; Victor
& Conte, 1991; Graham et al., 1992a). This intensive
nonlinearity might result from an early, local nonlinear-

*To whom all correspondence
nvg@psych.columbia.edu].
tDepartment of Psychology, Columbia University, New York,

NY 10027, U.S.A.
iDepartment of Psychology, Loyola University, 6525 North Sheridan
Rd, Chicago, IL 60626, U.S.A.

should be addressed [Email

ity preceding the channels (perhaps retinal light adapta-
tion). As diagrammed in Fig. 1, a compressive nonlinear
function might be applied to each point of the stimulus,
and the output of this nonlinear function might then be
the input to the frequency- and orientation-selective
channels.

Alternately, as in Fig. 2, the intensive nonlinearity in
texture segregation might result from interaction among
the channels [e.g. intracortical inhibition (Morrone ef al.,
1982; DeValois & Tootell, 1983; Bonds, 1989)]. We
have modeled such interaction by a normalization
network based on the work of Heeger (1991, 1994) and
Robson (1988a,b). Other investigators have invoked

Early Simple Complex All Higher
Local Channeis Channels Levels
Nonlinearity

(depends an ++++4 2
background |- - = = 4 é o
umi 5, "]
; uminance) 4+ 4 . _:++ c a
- e (V- o <]
%1z, ] 4 5 | la
~ . + - o
- w h . - 8 @

« Bof-~--f-~- == 4.

ERI ‘ o1 o ||E
EREES ] ) + ¥ o 0
- T
§ 3 - [ e V2R g °
& | |© contrast (¢) Tt + @ 2
2 g
S 7
2 2
Ello

]

e +-+ ($]

G {ViE=+
-t

FIGURE 1. Diagram of the early—local nonlinearity hypothesis. See
Fig. 10 for a modified version of the early-local nonlinearity
hypothesis.
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FIGURE 2. Diagram of the normalization hypothesis. The intensive
nonlinearity is the result of inhibitory interaction among the channels
themselves instantiated as a normalization network.

similar processes in somewhat different forms to explain
texture segregation or other similar tasks (e.g. Grossberg
& Mingolla, 1985; Sperling, 1989; Lubin & Nachmias,
1990; Malik & Perona, 1990; Wilson, 1990; Bergen &
Landy, 1991; Landy & Bergen, 1991; Victor & Conte,
1991; Lubin, 1992; Gorea & Papathomas, 1993).

The primary aim of the study reported here is to
explore the intensive nonlinearity at different spatial
scales and background luminances in an attempt to more
fully characterize its quantitative properties and to begin
to understand its source and function. One specific
motivation for this study is the following observation: if
the intensive nonlinearity were in fact acting point-by-
point on the stimulus before any spatial-filtering action
occurs (as shown in Fig. 1), it should not depend on the
spatial scale of the pattern. In addition, we were
interested in the effect of spatial scale and background
luminance on complex channels. Finally, other studies
(e.g. Cannon & Fullenkamp, 1993; Graham et al., 1993)
have found dramatic individual differences in similar
situations; another aim of the present study was to collect
enough results from individual subjects that individual
observers’ nonlinearities could be described and com-
pared.

METHODS AND PROCEDURES

Two experiments are reported here. Briefly, both
experiments used stimuli like those in Fig. 3. The two
types of elements in any one stimulus were always
squares of the same size, but stimuli could differ in their
overall spatial scale. (When spatial scale varied, both the
square widths and the inter-square spaces varied
proportionately—while keeping the number of elements
the same—as if the same stimulus were viewed from
different distances.) At each spatial scale, the contrasts of
the two elements were varied to allow the fitting of
models as in Graham er al. (1992a). In Expt 2,
background luminance was also varied. Seven observers
were studied (one in both experiments, four others in
Expt 1, and two others in Expt 2).

The Stimuli

Element-arrangement Textures and Constant-Differ-
ence Series. The stimuli used here (e.g. Fig. 3) are
element-arrangement texture patterns like those used
originally by Beck et al. (1983). In a constant-difference
series of these stimuli (see Fig. 4), the background
luminance and the difference between the luminances of
the two element types remains fixed, but the absolute
luminances of the two element types vary together.

We will use the word “pattern” to mean a particular
spatial arrangement at a particular background luminance
without commitment to the contrast of its elements—e.g.
for one pattern, both types of clements are 0.5 deg
squares, the space between squares is 0.5 deg, and the
background luminance is 200 td. Figure 5 shows the full
set of 66 contrast combinations used for any particular
pattern. The horizontal axis gives the contrast of one
element type:

¢1 = ALy /Likq,

where L is the luminance of the elements of type one,
Lyq is the luminance of the background and
AL = L1 — Lyyg. The vertical axis gives the contrast of
the other element type. Contrasts are shown in arbitrary
units called steps, and the size of a step was in general
different for different patterns. Any set of stimuli along a
positive diagonal in Fig. 5 form a constant-difference
series. All stimuli on any line through the origin have the
same ratio (AL, / AL;) and thus the same contrast ratio
(c2/ ¢1). This line through the origin can be represented
by its angle, called the contrast-ratio angle, which we
measure relative to the negative diagonal. Thus, it goes
from — 90 deg for same-sign-of-contrast (both elements
dark) to + 90 deg for same-sign-of-contrast patterns (both
light).

Spatial Characteristics of the Stimuli. The two element
types were always squares of the same size. The space
between two adjacent squares was the same as the square
width. There were always 12 rows and 15 columns of
elements with the five central columns being a checker-
board region and each set of five flanking columns a
striped region as in Fig. 3. (Logically the seven central
rows could be considered to be a checkerboard region.
That is not how most observers report the perception,
however. This distinction is not of relevance here in any
case, as we do not study the boundary.)

For Expt 1, the three different spatial scales had the
following characteristics. At the largest scale the squares
in the pattern were 0.33 deg wide (16 pixels) as were the
spaces between the squares. Thus, the repetition period of
either the checkerboard or striped regions, which is two
rows and columns of square elements with the associated
inter-element spaces, was 1.33x1.33deg (64 x64
pixels); therefore, the fundamental frequency, which is
equal to the reciprocal of the repetition period, was
0.75 c/deg both horizontally and vertically. The middle
spatial scale was one-quarter that of the largest spatial
scale The smallest spatial scale was one-quarter that of
the middle. In summary, the three spatial scales used in
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FIGURE 3. Reproductions of several of the stimuli. The two element types are arranged in a checkerboard in the center regions
and in stripes in the flanking regions. Illustrated are (a) an opposite-sign-of-contrast stimulus, (b) a one-element-only stimulus,
and (c) a same-sign-of-contrast stimulus. The stimuli shown here will have been distorted in reproduction.
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FIGURE 4. Each small diagram shows the luminance profiles of the two element types in a single stimulus. These five stimuli
are all in the same constant-difference series—i.e., the difference between the luminances (and, consequently, contrasts) of the
two element types is the same in all five stimuli. The contrast-ratio angle is defined in the next figure.

Expt 1 had square widths of 0.33, 0.08, and 0.02 deg
corresponding to fundamental frequencies of 0.75, 3, and
12 c/deg.

The smallest spatial scale used in the Expt 1 could not
be used in Expt 2 as it was invisible at the lower
background luminances even at the highest available
contrast. The three scales used in Expt. 2 had square
widths of 0.33, 0.17, and 0.08 deg, corresponding to
fundamental frequencies of 0.75, 1.5, and 3 c/deg.
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FIGURE 5. Diagram of the half-matrix of 66 different contrast
combinations used for each pattern in these experiments. The contrast
of one element type is plotted on the horizontal axis and that of the
other element type on the vertical axis. Each circle represents one
stimulus. The stimuli along any positive diagonal form a constant-
difference series. The ratio of the contrasts of the two element types is
constant along lines through the origin. The corresponding contrast-
ratio angle is labeled outside the diagram.
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Viewing Conditions and Background Luminance. The
luminous screen was approximately 16 cm high and
21 cm wide which, at a viewing distance of 0.91 m, was
10 x 13 deg of visual angle. The background luminance
of the screen was constant throughout each experiment
(during stimuli, fixation points, and inter-stimulus
intervals) at 18 ft-L.

In Expt 1, the observer viewed the screen binocularly
while sitting in a chair with unrestrained head and natural
pupils. [A typical observer’s pupil at this light level
would be about 2.5 mm dia (e.g. Hood & Finkelstein,
1986, Table 5.2) corresponding to about 300 td. We did
not measure our observers’ pupils.] The chair was set so
that the distance between the eye and the screen was
0.91 m initially (presumably modulated a few centi-
meters by unintended shifts in head position). There was
a small lamp 6 ft behind the observer which—along with
the CRT screen itself—provided some ambient illumina-
tion in the room.

In Expt 2, the observer sat inside a small booth that
shielded the observer’s eyes from stray light in the room.
The observer’s chin rested on a chinrest, and the booth
and chinrest were placed so that the distance from the
artificial pupil to the center of the CRT screen was
0.91 m. The observer viewed the screen monocularly
through a 2 mm dia artificial pupil placed as close as
possible to the front of the eye (in the case of MH and
KC) or to eyeglasses (in the case of WS). Optical
correction for MH was done with a lens placed directly
behind the artificial pupil. Observer WS wore eyeglasses;
observer KC wore contacts. With a 2 mm dia pupil, 18 ft-
L corresponds to 200 phot td. (Since the artificial pupil in
this experiment was not at the same effective place in the
light beam as the real pupil, especially in the case of WS,
the size of the real pupil may have had some minor effect
on the resulting illuminance on the retina, an effect not
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represented in the troland values given here.) Three lower
background luminances were also used in Expt 2. These
lower backgrounds were produced by placing neutral
density filters between the artificial pupil and the screen.
These neutral density filters attenuated the luminance by
approximately 0.6, 1.2, and 1.8 log units, thus producing
levels of approximately 50, 13, and 3 phot td.

Contrast of the Stimuli. The step-sizes were chosen on
preliminary work to crudely equate visibility at the
different spatial scales and background luminances.

In Expt 1, the step-size for the largest and middle
scales (fundamental frequencies of 0.75 and 3 ¢/deg) was
4% contrast. Thus, the largest contrast used (5 steps) was
20%. For the smallest scale (fundamental frequency 12
c/deg) the step-size was increased to 8% contrast, and
thus the largest contrast used was 40%.

In Expt 2, the step-size was identical for the three
scales at each background luminance but varied with
background luminance. The step-sizes were 4, 8, 12, and
16% from the highest to the lowest background
luminance used.

Equipment and Calibration. The patterns were gener-
ated and the experiments run by a Macintosh Ilci on a
standard Apple monochrome monitor using Pascal
programs built upon programs kindly supplied by Hugh
Wilson. Based on calibrations with a uniform field, there
were available 151 linearized gray levels. The back-
ground luminance of all our stimuli was set at the
midpoint and hence the smallest contrast step was
nominally 1/75. However, the following difficulty should
be noted. The luminance of a pixel is not perfectly
independent of its neighbors. This is a particular problem
with the smallest squares used in Expt 1, since they only
contained a single pixel. To obtain a given contrast with
these stimuli, we found it was necessary to increase the
nominal contrast (the contrast in the array of numbers
controlling the pixel-by-pixel luminance of the CRT) by
a factor of approximately two. The true contrast for the
different sizes of squares was estimated both by some
physical calibrations and by comparing psychophysical
thresholds at different viewing distances. (For example,
the 1-pixel squares at 0.9 m should act like 4-pixel
squares at 3.6 m distance when their true contrasts are
identical and the observer is able to accommodate to the
different viewing distances correctly.) We are not
completely satisfied with either type of calibration and
feel there is substantial uncertainty in the estimates of
contrast at the smallest size. This uncertainty is not as
much as a factor of 1.5, however, so one might
conservatively say that the step-size is definitely some-
where between 5 and 12% rather than the 8% mentioned
above. Uncertainty of this magnitude does not affect the
conclusions below.

The Procedures

Structure of the Experiments. Each block of trials in
both Expts 1 and 2 contained 198 trials (3 spatial scales of
pattern x 66 contrast combinations in each). In any block,
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the trials were all at the same background luminance. An
observer generally participated in one block a day.

In Expt 1, there were 4 blocks of trials run for each of
the 5 observers; thus there were 4 repetitions of each
stimulus for each observer.

In Expt 2, there were supposed to be 16 blocks for each
of the 3 observers (4 blocks at each of the 4 background
luminances). Thus, there were again supposed to be 4
repetitions of each stimulus for each observer. But
observer KC did not complete the last two blocks (one
block at each of the middle two background luminances).
The order of the blocks at different background
luminances was random with the constraint that one
block at each background luminance was done before
moving on to the next set of 4 blocks.

Structure of a Trial and the Response Scale. Each trial
started when the subject pressed the top inch of a
response device (an “Unmouse™). A fixation pattern then
appeared for 1 sec. It was a cross located in the middle of
the screen, at 10% contrast (8 x 16 pixels, i.e.,
0.17 x0.33 deg). Immediately after the fixation pattern,
the stimulus pattern was presented for 1sec with an
abrupt onset and offset. After stimulus offset, a 1 sec
delay occurred and then a beep signaled that the observer
could make a response by pressing the appropriate
position within a rectangle (about 10 cm wide x 2.5 cm
high) on the response device. Although the responses
were actually recorded on a finely divided scale (from 0
to 100, as the observers knew), five equally spaced
numerals were written on the face of the response device
to guide their responses. A sheet of paper was available
whenever they wished to look at it stating that the
meaning of these numerals were:

0—No segregation between the regions

1—Barely perceptible segregation between regions
2—Perceptibly segregated regions

3—Moderately segregated regions

4—Highly segregated regions.

After the observer’s response, there was a double-beep.
We used the 1 sec delay because some preliminary
experiments with computer-recorded responses but with-
out the delay failed to replicate the dip in segregatability
for opposite-sign-of-contrast square-element patterns
relative to one-element-only stimuli. Several possible
reasons for this effect were briefly discussed in Graham et
al. (1993). Sutter and Graham (1995) present evidence
that complex channels have considerably slower proces-
sing dynamics than do simple channels; thus, without the
imposed delay observers may go ahead and respond on
the basis of the simple-channels response before the
complex-channels response has been registered.
Observers and instructions. There were five observers
in Exp. 1 and three observers in Expt 2; one observer,
MH, ran in both experiments. All were undergraduates at
Columbia University. The results shown for observers
SO, WO, and TH in Expt 1 were the first results collected
for these observers. The other observers had participated
in several texture-rating experiments before running Expt
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2 here. The observers were naive as to the purpose of
these experiments, although two of the observers (MH
and CV) were co-authors on related papers (Graham et
al., 1992b, 1993).

Before participating in their first segregation-rating
experiments, the observers all received 15-30 min of
instructions including a series of practice patterns. They
were told to maintain fixation at the center of the screen
(even after the fixation mark had disappeared) and to
indicate by their response the degree to which the regions
immediately and effortlessly segregated. They were
explicitly instructed NOT to focus on the individual
squares or any other form of local information and NOT
to indicate the result of scrutinizing the patterns for
differences. They were asked to ignore factors such as the
overall size and the degree of brightness of the pattern.
They were also instructed to maintain a focus of attention
that was global (while, however, continuing to fixate the
center of the screen).

Average Segregation Ratings. For each of the 66
stimuli (as in Fig. 5) for a given pattern (a given spatial
scale, background luminance, and observer), the average
segregation rating was computed over the four repetitions
of the stimulus. The models were fit to these averages.

Segregation Thresholds. A segregation threshold cg
was also calculated for each pattern. This threshold ¢ is
the contrast in the one-element-only version of the
pattern that leads to a mid-scale segregation rating (a
response scored at 50 out of 100—corresponding to “2-
perceptibly segregated regions” on the written scale). In
practice, computing the segregation threshold involved
interpolation between values of contrast used for one-
element-only stimuli in the experiment or, in two cases,
extrapolation (for observers TH and WO at the smallest
spatial scale in Expt 1, aided by available results for
opposite-sign-of-contrast stimuli).

In relating the results here to other work, one might
wish to know how the texture-segregation thresholds
used here relate to the conventional detection thresholds.
Do regions only segregate when one-element-only
stimuli are far above detection threshold, or will they
segregate whenever the necessary information is visible?
We have not done an exhaustive study of detection
thresholds, but some measurements (for observers WS
and KC at the highest and lowest background luminances
and the largest and smallest scales from Expt 2) produced
conventional detection thresholds (¢’ = 1.5) that were 2—4
times lower than the segregation thresholds for the same
patterns.

THE MODELS

This section briefly reviews previous models (Graham,
1991; Graham et al., 1992a—c) and presents sets of
predictions from the two candidates for the intensive
nonlinearity. A third model for the intensive nonlinearity
will be presented in the Results section.

Simple Models
Models containing only simple channels (channels
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consisting of a single stage of linear filtering) make a
simple prediction for element-arrangement textures
where both elements are squares of the same size (as
used here)—namely, all the stimuli in a constant-
difference series should perceptually segregate to almost
exactly the same extent. Here we approximate simple
models’ predictions by the following equation (as we did
in our earlier papers after justification by the predictions
of the full model). Let Dg be the contribution of the
simple channels to the predicted perceived segregation.
Then,

Ds =ws - |Ly —Ly| =ws - |[AL; — ALy|. (1)
The constant wg reflects the sensitivity of the observer’s
simple channels and depends on the pattern (i.e., the
spatial scale and the background luminance) but not on
the contrasts of the elements.

Although these simple models do not contain complex
channels nor the intensive nonlinearities, they must
contain a rule for computing the observer’s response from
the channels’ outputs (the rightmost box in Figs 1 and 2).
The rule used in all our models here is effectively this:
two regions segregate to the extent that they elicit
different amounts of activity in one or more of the
channels. Dg in Eqn (1) is a measure of this extent. The
observer’s rating is assumed to be a monotonic function
of D. We routinely use a family of rules to insure that the
particular form of the rule makes no difference to the
conclusions. See Graham (1991) and Graham ez al.
(1992a) for further discussion.

An example of predictions from Eqn (1) is shown in
the bottom left of Fig. 6. The horizontal axis shows the
contrast-ratio angle. The vertical axis gives predictions of
the model. Each curve connects points representing the
predictions for a constant-difference series, and the size
of that constant difference increases from the bottom to
the top curve.

Complex Channels

Experimental results, however, were very unlike the
simple-channel models’ predictions (Graham, 1991;
Graham et al., 1992a). For one thing, the opposite-sign-
of-contrast patterns, like that in Fig. 3(a), were somewhat
less segregatable than the one-element-only members
[like that in Fig. 3(b)] in the same constani-difference
series. (This effect will be shown here in the data for
individual observers; it is the dip in the middle of many of
the curves in Fig. 8, for example.)

This dip in sensitivity for opposite-sign-of-contrast
patterns is easily explained by complex channels due to
the rectification-type-nonlinearity that occurs between
the two filtering stages (Graham, 1991; Graham et al.,
1992a). The following equation gives approximately the
contribution of the complex channels to perceived
segregation:

Dc = wc - ||ALy| — [AL,||. (2)

The parameter wc reflects the number and sensitivity
of the observer’s complex channels and, like wg, depends
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on the pattern (i.e., the spatial scale and the background
luminance) but not on the luminances of the elements.

Equation (2) assumes that the complex channels are
completely insensitive to opposite-sign-of-contrast pat-
terns as if the nonlinearity between the two filtering
stages were full-wave rectification (or some other even-
symmetric function). The characteristics of the inter-
mediate nonlinearity in complex channels are still
unknown, so this is a tentative assumption. But weaken-
ing it to be, for example, half-wave rectification would
have no effect on our conclusions below.

To predict the observer’s segregation, the contributions
of both simple and complex channels are pooled to yield
the following:

Ds.c = {D{ + le:}l/ka (3)

where the exponent % is a parameter determining the
characteristics of the pooling across channels. The
observer’s rating is assumed to be a monotonic function
of this quantity.

Model with Early-L.ocal Nonlinearity

There was a second discrepancy between the predic-
tions of the simple models and the results. Same-sign-of-
contrast patterns [e.g. Fig. 3(c)] are in general much less
segregatable than the others in the same constant-
difference series, and the further that the elements’
luminances get from the background luminance, the
worse segregation gets. (See, for example, the downturn
of the ends of most curves in Fig. 8.) This poor
segregation between regions in these same-sign-of-
contrast element-arrangement patterns occurs even
though the difference between the two types of elements
is easily perceivable (Beck er al., 1991).

An early local nonlinearity acting pointwise before the
channels (Fig. 1) predicts this result by adjusting the
limited operating range of the visual system to be
centered at the current background luminance in order to
insure discriminability among luminances near the
background luminance; this has the consequence that
luminances far from the background luminance are
compressed. To calculate approximate predictions from
such an early local nonlinearity, one can use Eqns (1) and
(2) above, but substitute the outputs of the early local
pointwise nonlinearity, which will be called #(AL;), for
the luminances AL; in those equations. The resulting
quantities will be called Dg« and D¢+ to distinguish them
from the corresponding quantities in Eqns (1) and (2):

Ds. = ws - [r(AL;) — r(ALy)| (4)
and
Dew = we - [|[r(ALy)| — [r(AL)|. (5)

Next combine the two overall differences, as in Eqn (3),
but call the result Dg; n:

Dgin = (D, + Dk} (6)

This observer’s rating is assumed to be a monotonic
function of this predicted value Dgy n.
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FIGURE 6. Predictions from an early—local nonlinearity model. The
central lower panel shows five different early, local transformations
that vary from linear (#1) to very compressive (#5). The value r(AL)
[see Eqns (4) and (5)] is plotted on the vertical axis and the contrast or
AL (in steps) is plotted on the horizontal axis. The other five panels
show the predictions from these five transformations; the predicted
value of Dgyy is plotted as a function of contrast-ratio angle for a
number of constant-difference series (different curves). For the bottom
curve (coincident with the horizontal axis), the constant difference is 0;
for the second curve from the bottom, the constant difference equals
one step, and so on. The predicted value shown on the vertical axis is
D~ computed from Eqn (6) with the values of AL, and AL, expressed
in steps. The weights on the channels set at wg =1 and we = 0. (The
absence of complex channels means there is no dip in the middle of
these curves.) The value of the exponent for pooling across channels
was set at k = 2. The predictions are plotted relative to the maximum
for that set of parameters so the maximum = 1.0 in each panel.

Figure 6 shows predictions from Eqn (6) for several
versions of a model incorporating simple channels and an
early—local nonlinearity. The five different early—local
functions are shown in the middle bottom panel and the
predictions in the surrounding panels. Function #1 is
linear and thus the resulting model is the same as the
simple-channels model; function #5 is the most com-
pressive. The exact values of the other parameters of the
model are given in the figure legend. Notice that, as the
early local function becomes more compressive (moving
from the panel on the lower left in an arc around to the
panel on the lower right), the predicted curves become
more curved downward at the ends; i.e., the same-sign-
of-contrast patterns become less and less segregatable
relative to the others in their constant-difference series.

Model with Interchannel Interaction in a Normalization
Network

There is an alternative candidate for the intensive
nonlinearity, namely inhibition among the channels (the
physiological substrate for which might be inhibition
among V1 cortical cells). Notice that the same-sign-of-
contrast stimuli contain the same amount of energy at the
fundamental frequency as do other stimuli in the
constant-difference series, but they contain a great deal
more energy at some other spatial frequencies, in
particular at those higher frequencies that define the
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FIGURE 7. Predictions from the normalization model embodying
inhibitory interaction among channels. The axes and conventions are
like Fig. 6. The predicted value shown on the vertical axis is Dyorm
computed from Eqn (8) with the values of AL; and AL, expressed in
number of steps. The weights on the channels were set at wg = 1 and
wc = 0. The values of the exponents for pooling across channels and
for pooling across space were set at k=2 and ks = 2. To control the
amount of intensive nonlinearity in these example predictions, the
value of ¢ was fixed at 4 and the value of wo was varied. The five
panels show the predictions from five values of we. The predictions are
plotted relative to the maximum for that set of parameters so the
maximum = 1.0 in each panel. In general, as the ratio wg / ¢ becomes
larger, the degree to which the predicted curves bend down at the ends
becomes more pronounced, with the curves converging to a common
envelope at the highest values of wo / 0.

individual elements. If there is inhibition among
channels, the responses to these “other” frequencies will
suppress the responses to the frequencies (in particular,
the fundamental frequency) that distinguish the checker-
board from the striped arrangement. (Nothing in the
results here can answer the questions of how large a range
of orientations or spatial frequencies or spatial positions
contributes to the inhibition, so we will continue to talk in
general about “other” channels.) The spatially pooled
regional responses of channels sensitive to these “other”
frequencies is approximately equal to

Ro = wo {|AL{ [ + |AL, s}k, (7)

where kg is an exponent describing pooling across the
spatial position of the output within any single channel,
and wg is a parameter describing the sensitivity of the
“other” channels. To finish the prediction, we use the
following expression (Graham et al., 1992a):

{D{ + DE}'™
1/k?
{0+ Dk + Dk + R}V

(8)

DnorMm =

where ¢ is a constant which, among other things, serves
to keep the expression from going to infinity as the
contrast of the stimuli is reduced to zero.

Figure 7 shows some predictions from Eqn (8) for five
versions of a model incorporating simple channels and a
normalization network. As the amount of inhibition is
increased (in this case by increasing the parameter wg for
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fixed values of the other parameter values—see legend to
Fig. 7), the curves bend down more and more until they
converge at the highest value (lower right panel of Fig.
7).

Fitting the Models to the Results

The half-matrix of data from a single pattern for a
single observer consists of 66 data points; each is the
average of the 4 segregation ratings given by the observer
to one of the 66 contrast combinations at which the
pattern was presented (as in Fig. 5). There were 51 such
half-matrices of data: 15 from Expt 1 (5 observers x 3
spatial scales) and 36 from Expt 2 (3 observers x 3 spatial
scales x4 background luminances). Each such half-
matrix of data was fit separately to each of the two kinds
of intensive nonlinearity [to Eqn (6) and to Eqn (8)].
Details of the methods for fitting predictions from these
equations to the experimental results are described more
fully in the Appendix. Briefly, the methods are like those
of Graham er al. (1992a) with several modifications. The
modifications were necessary because there was sub-
stantially more fitting to be done here [51 half-matrices of
results as compared to 3 in Graham et al. (1992a)] and
here we needed parameter estimations, not just good fits.
In overview, a crude grid search was done over most of
the parameters of both models, but the Nelder—Meade
algorithm was used to search for the best values of the
function describing the early local nonlinearity at the £ 5
steps of contrast used in the experiment, and for the best-
fitting final monotonic transformation between the
predicted values D and the observer’s segregation ratings.
The goodness-of-fit was assessed by a Pearson product—
moment correlation between the experimental results and
the transformed predictions. While this is an imperfect
measure of goodness of fit (since the variances at
different points on the response scale are not the same),
it has the advantage of speed and seems quite adequate
for our purposes here.

RESULTS

Preview of the Comparisons Between Model and
Experiment

As we will show in the first and longest section below,
the results of the two experiments reported here are not
consistent with the original version of the early, local,
nonlinearity hypothesis (Fig. 1); they are consistent with
a modified version of the early, local model which will be
presented (Fig. 10). They are also consistent with the
normalization model if the inhibitory interaction occurs
among the channel outputs (as in Fig. 2) although not if
the interaction occurs before the filtering action of the
channels. In short, at least within the framework of these
kinds of models, sensitivity to different spatial frequen-
cies and different backgrounds is set prior to the intensive
nonlinearity that acts in texture segregation.

Or to describe these results from another perspective,
the effects of spatial scale and background luminance on
the intensive nonlinearity in texture segregation can be
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FIGURE 8. Some results from Expt 1 plotted in the same way as the
predictions in Figs 6 and 7. Results from two observers are shown
(rows) and three spatial scales (columns). In each panel, segregation
rating is plotted as a function of contrast-ratio angle. Each curve is for a
particular constant-difference series (with the difference being 0 steps
for the bottom curves very near to the horizontal axes and 11 steps for
the topmost curves). The step-size was 4% contrast for the left and
middle columns and 8% for the right column. Each point is the average
of four ratings.

accounted for by variation in a single parameter—the
segregation threshold. More particularly, although the
amount of compression at a given absolute contrast
varies with spatial scale and background luminance, the
amount of compression at a given relative contrast
(where relative contrast equals absolute contrast divided
by the segregation threshold) stays constant.

The second section below describes several quantita-
tive features of this intensive nonlinearity—whether it is
modeled as a relatively early local one or as inhibitory
interaction—and describes its variation among individual
observers.

The third section below discusses the spatial non-
linearity. The contribution of complex channels increases
at larger spatial scales, as expected from their proposed
structure, but the contribution does not change with
background luminance in the range studied here.

L Results About Models of the Intensive Nonlinearity

Figure 8 shows representative results from Expt. 1
plotted in the same form as the predictions shown in Figs
6 and 7 for two observers (two rows) at all three spatial
scales (three columns). Notice that the ends of the curves
in Fig. 8 bend down more and therefore overlap more at
the larger spatial scales (left columns) than at the smaller
scales. To put it another way, the results at larger spatial
scales are more compressive (act like the higher-
numbered members of the early-local nonlinearity
family shown in Fig. 6 or like the higher values of
wo / ¢ shown in Fig. 7) than those at small scales.

When the models incorporating the two kinds of
intensive nonlinearity are fit to the results for any
particular observer and any particular pattern (e.g. to
any of the six panels of Fig. 8) they both produce equally
good fits. These fits are generally very good, explaining
between 95 and 99% of the variance in the average
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segregation ratings. (See the Appendix for more details.)
One cannot choose between the two kinds of intensive
nonlinearity, therefore, on the basis of the goodness of
these fits. The next sections explore instead the effect of
spatial scale and background luminance on the parameter
values estimated from the best-fitting versions of both
models. The systematic variation in these parameter
values is informative.

Effect of Spatial Scale on the Deduced Early, Local
Nonlinearity. The curves in Fig. 9 show the early, local
functions—r(AL) in Eqns (4) and (5)—from the best fits
of the early, local model [Eqn (6)] to the results of Expt 1.
Each panel shows the functions for the three different
spatial scales for an individual observer. The horizontal
axis gives element contrast (or AL) expressed in steps.
The vertical axis gives Ar (the difference between the
response to the element luminance and the response to the
background luminance). The symbols just above the
horizontal axis show the segregation thresholds and will
be discussed later. Quite clearly the shapes of the
functions at different spatial scales are not identical.
They are more compressive (less linear) for larger spatial

Output of ELN

Contrast (steps)

¥—3k 0.33 deg squares
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4~ 4 0.02 deg squares
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FIGURE 9. The deduced early local function Ar as a function of
element contrast (or AL) expressed in steps. (The step-size for contrast
was 4% for the two larger scales and 8% for the smallest scale.) The
different curves in each panel shows the results at the three spatial
scales for a single observer. These functions come from the best fits of
the early, local model to the results of Expt 1 under the constraint that
% = 2.0, but these functions are essentially identical even if & is allowed
to vary. The functions were scaled to equal 1.0 at the largest contrast
used to clearly show changes in shape. (The multiplicative constant is
not determined by the model fit.) The symbols just above the horizontal
axis show the segregation thresholds. The panels for observers CV and
SO are the functions fit to the data in Fig. 8. For observers WO and TH,
the threshold for the smallest scale was actually equal to six steps but is
plotted at the maximum shown on the horizontal axis.
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FIGURE 10. Modified version of the early—local nonlinearity
hypothesis. A sensitivity-setting stage has been inserted before the
early—local nonlinearity in the original model (Fig. 1). The sensitivity-
setting stage may be thought of as a linear filter that attenuates some
spatial frequencies and orientations more than others, but which has
parameters that depend on background luminance. The modified model
in this figure is consistent with the texture-segregation results while the
original early—local nonlinearity model (Fig. 1) is not.

scales than for smaller. This difference is even more
dramatic than it looks in Fig. 9, since in that figure the
contrast step-size was twice as great for the smallest
spatial scale as for the other scales. This same effect of
spatial scale occurred in the results of Expt 2 although
less dramatically since the spatial scale varied less.

The model in Fig. 1 assumes there is a single
early—local, nonlinearity occurring before the channels
and acting directly point-by-point on the stimulus
luminance. Thus, according to this model, the deduced
early—local functions should be identical for all patterns.
It clearly is not. This is evidence against the early—local
nonlinearity hypothesis of Fig. 1.

However, this version of the early nonlinear hypothesis
is very strong—it says that the compressive nonlinearity
acts directly, point-by-point, on the luminance values. To
dramatize its strength, note that it says that the
compression acts before optical blurring as well as before
all other spatial filtering. This is clearly too strong.
Whenever investigators speak of textures having only
two intensity values (black and white), they are making
the same assumption, however; it might be a good
enough approximation in some circumstances, but it
certainly is not here.

A Relatively Early-.ocal Nonlinearity. A modified
version of the early-local, nonlinearity hypothesis is
shown in Fig. 10. Here the local nonlinearity still occurs
relatively early (i.e., before the channels) and still occurs
locally (point-by-point), but, unlike the original early—
local model (Fig. 1), it does not act directly on the
luminance. Rather it acts point by point on the output of a
sensitivity-setting stage. This sensitivity-setting stage
incorporates both the effects of optical blurring and of all
neural processes (e.g. retinal-ganglion cells) that adjust
sensitivities to different orientations and spatial frequen-
cies prior to the simple and/or complex channels. Further,
as will be discussed in connection with Expt 2, the effects
of light adaptation are incorporated into this early
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FIGURE 11. Deduced early-local functions from Fig. 9 plotted against
relative contrast (contrast ¢ divided by segregation threshold cg). Each
function was vertically scaled so it is equal to 1.0 at the segregation
threshold (when c/cy = 1). The functions in this figure superimpose as
they should if the modified early—local model in Fig. 10 is correct.

sensitivity-setting stage by having its sensitivity to
different spatial frequencies and orientations depend on
background luminance.

Rather than computing the predictions from this
relatively early-local model in full detail, we continued
the approximate-equation approach we have been using.
While inexact, this approach seems quite adequate here
and has the advantage of transparency and simplicity as
well as the savings in computation. On this approximate
approach, a single parameter needs to be estimated for
each spatial scale of pattern; this parameter represents the
contrast threshold of the sensitivity-setting stage. As it
turned out, taking the measured segregation threshold ¢,
(plotted near the horizontal axes of Fig. 9) to be this
parameter worked very well so we did not try any other
estimation schemes. The ratio c/cy is taken to be an
estimate of the output of the sensitivity-setting stage in
Fig. 10 or, equivalently, of the input to the early-local
stage. Hence, to test the relatively early—local model of
Fig. 10, the early—local functions deduced from the best
fits of Eqn (6) should be replotted against the quantity
(c/cy) with the output at c/cq = 1 set equal to a constant. If
the modified model is correct, these functions should
superimpose. (There is no guarantee that this procedure
will work to produce superimposed functions; it will
definitely not work if the deduced early—local functions
for different spatial scales have different shapes on log—
log axes.) This procedure is carried out on the functions
of Fig. 9 and the results illustrated in Fig. 11. It is quite
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FIGURE 12. Deduced early-local functions from Expt 2 at different
background luminances and the medium spatial scale. The horizontal
axis shows contrast. The vertical axis shows the early local function
scaled to be 1.0 at the maximum contrast used at each background
luminance. Each panel shows the results for one observer. Only one
spatial scale (0.17 deg squares) is shown for visual clarity, but the
results of varying background luminance were similar at all scales. The
symbols near the horizontal axis indicate the segregation thresholds.

clear that the procedure did produce superimposed
functions in this case. That is, the relatively early—local
model (Fig. 10) works well for Expt 1; further, the
superimposed curves in Fig. 11 provide an estimate of the
relatively early—local transformation in that model.
Effect of Background Luminance Interpreted Within
the Relatively Early-docal Model. Since effects of
background luminance are often thought to occur at a
very early sensitivity-setting stage, it is natural to wonder
whether the modified early~local model of Fig. 10 can
also account for the effects of varying background
luminance. The four curves in any panel of Fig. 12 show
the deduced early—local functions plotted against contrast
for the four background luminances of Expt 2. (Only the
medium-spatial-scale results are shown for the sake of
visual clarity. Again the symbols just above the
horizontal axis represent segregation thresholds.) Note
that the compressiveness at any given contrast decreases
with decreasing background luminance. For example, at a
contrast of 0.20, the function for the lowest background
luminance (*) is still quite linear (absolutely linear for
observer KC), while those for the highest two back-
ground luminances (O and x) are quite compressive.
Figure 13 shows all the deduced early—local functions
from Expt 2 (all spatial scales and mean luminances)
plotted against relative contrast c/cy. These functions
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FIGURE 13. Deduced early-local functions for all conditions of Expt 2

plotted against relative contrast (c/cy). Each function was vertically

scaled so it is equal to 1.0 at the segregation threshold (when

¢/cy = 1). The functions in this figure superimpose as they should if the
modified early—local model in Fig. 10 is correct.

superimpose very well. (Observer KC’s results in the
middle panel show the most variability. The estimated
standard deviation of KC’s responses to any single
stimulus is about twice that of any of the other observers
in Expts 1 or 2.) Thus, the relatively early—local model
(Fig. 10) can account well both for the effects of varying
background luminance and spatial scale.

Interchannel Inhibitory Interaction (Normalization
Model). The left and right panels of Fig. 14 are, for the
normalization hypothesis, the analogs of Figs 9 and 11,
respectively, for the early—local hypothesis. The quan-
tities plotted on the vertical axes of the two panels
summarize the best fits of the normalization Eqn (8) to
results of Expt 1. The two panels show the appropriate
measures of compressiveness if the input to the normal-
ization network were proportional to contrast ¢ (left
panel) or to relative contrast c/c, (right panel). The
horizontal axis gives spatial scale, and each curve is for a
different observer. As with Fig. 9, the left panel of Fig. 14
shows greater compressiveness at larger spatial scales
than at smaller scales. As with Fig. 11, the right panel of
Fig. 14 shows approximately constant compressiveness.
In short, the parameter determining compressiveness is
only invariant when relative contrast—not contrast—is
taken to be the input to the normalization network. The
same result holds for Expt 2.

In the normalization model as shown in Fig. 2, the
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FIGURE 14. The fit of the normalization model to Expt 1. In each
panel, the five curves come from the five different subjects and the
horizontal axis gives the spatial scale represented as the width of the
square elements. (The symbols were offset slightly to better reveal
individual points.) The quantities plotted on the vertical axes come
from the best fit of the normalization model. The left panel’s vertical
axis shows the quantity wo/o™* = wo/(0 * Cgep). This quantity is a
measure of the degree of compressiveness at a given physical contrast.
The right panel’s vertical axis shows the product (wo/o*) - ¢g. This
product represents the degree of compressiveness at a given relative
contrast.

input to the normalization network is relative contrast
(not contrast) since the channels’ spatial-filtering action
is shown as coming before the inhibitory interaction of
the network. The constancy of compressiveness consid-
ered as a function of relative contrast (the approximate
flatness of the curves in the right panel of Fig. 14) implies
that this model is consistent with the experimental results.

On the other hand, the inconstancy of compressiveness

as a function of contrast (the lack of constancy in the left
panel of Fig. 14) implies that the results are not consistent
with a model in which the input to the normalization
network is directly proportional to contrast (as it would
be if the normalization network were to operate on the
inputs to the channels in Fig. 2).
Is all Sensitivity-Setting Prior to the Texture Intensive
Nonlinearity? Thus, within the framework of either
early—local nonlinearities or of normalization networks,
the observer’s sensitivity to different spatial frequencies
and background luminances is set prior to the process
producing the texture intensive nonlinearity.

Could, however, some of the sensitivity change still
occur after the intensive nonlinearity although much
occurs before? The fact that the curves are so well
juxtaposed in Fig. 11 suggests the answer is “no”, that all
of the sensitivity change must be occurring before the
early—local nonlinear function rather than after. The
curves in the analogous plot for the normalization model
(the right panel of Fig. 14) are not quite so convincingly
flat, but they are flat enough to leave very little room for
sensitivity changes occurring after the normalization
network. Thus, we will conclude that, for the ranges of
spatial frequency and background luminance studied
here, most if not all of the sensitivity changes occur
before the intensive nonlinearity.

N. GRAHAM and A. SUTTER

II. Quantitative Characteristics of the Intensive Non-
linearity

Linear at Low Relative Contrasts, Logarithmic at
High. Figure 15 shows the relatively early—local func-
tions from Figs 11 and 13 replotted on log—log axes (O).
At lower relative contrasts, the data points are fit well by
a line of slope 1—i.e., they exhibit linear behavior. At
higher relative contrasts, the points break away from the
line of slope 1 and tend to a much shallower slope of
about 1/2, showing that, at higher contrasts, these
functions are approximately logarithmic. (Semilogarith-
mic plots illustrate this last point directly.) In the range of
high relative contrasts where these functions are
logarithmic, it is only the ratio of contrasts in the two
elements—not their actual values—that determines
segregatability. On plots like those in Figs 6-8 which
are plots as a function of contrast-ratio angle, the
constant-difference curves in that range of high relative
contrasts (the ends of the curves) completely super-
impose.

By assumption the normalization model necessarily
embodies this quality of linear behavior at low contrast
and logarithmic-type behavior at high contrasts. At
relatively low contrasts, the predicted segregation
depends linearly on the contrast (¢ dominates the other
terms in the denominator) and at higher relative contrasts,
it depends only on the ratio of AL; to AL, (as algebraic
derivation shows when ¢ is negligible).

Individual Observers. Also apparent in Fig. 15 is a

CV, Exp.1 MH, Exp.1 MH, Exp. 2
p p
10 10 10
(o
1 1 1
045 1 10 041 1 10 033 1 10
SO, Exp.1 WO, Exp.1 KC, Exp. 2
Zz 10 10 10
o
- o® o
° 4 1 1
a
5 b
© o33 1 10 ) 1 10 %44 1 10
TH, Exp. 1 WS, Exp. 2
10 10
1 1
[*)
0,
0'3.1 1 10 035 1 10

Relative contrast (C/Co)

FIGURE 15. The scaled early-local nonlinearities for all observers
from Expts 1 and 2 on log-lot plots. The solid line has slope 1 and is
plotted through the point (1, 1), where all the functions were pinned. At
low relative contrasts, the deduced early-local data points all lie near
the line representing the linear function. At higher contrasts they
deviate and tend toward a line of slope about 0.5, with the point of
transition varying somewhat from subject to subject.
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difference among individual observers. For six of the
seven observers, the transition where the function ceases
to be linear occurs when c/cg = 2 or 3. This corresponds
to a contrast of <10% for the highest background
luminance and largest spatial scale. However, observer
KC is substantially more linear. In fact, in Fig. 15 there is
very little sign of a nonlinear range for observer KC at all.
(Auxiliary experiments including even higher contrasts
confirm that observer KC’s results do show compression
at high enough contrasts.) Fits of the normalization model
also differentiate KC from the other observers: the
estimated parameter measuring compressiveness is
approximately 0.1 for KC rather than 1.0, as for the
other observers.

Observer KC’s segregation and detection thresholds
are very similar to those of some other observers (e.g. KC
vs MH in Fig. 12), so a difference in sensitivity does not
seem to be connected to the difference between KC and
the other observers. One does wonder if the greater
linearity in KC’s behavior is related to his greater
variability. As mentioned earlier, the standard deviation
of his responses to repeated presentations of the same
stimulus was about twice that of the other observers.
Unfortunately, KC was no longer working as a subject by
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FIGURE 16. Deduced early—local functions when values at negative
and positive contrasts were allowed to vary independently. Each panel
shows the results from one observer of Expt 2 for all 12 conditions (4
background luminances x 3 spatial scales) plotted as a function of
relative contrast. The function is approximately odd-symmetric
although, particularly for MH, the left part of the function (for
decrements) is slightly less compressive than the right part. [The 12
functions plotted in a given panel here are constrained to intersect at
the origin and at (1, 1).]
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the time his difference from other observers was noticed
so no further experiments [e.g. forced-choice experi-
ments like those of Sutter and Graham (1995)] could be
done.

Increments vs Decrements. For the fits shown in Figs 9,
11-13 the early-local function was assumed to be odd-
symmetric, i.e.,

r(—ALy) = —r(AL,),

and thus only the function at positive values needed to be
plotted. That this assumption is at least approximately
correct can be seen in results plotted as in Fig. 8, where
the left and right ends of the curves dip down by about the
same amount.

One might well suspect, however, that decremental
same-sign-of-contrast stimuli should be less compressed
and therefore more segregatable than the corresponding
incremental stimuli. (The effective adapting luminance is
probably closer to the mean luminance than to the
background luminance, and thus is lower for the
decremental than for the incremental case.) It is easy to
test this suspicion by considering matched pairs of same-
sign-of-contrast patterns, where one member of the pair
(incremental) has luminances above the background and
the other (decremental) has luminances below back-
ground and the magnitudes of increments and decrements
were matched. The suspicion is confirmed. There is
definitely a statistically significant difference between
increments and decrements. (For observer MH in Expt 2,
the decrement pattern segregated more than the incre-
ment pattern in 82 of 120 matched pairs; the reverse was
true in 31; and the other 7 cases were tied. For observer
KC, these three numbers were 71, 47, and 2; and for
observer WS, they were 86, 34, and 0.) But how
substantial is this difference between increments and
decrements?

Within the relatively early—local model, the difference
between increments and decrements can be measured
straightforwardly by allowing the early local function to
be asymmetric when fitting the model to the data (see the
Appendix). The functions estimated this way from two
observers of Expt 2 are shown in Fig. 16. They are still,
however, almost completely odd-symmetric. Careful
inspection of the endpoints shows that there is some
asymmetry, particularly for MH; the left side of the
function (for decrements) is not quite as compressive as
the right side (for increments). In general, there does not
seem to be any regularity in Fig. 16 between the two
observers as to which condition is most asymmetric
and/or most compressed and which least. No other
subject (in Expts 1 or 2) showed any greater asymmetry
than MH, although several showed as much,

Thus, while there is asymmetry, it is a minor feature of
these results. It is easily incorporated in the early—local
model, as we did in fact in order to compute the curves
shown in Fig. 16. Nor does it pose a serious problem for
the normalization model as some earlier, more local
nonlinearity (e.g. conventional retinal light adaptation)
might well precede the normalization network and cause
some asymmetry between the incremental and decre-
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FIGURE 17. The effect of spatial scale on the estimated complex-
channel weight (wc) plotted as a function of square width (left panel:
from Expt 1) or background luminance (right panel: from Expt 2 for
0.17 deg squares). Each curve is from a separate observer. (The
symbols were offset slightly to better reveal individual points.) These
estimates are from fitting an early—local nonlinear model with wg =1
and & = 2. The actual values of we should be treated with caution as
there are differences due both to model and to the value of k (see the
Appendix). The relative values of wc as spatial scale or background
luminance is changed can be considered seriously.
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mental stimuli [as in, for example, the model of masking
suggested by Bowen and Wilson (1994)].

Ill. The Spatial Nonlinearity (Complex Channels)

Effect of Spatial Scale and Background Luminance on
the Complex Channels. As the spatial scale of the patterns
becomes smaller, the whole spectrum moves to higher
spatial frequencies where it is affected by the observer’s
high spatial frequency cutoff. Thus, the visibility of the
higher harmonics relative to the fundamental frequency
should decrease, and, since the complex-channel re-
sponse may well depend on the higher harmonics, the
complex-channel contribution should decrease. Visual
inspection of the results in Fig. 8 suggests there is a less
pronounced dip at the middie of the curves (a less
pronounced signature of complex channels) for smaller
than for larger scales. Figure 17 (left panel) shows the
estimated complex-channel weights (w¢) from Expt 1.
The complex-channel weight increases from something
very close to zero for the smallest spatial scale to being
two times the simple-channel weight for the largest scale.
The effects of spatial scale in Expt 2 were similar
although less dramatic since spatial scale was varied over
a smaller range. (See legend to Fig. 8 and the Appendix
for more details.)

If the relative visibility of the higher harmonics and
fundamental frequency changed with background lumi-
nance, one would expect the complex-channel contribu-
tion to change as well. For the ranges of background
luminances and spatial scales used here, however, the
shape of the relevant part of the contrast sensitivity
function did not change dramatically with background

N. GRAHAM and A. SUTTER

luminance, and, as Fig. 17 (right panel) illustrates, the
estimated value of we was much the same at all
background luminances.

DISCUSSION

Summary

L. About Models of the Intensive Nonlinearity. The
effects of background luminance and spatial scale on the
intensive nonlinearity in texture segregation can be
accounted for by variation in a single parameter—the
segregation threshold. (The segregation threshold is that
contrast which, in the one-element-only version of a
pattern, produces a criterion amount of segregation.
Spatial scales from 0.75 to 12 c/deg in fundamental
frequency and background luminances from 3 to 200 td
were studied.) Specifically,

(a) there is greater compression at a given absolute
contrast for larger than for smaller spatial scales and
for higher than for lower background luminances; and
(b) there is approximately the same amount of
compression at a given relative contrast (where
relative contrast is absolute contrast divided by the
segregation threshold) for all spatial scales and for all
background luminances studied here.

As a consequence, these experimental results are not
consistent with the original version of the early-local,
nonlinearity hypothesis (Fig. 1). All the results are
consistent, however, with a modified version—the
relatively early—local model—in which a sensitivity-
setting stage precedes a local nonlinearity which precedes
the channels (Fig. 10). They are also consistent with the
normalization model in which inhibitory interaction
occurs among the channel outputs (Fig. 2) although not
if the interaction occurs among unfiltered channel inputs.

Thus, at least within the framework of these models
ana within the ranges of spatial frequency and back-
ground luminance studied here, the relative sensitivities
to different spatial frequencies and background lumi-
nances are set prior to the compressive action of the
intensive nonlinearity acting in texture segregation.

II. Quantitative Aspects of the Intensive Nonlinearity.
The texture intensive nonlinearity acts linearly for low
relative contrasts and logarithmically—depending only
on contrast ratios—for high relative contrasts. (Very low
contrasts were not used in this study.) For the highest
background luminances (200-300 td) and largest spatial
scale (0.75 c/deg fundamental frequency) studied, the
texture intensive nonlinearity is very compressive,
showing clear deviation from linearity by 10% contrast
for six of the seven observers studied. The seventh
observer is substantially more linear.

There is a small asymmetry between incremental and
decremental stimuli with the decremental stimuli being
more segregatable than incremental ones of the same
magnitude. This is the expected effect if any light-
adaptation process that came before the channels was
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responding to something more like the space-average
luminance than the background luminance.

IIl. The Spatial Nonlinearity. The contribution of
complex channels (relative to that of simple channels)
decreases as the spatial scale becomes smaller which is
expected if, as postulated, the response of complex
channels depends on the higher harmonics. The con-
tribution of complex channels is not affected by
background luminance in the range studied.

The Modified Early—Local vs
Hypotheses

the Normalization

The modified early-local model (Fig. 10) is quite
different in a number of ways from the inhibitory
interaction among channel outputs in a normalization
network (Fig. 2). Yet, from the results here, we cannot
distinguish them. In an earlier study (Beck ez al., 1991),
we compared region-segregation judgments like those
studied here with population-segregation judgments. (In
the population-segregation task, observers were asked
how well the elements of one type stood out from among
elements of the other type when the elements were
randomly intermixed rather than arranged in stripes and
checkerboards.) If the intensive nonlinearity that acts in
region segregation were local enough to act on single
elements, it might have been expected to show up in
population segregation also. But judgments in these two
kinds of tasks were. very different. This discrepancy
suggested that the intensive nonlinearity acting in region
segregation is not local enough to act on single elements
and thus led us to favor the normalization hypothesis over
any hypothesis of local nonlinearity; in fact, we still
incline that way. On the other hand, the results of the
earlier study could also be explained if the underlying
compressive nonlinearity does act on individual elements
and is the same for both population segregation and
region segregation judgments, but population segregation
is simply easier. To rule out this alternative explanation
one will have to actually estimate the early—local
nonlinearity in the population-segregation task. Mean-
while, one ought to keep an open mind on this issue.

This open-mindedness is, however, unfortunate in at
least one way. Deductions about other aspects of region
segregation—e.g., about properties of the complex
channels—frequently depend on the nature of the
intensive nonlinearity (and on other unknown aspects of
the model such as pooling exponent). The extent of the
contribution of the complex channels here, for example,
was somewhat larger when estimated with the early—local
model than with the normalization model. Similarly, the
deduction of the actual bandwidth of the first-stage filters
depends on the intensive nonlinearity (Graham ez al.,
1993). It is quite likely that analogous confounding is
present in many conclusions about different mechanisms
of motion perception.

Comparisons of Compressiveness in Texture Segregation
and Other Visual Processes

The question arises as to how the texture intensive
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FIGURE 18. The intensive nonlinearity for texture segregation
compared to predictions of the compressive nonlinearity from models
of light adaptation. To make the comparison of shapes easier, the
functions are all scaled to equal 1.0 at the highest contrast shown
(20%). The solid line shows the early—local nonlinearity deduced from
texture segregation. It is the splined version of the median curve from
the seven observers at the largest spatial scale and highest background
luminance. (The curve is a good representation of all observers except
KC.) The —-— and ~—— lines show predictions from models of
psychophysical light-adaptation processes: the model of Sperling and
Sondhi (1968) and that of Wiegand et al. (1995). What is plotted here
for both light-adaptation models are the peaks in the-responses to step
increments (both models) and the trough in response to decrements
(Sperling and Sondhi’s model) from a steady background luminance of
600 td.

nonlinearity compares to that measured for a number of
other perceptual processes. While this comparison could
be done within either the framework of the normalization
model or of the early—local nonlinearity model, the latter
is more convenient for these comparisons and is used
here.

Light Adaptation. Figure 18 compares the texture-
segregation intensive nonlinearity with the compression
predicted by two models of light adaptation. The solid
line shows the texture intensive nonlinearity at the
highest background luminance and largest spatial scale.
The - - - - - line shows predictions from the classic model
of Sperling and Sondhi (1968). This model was
developed to deal with contrast thresholds for various
spatiotemporal stimuli on steady homogeneous back-
grounds. The line shows predictions from the
more recent model of Wiegand, Hood and Graham
(1995); also see Graham and Hood (1992) and Wiegand
(1993). This recent model merges a model similar to that
of Sperling and Sondhi (1968) with a model designed to
explain the dramatic compressive nonlinearities that
occur at transients as demonstrated in the probe-flash
paradigm. Predictions from the more recent model are
shown only for increments because the model’s response
to decrements has not been defined. [Initial tests suggest
it should be much less compressive for decrements than
for increments (Chase et al., 1993).]

The predictions from these light-adaptation models are
much less compressive than the texture intensive
nonlinearity. This is particularly dramatic for decre-
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ments, since the light-adaptation model of Sperling and
Sondhi (1968) is actually slightly expansive for decre-
ments: the larger the decrement, the greater the
magnitude of the response to it.

This difference between the light-adaptation and
texture nonlinearities would be difficult to handle in a
framework where the texture intensive nonlinearity
occurs as early or earlier than light adaptation (e.g. the
original early—local model shown in Fig. 1). It is handled
quite comfortably, however, within either the normal-
ization model of Fig. 2 or the relatively early—local model
of Fig. 10.

Suprathreshold Pattern Discriminations. Responses in
some psychophysical experiments involving discrimina-
tions among suprathreshold patterns, however, are
consistent with a very compressive intensive nonlinear-
ity. For example, the minimum spatial frequency or
orientation at which two suprathreshold gratings are just
discriminable does not change once the contrasts are
greater than several times detection threshold. It might,
therefore, be modeled using a very compressive function,
although other interpretations are possible (e.g. Campbell
et al., 1970; Smith & Thomas, 1989; Bowne, 1990).
Similarly, the extent of binocular summation in orienta-
tion discrimination ceases to change for contrasts of 20%
and above [with 5 c/deg stimuli (Bearse & Freeman,
1994)]. This kind of very compressive effect is also seen
with temporally varying stimuli. Discrimination of the
direction of motion reaches its maximum at contrasts of
2-5% (Derrington & Goddard, 1989), and the effect of
uniform-field flicker masking increases no further once
contrast is raised above 10% (Badcock & Smith, 1989).
Pantle and Sekuler (1969) measured contrast-response
functions for both the direction-selective and the non-
direction-selective components of the threshold-elevat-
ing effect of adaptation to gratings (square wave with
spatial frequency about 0.5 c/deg, velocity 6 deg/sec, and
mean luminance somewhat less than 1 ft-L); the direc-
tion-selective component increased in response only up
to about 16% contrast.

A psychophysical task of particular interest here is
masking. The reduced segregatability of the same-sign-
of-contrast patterns can be described as a kind of
masking: the differences between the two regions are
“masked” by the higher harmonics in the same-sign-of-
contrast stimuli. (Remember that the same-sign-of-
contrast effect in the texture segregation judgments is
NOT due to an inability to tell the two kinds of elements
apart; the two kinds of elements are frequently clearly
discriminable from one another even in cases where there
is no perceived segregation between the checkerboard
and striped regions.) Underscoring the possible relation-
ship between texture segregation and masking, a number
of people have recently suggested that masking and
related suprathreshold discrimination results might be
accounted for by intracortical inhibition modeled by a
normalization network like that used here for texture
segregation (e.g. Bowen & Wilson, 1994; Foley, 1994,
Heeger, 1994; Lubin, 1992; Lubin & Nachmias, 1990;
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Thomas et al., 1993). Before these normalization
explanations, masking experiments had typically been
interpreted as the result of a nonlinear transducer in the
channel detecting the test stimulus (e.g. Legge & Foley,
1980; Swanson et al., 1984). While the nonlinear-
transducer models may well turn out not to be the correct
model of masking, the calculated nonlinear transducer
provides a means of comparing the compressiveness in
masking with that in texture segregation. The most
compressive of the eight functions presented in one study
of masking (Swanson et al., 1984) is extremely similar to
the texture nonlinearity; the nonlinear function used in
another (Legge & Foley, 1980, Fig. 8) is, if anything,
even more compressive, To compare masking and texture
results more definitively, however, would require further
work; one would need to compute the masking expected
by some model(s) for the texture-segregation stimuli—
perhaps, for example, assuming that the test stimulus was
a grating at the texture fundamental frequency whereas
the mask stimulus was a compound of higher frequencies
like the higher harmonics in the textures. Whether that is
worth doing at this time, given the possible inadequacies
of all these models of masking (e.g. Nachmias, 1993), is
not clear.

Neurophysiological Results. The response-contrast
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FIGURE 19. The intensive nonlinearity for texture segregation is
compared to contrast-response functions for single neurons from four
visual areas in the macaque monkey: the parvocellular and magnocel-
lular layers of the lateral geniculate nucleus (LGN), the visual striate
cortex (V1) and the middle temporal area (MT). These physiological
functions use the median values of the parameters given in Table 1 of
Sclar et al. (1990) for functions fitted to single neurons’ firing rates
plotted against the contrast of sinusoidal gratings drifting at each
neuron’s preferred values. The background luminance for the
physiological experiments was 120200 cd/m® with a 2.5 mm pupil.
All functions are scaled to equal 1.0 at the highest contrast shown
(20%). The value of the texture nonlinearity plotted here is the average
of the absolute values at corresponding positive and negative contrasts
in Fig. 18; in algebraic form this function is satisfactorily described by
the following function which is linear at low contrasts and logarithmic
at high:

fle) = a - [logy(1 +¢/B)].
where f=0.02 and the value of o is set to make f(0.20) = 1.0. This
function is plotted against the contrast of the elements in our pattern,
not the contrast at the fundamental frequency. If replotted against
contrast in the fundamental frequency, it would compress at even lower
contrasts.
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functions of neurons in a number of places of visual
cortex have now been measured. Figure 19 shows the
neural functions from one study of four visual areas
(Sclar et al., 1990). Each neuron’s response was
measured for various contrasts of a drifting sinusoidal
grating (at the orientation, spatial frequency and velocity
preferred by the neuron). The proper physiological
quantity to compare to a psychophysical quantity is
always a matter of some question, of course; some might
argue that a signal/noise ratio would be more appropriate.
However, the observer’s rating of perceived segregation
seems more like a magnitude of response (as plotted here
for the neurons) than like a discrimination between two
values (for which a signal/noise ratio might well be more
appropriate) and, on a more practical note, response
magnitude was the physiological measure easily avail-
able to use in this comparison. Figure 19 also shows the
early—local nonlinearity inferred from the texture segre-
gation at the highest background luminance and largest
spatial scale. The functions from parvocellular LGN and
from V1 cells are not nearly as compressive as the
function inferred from texture-segregation results; indeed
the parvo-LGN and V1 cells are expansive in this range
of contrasts. The contrast-response functions from
magnocellular LGN (see also Kaplan & Shapley, 1986)
and from MT, on the other hand, are as compressive as
that from texture segregation.

What do Comparisons of Compressiveness Imply?
What should be made of these comparisons even if one
were completely happy with the choices for the
horizontal and vertical axes? Can compressiveness be
taken as a signature of “pathway” or “stream”? Should
we conclude from Fig. 19 that perceived texture
segregation is done by something called the magno-
pathway? That seems, at best, premature. The number of
assumptions going into such a conclusion would be
immense. The functions from a higher area in another
pathway (e.g. the parvo-pathway) might be as compres-
sive as those recorded from the magno LGN and MT
here. On the other hand, it is thought-provoking.

Rather than viewing compressiveness as a signature of
pathway, it might seem more appealing (although only
slightly less dubious) to view it as a signature of level in a
hierarchy of visual processing (cf. Sclar ef al., 1990). A
~-function that is nor particularly compressive could
represent a continuum of output magnitudes (gray-level
images so to speak). However, a function that is very
compressive is almost like a step function; and a step
function basically just says yes or no to the stimulus, that
is, it categorizes. Lower-level processes might typically
produce continuously graded output, and higher-level
perceptual processes might categorize the stimulus. If so,
texture segregation judgments in these experiments seem
to be affected by a process somewhere in the middle, not
retinal and not at the highest levels of perception either. 1t
would certainly be premature to believe this as fact (and
remember that magno-LGN cells are already very
compressive). But, again, the idea of compressiveness
as a signature of level is thought-provoking.
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APPENDIX

FITTING THE MODELS

As stated in the text, Eqn (6) for the early—local model and Eqn (8)
for the normalization model were fitted to each half-matrix of data
coming from a single observer and a single pattern (where each of the
66 data points in the half-matrix was the average of the observer’s 4
responses (o a given stimulus). This appendix provides details of the
fitting beyond those given in the Methods section of the main text. The
fitting procedure was very similar to that used by Graham et al. (1992a)
and the reader is referred there for general motivation and explanation.

The Final Transformation from Model Predictions to Observer Ratings
and Assessment of Goodness-of-Fit

Our fitting procedures here differ from those in our earlier paper in
one major way. This modification was important in speeding up the
process. This modification was in the final transformation F from the
predictions of the model Dgn [Eqn (6)] or Dnorm [Eqn (8)] to the
observer’s ratings. In our previous study we had required that this
transformation F be monotonic. For practicality we had restricted it to
belong to a particular family of monotonic function—the Quick—
Weibull family [see Fig. 16 of Graham et al. (1992a)]. Using the fmins
procedure in Matlab (which is an instantiation of the Nelder-Meade
algorithm), we found the best-fitting member of this family where the
least-squares r (the square of the Pearson product-moment correlation
coefficient between the transformed predictions and the data) was used
as the measure of fit. This old procedure was effective and sensible but
(on the available computers) rather slow. For the current study,
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therefore, we represented the final transformation F by a polynomial of
fourth degree. Therefore, we could use standard methods of fitting the
polynomial which were much faster (polyfit in Matlab—again the
least-squares r° is the measure of fit).

The fact, however, that the fourth-degree polynomial can be
nonmonotonic produced spurious best fits occasionally. (Sometimes
it bounced up and down to capture stray values or, worse, it sometimes
became a distinctly U-shaped function, thus allowing clear and
systematic violations of the model to be counted as good fits.) By doing
some fits both the old and the new ways, and by visual examination of
the fitted final transformation for a number of the new fits to the current
experiments, we satisfied ourselves that only a small proportion of the
new fits were contaminated this way and that they could be easily
found by the following procedure. The fits for different values of the
pooling parameter k£ were almost always extremely close to each other
but, using the new fitting procedure, there were occasional cases (about
3%) where the best-fitting function r or wg depended dramatically on
which value of k& was used. We examined these cases and found there
was a pronounced nonmonotonicity in the final polynomial. Then we
redid the fits in a less automatic fashion by throwing out all the fits
based on extreme nonmonotonic polynomials and taking the next best
fit. (This procedure has never involved any subtleties of judgment. The
nonmonotonicities have occurred for parameter values in entirely the
wrong parts of parameter space, and the next highest locally maximal
r* has served to identify a perfectly reasonable fit.)

Parameter Choices Common to Both Models of Intensive Nonlinearity

Choice of k—the exponent for pooling across channels. For both the
early—local nonlinearity and the normalization models, we used four
different values of the pooling parameter k, namely 1, 2, 4, and 8. As it
turned out, this parameter did not matter for the conclusions reported
here. The deduced early-local nonlinearity was generally completely
unaffected (and on the few occasions when it was affected, it was due
to an artifactually good fit—as just discussed—which was then
corrected). The best-fitting valuc of wg in the normalization model was
affected minimally. When affected, the value of wg increased with k
more often than it decreased. The value of we—the weight on the
complex channels—was slightly affected (without affecting our
conclusions) as will be discussed below. The results for k=2 are
shown in the figures in the text. (We choose 2 because many other
investigators use that value routinely in the analogous places in their
models, e.g. “energy” models.)

Choice of ws and wc—the Weights on the Simple and Complex
Channels. For convenience in setting up the bookkeeping to fit the
models, we always specified the luminances AL, and AL, in units of
steps (i.e., integers from — 5 to + 5) rather than changing them to reflect
the actual contrasts. Also, for both models we held the weight on the
simple-channels wg constant at 1.0 while using a number of different
possible weights on the complex channels; specifically, wc was set at
values ranging from 0 to 5.0 in steps of 0.5.

Choices Specific to Fitting the Interchannel Inhibition
(Normalization) Model.

For the normalization model, there are three further parameters: ks
(the spatial pooling parameter), wg (the weight on “other” channels),
and o [the parameter in the denominator of Eqn (8)]. It is not
reasonable to use the Nelder—Meade algorithm to find the best-fitting
values for this set of three, however, as there are large ranges over
which one or the other does not matter (e.g. due to tradeoffs between
them) and in which therefore the algorithm will not converge. Instead
we did crude grid searches with some further restrictions. For one
thing, we held the value of the spatial-pooling parameter kg constant at
2, since preliminary results suggested this parameter made less
difference than the other two. Secondly, earlier calculations [e.g. those
in Graham et al. (1992b) and some other unpublished ones] had shown
that it is the ratio of wq to o (the weight on “other” channels divided by
the parameter ) rather than the absolute value of either that plays the
largest role in determining the predictions. Thus, for this study, we
used three disparate values of ¢ (0.001, 4, and 64), while varying wo in
a series of finer steps (0 and all numbers from 0.125 to 4096 by a factor
of 2).
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It again turned out to be the ratio wo/o that primarily matters. In Fig.
14 we report those parameter estimates when ¢ = 4. (The ones for
o = 64 would have been essentially the same except for occasional
random events. Similarly those for ¢ = 0.001 would have been similar
except in some cases where the fits were actually systematically
worse.) Further, when examining the best-fitting values of the other-
channel weight wo we noticed the following: all low values of wo
(wo < 0.25 for o = 4) produced indistinguishable fits as did all high
values of wg (Wg = 32 for ¢ = 4). See the plots in Fig. 7. Thus, to
prevent apparently large changes that were actually meaningless, we
substituted the lower bound (i.e., 0.25 for o = 4) for any lower best-
fitting wo and substituted the higher bound (i.e., 32 for ¢ = 4) for any
higher best-fitting wo when giving best-fitting values of wo in Fig. 14.

To summarize, in fitting the normalization model to the results of
this study, we searched for the best fit over the following values of the
parameters:

o three disparate values of ¢ (0.001, 4, and 64) which could have
been restricted to only one value (¢ = 4) without loss,

® a series of values for the other-channel weight wo, which (for
o = 4) could have been restricted without loss to the values from
0.25 to 32 by a factor of 2,

o the spatial-pooling exponent kg = 2;

and also over the following which were used for both models:

o the channel-pooling exponent k =1, 2, 4, and 8,

o the simple-channel weight ws =1 (while expressing the element
contrasts in number of steps),

o values for the complex-channel weight wc from 0.0 to 5.0 in
steps of 0.5,

e a fourth-degree polynomial to represent the final transformation
from predicted value Dyorm to the observer’s response, which
was allowed to vary under control of the Nelder-Meade
algorithm.

The Normalization Model Parameters Plotted in Fig. 14.

To understand the quantity plotted on the vertical axes of Fig. 14,
consider the following: as just discussed, it is the ratio wo/o rather than
wo alone that primarily determines compressiveness in a normalization
model. Also the step size in Expt 1 varied from scale to scale (with the
step-size being larger at the smallest scale so that the upper left panel
underestimates the actual effect of scale). To take into consideration
these two facts, the quantity reported on the vertical axis in Fig. 14’s
left panel is the ratio wg /o corrected for the contrast step-size cgep used
in each condition, i.e.,

wo 0" = Wo/(0 Csp)- (A1)

This quantity wo/6* is the value of the ratio wg /o that would have led
to the best fit if all the AL, had been expressed in actual contrast values
rather than being expressed, as they were in calculating the fits, in
number of steps.

The quantity plotted on the vertical axis in the right panel is the
product of wo/a* times the segregation threshold c,. This quantity is
the value of wo /o that would have led to the best fit if the AL; in Eqn (7)
had been expressed relative to segregation threshold when doing the
fits.

Interactions Among X, wo and wc in Fits of the Normalization
Model. Although the numerical values of the goodness of fits of the
normalization model did not depend on &, there were some interactions
among k and wo and wc. In particular, as k increased (while holding @
constant), both the values of wc and of wgp that produced the best fit
increased.

In particular, as k increased from 1 to 8, the estimate of wc typically
increased by one unit. For example, the estimate of wc might increase
from 0.5 to 1.5. (Remember that wg was held constant at 1.0; and we
values spaced by 0.5 units were used.) More specifically, it increased
by one unit about 70% of the time, by 0.5 unit about 10% of the time,
and various other things happened 10% of the time. This increase
occurred both for the early—local model and the normalization models
to the same extent.

Quantitatively, the value of wo (and thus wg /o) typically increased
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by a factor of 2 as & increased from 1 to 8. As we make nothing of the
absolute values of wo in this paper, we will not discuss this interaction
further except to say one more thing. Since the deduced early-local
transformation in the early—local model did not depend on £ at all (see
below), the fact that the analogous parameter of the normalization
model (wg) did depend on k needs some explanation. It is probably
connected to the increase in we with increases in k; this increase in we
probably requires an increase in wg to keep the amount of signal
coming from the other channels high enough to produce normalization.

Choices Specific to Fitting the Early—Local Nonlinearity Mode!

In fitting the early—local-nonlinearity model, there was one feature
quite different from the earlier procedure (Graham et al., 1992a). There
we had considered only a small family of possible functions (those
shown in Fig. 6) as candidates for » in Eqns (4) and (5).

Here we wanted to explore the intensive nonlinearity in greater
detail. Therefore, rather than assuming a certain form of function, we
allowed the value of r in Eqns (4) and (5) to vary at each value of [AL; |
independently. In most of the fits reported here we assumed that the
function was odd-symmetric, i.e., equally compressive for increments
and decrements:

r(—AL;) = —r(ALy) and r{0) = 0. (A2)

Since there were then only five different nonzero magnitudes of AL;
used, and the final monotonic transformation between predictions and
data trades off with the multiplicative unit of this early—local function,
there were only four independent values of the early local function r.
We chose to fix the value of the highest point—in particular, to fix
r(5 steps) = 5 and let the others vary—because fixing the value of the
highest one produced the most stable behavior of the fitting routine.
We used the Nelder-Meade algorithm as embodied in Matlab to find
the best-fitting function r(AL;). The starting values for the early local
function r(AL;) specified a completely linear function, and the
goodness-of-fit between the values predicted by Eqn (6) and the data
were assessed as described above.

To summarize, in fitting the early-local model of Eqn (6) to the
results of this study, we searched for the best fit across the following
parameter values:

e the four values determining an odd-symmetric early—local
function r for 5 steps of contrast which were allowed to vary
under control of the Nelder-Meade algorithm;

and also over the following which were used for both models:

the channel pooling exponent k=1, 2, 4, and 8,

the simple-channel weight ws = 1 (while expressing the element
contrasts in number of steps),

values for the complex-channel weight we from 0.0 to 5.0 in
steps of 0.5,

a fourth-degree polynomial to represent the final transformation
from predicted value Dgy to the observer’s response, which was
allowed to vary under control of the Nelder-Meade algorithm.

Interactions Among Parameters. In the Results, the early-local
nonlinearities that are reported (Fig. 9 and Figs 11-13) are, strictly
speaking, those from the best fits holding & = 2. The values of the
early—local function depended minimally on &, however, and these
figures would look essentially identical if plotted for any other k.

On the other hand, the estimate of wc typically increased with & in
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very much the same manner as it did for the normalization model. The
estimates shown in Fig. 17 are in the middle of the range.

Further, the complex-channel weights for a given value of £ were
slightly greater when estimated by the early—local model than by the
normalization model. While the difference is small, it is very
systematic. For example, over the various conditions of Expts 1 and
2, the average difference between the estimates was 0.63 units with a
standard error of 0.01 (for & = 2). Or to look at it another way, in 41 of
the 51 cases, the weight estimated from the early—local model was
greater than that estimated by the normalization model; 6 were ties;
and 4 were reversed.

Subsidiary Set of Fits to Investigate Asymmetry in the Early—Local
Function. In a subsidiary set of fits (producing Fig. 16), we allowed
increments and decrements to act differently—i.e., we allowed 7 in
Eqns (4) and (5) to be asymmetric. There are then 11 values of r{AL;)—
5 decrements and 5 increments and zero. We fixed r(0)=0 and
r(5 steps) = 5, leaving 9 free parameters which varied under control of
the Nelder—Meade algorithm.

For this subsidiary set of fits, we used only the data from same-sign-
of-contrast and one-element-only patterns in order to speed up the
process; thus the value of the weight on the complex channels was
irrelevant.

Obtained Goodness-of-Fit for the Two Models

Each model was fitted separately to each of the 51 half-matrices of
data (15 from Expt 1 for 5 observers at each of 3 spatial scales plus 36
from Expt 2 for 3 observers at each of 36 combinations of background
luminance and spatial scale). For concreteness, the reader can assume
the following summary is about the values of r* from the very best fits
for each model, that is when all parameters were allowed to vary
(including &, and, for the normalization model, o). However, the
summary applies equally well to any of various ways of looking at the
fits (in particular, looking just at the fits holding k = 2 and ¢ = 4).

The fits of the two models behave extremely similarly. Both models
produced #* values between 0.95 and 0.99 almost all of the time.
Further, their fits were well correlated across data sets (i.e., for any
observer—pattern combination where one model led to a particularly
high or low correlation, so did the.other. model). The only exceptions to
these two statements are the following:

(1) For subject KC (Expt 2) the 12 r* values for each of the models
varied from 0.80 to 0.94. These low values are probably a
consequence of KC’s greater variability compared to that of
other subjects: the estimated standard deviation of KC’s
responses to any stimulus was about twice that of any of the
other six observers in these two experiments.

(2) There is one other #? value that is below 0.95; it is for observer
TH in Expt 1 and is about 0.85 (for both models). The cause of
this low value is unclear.

(3) There may be some subtle but systematic individual differences
that involve differences between the models: in Expt 2, the
normalization model fits better than the early-local model for
11 of the 12 conditions for subject WS but for only 2 of the 12
for subject MH. The difference in fits is, however, extremely
small. The source of this effect is also not clear.

In short, there is no way to choose between these two models when
restricting your attention to the goodness-of-fits done for single spatial
scales and background luminances. Both models do a good job.



