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Complex (non-Fourier, second-order) channels have been proposed to explain aspects of texture-
hased region segregation and related perceptual tasks. Complex channcls contain two stages of
linear filtering with an intermediate pointwise nonlinearity. The intermediate nontinearity is
crucial, Without it, a complex channel is equivalent 10 a single linear filter {a simple channel}, Here
we asked whether the intermediate nonlinearity is piecewise-linear (an ordinary rectifier), or
compressive, or expansive. We measured the perceptual segregation between element-arrangement
textures where the contrast and area of the individual elements were systematicully varied. For
solid-square elements, the tradeoff between contrast and area was approximately linear, consistent
with simple linear channels. For Gabor-patch elements, however, the tradeoff was highly nenlinear,
consistent with complex channels in which the intermediate nenlinearity is expansive (with an
exponent somewhat higher than 2). Alse, substantial individual differences in certain details were
explainable by differential intrusion from “off-frequency” complex chanmels. Lastly, the results
reported here (in conjunction with those of other studies) suggest that the strongly compressive
intensive nonlinearity previously known to act in texture segregation cannot be attributed to a
compressive nonlinearity acting locally and relatively carly {before the spatial-frequency and
orientation-selective channelsy but could result from inhibition among the channcis (as in a
normalization network). © 1998 Elsevier Science Ltd
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INTRODUCTION nonlimearity (e.g. Bowen & Wilson, 1994: Grahum,
; o Sk 1991, Graham et al, 1992, Malik Peronn, 199()
Chunnels selectively sensitive to spatial frequency and oY . G aha ‘f[ W2, Malik & rond, ”“
. . . . . e operhing, 1989 Wilson, 19933 One candidue s
orientation, with some relatively simple nonlincarities, : . . ,
. . . ) . relatively early and local process occurring before tie
expliin many of the phenomena of texture segregacom . .
. . - chunnels (although it must occur at some stage atter the
and  related  visual tasks. Two  different types of . e . S .
. . . . . relative sensitivities to different spatial frequencies und
nonlinearity—-one intensive and one spatial—scem to ‘ . . :
orientations at different mean luminances have been set.
be necessary (e.g. Graham, 1991, 1994; Graham., Bock, & Graham & Sutter, 1996). The other is mutual inhibition or
Sutter, 1992 Malik & Perona, 1990; Sperting, 1989; . : g X ‘ _
normalization occurting among the channels UL
(modeled as a gain control or nornalization network., e
Heeger, 1991). Of course, both kinds of Processes wre
known to oceur in the visual system, so the question here
is to what extenl either (or both) affect percepton in
various circumstances. For texture segregation tasks, we
had not yet been able to el these two candidates apirt
{Grabam & Suuer, 1996,

Wilson, 19933, Yel much remains unknown about these
simple nonlincarities. The primary aim of the current
experiments was to study further the spatial nonlincarity
i texture segregation and related tasks, but the results
dlse have implications for the intensive nonlinearity in
these tasks.

The intensive nonlineartiy; relatively early and loca!, or

ihibition wnong channels (normalization}? The spatial nonlineariny—complex (second-order, non-
Two kinds of processes have been suggested as an  Fourier) channels
explunation  {or the effects requiring an  intensive Complex channels like that in Fig. | have been

proposed to explain a number of phenomena ol St
perception that cannot be explained by simple linear
channels. They have been calied variously  comples
channels, non-Fourier or second-order niechanisms,
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FIGURE 1. Diagram of complex channel consisting of two stages of linear filters separated by an intermediate pointwise

nonlinearity. £{x,y) is the stimulus patterr represented as luminance at each point (x,y): fx.y} is the output of the first filter; gfx,v)

15 the cutput after the intermediate nonlinearity; and Oy, ¥/ is the output of the second filter and therefore of the channel a point

{xy). Although only a few receptive fields are shown for the first and second filters, they represent a whole collection of

receptive fields of the same size and shape spread densely across the visual field. The channcl output Ofx,y} goes, along with the
outputs from simple and other complex channels, to & comparison and decision stage shown in Fig. 4.

cortical cells could perform such perceptual tasks (e.g.
Robson, 1980), but the possible analogy to rhysiclogy
should be made with care. Indeed, others used the
analogy with complex cells in other ways. (Se¢ p. 732
top, Graham, Beck, & Sutter, 1992 and comments in Part
I'of Appendix I here.} The complex channel in Fig. 1
consists of two stages of linear filtets—where the first is
sensitive 1c a higher spatial frequency than the second—
with an intermediate pointwise nonlinearity, To put it
another way, complex channels consist of big receptive
fields at the second stage that “paste together” the
(nonlinearly transformed) outputs of little receptive fields
at the first stage. A number of complex channels sensitive
to different spatial frequencies and orientations are
presumed 1o exist at each point in the visual field. They
are usually assumed to exist alongside simple linear
channels.

The complex channels investigated in this study are
those that explain why certain textures and patierns can
be segregated or discriminated in spite of their very
similar Fourier amplitude spectra (e.g. Graham, 1991,
Graham et af., 1992; Kingdom & Keeble, 1995, 1996
Landy, 1996; Landy & Ternes, 1995: Lin & Wilson,
1996; Solemon & Sperling, 1995; Sperling, 1989;
Sperling, Chubb, Sclomon, & Lu, 1994; Sutter, Beck,
& Craham, 1989, Sutter & Graham, 1995; Sutter,
Sperling, & Chubb, 1995; Victor & Conte, 1989, 1991,
1996). These complex channels seem guite similar to
mechanisms proposed for ather texture discriminations
(Bergen & Landy, 1991; Fogel & Sagi, 1989; Grossberg
& Mingolla, 1985 Landy & Bergen, 1991; Malik &
Perona, 1990; Rubenstein & Sagi, 1993, 1996: Wolfson
& Landy, 1995) but they are not necessarily identical (see
Appendix [, Part 1),

Mechanisms like complex channels have been pro-
pesed for many other tasks involving spatial patlerns,
These proposed mechanisms contain, as do the complex
texture channels, two layers of filtering separated by a
nonlinearity, where the first filtering stage is sensitive o
higher spatial frequencies than the second. These other
tasks include: pattern masking with compound gratings.
especially the effect of beat frequencies (Badcock &
Derrington, 198%; Henning, Hertz, & Broadbent, 1975);
illusery contours formed by offset gratings or Kaniza
triangles (Shapley & Gordon, 1985; Wilson & Richards,
1992; Wilson, 1993); the lateral enhancement of
perceived contrast {Sagi & Hochstein, 1985); detecting
a path defined by the alignment of elements along u
smooth path that is imbedded in a background cf
unaligned elements (Moulden, 1994; alsc see Beck,
Rosenfeld, & Tvry, 1989 and Field, Hayes, & Hess, 1993
although their proposed mechanisms are more active and
interactive than the complex channels here); detection of
4 target of one or more Gabors in a field of different
Gabors (Rubenstein & Sagi, 1993; Sagi, 1990); Comput-
ing shape from texture (Sakai & Finkel, 1995);
sterecacuity (e.g. Hess & Wilcox, 1994; Wilcox & Hess,
1996); several varieties of spatial localizaticn tasks like
separation discriminatien {Hess & Badcock, 1995) and
alignment accuracy (Hess & Hayes, 1994; Levi &
Waugh, 1996; also see other references given in these
articles); detecting the centroid of a cluster of separated
dots of opposite contrast palarity (Morgan & Glennerster,
1991}; and some geometrical illusions (Morgan &
Hotopf, 1989; Morgan, Hole, & Glennerster, 19903, It
is too early 10 know whether these mechanisms proposed
for other tasks are the same as the complex texture
channels just described,
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The complex texture channels of Fig. 1 are also
structurally analogous to the non-Fourier mechanisms
preposed for various phenomena of motion perception
(e.g. Boulton & Baker, 1993; Chubb & Sperling, 1988,
1989. Chubb, McGowan, Sperling, & Werkhoven, 1994:
Demmngton & Badcock, 1992; Derrington & Henning,
1994 Fleel & Langley, 1954; Lu & Sperling, 1995;
Panule, 1992; Sperling, 1989; Sperling, Chubb, Solomon,
& Lu, 1994; Turanc & Pantle, 1989; Werkhoven,
Sperling, & Chubb, 1993; Wilson, Ferrara, & Yo, 1992;
Wilson, 1994; Wilson & Kim, 1994). The channels for
texture and motion might, in principle, even be parts of
the same population of channels although serving
different parls of the spatial-frequency/temporal-fre-
guency range, There are, however, already known (o be
4 number of differences between the channels serving
texture and motion {e.g. Graham, 1994; Hammett &
Smith, 1994; McOwan & Johnston, 1996; Solomon &
Sperling, 1995; Sperling, Chubb, Sclomon, & Lu, 1994)
and we would not expect the results of the smdies here to
necessarily generalize to motion.

Finally, another set of proposed mechanisms—which
will be called “higher-order” here for the sake of having a
short name—seem structurally similar to the complex
channels of Fig. 1 but differ in an interesting way. These
higher-order mechanisms still consist of two stages of
filtering, but the two stages are rather different from those
in a complex channel. The second stage of a complex
channel collects outputs from first-stage receptive fields,
all of much the same shape but differing in position,
whereas the second stage of a higherorder mechanism
colleets outputs from first-stage receptive fields all ar
much the same position but differing in shape. Higher-
order mechanisms ol several types have been suggested.
Mechanisms where the pocling is across receptive ficids
of different symmeltries (phases) ar the same localion
have been proposed [or encoding lines and edges and
cxplaining some geemetrical illusions (c.g. Morrone &
Buir, 1988; Burr & Morrone, 1994), Various kinds of
poaling across spatial frequencies or across orientations
{whrch may be flexible and depend on task, and which is
ofien coupled with 4 pooling across a limited area of
space as well) have been proposed 1o explain the
perceived appearance of and discrimination among
several kinds  of suprathreshold patterns  including
textures {e.g. Georgeson, 1992, 1994; Klein, Stremeyer,
& Ganz, 1974; Meese, [995; Mecse & Georgeson, 1996;
Polat & Sagi, 1993; Rubenstein & Sagi, 1996; Sakal &
Finkel, 1995, Thomas, Olzak, & Shimozaki, 1993;
Thomas & Olzak, 1996), as well as the performance of
specific tasks like encoding of binocular disparity (c.g.
Fleet, Wagner, & Heeger, 1996). It is still quite unclear
whether any of these higher-order mechanisms are more
than superficially similar to each other or 10 the complex
tsecond-order, non-Fourier) channels invoked for texture
and motion {see Appendix I, Part [),

All the proposals mentioned above-complex channets
for texwres and for other spatial tasks, non-Fourier
motion mechanisms, higher-order mechanisms-—have in
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common that the second stage collcets responses from
multiple receptive fields at the first stage. For this scheme
1o be useful when the two stages are linear filters, us they
usually are, there must always be some intermediate
nonlinearity involved in the collection. If there were not,
the two lincar-filtering stages would collupse to a single
linear-filtering stage (and thus to a simple linear channel),
Thus, the intermediate nonlinearity is a crucial part of

" these schemes.

This study

In this study we try o characterize Ffurther the
intermediate nonlinearity for at least one case of complex
channels—those in texture-based region segregation.
While a cerlain amount is known about other properlics
of these complex channels, refatively liule is known
about the intermediate nonlinearity. (What is known will
be presented in the Discussion and compared with the
results from this study.) Here we study the intermediaie
nonlingarity using element-arrangement textures like
those in Fig. 2. These patterns contain three regions,
each composed of the same two element types but
distinguished by the arrangement of the clements —
striped arrangements on the sides and a checkerboard
arrangement in the middle, The chserver is asked (o raie
how immediately and effortlessly the different rogions in
the paltern are perceived to segregate,

To characterize the intermediate nonlinearity, we stud ¥
spatial summation by varying the area and contrast of
Gabor-patch elements in patterns like that in Fig. 2{a, b).
(The patches used in the experiment had twice the
number of cycles shown in this figure.) The first gueslion
is whether any complex channel of the form shown in
Fig. | is consistent with the observers' ratings. The
answer to this general question turned out to be “yey”,
Therefore, we could ask a more specitic question: is the
intermediate pointwise nonlinearity in the hypothesized
complex channels best thought of as piecewise linear (as
the solid line in Fig. 1 shows) or as some other function.
In particular, we ask which value of & in the following
function best predicts our data:

glxy)=a-|f(ny)f (1)

where gfx,y) is the output ar point (x,y} of the
inlermediate nonlinearity in the complex channel, Fixv)
1s the inpul at point (x,y), and « is an arbitrary constant. 1f
k=1, then g is a piecewise-linear function (solid ling in
Fig. 1) as in conventional full-wave rectification. If & > I
then g is an expansive function (dashed ling in Fig, 1). It
k< 1, g is compressive (dotted line in Fig. 1), We might
bave considered a family of functions larger than that in
cquation (1) but this family proved sufficient for our
purposes.

Examples of compressive. linear, and expansive
functions abound in the visual system. The intensive
nonlinearity in texture segregation mentioned above is
compressive and, indeed, compressive at quile low
contrasts for constant-difference serics of element.
arrangement patterns (Graham, 1991; Graham er af.,
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FIGURE 2. Bxamples of the element-arrangement texiure stmuli with grating-puich elements in Gupand () and sguire elemenls

1 (g and oy Bach contains three regions compesed of the swne two element types but distinguished by the srrangement of the
clements—striped on the sides and checkered in the middle. The exarmples in (b} and (d) have equal contrast in the lurge and
amall patches. The cxamples in {uy and (o) have zero contrast in the small clements {and are somctimes called one-elemen

patterns). The paiches we used in the study had twice the number of cycles shown here. For half the observers the orientation of
the prating patches was perpendicular 1o the orientation of the stripes [as shown here). For the other half the patches wore
parallel 1o the stripes.

19921 Graham & Sutter, 1996); the possible relationship
of this inlensive nonlincarity to the complex chanmels’
ndermediate nonlinearity will he discussed below. The
imternediate nenhnearity in the complex channels has
often been assumed o be either piecewise-linear or
expansive (see Discussion for references), although with
hittle evidence for either. The results of the study reported
here will favor an expansive lunction with a power
somewhart higher than 2, perhaps 3 or 4.

A conceptually related question is whether  the
intermediate nonlinearity should be of the full-wave lype
[even-symmetric around zero as in equation (1) above] or
of the half-wave type. The results here cannot distinguish
among these alternatives, but available evidence {briefly
deseribed in the Discussion) suggests both forms may act
IN [eXIure perceplion.

W have phrased thesc questions in terms of & model of
a complex channel that has an intermediate nonlinearity
between two stages of linear filtering (as in Fig. 1). One
could, in principle, add a compressive or expansive
nonlinearity to one of the two stages of filtering instead.

(Scveral ways 1o do so are described in Part 11 of
Appendix L. For the results here, they are tormully
identical to the model of Fig. 1.) For simplicity’s und
concreleness’s sake, afthough one might 1alk more
generally of the “nonlincarity associated with a complex
channel”, we will continue in the rmain text o wlk aboul
the “mtermediate nonlinearity” in a complex channel like
that in Fig. 1.

In addilion to investigating spatial summation in
complex channcls, the stdy in this prper investigutes
spanal summation in simple (Fourier) channels by
studymg the tradeoff between the area and contrust of
solid-square clements |Fig, 2(c. d}]. This is a replication
and extension of one experiment in Sutter ef al 11989),
We find that the summation for solid-square elements s
consistent with the assumption that simple tincar
channels are primarily responsible for the segregiiion
of these patterns.

Substantial individual differences have been found in
Iexture segregation and related rtasky fe.g. Gruham,
Sutter, & Venkatesan, 1993: Cannon & Fullenkamp,
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1993; Craham & Sutter, 1996). Thus, a third aim of the
study here is to collect enough data from each observer
that individual observers™ results could be described and
any individual differences understeod. In the event, there
were substantial individual differences in two aspects of
the results. These differences among observers may be
the result of differential intrusion from channels other
than those tuned to the spatial characteristics of th
palterns at issue, )

Finally, the findings of this study, when considered
together with those of other studies (Graham, 19971,
Graham er al,, 1992 Graham & Sutter, 1996; and
Graham and Sutter, in preparation), have implications for
the 1ntensive as well as the spatial nonlinearity in texture
segregation. In particular, they suggest that the intensive
noniinearity is probably nor a relatively local process
cecurring before the spatial-frequency and orientation-
selective simple and complex channels. It may, however,
be inhibition among these channels (as in a contrast-gain
or normalization network).

THE MODEL’S PREDICTIONS

This section aliempts to provide insight into why using
clement-arrangement patterns like those of Fig. 2 can
teveal properties of spatial summation in simple and

complex channels, respectively. In particular, it concen-
trates on the predictions of the channels “tuned” to the
spatial characteristics of the pattern. (Note that we use the
words “tuned channels” to refer 1o those channels for
which the best stimulus is the pattern under discussion.
while calling all other channels “untuned channels”
although these other channels may well be tuned in the
sense of being selectively sensitive. We also sometimes
use the words “on-frequency” and “ofl-frequency
channels” instead, with the caveat that those words are
somewhat misleading in the case of complex channels,
where a single frequency is not at issue.) Square-element
patterns and the tuned simple channels are discussed first,
followed by grating-element patterns and the tuned
complex channels. The intrusion of channels other than
the tuned channels will be discussed after the initial
presentation of experimental results.

Predictions—square-clement patierns and simple chen-
nels

The use of square-element patterns to explove summa-
tion in simple channels is ilustrazed in Fig. 3. The output
of a tuned simple channel is shown in response to three
stimuli (three columns). Figure 3 (top row) shows
explicilly only a small portion of the striped region of
each stimulus and shows the receptive field of the

SQUARE ELEMENTS -- SIMPLE CHANNEL

PATTERN CONTAINING
LARGER ELEMENTS
ONLY

Part of stripad
region
of pattern

with one of the
receptive fields
of filter shown

Output from
fitter

at equal physical
contrasts

PATTERNS CONTAINING BOTH
ELEMENT TYPES

at contrasts matched
for effect on filter

FIGURE 3. Diagram illustrating use of square-element palterns 1o investigate spatial summation in simple channels. The lop
row shows a section of the striped region of the pattern with & receptive field from the (aned simple channet superimposed. The

bottom row shows the output of the channel. Three stimulj are represented in the three columns (as Jabeled)
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FIGURE 4. Diagram of the comparison and decision stage we use for the task of texture segregation. These are simplified rules
representing all higher levels of visual processing. Symbols are defined and equalions for the computations are given in Part 1L of
Appendix [,

corresponding tuned simple channel. The second row
shows the output of the tuned simple channel to these
three stimuli. Mid-gray represents 2 7ero response,
brighter areas represent positive responses, and darker
arcas represent negative responses. Notice that this tuned
channel produces modulated output to both the farge-
element-only stimulus (left) and to the stimulus contain-
ing both elements at equal physical contrasts (middle) but
not to the stimuius in which the elements have the same
contrast-area product and thus are matched for effective-
ness (right column).

In the checkerboard region, the output of this particular
tuned channel is unmodulated for all three stimuli shown,
indeed for any contrast ratio of square elements. (If
shown here, it would simply be a gray square for all three
stumuli. Since the channel’s receptive field is horizontally
oriented, both types of elements in the checkerboard
region fall within the excitatory center, and also both fall
within the inhibitory surround. Hence, the net response is
close to zero.} Thus, using the output from this tuned
channel, the observer could perceptually segregate the
different regions in the stimuli in the left and middle
colummns of Fig. 3, but could no: segregate the stimulus in
the righthand column.

Note that the simple channel in this diagram is not the
only simple channel tuned to this pattern: analogous
reasoning would apply, for example, to an obliquely-
oriented filter tuned to the checkerboard region; but that
filter would produce modulated responses in the checker-
board region of the appropriate stimuli (the same stimuli
to which the filter in Fig. 3 produces modulated respenses

in the striped region), while never producing modulated
responses in the striped region.

From channel outputs 1o the observer’s response—the
comparison-and-decision stage. To use the outputs of
channels {or any other intermediate entities one is
investigating) to quantitatively predict the response of
the observer, one always needs assumptions linking the
channels’ outputs to the observer’s response. We have
gencrally considered a family of rules which includes the
rules used - by many other investigators. These rules
compute various measures of the degree to which there
are gross differences in overall activity between the
channel outputs in the checkerboard region and the
channel ouiputs in the striped regions. Figure 4 shows
these rules diagrammatically, calling them a “comparison
and decision stage”. For models containing only simple
channels this is approximately saying that two textures
can he segregated if, and only if, they differ sufficiently
in the amount of some spatiai-frequency/orientation
they comtain (a generalization of the original Julesz,
1975 conjecture, not unlike the corresponding stage in
so-called “energy” or “sum-of-quadrature” models, see,
e.g. Bergen & Landy, 1991 or Clark, Bovik, & Geisler,
1987). Notice that we are ignoring the VEry interesting
questions of whether the boundary between regions is
found or the regions are growing or some combination of
both {e.g. Lee, 1995), as well as the interesting
asymmetries in performance (e.g, Beck, 1973: Gurnsey
& Browse, 1987; Rubenstein & Sagi, 1996). Further
description of our comparison and decision stage, and
discussion of its implications and relationship to others’
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FIGURE 5. The output of the tuned simple channels in response to
syuare-element patterns. The contrast of the larger elements Cy is held
vonstant at OF. The contrast in the smaller elements Cy is shown on the
horizomal axis. The three curves are for three different area ratios,
where 4, is the area of the largee elements (always the same in this
study) and Az is the area of the smuller clements (which varied). The
three open circles represent the stimul used 1n the three columns of
Fig. 3.

models can be found in Parts | and [1 of Appendix I here
wind in Graham er al., 1992 (with further discussion in
Sutler at al., 1989, Graham, 1991 and the Appendix in
Graham ef al., 1993),

For the first part of this puper, we will make the
simplifying assumption that the observer’s response is
entirely determined by the tned channel or channels
amore generally a group of channels all acting propor-
tionally to the tuned channels). Then the comparison and
decision stage reduces to the following:

1. Consider, without loss of generality, a single one of
the group of tuned channels; we will refer to this as
the tuned channel,

. The magnitude of the tuned channel’s response is
the amplitude of the modulated output in one region
(e.g. the striped region} minus that in the other (the
checkerboard region). This quantity is labeled the
within-channe! difference in Fig. 4

3. The observer's rating of perceived segregation is a

monotonic function (F in Fig. 4) of the magnitude of
the tuned channel’s response.

[~

Note that, although we are currently considering the
case of tuned simple channels, this same derivation will
apply for the case of tuned complex channels below, (The
eifects of untuned channels and of the intensive
nonlinearity will be returned o later,)

Fredicted position and magnitude of dips in response-
vs-contrast curves for square-element patterns. Predic-
tions {rom the three cases in Fig. 3 appear as the three
open circles in Fig. 5. Figure 5 shows the magnitude of
the response from the tuned simple channels (on the
vertical axis) as a function of contrast in the smaller
clements C» (horizontal axis} when the contrast in the
furge elements was held constant at €, = C* (where C* is
nil zero). Several ditferent ratios of element areas are
represented in the different curves (A, and A, are the
areas of the large and small clements, respectively). The
most impormant feature to note is that the predicted
response of the wned simple channels Talls to zero when

ra
i}

Lthe area-times-contrast products of the two elements are
equal, or equivalently. when
C: 4 (2

C A

For example, when the large square has four times the
ared of the small square, then the minimum oceurs when
the small square has four times the contrast of the Jarge,

Equation (2) is a consequence ol the linearity of the
simple channels. It applies to the patterns used in this
study, where the squares are exactly as wide as the inter-
square spaces (where the duty-cycle i5 one-half). In our
previous study (Sutter ez af,, 1989), where we computed
predictions from a full simple-channel model involving a
whole array of channels, the predicted dip occurred at a
slightly different value because the squares were some-
what wider than the inter-square spaces.

Predictions—grating-element  patterny  und  complex-
cheriinels

Figure 6 illustrates the logic of the caxperiments using
patterns compaosed of grating-patch clements. Portions of
the striped regions from three such stimuli are shown in
the three columns of Fig. 6. All three stimuli are com-
posed of large and small patches differing in area by 4
tactor of 4. The centrast in the small grating patches is
zero (left column), or physically equal to that of the large
elements (middle column), or is the contrast which
matches the large and small grating patches for effec-
tiveness on the second-stage filter of the uned complex
channel (right celumn). Note that, if the complex
channel’s intermediate nonlinearity is either conventionul
half-wave or conventional full-wave rectiication (both
piecewise-linear functions}, then this match for effective-
ness will occur when the area-times-contrast products of
the two patches are equal. However, if the pointwise inter-
mediate nonlinearity is a power function with power un-
equal to 1, this matching contrast could be quite different
(as will be described below in connection with Fig. 7).

The stimuli in Fig. 6 cannot be segregated by simple
channels, since the Fourier amplitude spectra in the (wo
regions are very similar (see Graham e al, 1992 und
Graham, Suiter, & Venkatesan, 1993). These stimuli can.
however, be segregated by complex channcls. The
complex channel whose outputs arc illustrated in Fig. 6
is the one “tuned” to the siriped region of this set of
stimuli. The top row shows explicitly only a small portion
of the striped region of each stimulus, with a receptive
ficld from the first filter of the wned complex channcl
superimposed. This first filter is wned to the grating
elements (and thus to a relatively high spatial frequency
and, in this example, a horizontal orientation).

The second row of Fig. 6 illustrales the output of the
complex channel's first filter. The third row shows the
output after the peintwise intermediate nonlinearity. Iy
also shows a receptive ficld from the second stage
superimposed. The complex channel’s second filter is
tuned to the fundamental frequency of the striped region
¢{hence a relatively low spatial frequency and. in this
example, a horizontal orientation). And finally, the lourih
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- AR = g n, =4

Response of tuned
complex channels

Fol B LY o)

1 E"kcl
Cantrast in small patch (C,)
{with contrast in large peich C, constant ar C7)

FIGURE 7. The output of the tuncd complex channels in response 10
Zrating-element patterns. The contrast of the larger elements C| is held
canstant at C=, The contrast of the smaller elements s i3 shown on the
horizontal uxis. The three curves are for three ditferent area ratios,
where A; s the arca of the larger elements (always the same in (his
study) and Ay i1s the area of the smaller elements {which varied). The
three open circles represent the stimuli used in the three columns of
Fig. 6. The curvature shown here is appropnate for an expansive
funcuon (k> 1), For k=1, the lines will be straight (exactly like those
n Fig. 5 in fact) and for k < 1 {compressive functions) the curvalure
will be in the opposite direction. The location of the dips alse depends
an k. I is given by equation {3) and is indicated by the labels on the
horizontat axis here.

In the checkerboard region the output of this particular
tuned channel would be unmodulated for all three stimuli
shown, and would be so for any contrast ratio of grating
elements. (If shown here, the output would simply be a
gray square. Remember that both types of elements in the
checkerboard region fall within the excitatory center of
the horizontal receptive field, and also both fall within the
inhibitery surround. The net response, therefore, is close
to zero.) Thus, using the output from this tuned channel,
the observer could perceptually segregate the different
regions in the stimuli in the left and middle columns of
Fig. 6, but could not segregate the stimulus in the
righthand column.

To get from this channel output to the observer's
response requires the comparison-and-decision stage we
have already discussed in connection with the square-
element experiments (see Fig. 4).

Predicted position of and magnitude of dips for
graifng-element experiments. Figure 7 shows the magni-
tude of the tuned complex channels’ response  (the
amplitude of modulation in its output} as a [unction of
small-patch contrast (following the same conventions as
Fig. 5). Predictions from the three cases in Fig. 6 appear
as the three circles in Fig, 7. Just us in Fig. 5, the curves in
Fig. 7 dip to a minimum of zero. In Fig. 7, however, the
minimum no longer necessarily occurs when equation (2)
holds, and the functions are not necessarily straight lines,

Rather, the match occurs whenever

ik}

Cs Ay
2= 3)
C |4z
Equivalently, since Cyis held constant at C*, whenever
(17k)
Ag !
Cr = C* 2 4
g . (4)

The parameter & in equation (3} and equation (4) equals
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the exponent & in the power function at the intermediate
stage of the complex channel [equation (1)].

When k > 1 {expansive intermediate nonlinearity), the
position of the dip in Fig, 7 moves less dramatically to the
right than it does for k = 1. This happens for the following
reason: with an expansive nonlinearity, a somewhat
larger contrast in the smaller than the larger patch
translztes into a much larger response at each point in the
smaller than the larger patch, For example, Lo compensate
for an area-ratio of 4 when & = 2, the small-patch contrast
need only be 4'/2 = 2-times the targe-patch contrast.

If, on the other hand, the intermediate nonlinearity is
compressive (k < 1), the position of the dip will move
more dramatically to the right than in the linear case. To
compensate for an area-ratio of 16, the small patch will
need to have more than |6-times the contrast of the large
patch because the response at each point in the small
patch is compressed more than in the large patch. For
example, for an area-ratio of 4, when & = 1/2, the small-
patch contrast must be 4%=16 times the large-patch
contrast.

The curvature as well as the location of the dip depends
on k. The curvatare shown in Fig. 7 is that appropriate for
an expansive function (% > 1), Curvature in the opposite
direction is predicted by compressive functions.

Some further justification of the prediction in equation
(3) is given in Part [11 of Appendix 1.

EXPERIMENTAL METHODS AND PROCEDURES

It will be useful to let the words Ypattern”  and
“stimulus” take con  specific meanings. The word
“pattern” will mean particular spatial characteristics
without specifying contrast. For example, we Imight
speak of the “pattern” ir which both clements are squares
of a particular size without implying anything about the
contrasts. The word “stimulus” will mean particular
pattern with contrasts specified. For example, we migla
speak of the “stimulus” in which both elements are
squares of a particular size and the contrasts of the two
element types have been set at 5 and 10%, respectively.
(The background luminance, temporal characteristics,
and viewing distance are constant in the study reported
here, with one exception explicitly noted later, and thus
do not need to enter this discussion.)

There were cight different patterns seen by cuach
observer in the main experiment. They were the 2 = 4
combinations of two kinds of elements {square and
grating patches) with four different ratios of element
areas (where the larger elements were 1, 1.78, 4, and 16-
times the area of the smaller ones).

For each of the 8 patterns, 114 different contrast
combinations were used. These combinations are dia-
grammed in Fig. 8, where each symbol represents a
contrast combination that was used. Thus, there were
8 x 114=912 different stimuli in the experiment. In
general, each observer saw each stimulus 4-times
{distributed across eight sessions as described below)
for a total of 4 x 912 = 3648 trials.

There were seven observers.
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FIGURE 8. Each symbol represents one of the 114 contrast

vombinations at which any given patiern was pragsented. The one-

clement conditions are shown by open symbols and the tradeolf

conditions by ¢losed symbols. Contrasts were equally spaced, and the

values of the contrast increments for the various conditions {the

parameters 4, b, 551, und s5;) are given in Table ! for each of the cight
patterns (4 area ratios x 2 element types).

Details of the stimuli

Spatial characteristics of the pafterns. The numbers,
spacing, and arrangements of the elements can be see in
Fig. 2.

For four of the seven subjects (cv, ih, ws, and nh}, the
orientation of the grating-patch elements was as shown in
Fig. 2 with the bars of the gratings paralle! to the stripes,
or, in cther words, the local and global orientations were
consistent. For the other three subjects (ch, lz, sj), the
orientation of the grating-patch elements was perpendi-
cular to that shown in Fig, 2.

The center-to-center spacing between neighboring
clements was 32 pixels (0.67 deg at the viewing distance
of 0.91 m),

The repetition period (within a given region) was (wo
rows and two columns of elements and was
1.33 % 1.33 deg (64 x 64 pixels). Thus the fundamental
frequency (the reciprocal of the repetition period) of
either the checkerboard or the siriped region was 0.75
¢/deg both horizontally and vertically.

Both element types were solid squares, ot both were
ctreular Gabor patches. The two element types in a given
patiern were generally of different widths (and areas).
The width of a Gabor-patch element was taken to be the
full width ut half peak of the circular gaussian envelope.
The width of the larger element type in a pattern was
always 16 pixels (0.33 deg at the viewing distance of
0.91 m) and that of the smallay type was cither 16, 12, 8
or 4 pixels (0.33, .25, (.17, or 0.08 deg). Thus patterns
of four different area ratios were used: AlfA:=1,1.78, 4,
and 10, where A is the area of the larger element and 4,
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the area of the smaller, (For ease of expression, the area
ratio of 1.78 will sometimes be referred 10 as 2.)

The Gabor patch elements were actually truncated to
be a square with width and height of 32 pixels so as not
overlap with the neighboring elements. The harmonic
oscillation in the Gabor function was in sine phase with
respect to the window so that the space-gveruge
luminance across each Gabor element was the same as
the background luminance. The orientations of all the
patches were either vertical or horizontal {as described
above). The spatial frequency of the harmonic oscillation
was always 12 c/deg (a period of 4 pixels). In order to
insure their visibility in Fig. 2, the period in the grating
patches used in that figure was 8 pixels; thus each paich in
Fig. 2 contains half as many cycles as the stimuli in the
experiments,

Contrast of the stimuli. Figure 8 shows the full set of
contrast combinations used for any particular pattern.
Each axis of Fig. 8 gives the contrast of one element type:

Ci = AL/ Lyyg

where L; is the luminance of the elements of type/, Loy is
the luminance of the background and AL, =1, — Likg.
Here C) will refer 1o the contrast of the large elements
and will sometimes be called Clarge; 1 is plotted on the
horizontal axis. Similarly, C; will refer to the contrast of
the small elements and will sometimes be called ¢
is plotted on the vertical axis.

The full set of contrast combinations contains six
subsets, each containing 19 levels of contrast in one of the
clement types while the contrast in the other was fixed.
There were a total of 6 x 19 = 114 contrast combinations.

In the three large-contrasi—consiant conditions, the
contrast in the large element is held conslant, while the
contrast in the small element is varied. Analogously there
are three small-contrast—constant conditions,

Two of the six subsets will occasionally be referred to
as one-element conditions since only one type of element
is visible in these conditions (open symbols in Fig. %).
The other four subsets (closed symbols in Fig. 8} will he
referred to as tradeoff conditions.

Contrasts are given in integral multiples of several
quantities—a, b, ss; and ssy—and the values of these
increments for different patterns and different observers
are given in Table 1. The grating-element contrasts were
set higher for observers ¢h and 8j than for the other
observers because, in preceding expertments, their
sensitivity 1o grating elements had been lower.

Viewing conditions and background luminance. The
luminous sereen was approximately 16 cm high and
21 cm wide, which, at the viewing distance of (.91 m,
was 10 x 13 deg of visual angle. The background
luminance of the screen was constant throughout cach
experiment (during stimuli, fixation points, and intes-
stimulus intervals) at 18 ft-1..

The observer viewed the screen binocularly while
sitting in a chair with unrestrained head and natural
pupils, The chair was set so that the distance between the
eye and the screen was 0.91 m initially (presumably
¢hanged a few centimeters by unintended shifts in head

samal] > 11
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position). There was a small lamp 6 feet behind the
obscrver which— along with the CRT screen itself—
provided some ambient illumination in the room.

Equipment and calibration. The patterns were gener-
ated &nd the experiments tun by a Macintosh 1lci on 4
standard  Apple monochrome monitor using Pascal
programs built upon programs kindly supplied by Hugh
Wilson. Based on calibrations with a uniform field, there
were 150 linearized gray levels available. The back-
ground luminance of all our stimuli was set at the
midpoint and hence the smallest contrast Step was
nominally 1/75 or 1.3%. The actual contrast of the
smallest squares and of the Gabor patches (based on the
nominal contrast step of 1/75) may have been slightly
lower than those calculated from these calibrations {and
reported in Tuble 1} due to the spatial characteristics of
the monitor, but the actual contrast values are irrelevant
tor the conclusions here.

Details of the experimental procedures

Structure of the sessions. Practical considerations
prevented all the 912 different stimuli (2 kinds of
elements x & area-ratios x 114 contrast combinations)
from being presented in a single session, Instead, a single
session contained trials of only half of the stimuli. Bach
of these 456 stimuli were presented once in the session
randomly intermixed. Each observer participated in eight
sessions, during the course of which hefshe saw each
stimulus four times.

For observers ¢v, jh, nh, and ws, both grating-element
and square-element stimuli appeared in the same session
but only half the contrast combinations for each were used.
The small-contrast-constant conditions were presented in
some sessions and the large-contrast—constant conditions
were in others. For ch, lz, and sj. the square-element
stimuli were presented in some sessions, and grating-
patch-element stimuli were presented in others. No differ-
ence due 1o this difference in the structure of the sessions
was found, and thus it will be mentioned no further.

Structure of a trial and the response scale. Bach trial
started when the observer pressed the top inch of &
response device (an “Unmouse™). A small fixation pattern
then appeared for 1sec in the middle of the screen.
Immediately after the fixation paitern’s offset, the
stimulus was presented for 1sec with an abrupt onset
and offset,

After stimulus offset, a 1-sec delay accurred and then a
beep signaled that the observer could make a response by
pressing the appropriate position within a rectangle
(about 10cm wide x 2.5cm high) on the response
device. We used the l-sec delay between the stimulus
offset and the observer’s response for reasons briefly
discussed in Graham, Sutter, & Venkatesan (1993} and
Sutter & Graham (1995). After the ohserver’s response,
there was a double-beep.

Although the responses were actually recorded on a
linely divided scale (from O to 100, as the observers
knew), five equally spaced numerals were written on the
face of the response device o guide their responses. A

TABLE 1. Element widths and contrast-increment parameter vatues
(columns) for the eight patterns (rows: 4 area ratios » 2 element types)

Arca Element widths Contrast-increment parameters
rutios  {in deg visual angle) {in proporticn contrast)
AviA; W), W, 7] 553 I ¥¥)

Grating-element patterns

] 0.33 0.33 0.16 {024} 0.053 0.16 {0.24} 0.053
2 0.33 0.25 0.16 {024} 0.053 0.21 {0.27} 0.053
4 0.33 0.17 016 {0.24) 0.053 027 {0.32} 0.033
16 0,23 008 0.16 {0.24) 0053 0.43 [0.48) 0.053
Square-element pauerns
1 033 0.33 0.04 0.013 .04 0.013
2 0.33 0.25 0.04 (.o27 0.08 0.013
4 0.33 0.17 0.04 0.040 0.12 0.013
16 0.33 0.08 0.04 0.053 0.24 0.013

See Fig. 8 for diagram of the stimuli used for each pattern. Numbers
inside brackets are the values for subjects ch and 5] in the cases
where their vulues differed from other subjects’.

sheet of paper was available whenever they wished to
look at it stating that the meaning of these numerals were:

No segregation between the regions

Barely perceptibie segregation between regions
Perceptibly segregated regions

Moderately segregated regions

Highly segregated regions.

LT I O R

Observers and instructions. There were seven obser-
vers, all of whom were students at Columbia University.
All the observers were naive as Lo the purpose of these
experiments at the time they ran them, but all of them had
participated in related texture-segregation experiments
prior to running in these. Several of these experiments
have been published: The chservers ws and cv appear in
Graham & Sutter (1996); cv also appears in Graham er al.
(1993); cbservers ch (called cs there) and jh appear in
Sutter & Graham (1995).

Before participating in their first segregation-rating
experiments, the observers all received 15-30 min of
instructions including a series of practice patterns. They
were (old to maintain fixation at the center of the screen
(even after the fixation mark had disappeared) and to
indicate by their response the degree to which the regions
immediately and effortlessly segregated. They were
explicitly instructed NOT to focus on the individual
squares or any other form of local information and NOT
to indicate the result of scrutinizing the patterns for
differences. They were asked to ignore factors such as the
overall size and the degree of brightness of the pattern,
They were also instructed to maintain a focus of attention
that was global (while, however, continuing to fixate the
center of the screen).

All observers either had 20/20 vision without correc-

tion or wore eyeglasses or contact lenses of current
prescription.

Caleulation of summary numbers Jrom the experimentul
resilts

For each observer, for cach of the stimuli, the average
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FIGURE 9. Schematic drawing showing the dip in typical results from
tradeort conditions. The vertical axis shows segregation ruting and the
horizontal uxls contrast ratio ¢i/ej, where ¢ is fixed at some non-zero
value, The magnitude of the dip is d/r where s the segregation rating
when only element j is present, and o ts the maximal decrease in rating
when element 7 15 added at various contrasts. The position g of the dip
is the contrast ratio at which the lowest segregation rating occurs. In
this figure dr=0.8 and p=1.5.

segregation rating was computed over the four repetitions
of the stimulus and then the quantities described in the
following paragraphs were calculated using these average
ratings.

LARGE-CONTRAST-
CONSTANT
(Cy=a}
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The locations and magnitudes of the minima fdips) in
the tradeoff conditions, When results from a lypical
tradeoff condition are plotted, the curves show dips as in
the prototype of Fig. 9, (Examples of experimental resulis
plotted this way are shown in Fig. 10.) To summarize
each of these curves, we use two quantities: (i) the
magnitude of the dip (as a proportion of the excursion of
the curve, d/r in Fig. 9), and (2) the position of the dip on
the horizontal axis (the contrast ratio at which the lowest
point of the curve occurred, p in Fig. 9),

‘To compute the magnitude of the dip d/+ we ook r 10
be the average segregation rating at a contrast ratio of
zero, and o was determined by the very lowest puint in
the averaged data curve,

We measured the position of the dip, £, as the midpoint
of the range of contrasts leading to very low segregation
ratings (ratings for which &4 was within 10% of the
maximal d/r). This way of measuring the dip position was
generally the same as estimating the position from the
single lowest point in the data curve. It only differed in
the cases where the data produced large flat-bottomed
dips, and then the single point that happened 10 be
numerically lowest was sometimes very misleading (at
the end of the contrast range, for example}. If the
estimated relative magnitude of the dip {(d/r) for a

SMALL-CONTRAST-
CONSTANT
(€t}
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FIGURE |0. Segregalion-versus-contrast curves foc the average observer (thal is, the curves show the resulis averuged across

the seven observers) from two radeott conditions: the large element’s conteast is constant at & in the lett column and the smaii

clement’s contrast is constant ul & in the right columna, Results fur square-clement patterns (top row) and grating-element

putterns (bottom row) are shown, Each curve is for g different ratio of element areas, where Ay is the area of the larger elements

{always the same in this study) and Ay is the area of the smaller elements {(which varied). The horizontal axis shows the ratio of

the contrasts in the two element types; the numerator is the contrast of whichever element had varying contrast in that condition.
The small vertical lines on the horizontal axis show the calculated positions of the dips in each curve.
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FIGURE 11]. Position of the dips plotied as a function of area ratio in
the segregation rating versus contrast curves for the average observer
{c.g. Figure 10). Different symbols represent the four tradeoff
conditions with the resvlts for squate-element and grating-element
pattemns in (A) and (B), respectively, The lines show the predicted
positions of the dips for various values of the power &, assuming that
the tuned channels determine the observer's response. For the squares
the dati are near the predictions for & = 1. For the gratings, the data
points fall near the predictions for & = 3 (not shown) or 4 (dotred line),
indicating an expansive intermediate nonlinearity in the complex
channels.

particular observer and session was less than 0.1, the
position of the dip was not entered intg any of the
averages, as it seemed more likely to contribute
variability than information.

For each observer, for each of the eight patterns (4 arca
ratios x 2 element types), for each of the four tradecff
conditions, both the dip’s position and magnitude were
estimated. Figures 11 and 13 will show the positions, and
Figs 12, 14, and 16 the magnitudes.

Segregation thresholds in the one-element condiiions.
For each observer, for each of the ci ght different kinds of
elements used in these expeniments (grating vs square,
four different areas), a “segregation threshold” was
caleulated. The segregation threshold for a particular
kind of element {e.g. the smallest squares) is based on the
results from the one-element condition (open symbols,
Fig. 8) containing the set of stimul; composed only of that
kind of element (but of varying contrast), The segregation
threshold is the contrast (found by interpolation) of that
one-element stimulus to which the observer would give a
mid-scale segregation rating (a rating of 50). The ratio of
the thresholds for the smallest and largest element will be
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FIGURE 12. Magnitude of the dips plotied 25 a function of area ratio
from the segregation rating vs contrast curves {e.g. Figure 10) for the
average observer. Differcnt symbols represent the four tradeoff
conditions with the results for squarc-element and grating-element
patterns in (A) and (B}, respectively, The line shows that the predicted
magnitude of the dips is 1.0, no matter what the value of &, if the tuned
channels determine the observer's response. The observed values
depart from 1.0 at large area ratios, more dramatically for square-
element than for grating-element patterns.

presented below in Fig, 16 (where C§ and Cf are the
values of the segregation threshold Cp, for the smallest
and lazgest elemnents, respectively).

RESULTS FROM TRADEQFF CONDITIONS

Figure 10 shows results from the “average observer”
(i.e. the results averaged across all seven observers) for
both grating-element and square-element patterns (bot-
tom and top panels, respectively) for all four area ratios
(four different curves in each panel) from two of the
tradeoff conditions (for Clarge = a in the left panels and
Csman = b in the right panels). The vertical axis i average
segregation rating (averaged across observers as well as
across stimulus repetitions), and the horizontal axis is the
ratio of contrast in the varying element divided by the
contrast in the fixed element,

The calculated position of the dips in these curves is
indicated by the small vertical lines in the bottom of each
panel. (See Methods for details of calculation.) Notice
that in the large-contrast-constant conditions (left
panels), the dip moves more dramatically to the right
(that is, moves to greater values of Csmal]/Cla.rge) for square
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FIGURE 13, Positions of the dips for individual observers (averaged
over the four tradeoff conditions} in the same format as Fig. 11.

elements (top row) than for grating elements (bottom
row). Analogously, in the small-contrast—constant
conditions (right panels), the dip moves more dramati-
cally to the left (which is again a movement to greater
values of Comall/Clarge) for the square than for the grating
elements.

Figure 11 (as squares and circles) shows the positions
of the dips from the curves shown in Fig. 10 and also (as
diamonds and triangles) from the two tradeoff conditions
using higher constant contrasts. The position of the dip is
given on the vertica! axis {expressed as Csman/Clarge). The
area-ratio is given on the hotizontal axis (expressed as
Alarge/Asmall)-

Notice in Fig, 11 that the results from the four tradeott
conditions superimpose quite well. Also shown are lines
representing equation (3) for k=1 (top line), 2, and 4.
The results from the square-element patterns (top panel)
hover between the k = 1 and k = 2 line. For an area ratio of
16, for example, the dip occurs at a contrast ratio of about
10 (rather than 16 as on the k= } line or 4 as on the & = 2
line).

The results from the grating-element patterns (bottom
panel) are very close to the £ = 4 line. For example, for an
area ratio of 16, the contrast ratio at the dip is only 2. To
put this another way, in order to compensate for a 16-fold
difference in area, the contrast of the small grating patch
only needs to be twice that of the large.

Figure 12 shows the magnitudes of the dips (d/r) for the
average observer (e.g. Figure 10) in the different
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FIGURE 14. Magnitudes of the dips for individual ocbservers {averaged
over the four tradeoff conditions) in the same format as Fig. 12,

conditions in much the same format as Fig, 11 showed
the positions. Notice the magnitudes of the dips for the
average observer become substantially smaller as the area
ratio becomes larger.

Figures 13 and 14 show the positions and magnitudes
of the dips for individual observers {averaged over
condition) in the same formats as Figs 11 and 12. The
results for individual observers resemble those for the
average subject in both the positions and magnitudes of
the dips, although there is more scatter. Much of the
increased scatter in the position of the dips and some of
the scatter in the magnitudes of the dips can be attributed
to the smaller amount of data entering each point.
However, the rest of the scatter, which is considerable in
the case of magnitudes, is the result of systematic
individual differences, This is easy to verify by looking at
the curves (not shown here to save space) like those in
Fig. 10 but for individual observers in individual
sessions—the differences in dip magnitudes are clear in
individual sessions. We will return to these individual
differences below,

A further detail—there is no evidence for any
interaction between observer and condition. To put it
another way—suppose one looks at graphs like those of
Figs 11 and 12 but with the average observer replaced by
each individual. There will necessarily be considerable
scatter among the points, since relatively small amounts
of data are now entering into each point. However, to the
extent allowed by this considerable intrinsic variability,
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an individual's results for all four tradeoff conditions
appear to be the same.

Predictions from tuned channels

Let us compare these results in Figs L1, 12, 13, and 14
to the predicticns from the tuned channels. (Remember
that the “tuned channels” are the channels for which the

pattemn under discussion is the best stimulus. All other

channels are called “untuned channels,™)

The measured dip positions in Figs 11 and 13 are at
least approximately consistent with the predictions from
the tuned channels: the dip positions for square elements
resemble the predicted linear behavior for simple
channels (Fig. 5) although the & = 1 line is systematically
missed in Figs 11 and 13. And the dip positions for
grating elements in Figs 11 and 13 are as predicted by
complex channels having an intermediate power—law
nonlinearity with a power somewhat higher than 2,
perhaps 3 or 4 (Fig. 7).

However, the measured dip magnitudes in Figs 12 and
14 are not even approximately consistent with the
predicuions from the tuned channels. The predicted
magnitudes (expressed as 4/r) are always 1.0, since the
predicted curves dip to 0 in both Figs 5 and 7. At large
area ratios, this predicted magnitude is far larger than the
measured magnitudes. Further, as mentioned above, the
magnitudes of the dip vary quite substantially from
observer to observer.

‘Thus, the tuned channels by themselves cannot explain
all features of the data—in particular, they cannot
account for the dip magnitudes. One ordinatily assumes,
however, that all responsive channels affect the ob-
server’s response to some extent. So the question
becomes: on the basis of our existing knowledge, are
there plausible channels (other than the tuned channels)
that respond enough to these patterns to influence the
observer's response? And, if so, will the intrusion of
these other channels explain the discrepancies between
the tuned channels’ predictions and the individual
dilterences in the responses?

Untuned (off-frequency) simple channels cannot explain
the discrepancies

In our earlier paper (Sutter ef al., 1989) we conducted
an extensive computational study of the predictions for
square-element patterns from models containing simple
channels tuned to different spatial frequency and
orientations across the full visible range. We investigated
a number of different candidate rules for pooling across
spatial position and also for peoling the responses from
different simple channels (briefly described here in Part 11
of Appendix 1). As it wmed out, the predictions were
always dominated by the simple channels tuned to the
pallern in question; in particuiar, the dip magnitudes and
positions were those predicted from the tuned channels
alone (even though the model allowed all other simple
channels to influence the observer’s response).

We have never conducted as extensive a computationa!
study of simple channels’ responses to grating-element
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FIGURE 15. The observer’s response {as a function of contrast ratio} is
shown as (he approximate envelope of the response of several
channels: ome tuned channel and three “other” channels that are
sumewhat sensitive to the patterns, This sketch is appropriate for both
square-clement patterns and grating-paich-clement patterns.

patterns because near-zero responses are expected. The
computations we have done, however, show the expected
result: simple channels respond little if at all to element-
arrangement patterns made of grating elements or other
luminance-balanced elements (elements in which the
average luminance equals that of the background). Some
relevant computations are described in Graham, Beck, &
Sutter (1992} and Graham, Sutter, & Venkatesan {1993).

In short, the discrepancies between the predictions
from the tuned channels and the observer's segregation
ralings as measured here (for both square or grating
elements) cannot be explained by the action of other
{untuned) simple channels.

Complex channels can explain the discrepancies for
square-element patterns

The results here for square-element patterns replicate
some of those in our earlier study (Sutter ef al., 1989).
There we suggested that complex channels might explain
the discrepancy between the simple model predictions
and the experimental results, in particutar, that they might
expiain the fact that the observed dip magnitudes were
less than 1.0, The appropriate complex channels are
similar to that in Fig. 6: they have first filters that are
sensitive to relatively high spatial frequencies (in this
case 10 the edges of the square elements rather than to the
dominant frequency of a grating patch) and second filters
that are sensitive to the period of the striped or checkered
pattern. We still think these complex channels the likely
explanation of discrepancies. To illustrate the intrusion of
these complex channels, Fig. 15 shows response
magnitude versus contrast-ratic curves (like the earlier
ones in Fig. 5 and 7) not only for the tuned channel (thick
solid line) but also for three other channels (thick dashed
and dotted curves). There are a number of complex
channels tuned to different first-stage frequencies, and. in
general, they will have different dip positions (although a
bias in these positions will be discussed below). Figure 15
shows the observer’s response (thick dashed line) as the
approximate envelope of individual channels’ IE5pONses,
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and this qualitative assumption will be sufficient for our
concerns here. (Any of the wide family of precise pooling
and comparison rules in Fig. 4 leads (o this assumption.)
As indicated in Fig, 15, these other complex channels
may substantiully attenuate the dip in the predictions for
the ubserver by “filling in” the dip in the tuned channel’s
curve,

Consider, in particular, the complex channels that are

sensitive (0 such high spata! frequencies that they’

respond only to the square-elements’ edges. Their
responses will he approximately proportional to the total
amount of edge and hence 1o the elements’ widths rather
than to their areas. Hence their response-vs-contrast
curves will dip to a minimum when the contrast ratio
compensates for the width ratio (rather than for the area
ratio as predicted by the tuned simple channels). Notice
that the difference between the width ratio and the area
ratio is greater at greater area ratjos. Hence, the “filling
in” by these complex channels would be expected to be
greater for greater area ratios. And indeed the measured
dip magnitudes for square-element patterns {(Figs 12 and
14, top panels) depart more dramatically from (he
predicted value of 1.0 as area ratio increases. A prediction
can also be made about the position of the dip in the
observer's curves. Since the ratio of large-to-small widths
is always less than the ratio of large-to-small areas, the
observers’ dip’s position will tend to be systematically
displaced away from the area ratio toward the width ratio.
This direction of bias could explain why the measured dip
positions for the syuare elements in the observer’s results
(Figs 11 and 13, top panels) are not exactly on the % = J
line but pulled toward the k = 2 line.

Varying the high spatial-frequency content of the
stimuli. If intrusions of complex channels sensitive to the
high-spatial frequency content of the square elements are
the explanation of the dip magnitudes being less than 1.0,
then diminishing (or enhancing) the effective high-
spatial-frequency content of the stimuli might increase
(or decrease) the magnitudes of the dip. How effective
the high spatial-frequency content of a pattern is (relative
to its low spatial-frequency content) can be changed by
varying the scale of the pattern (e.g. by varying viewing
distance) which moves the whole spatial-frequency
content of the pattern to different parts of the spatial-
frequency dimension. In our earlier study (Sutter et ai.,
1989), we reported the average of a group of observers’
segregation ratings as we varied the spatial scale of
square-element paiterns over a factor of 8 (Sutter ez al.,
1989, Fig. 15), Here we ran one individual subject (ws) at
different viewing distances (halving and doubling the
distance used in the main study). We obtained the
expected resull both times: mamely, at smaller scales
{larger viewing distances, less effective high spatial-
[requency content), the dip magnitudes are larger,
indicating less intrusion from other channels.

We also varied high spatial-frequency content by
comparing square elements (with abrupt spatial edges) o
"blob” elements (of the same effective area but with
gradual edges and, therefore, with less high spatiai-
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frequency content). We did so with two observers {(ws,
and a new observer, so) and again obtained the expected
result: namely, larger dip magnitudes (less intrusion from
other channels) with blob elements than with square
elements.

Untuned (off-frequency) complex channels can explain
the discrepancies for grating-element patierns

The tuned channels for grating-element patterns are
complex ones (like that in Fig. 6) where the first filter is
sensitive to the dominant spatial frequency and orienta-
tion of the little grating patches. However, grating
patches contain a range of spatial frequencies and
orientations in addition to the dominant one and, further,
smaller grating patches contain a broader range of these
other spatial frequencies and orientations than do larger
patches. These extra spatial frequencies are both higher
and lower than the dominant spatial frequency of the
grating patches.

Hence, as the contrast ratio of the smaller to larger
grating-patch elements in our patterns varies, the relutive
responses of a number of complex channels (in addition
to the tuned channel) will vary. The minimum in the
curve for each of these other channels will occur at a
different contrast ratio. {The sketches in Fig. 15 are again
appropriale here.) Thus, these channels can attenuate the
dip predicted by the tuned channel for the observers
response. This attenuation would be expected to0 be
greater for greater area ratios (since the range of
frequencies/orientations in the small patch gets broader
as the patch gets smaller) which is in agreement with the
experimental results showing smaller dip magnitudes for
larger area ratios (Figs 12 and 14, bottom panels).

Note one further aspect of these results. There is more
attenuation of dip magnitude for square elements than for
grating elements (Figs 12 and 14), In fact, for grating
elements, the only substantial attenuation of dip magni-
tude is at the largest area ratio, and there are two
observers (ch and ¢v) who do not even show this effect.
Why should there be this difference between square and
grating elements? It is again what is expected on the
notion of other-channel intrusion. For the square
elements, as mentioned above, the predicted dip position
from the other channels is at the width ratio, which
becomes quite different from the area ratio (the dip
position of the tuned channels). For the grating elements,
however, the predicted dip positions are those of the
complex channels responsive to the “other frequencies
and orientations™ in the small grating patch. These other
[requencies are not very different from the dominant
frequency affecting the tuned channel; hence the curves
of these other channels should not dip at very different
positions from that of the tuned channel and could not,
therefore, attenuate the dip magnitude in the observer’s
curve very much.

The question arises as to whether these other untuned
complex channels may affect the observer's dip position
as well as dip magnitude for grating-element patterns (as
they do for square-clement patterns). As mentioned
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above, the dip positions of these other channels are not,
on the whole, very different from those of the tuned
channel in the case of grating elements. Thus, any bias
will be modest. Some calculations do suggest, however,
that when the dip magnitude is affected (at the largest
area ratios), there might be a small effect on dip position
{although smaller than the effect for square elements).
This possible small bias would {as in the case of square

elements) be toward lower values of Coma/Clarge and

hence would tend to make & seem larger than the actual
value from the intermediate nonlinearity of the tuned
channels.

In light of this possible bias in dip position caused by
the intrusion of other complex channels, it seems
conservative to conclude that the power of the inter-
mediate nonlinearity in the tuned complex channels is
“somewhat less than 4” rather than “near 4” as suggested
by initial inspection of the results. On the other hand, note
that for two observers (ch and cv) there is hardly any
attenuation of dip magnitude at all, and for no observer is
the attenuation large at the second-highest area ratio
(bottom panel, Figs 12 and 14); yet the dip positions for
those points agree with all the other points (bottom panel,
Figs 11 and 13) and suggest a value certainly greater than
2 and approximately equal to 4. Thus, we will tentatively
conclude from the tradeoff condition results that the

power of the intermediate nonlinearity is probably near 3
or 4.

RESULTS FRCM THE ONE-ELEMENT CONDITIONS
AND INDIVIDUAL DIFFERENCES

If intrusion from channels other than the tuned ones
explains why the dip magnitudes (d/r) for the average
observer are less than 1.0, then differences among
observers {which are primarily in dip magnitudes} might
well result from individual variation in other-channel
intrusion: those observers with Jess other-channel intru-
sion would show greater dip magnitudes.

There is 4 logically independent subset of data from
this study that can be used to test this supposition. This
subset of data is that from the one-element conditions,
which we have not yet looked at. (These are the
conditions represented by open symbols in the matrix
of stimulus conditions of Fig. 8.} If the intrusion of other
channels is minimal in the tradeoff conditions (as
indicated by large dip magnitudes} for a particular
observer, then other-channel intrusion might also be
expected (0 be minimal in the one-element conditions for
that observer. How does other-channe! intrusion show up
in the one-element conditions?

If other-channel intrusion is completely absent in the
one-clement conditions (if the tuned channels by
themselves mediate segregation in these conditions),
then a clean prediction about spatial summation in that
condition can be made in terms of the segregation
threshold (the contrast necessary 10 produce a criterion
segregation amount for the one-element patterns—sec
Mecthods for further definition). In words, the small-
element thresheold 1s predicted to be greater than the
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FIGURE 16. Individual differences in the tradeoff conditions and the
one-element conditions. The horizontal axis shows dip magnitade in
the tradeotf conditions for an area tatic of 16, and the vertical uxis
shows the the ratio of segregation thresholds in the one-element
conditions for elements having an area ratio of 16. The results for
square-element and grating-element patterns are in (A) and (B},
respectively. The open circles shaw the predictions, for various values
of £, if the tuned charnels alone determined texture segregation for all
stimuli. The point for & = 1 is at (1,16) and outside the visible part of
the graph although its direction is indicated by an arrow. As channels
other than the tuned ones intrude, both the dip magnitude in the
tradeoff conditions and the ratio of segregation thresholds in the one-
clement conditions diminish, although, as suggested by the shaded
areas, the relationship need not be linear.

large-element thresheld by the amount that compensates
for their difference in area. In symbols:

o * (/R

L s
where the subscripts $* and 1.* stand for the one-element
stimuli containing small or large elements respeclively;
the quantities A} and A¥ are the areas of those stimuli; Cd
and C¥ are the segregation thresholds; and the parameter
kequals 1 for square elements and equals the power of the
intermediate nonlinearity for grating-patch elements.

To gain insight into the prediction of equation (3), the
reader might go through this exercise; imagine varying
the size of the elements in the left column of Fig. 3 or Fig.
6 (the column representing one-element stimuli) and note
the resulting behavior of the tuned channel.

This equation (5} is identical to equation (3) with the
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subscripts 2 and 1 in equation (3), representing the two
element types in the same pattern, replaced by $* and L*
in equation {3}, representing different types of one-
element patterns,

Now consider what happens 10 the prediction for
spatial summation in equation (5) if other channeis
mirude. In general, these other intruding channels are
expected to be more sensitive to the small element
relative to the large element than are the tuned channels,
because these other channels are responsive to the edges
(of square elements) or to the extra frequencies (in the
smaller grating patches). This extra sensitivity to the
smaller elements should reduce the amount of spatial
summation seen as you go from the smaller to the larger
elements.

Figure 16 shows the behavior of individual observers
in both the one-element condition (spatial summation as
measured by the ratio of segregation thresholds Cs *C ¥,
on the vertical axis) and the tradeoff conditions (dip
magnitudes, on horizontal axis). Results are shown for
square-slement patterns {top panel) and grating-cfement
patterns (bottom panel), where the ratio of the areas of the
two elements was always 16, (Other area ratios lead to
less-diagnestic results so are not shown here.) Each solid
symbol is for an individual observer. The open circles are
predictions, when only the tuned channels are active, for
several values of & The point for k=1 is outside the
visible area of the graph; it has coordinates (1,16)
indicated by the arrow,

As other channels intrude, an observer’s performance
ts predicted to move both down {toward less spatial
summation in the one-element conditions) and to the lefi
(toward smaller dip magnitudes in the tradeoff condj-
tions) from the tuned-channet-only predictions in Fig. 16.
The shadad areas between the origin and the open circles
are drawn to indicate this qualitative expectation since, in
the case of these predictions, there is no reason to expect
eXxact proportionality between the effects in the one-
element and tradeoff conditions,

As can be seen in Fig. 16, both for grating and square
clements, observers having smaller dip magaitudes in the
tradeoff conditions also tend to have less spatial
summation in the one-element conditions, There is one
outlying point—ch and grating elements {the solid square
in the hottom panel). This outlying point cannot be
entirely the result of intrinsic variability in the rating
responses (although some of it probably is), because
mdividual sessions for this ohserver show the same
pattern of results. Some of the discrepancy might be
attributable to ch’s complex channels being characterized
by a higher value of # than the other observers (although,
if this were the complete explanation, one might expect

thut higher power to also have shown up in the position of

the dips in Fig. 13). The explanation of this anomalous
point is unclear.

Overall, however, the resulis of Fig. 16 provide support
to two conclusions: (i} other-channel intrusion is the
source of the earlier discrepancy between the tuned-
channel predictions and the dip magnitude data in the

tradeoff conditions; (ii) the variation among individual
obsetvers in this study—which occurs both for dip
magritudes (although not for dip positions) and for
spatial summation in segregation thresholds— seems
explainable on the basis of other-channel intrusion.

There is another consistency in these results that can be
seen by noting the order of the symbols from lower lefi tg
upper right in each panel of Fig. 16; namely, observers
showing the greatest other-channel intrusion {symbols
closest to the lower left) with square elements tend to do
0 also with grating elements. This consistency may be
due to the fact that, for both square-element and grating-
element patterns, the intruding channels are compiex
channels sensitive to relatively high spatial frequencies,
Thus, although more subtle difference among observers’
complex channels or higher processes cannot be ruled out
(certainly not for the one discrepant observer), the
individual differences here may largely occur hecause
some observers have more {or more sensitive) complex
channels of the type that have first filters sensitive to
relatively high spatia] frequencies.

Implications for value of k

This pattern of variation among individual observers
can also say something about the actual values of £ for
square and grating elements, Any conclusion should he
viewed with caution since we have not been able to make
a more definite prediction than the qualitative prediction
crudely indicated by shaded areas in Fig. 16. How bhig
those shaded areas should be, for example, given
reasonable parameters in a fully elaborated multiple-
channel model, is not at all clear to us and the positions of
the points in Fig. 16 are quite scattered. {Note that they
are a great deal more scattered than those in Figs 11 and
13 for dip positions,) With this caution in mind, the
individual observer results in Fig. 16 suggest a value of &
near 1 {or perhaps a little higher) for the square elements
and a value of k somewhere between 2 and 3 for the
grating elements (for six of seven observers—the last
observer may have & higher k). Given the sources of
uncertainty in interpreting Fig. 16, these values seem
satisfactorily similar to those suggested by the earlicr
analysis based on dip position in the trade-off conditions
(Figs 11 and 13). In fact, the suggested value of k for
square elements is essentially identical (k= 1 or perhaps a
little higher). The suggested value for grating clements is
a little lower here than in the earlier analysis (which
suggested & near 4 but perhaps 3 or 3.5). Putting the (wo
estimates together (considering the fact that the estimare
from Fig. 16 is less stable) suggests a conservative
conclusion that the intermediate nonlinearity in complex
channels is characterized by a value of & somewhere in
the range 2.5 but probably toward the higher end ot it.
Or, for simplicity, we will say that & for complex
channels equals 3 or 4.

Some caveats abour value of k

We have been speaking as if all complex chunnels had
the same power of intermediate nonlinearity and as if the
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FIGURE 17. Model of texture segregation consistent with the results of this study. The nonlineariry in the complex channels is

expansive and can be described by a power function with an exponent of about 3 (more conservatively, in the range trom 2 to 4).

‘The highly compressive intensive nonlinearity we identified in previous work (Graham ez al., 1992; Graham & Sutter, 1996)

may result from inhibition ameng channels (shown on the diagram as a normalization network), but the study reported here

suggests that it cannot result from a local nonlinearity occurring before the channels. Thus, the early sensitivily-setting stage

shown on the diagram does not intreduce any compression for contrasts less than 100%. It does set a sensitivity factor that
depends en mean luminance, spatial frequency, and orientation.

same power of nonlinearity held over the full contrast
range. This is the simplest model consistent with our
results perhaps, but not the only one.

For one thing, we have only studied a limited range of
spatial and temporal frequency, and different intermedi-
ate nonlinearities might well hold in different ranges.
{(For that matter, simple channels might act differently
within different ranges as well.)

But even within one range, our results here could not
distinguish between the existence of a number of
different kinds of complex channels having different
exponents (with the conglomerate effect of a power of 3
or 4) and the existence of only one kind (with a power of
Jor4)

Also, our conclusions about the values of & are only
valid at the contrasts of the dips (since it is on the data at
the dips that these conclusions are based), It is
conceivable that for higher or lower contrasts different
values would hold. However, we used a fairly broad
range of contrasts (Table 1) and so, for simplicity in this
paper, will continue to talk as if the same value held over
the full contrast range (about 1 for the simple channels
and 3 or 4 for the complex channels).

DISCUSSION
About the intensive nonlinearity

Te explain aspects of texture perception one needs, in
addition to the “spatial nonlinearity” embodied in the
complex channels, an “intensive nonlinearity” that is
compressive at guite modest levels of contrast. As

mentioned in the Introduction, two quite different
relatively early visual processes have been suggested as
candidates for the intensive nonlinearity, In more detail,

as applied to texture segregation, these two cand:dates
are:

(1) A relatively early, relatively local compressive
nonlinearity that comes before the simple and the
complex channels but after a stage at which
sensitivity to different background luminances,
spatial frequencies, and orientations is set (see Fig.
10 of Graham & Sutter, 1996). It is approximately
equally compressive for luminances below and above
the background. Its physiclogical substrate might lie
in light adaptation processes at the retinal level that
readjust the operating range of the system to be
around the background luminance.

(ii) Mutual inhibition among the channels (e.g. intracor-
tical inhibition), which may be modeled as a contrast-
gain control or normalization network (see Fig. 2 of
Graham & Sutter, 1996 and Fig. 17 here). Note that
this also comes after the stage at which sensitivity to
different background luminances and spatial frequen-
cies and orientations is set (since it comes after the
channels themselves) and is approximately equally
compressive for luminances below and above the
background. Its physiological substrate may be the
inhibition among cells in cortical area V1 or V2 or
even higher.

Up te this point, we have ignored the intensive non-
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linearity in interpreting the results of this study. Let us
now consider what effect, if any, these two candidates for
the intensive nonlinearity should have on the cenclusions
here and, vice versa, what effect the results here may
have on our understanding of the intensive nontinearity,

Relatively early, local nonlinearity. With element-
arrangement textures, the compressive effects of the
intensive nonlinearity are particularly obvious in studies
of constant-difference series of patterns (Graham, 1991;
Graham, Beck, & Sutter, 1992; Graham & Suter, 1996),
The difference between the two element types’ contrast is
constant for all patterns in such a series. As will be
explained more fully elsewhere (in preparation), if a
relatively early (before the channels), local (pointwise)
nonlinearity existed, its effect in area-contrast tradeoff
experiments like those here and in constant-difference-
series experiments would be the same. It would appear in
both as compression, or else it would appear in both types
of experiments as expansion. However, the area-contrast
tradeoff experiments reported here showed linearity or
even slight expansiveness for squares and expansiveness
for gratings, while the canstant-different series experi-
ments show compression for both squares (studies
referenced above) and gratings (Graham and Sutter, in
preparation). Thus a relatively early and local nonlinear-
ity by itself is probably not the underlying cause of both
phenomena. To be certain we still need (o investigate the
same conltrast ranges for the same observers. If the results
hold up in the same conditions, as seems likely, then any
attempt to include an early, local nonlinearity in the
model leads to a contradiction with one set of experi-
ments or the other unless very elaborate further
modifications are also made to the model. In short, the
results of the area-contrast tradeoff experiments and
constant-difference series ¢xperiments strongly suggest
that the compressive intensive nonlinearity is NOT a
relatively early and local process.

Inhibition among channels (in a normalization
neiwork). The case of inter-channel inhibition (the other
candidate for the intensive nonlinearity—see Fig. 17) is
very different. Tt seems likely that inhibition among
channels modeled as # normalization network will not
substantially affect the predicted results of area-contrast
tradeoff experiments like those here. This seems likely
because the tradeof! between the two elements’ areas and
contrasts oceurs in the complex channels before the inter-
channel inhibition (the normalization) is applied. Thus,
the existence of inter-channel inhibition would not
change our conclusion about the intermediate nonlinear-
ity in the complex channels nor about the linzarity of the
simple channels. Consequently, we think it likely that
inhibition among channels both explains the results of
constant-difference-series experiments and is consistent
with the results here.

About a model of both the spatial and intensive
nonlinearities

To summarize our conclusions about models: the
following model is consistent with all our results from

area-contrast-tradeoff and constant-difference series ex-
periments and is shown in the diagram in Fig, 17

(Property 1) There are both simple and complex

channels,
{Property 2)  The intermediate nonlinearity in the
complex channel is expansive with a

power of 3 or 4.

{(Property 3) There is inhibition among all the channels

(e.g. a normalization network),

Shown also in Fig. 17 are two boxes explicitly
representing the simplifications of all other stages of
visual processing used in making predictions of the
observer’s behavior from the three properties of major
interest. The sensitivity-setting hox represents all that
comes between the stimulus and the channels (the retina
and the lateral geniculate nucleus at least). It does NOT
introduce any compression for contrasts less than 100%.
It does set a sensitivity factor that depends on mean
luminance and that may also depend on spatial frequency
and orientation. The comparison-and-decision box was
discussed earlier (Fig. 4) and represents all that comes
between the channels and the response of the observer (at
least all higher cortical levels of processing).

We have noted some relatively minor variations of this
mode! that would also work, e.g. different complex
channels might have somewhat different power functions
at their inlermediate stage rather than all having the same
power. Also, several alternative forms of nonlinear-
pooling inside complex channels could substitute for the
intermediate nonlinearity (see Part IIl of Appendix I).

To say that the model of Fig. 17 is consistent with our
results does not state the implications of our results as
strongly as possible, We have also argued that several
modifications of the diagram in Fig. 17 produce models
which are mor consistent with our resulis here. To
summarize these points, here is a list of potentjal
modifications in Fig. 17 that would NOT be consistent
with our results (when everything else remains as shown)
and thus can be rejected:

(Point Iy Neither the simple nor the complex channels

can be omitted.

(Point 2y The intermediate pointwise function in the
complex channel cannot be compressive or
piecewise-lingar.

{(Point 3) There cannot be a relatively early and local
compressive nonlinearity {(occurring before
the simple and complex channels) added 1o
this diagram (unless it only becomes com-
pressive for contrasts outside the range used
here),

{(Point 4) There must be inhibition among channels (e.g.
a nermalization network) or some other form
of compressive intensive nonlinearity acting

after the channels, and it must be active at low

contrasts.,

A final comment: As is always true, however, t© have
decided among several possible explanations of phenom-
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ena is not to have decided among all possible explana-
tions. There are always alternative explanations (or
unconsidered factors or confounding factors, depending
on how you look at them). Here we mention two of some
interest.

(Alternative 1) Sparse first layer rather than a
traditional linear filter. We have been assuming that
there is such a dense set of neurons as part of the first filter
that its output is effectively continuous (as in the second
row of Fig. 6). Perhaps, however, the second filter of a
particular complex channel only collects outputs from a
small number of first-stage receptive fields, perhaps only
a few in a line parallel to the main orientation of the first-
stage receptive fields. Thus, when increasing the diameter
of circularly symmetric Gabor patches (as in our
experiments), the stimulation to the second stage would
not be increasing in proportion to the patches’ area but
only in proportion to its linear dimension (the length of
bar). To test this particular kind of sparse sampling one
could run experiments varying only one dimension of the
Gabor patches.

In another variety of sparse sampling, the first-stage
fields might be scattered about incoherently (out of phase
with one another).

(Alternative 2) Dynamics interactions. Complex chan-
nels (second-order mechanisms, collector units, etc.)
were presented here as rather hard-wired or, at least,
nothing was said about their not being hard-wired. In the
current literature, the main alternative to complex
channels and their relatives is an appeal to in-place
dynamic interactions occurring between spatially sepa-
rated neurons (e.g. the “impletion” process of Caelli,
1985; the “association field” of Field, Hayes, & Hess,
1993; the active reentrant connections of Sporns, Tonini,
& Edelman, 1991; the in-place spatial interactions of
Polat & Sagi, 1993, 1994). Such dynamic interactions
have been studied for visual neurons (e.g. Gilbert, 1994),
but their status as an explanation for experiments like
these is unclear. In many cases, at least, they will act just
like hard-wired entities and so cannot be distinguished
for the purposes of explaining these experiments. How-
ever, they certainly represent an interesting possibility.

Relation to previous studies of intermediate nonlinearity
in complex channels

Previous to this current study we (and others) had often
assumed that the intermediate nonlinearity in complex
(non-Fourier, second-order) texture channels was piece-
wise linear (sometimes only by casually drawing
piecewise-linear functions on the diagram) although this
assumption has usually had little effect on the predictions
of interest (Graham, 1991; Graham et al., 1992, 1993,
1996; Sperling et al., 1994; Wilson, 1993).

On a number of other occasions, expansive functions
had been assumed instead. Lin & Wilson (1996) used an
expansive function (a power of 2) in their model of non-
Fourier channels for pattern discrimination, although
again this assumption apparently had little effect.
Solomon & Sperling (1994) also used an expansive

function (a power of 2), which was necessary in their
study to ensure that certain stimuli were detected only by
half-wave mechanisms of the appropriate polarity (see
also Solomon, Sperling, & Chubb, 1993). An expansive
function (either a fourth power or a linear function with a
threshold) was also used by Victor & Conte (1989, 1991,
1996) in their texture model, and they do provide some
evidence for the necessity of the expansiveness (e.g.
1991, p. 1484). Their studies are primarily of visual
evoked potential in response to alternations among
certain classes of texture (occasionally compared to
formal psychophysics), so its generalizability to per-
ceived texture segregation is not indubitable but
suggestive. Another recent report is at least consistent
with the suggestion of an expansive intermediate
nonlinearity: Landy (1996) reported that discrimination
between textures differing in second-order contrast
shows a dipper-shaped contrast discrimination function
like that found in ordinary (first-order) contrast discri-
mination with sinusoidal gratings, and he suggested that
the same explanations (subthreshold summation, an
expansive nonlinearity, or reduction of uncertainty)
might apply to second-order as are often applied to
first-order dippers. Given the nature of the textures used
here, the expansive nonlinearity at the intermediate stage
in complex channels would predict the dipper.

In short, the results reported here, which demonstrate
that the intermediate nonlinearity in the complex
channels is expansive and well described by a power
function with an exponent of 3 or 4 (within the contrast
range studied, of course), are consistent with the little
information that has been available before about the
intermediate nonlinearity in complex channels like those
of Fig. 1 (i.e., those in which the second stage collects
from receptive fields of like shape but different position).
Note that we are explicitly NOT discussing what were
called “higher-order” mechanisms in the Introduction.
The intermediate nonlinearity there may be quite
different.

Half- versus full-wave intermediate nonlinearities. A
related question is whether the intermediate pointwise
nonlinearity is of the half-wave or full-wave type. The
power function in equation (1) and those sketched in the
intermediate nonlinearity box of Fig. 1 are of the full-
wave type. A power function of the positive half-wave
type is zero for all inputs below zero:

gx,y) =a-|f(x,y) for f(x,y) >0
= 0 otherwise

(6)

In a power function of the negative half-wave type the
non-zero outputs g occur for negative values of input f.
Our results here are consistent with either full- or half-
wave functions (Part IIT of Appendix I).

Previous evidence suggests that most observers have
both half-wave and full-wave mechanisms active in some
kinds of texture perception (Malik & Perona, 1990;
Sperling, Chubb, Solomon, & Lu, 1994; Solomon &
Sperling, 1994) but that the half-wave ones do not
support as many perceptual effects—e.g. second-order
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Mach bands or lateral contrast induction—as do the ful-
wave (Sperling ef al., 1994; Lu & Sperling, 1996).

Interestingly, the results for non-Fourier channels in
mouon are somewhat different: 2/3 of the observers may
not have any half-wave mechanisms at all but rely
entirely on full-wave mechanisms (Sperling, Chubb,
Solomon, & Lu, 1994; Solomon & Sperling, 1994). Iy
would be interesting to know what the expansiveness or
compressiveness of the intermediate nonlinearity in
maotion is.

SUMMARY AND CONCLUSIONS

The tradeoff between contrast and area for square
clements and for Gabor-palch elemenis was studied in
element arrangement patierns like those of Fig. 2. The
tradeofT was approximately lingar for square elements—
in other words, the minimal segregation occurred when
the product of area and contrast was equal for the two
clement types. This tradcoff was highly noulinear for
graling clements, however; the minimal segregation
occurred when the product of area and the fourth-power
of the contrast was equal for the two clement types.

Overall, the results are consistent with the model
shown in Fig. 17. For squarc elements, perceived
segregation is primarily the result of a simple linear
t{Fourier, firsi-order) channel with peak sensitivity at the
fundamental frequency/orientation of this pattern, For
grating-patch elements, perceived segregation is primiar-
ily the result of the complex channel tuned to this pattern
{in which the first filter is tuned to the grating spatial
frequency, and the second filter is tuned to the
fundamental frequency determined by the arrangement
of elements).

The newest conclusion about the complex channels is
this: The nonlinearity asscciated with these channels
{shown in Fig. 1 as an intermediate pointwise nonlinear-
ity between the two linear filter stages) is cxpansive. It
can be described as a power function with an exponent
substantially greater than 1.0, probably between 3 and 4.

Individual observers were studied in detail. One
fmportanl aspect of the results—the ratio of contrasts
that causes maximal interference (the position of the dip
in the curves in Figs 11 and 13)—is quite stable across
individual subjects. It is this ratio which reveals the
compressivencss or expansiveness of the spatial summa-
tion. However, two other aspects vary substantially
among observers. One is the magnitude of the maximal
interference (the depth of the dip). The other is in the
segregation of one-element patterns (patterns in which
one of the two element types has contrast zero)—in
particular in the degree to which the perceived segrega-
Lon in one-element patterns increases with slement area.
These differences are correlated across observers and
across element type {squares/gratings). Both these indi-
vidual differences may be understood as the result of
differences in the extent to which channels other than the
tuned ones contribute to the perceived segregation of
these patterns. These other channels would be primarily
complex channels sensitive to relalively high spatial fre-
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quencies (high relative to the fundamental frequency of
the textures). The model in Fig. 17 wouid apply to each
observer, therefore, but the population of complex
channels would be somewhat different from observer (o
observer.

Another implication of the results in this paper (when
considered with those of other studies) is for the
previously identified intensive noalincarity active in
texture segregation, a nonlinearity which is compressive
at quite low contrasts (e.g., Wilson, 1993: Graham er af.,
1992; Graham & Sutter, 1996). Twoe candidates to
explain this intensive noulingarity have been considered
in the past: a relatively early local nonlinearity (although
it must occur after sensitivity to background luminance.
spatial frequency and orientation have been set—Graham
& Sutter, 1996), and inhibition among the channels
{modeled as a normalization or contrast-gain network).
The results of the siudy here, while consistent with
inhibition among the channels (as in Fig, 17), are quite
difficult and perhaps impossible to reconcile with 4
relatively early local nonlinearity if the results of
appropriate constant-difference series experiments are
considered as well.
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APPENDIX [

Part I Further comments on relationships among several models of
lexture segregation and similar perceptual tasks

As mentioned in the Introduction, some models of other types of
texture discriminations {e.g. Bergen & Landy, 1991; Fogel & Sagi,
1989; Grossberg & Mingelia, 1985; Landy & Bergen, 1991; Malik &
Perona, 1990; Rubenstein & Sagi, 1993; Wolfson & Landy, 1995)
seem similar to complex channels invoked for non-Fourier textures,
However, the second stage of these other models may be more akin (o
the pooling and decision stage of the complex-channels models fe.g.
Figure 17) than 10 the second filter in (he complex  channels
themselves. To make this point more conerete, we present a specific
exampie in the next few paragraphs,

Suppose one tried to specify how the comparison-and-decision stage
used here could be instantiated by a reasonable mechanism. The two
stages of “Pooling across spatial position” and computing the *Within-
channel differences” [see Fig. 4 and/or A(1} and A{2) in Part I of this
Appendix I] could be computed by the following processes which
others have invoked {e.z. Figure 13 in Wolfson & Landy, 1995} and
have referred to as being similar to complex cells in the cortex:

{i) applying an even nonlinearity pointwise 1o the output of the
channels, e.g. a squaring or other power as in A1)

(i} then filtering each channel's transformed output by an array of
“edge-detecting” receptive fields [instantiating A(2)}

(1it) and then taking the maximum of these fields to both identify the
correct place in the visual field (that is, to detect the edge between
the two texture regions) and to simultaneously measure the
difference between the two regions.

Now suppose that one considers a “computing unit” (for lack of a
better word) composed of a simple linear channel followad by steps (1)
and (i) above. The simple linear channel can be thought of as a first-
stage filter, and the array of edge-detecting receptive fields in step (ii)
is a second-stage filter, and there is an intermediate nonlinearity in step
{i). ‘Thus, this “computing unit” looks very much like the complex
channels in Fig. 1. One minor difference is that, in this “computing
unit”, the receptive field of the second-stage filter has odd-symmetric
{cdge-detecting) receptive fields rather than the even-symmetric fields
shown for the complex channels in Fig. I. Another minor difference is
the explicit presence of firse-stage filters of both odd snd even
symmetry. A more significant difference between this compulting unit
and the complex channels is as follows, however:

¢ The “computing unit” just described is being used 1o tell the
difference between two texture regions where the textures in the
two regions produce different responses in simple channels {or,
roughly speaking, the two textures have different  Fourjer
amplitude spectra, or, as has sometimes been said, are “first-
order” or Fourier textures).
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* The complex channels in Figs 1 and 17 are being used to
characterize the lexture wirhin any ooe region so that two
textures which produce identical magnitudes of response in all
simple channels {(ie., have very similar Fourier amplitude
spectra, and thus are second-order or Fourier textures) but
nonetheless differ (as in the checkerboard vs siiped-arrangement
textures in Fig. 2) can be wld apart by higher processes and
hence the observer.

Whether the “computing units” used to tell the difference between
regions of first-order texture and the complex channels used
characterize second-urder texture regions are in fact distinct entities
(e.g. different neurons in different places in the brain) is a difficult
question even (0 ask cleanly at (his point in history, and it seems
impossible (o answer now,

U these entities are not the same, then the results of this study
apply only w complex channels, that is, to entities used to characterize
textures within a region, (This is so because the expansive non-
lineanity revealed here was in the complex channels used to
«haracierize the checkerboard texture and the striped textures in a
cuse where both of them have exiremely similar Fourier amplitude
spectra and thus produce very similar outpur magnitudes from all
simple channels.)

A similar point holds for the “higher-order mechanisms” mentioned
n the [ntroduction, where the second stage pools across spatial
frequency andfor omientation andfor phase rather than spatial position.
Again, this second stage might better be compared with the pooling
and decision stage (e.g. Figure 17} than to the second stage of the
complex channels, For example, in the case of Olzak amd Thomas (in
preparation, 1996} their second filtering stage is followed by a simple
differencing 10 form the decision variable, and these operations
together are very close to those of our comparison and decision stage's
spatial pooling followed by a within-channel difference,

Part 11 The comparison and decision rufe

This is a brief description of the comparison and decision rule stage
n our models (the nghtmost box in Figs 4 and 17). More extensive
description and some discussion appeared in earlier publications
(Sutter ef al., 1989; Graham, 1991; Graham et af., 1992; the Appendix
of Graham ez ul., 1993). Our practice has been to compute various
measures of the degree to which there are gross differences in overall
modulated activity between the outputs of the channels to the
checkerboard region and the outputs to the striped regions. These
various measures all have the structure diagrammed n Fig. 4 but differ
in the parameter values.

As Fig. 4 indicates, a spatially pooled response is computed from
each channel (both simple and complex) in both the checked region
and the striped region. The spatially pocled respanse of the jth channel
W one Tegion is twken 1o equal:

G a0, y) — M .

Rjlregion) = o,/ Z . Ell(—}vy}-ﬁ;% (ALY
{x.v]ir region

where &y, is the exponent characterizing spatial pocling, ; (x,y) is the
output at position (x,yj of the jth channel, ¥, and A, are the numbers of
pasitions in the region usually just in one period in the appropriate
region as that is sufficient). Then M; is the average value of Oxx,y}
over this one period and is very close to zero for these patterns and
channels.

The observer’s differential sensitivities to different spatial frequen-
cies, orientations, and mean luminances can be incorporated into this
model at several places, e.g. into the channels themselves by allowing
different channels to have different peak sensitivities or by having an
early sensitivity-setting stage as in Fig. 17. In either case, the
sensitivity factor would be incorporated into the channel outputs 05
{x.v}in the above A(l}. In our earliest presentation (Sutter et al., 1989),
however, we acted as if the differential sensitivity were incorporated a1
a much later stage |corresponding to A(3) below], but that was done
primarily for convenience in our computer programs and does not
seem the most likely candidate. The results here are not affected by this
preblem in any case.

When the exponent kg, is set equal to 2, the above measure is equal

to the standard deviation of the outputs at different positions in one
period of the given region and, by crude analogy to other situations.
sometimes described as energy.
Then, a within-channel difference is computed:
D; = |Rj(check} — R{stripe)| (A2}
which gives the difference between the spatially pooled response in the
two regions.
Finaily, the within-channe! differences from the Ny different

channels are combined in a power-summation with an exponent 4, 1o
form 0

Moh
n :k:n\/ Z Djk"" (A3}
i=1

where Ny is the total number of channels. When the exponent &, =< 2,
the [ is the root-meen-square difference between regions, An exponent
of infinity comesponds to taking the channed that best discriminates the
WO regions.

These pooling miles across all spatial positions and channels can
reduce 1o relatively simple statements involving pooling across ypes
of channels (as in Graham & Sutler, 1996) when the exponents
assoclated with different channels are the same. This reduction is
possible because power-summation rules like the pooling rules above
have the following convenient property: one can first pool over sutrels
of the whole set and then pool over these intermediate quantities and
the answer is the same as if one had pooled over the whole sel 10 begin
with; see Eq. (4) in Graham e af. (1992).

The degree to which two regions (textures) segregate perceptually
(as reflected by the observer’s ratings of perceived segregation) (s
assumed to be g monotonic function F of D. If for no other reason, one
must include this final monotonic transtormation between £ and the
ratings because the observer's use of a bounded rating scale introduces
a ceiling that does not oecur for D,

If there is only one channel contriburing 1 an observer’s response,
then the observer’'s response will be a monotonic function of the
within-channel difference, and that will just equal the amplitude of the
channel’s output in one region minus ils output in the other.

Part Il Equivalent forms of complex channels

[n the text we usk a question about the intermediate nonlinearity in
the complex channels because that is usually the only stage in the
channels assumed to be nonlineuar. More generally, however, these
experiments measure the spatial-summation nonlinearity in the
complex chamnel as a whole, and it would be possible (although m
this moment in time it seems odd to do so) to place the nondinearity
clsewhere in the complex channel. To prevent future confusion about
eXuctly what the results in this paper prove, some of these allernative
complex-channel models {equivalent in this comext) we described
below, First, however, to set the stage for these descriptions as well as
for the reader desiring further explanation of the prediction in the main
text, that prediction {equation (3)] ts informally proved in the next few
paragraphs.

Further explanation of predictions from complex-channef model in
main text

Consider the wned complex-channel responses as shown in Fig. 6:

(i) Since the first-stage filter is tuned (o the grating patches’ spaial
frequency and orientation, the filter’s outpul (o an element
mimics the element itself. And thus the output 1o a large element
mimnic¢s that to a small, except it oceupies area A, whereas the
output to the small occupies area A; (second row of Fig. &)

(i) The ocutputs then pass pointwise through a power nonlinearity. If
the power nonlinearity is of the full-wave type, the outpur
magnitude at each point is now proportional to |C)1¥ and ||t
rather than to €, and ;.

Ifitis a half-wave power nonlinearity, the output magnitude at each
point in the positive halfwaves will be proportional to [C)* and |Cs
while that in the negative halfwaves will be zero.

i
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{i11) The modulation amplitude (cal] it B) in the sceond-stage filler
output in the striped region (e.g. the final row of Fig. 6) is
proportional to the maximum of that output. That maximum
cumes from the receptive field centered at the middie of o large
element (the receptive field shown in the second to last row of
Fig. 6). R is therefore approximately equal (o excilatory center's
response to the large element minus the inhibitory flank’s
response to a small element, or:

Rzl |G - Ay |Gaff| (Ad)

To compute B exactly, one would need to explicitly apply a
hypothetical first-stage filter, then the pointwise nonlinearity, and then
the second-stage filter, But since the elements in these element-
arrangement texture patterns are spatially separate, the differences
between the exact computation from a tuned channel and that
embaodied in A(4) are insignificant for the purposes of cemparison
with data as noisy as psychophysical data. Alse note that the verbal
description just above A(4) assumes an even-symmetric receptive field
for simplicity, but actually the phase characteristics of the filter are
irrelevant.

(iv) The response of this tuned channel in the checkerboard region is
approximately zero. Hence the overall response of this channel as
it contributes to perceived segregatability (that is, the difference
between its response in one region and that in another) is aiso
given by A{4).

{v

it

Finally, since ali the tuned complex channels will act analogously
1o that in Fig. 6, the total contribution of the complex channels to
percetved segregatability is alse given approximately by A{4).

Rearranging A(4) gives equation (3} and equation (4) of the main
text,

Nonlinear second filter fwith linear first filter and piecewise-linear
intermediate stage)

Another possible model of a complex channel is one in which the
intermediate nonlinearity is always piccewise-linear and the first-stage
filter remains g linear filter, but the second-stage filter is not a linear
filter; instead, the second stage does some nonlinear pooling of
responses from different points in space (as if each receptive field in
the second-stage flter were modeled nonlinearly). There is an
indefinitely large set of possible nonlinear second stages. We consider
three possible versions. We will describe them in the context of Fig. 6
fuilowing the same five steps used in the previous section. The three
versions will differ only at the third step. [n the end, they make the
same predictions for the positions of the dips in the tradeoff curves as
does the original model.

Step (i) The first-stage filter's response will be as before for all
three versions.

Step (ii) For all three versions, the first-stage responses are passed
poimtwise through the full-wave or half-wave plecewise-linear
nonlinearity so the response magnitude at each point is proportional
to C) and Cy;

Step ({ii) It is at this point that the three versions we are considering
differ. They make different assumptions about the exact action of
the second-stage filter, as subsections below will describe
individually.

First, however, we will give a general deseriplion of their action at
this third step.

For all three versions, the amplitude of the second-stage filter
response (call it R—see the final row of Fig. 6) will be approximately
proportional o the response of the receptive field centered at the
middle of a large element (lhe receptive field shown in the second to
last row of Fig, )

However, now, unlike the linear second-stage filter case considered
in the main text, the response £ of the excitatory center of each of these
three versions may come from a nonlinear pooling of its inputs, as may
the response { of the inhibitory surround. Fusther, the combination of £
and 7 may not be linear but nonlinear in ways described below,

N. GRAHAM and A. SUTTER

Steps (iv) and (v}, For zil three versions, the fourth and fifih steps
are like that for the original model (in the preceding subsection)
except that the appropriate A{S5). A(6}, or A(7) will be substitued
for A(4).

Version #1 (power-law applied at second-stage filter rather than ai
intermediate noniinearity). If the second-stuge filter is nonlinear ruther
than linear and its nonlinearity can be described by an integration over
a power function of the inpul, then one finds the follewing.

Ema, -0

Fasag- O
and letting

R=|E-]

R= |4 (G ~ 42 |Gl (AS)
A(5) is the same as A(4) for the model in the main text. Indeed, ane
has the feeling that the difference between that model and this one is
cluse to verbal quibbling. In a physiclogical contex, bowever, where
particular cells were taken to correspond to particular parts of the
maodtel, it might be more natural 1o use one rather than the other,
Version #2 (quick pooling ar Minkowski metric done separately in
excitatory and inhibitory regions of second filter's receptive field).
However, if £ and 7 poot as follows,
<

EnfA - O

I {Ag |G 3
then, letting R =t E — 7 |

R A - |G — {4163
=1%o - Ay e

The minimum of R still occurs when the relationship in equation (3}
holds. But the functions R versus C; will be straight lines, not curved
as in Fig. 7. However, since the final monotonic transformation
between the predicted segregation and the observer's segregation
rating introduces curvature, it is unlikely that this difference between
the predictions of this mode] and the others could be detected in the
experimental results.

Version #3 (quick pooling or Minkowski metric done over whole
receptive field). Still 4 third logical possibility is to let

(Ag)

EmA;-|C

D2 Ay 16
but now let R = |E — 4|"* so that

Bafa|Gf - 4x |Gl 1 (A7)

Again R will reach its minirum when the relationship in equation

(3) holds. However, the precise functions for R versus C; are different

than those in the preceding two cases. Again, though, it is unlikety that

the difference between the predictions of models could be detected in
these experimental resulls.

Nonlinear first filter (with piecewise-finear intermediate faunction and o
linear second filter)

A compressive or expansive nonlinearity can be incorporated in
the first-stage filter (instead of at the intermodiate stage) by decrecing
that the first-stage filrer should contain two substages: one iy u
pointwise conpressive or expansive nonlinearity; the other is a linear
filter. Which of these substages comes first does have some effects ou
the predictions, but (o a first approximation either order can mimic
the effects of a nonlinear intermediate stage. [f the pointwise non-
linearity comes first, the model seems significantly different from
Fig. L. If the pointwisc nonlinearity comes sccond, then one is Just
quibbiing zbout whether it should be considered to be part of a
nonlinear first-stage linear filter or, as in Fig, 1, part of the intermediate
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rectification stage. (Ac least quibbling as far as applications to
psychophysics go. Again one can imagine that some exploration of the
physiclogical substrate might make one description more desirable
than the other.}

Note turther, the pointwise nonlinearity of the first substage must be
compressive or expansive in the following sense: it must be a
symmetric function of its input centered at that value of the input
produced by z blank field at the same background [uminance as the

patterns. Thus, it is just as compressive (or expansive) for excursions
below the background luminance as for excursions above.

To see that this scheme will work for these area experiments
described here, you might consider Fig, 6 again and notice that the
compressive or expansive effect (that determines whar contrasts are
matched for effect on the complex channel) can occur either at the first-

stage (ilter or at the intermediate nonlinearity without undermining the
basic logic.




