73 Visual Perception of Texture '

MICHAEL 8. LANDY AND NORMA GRAHAM

WIAT 15 visuar TEXTURE, and how might a stucy of the
visual perception of texture help us to better understand
human vision? In this chapter we will attempt to give the
reader a feel for how the study of rexture perception is uscful
in understanding the impact of texture, as well as in pris-
viding a better understanding of basic visual mechanismos
that respond not only o texture but 1o all visual stimuli, This
review will be relatively briel and, of necessity, incomplete.,
We hope to give an overview of the different research areas
concerned with texture perception and of the current issues.
For a longer early review, we refer the reader to Bergen
(19a1).

Caonsider the scene in Figure 73.1. The border between
the sky and the trees/grass involves a difference in
luminance, one that would easily be signaled by a linear
mechanism such as a simple cell in primary visual cortex,
The boundary between the zebras and the background alse
involves a change in chromaticity (although not visible in the
black-and-white image in Fig. 73.1), which might be signaled
by color-epponent mechamisms. But the borders between
pairs of zebras involve neither a difference in colar nor a
difference in average luminance. These borders include
stretches of boundary that are black on one side and white
an the other, stretches where the colors are reversed, and
stretches where there is no local visual information to signal
the boundary {where black abuts black or white aburs white).
Newvertheless, we perceive a smooth, continuous ocelusion
houndary at the edge of each animal. It is as if the visual
system possesses the capability of segmenting regions of the
image based on a local textural property, such as separating
“vertical stull™ from “horizontal stff”

Thus, texture is a property that is statistically defined, A
uniformly textured region might be described as *predomi-
nantly vertically oriented,” “prcdnminanﬂy small in s(‘;tlc,”
“wavy,” “stubbly” “like wood grain,” or “like water” As
Adelson and Bergen (1991) put it, texture is a property of
stuffin the image, in contrast to visual features such as lines
and edges, the things in the image (analogous to the linguistic
difference berween mass nouns like water and count nouns
like mausz).

Anather way of characterizing visual texture is by the uses
to which it might be put, Texture is a property of an image
region. Regions in the visual field can be characterized by
differences in texture, brightness, color, or other atributes,
Relatively early processes in the visual svstemn can use exture
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information to perform a tentative segmentation of the
visual image into regions to ease the processing load o |
subsequent computational stages, The analysis of a single
textured image region can lead to the perception of cate
gorical labels for that region (“This looks like wood® or “This
surface looks slippery”). The appearance of texture allowl
the cbserver to determine whether two textured region.
appear to be made of the same or different stuff. I tw
abutting image regions have different surface rexure, thig
may lead to the detection of the intervening texture horder |
(like the border between adjacent zebras in Fig, 73.1). Suu;h
texture-defined boundaries may then be used 1o sngmr.m
figure rom ground and for two-dimensional shape identif-
cation. Finally, continuous changes in texture propertics miay,
result in the percept of three-dimensional shape [Gibson, £
1950). A purpose of much research I this area is to define £
the mechanisms and representational scheres used to char
acterize lexture, and thus to determine whether the same 88
underlying mechanisms are responsible for each of d'm £
above perceptual capabilities, k5

IR

Texture segregation

Texruks Features  Much of the work on perception con-
cerns the ability of observers (o discriminare certain texture.

pairs effortessly. For example, Figure 73.2 shows rectangu. |
lar regions of Xs and Ts on a background of Ls. Observen

can perceive cllortlessly that there is a region of Xs differ §0
ent from the background, that this region has smooth, con- =
tinuous borders, and that these borders form a rr*rraugulw

shape. This is veferred to as the segregation of floure from grownd
or segmentation of the image into mulliple homageneows regtons. A e
the same time, none of these observations may be made | _é

=

wr 3=

o e AT

about the region of Ts without the use of eTortful scruting:
of the individual texture clements one by ane, i |
This sart of observation led a number of investigators 1
consider what aspects of image structure led to preatentive 7
segregation of textures. Beck and Auneave and ther ‘?
colleagues (Beck, 1972, 1973; Olson and Artneave, 1970) -5§
hypothesized that textural segmentation s based on the dis
tribution of simple properties of texure elements, where the ,}}
simple properiies are things like the brightness, color, size, | L
the slopes of contours, and other elemental descriprors of 2  ;
texture. Marr (1976) added contour terminations as an B
important feature, 3
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. Texture segregation. Note that the region of Xs on
mﬂy segregated from the background of Ls. One im-
eives the borders between the two regions and the
the region containing the Xs. By contrast, the border
T5 and Ls is difficult to see, and the shape of the
can only be discerned slowly, effortfully, and with
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6 73.1. Types of image borders. A natural image containing borders signaled by differences in luminance, color, and/or textural

Julesz’s early efforts centered on image statistics, He first
suggested (Julesz et al,, 1973) that differences in dipole
statistics were most important for texture pairs to segregate.
(These are the joint image statistics of the gray levels found
at the opposite ends of a line segment of a particular length
and orientation, as it is placed at all possible image locations,
gathered for all possible pairs of gray levels, dipole lengths,
and orientations.) But counterexamples to this were found
(e.g, Caelli and Julesz, 1978). It was then suggested that
textures with identical third-order statistics would prove
indiscriminable. (Analogous to dipole statistics, these are
joint image statistics of the gray levels found at the three
corners of a triangle with a particular size, shape, and ori-
eniation as it is placed at all possible image locations, gath-
cred for all possible triplets of gray levels, triangle shapes,
sizes, and orientations.) Again, counterexamples to this
hypothesis were found (Julesz et al., 1978).

Julesz noted that the counterexamples were suggestive of
an alternative explanation for texture segregation similar to
those of Beck and Marr. Julesz found that texture pairs that
segregated easily but had identical third-order statistics also
differed in the amount of an easily discernible image feature
(e-g, Caelli ct al., 1978). The task then became one of
identifying the list of image features, which Julesz (1981)
dubbed fextons, that were sufficient to explain segregation
performance. The initial list of textons included such
features as size, orientation, line terminations, and line
Crossings.

It has been noted that the third-order statistics used by

Julesz were population statistics. That is, the counter-
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examples to Juless's various conjectures never had identical
second- or third-order statistics within the actual finite
images observed. Rather, the identity was over all possible
images that could have been gencrated by the process
that generated the particular instantiation of texture cur-
rently in view. In fact, for continuous images, image pairs
with identical third-order statistics must be identical images,
rendering that version of the conjecture trivial {Yelloi,
1993), and fimte, discrete images are determined by their
dipole statistics (Chubb and Yellott, 2000). On the other
hand, Victor {1994) makes the case for the appropriateness
of the use of population statistics for theorizing aboum
texture segregation.

The feature-based theories were echoed in research in the
visual search field (Treisman, 1985). A target pattern in a
field of distracter patterns was easily found whenever the
target and distracters differed in a feature (e, size, orien-
tation) similar to the texton features that led o effordess
texture scgregation. For example, a target X was effortlessly
and immediately located in a field of distracter Ls, However,
when the target was a T, the task became effortful and
required serial seruting of the texture clements, requiring
more ime with every additdonal distracter added to the
stimulus (Bergen and Julesz, 1983). When the choice of
target and distracters requires the observer to attend to a spe-
cific combination of two features, the search becomes diffi-
cult and observers often perceive 7ilusery confunctions between
features of neighboring objects (Treisman and Schmidt,
1982}, Somewhat analogous effects using texture elements
having combinations of two features have been noted in
texture segregation as well (Papathomas et al, 1999)
However, Waolfe (1992) suggests (hat texture segregation and
parallel visual search do not always follow the same rules,

A number of other obeervations have been made con-
cerning when texture element stimuli do or do not segregate.
Beck (1982) has pointed out that textures segregate based not
only on the particular texture elements used but also on their
arrangement, reminiscent of the Gestalt laws of figural
goodness. As in the search literature (Treisman and
Gormican, 1988), texture segregation may show asymme-
tries (Beck, 1973; Gurnsey and Browse, 19849, For example,
a patch of incomplete circles will easily segregate from a
background of circles, whereas the reverse pattern results in
poor segregation. It has been suggested that this is due o
a difference in the varability of responses of underlying
visual mechanisms to the two possible texture clements
(Rubenstein and Sagi, 1990).

Nothdurfi (1985 suggested that finding an edge between
two textures is analogous o finding a luminancesdefined
edge. To determine a luminance boundary involves locating
large values of the derivative of luminance (the luminance
gradient) across an image. Finding texture boundaries might
invalve the determination of other aspecis of image struc-
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ture {local scale, local orientation, etc), and segTega'
would then result from large values of the structure gradi
Finally, much of the literature assumes that effo

less. That is, they require no selective atention to operaig
{demanstrated by, c.g, Braun and Sagi, 1990). Howeves
Joseph et al. (1997) had observers perform an effs

secondary task and noted a large decrement in search per
formance in a search task that typically yields performance
independent of the number of distracters, Thus, it i p

Alternatvely, texture segregation may not require foc
visual attention, but atention may be used to alter the chare

also assumed that texture segregation was offortless in the
sense of being immediate. However, ar least some tex
take substantial time to process (e.g, Sutter and Grahamy
1995), thus undermining the notion that preattentive testure.
segregation is always immediate and effortless,

We have treated texture as if’ it is somehow an solated c
that can signal the presence, location, and shape of an edge |
However, texture can co-occur in a stimulus with other
to edge presence such as luminance, color, depth, or moti
Rivest and Cavanagh (1996) showed that perceived edge
location was a compromise between the position signaled by’
texture and by other cues {motion, luminance, color) In
addition, localization accuracy was better for twa-cue than,
for single-cue stimuli. Landy and Kojima (2001) found that;
different textural cues 1o edge location were combined usin& ;
a weighted average, with greater weight given to the more
reliable cues, This is analogous w the cue combination
scheme that has been seen with multiple cues o depth
(including depth from texture) by Landy et al [199:},
among others.

Current Moners o TeExTure SecrEcation  How mights
one maodel the aspects of texture segregation performance
we have just surveyed? IT an edge is defined by a difference
in luminance (a typical light/dark edge), then a bandpasy
linear spatial filter similar to a cortical simple cell can detect
the edge by producing a peak response at the location of the
edge. But, a typical texture-defined edge (e.g, Figs, 73.2and |
73.44) has the same average luminance on either side of the
edge and thus will not be detected by any purely lingar ;
mechanism, I

Several early investigators {e.g, Beck, 1972; Julesz, iﬂ&]]
suggested that observers calculate the local densivy of
various image features, and that differences in these texton
or feature statistics on either side of a texure-defined edpe
result in effortless texture segregation. However, it was nevet
clearly deseribed exactly what an image feature was and how




it would be computed from the retinal image. The image
eatures discussed (e.g, lines of different slopes, line termi-
Btions and crossings) were clearly tied 1o the kinds of stimuli
ed in most texture studies of the period (basically,
[r-and-ink drawings) and would not be applied easily to
aiural gray-scale images.
Analternative line of modeling suggests that we need loak
nofurther than the orientation- and spatial frequency-tuned
thannels alveady discovered in the spatial vision literature
llmugh summation, identification, adaptation, and masking
eperiments using sine wave grating stimuli {IDe Valois and
De. Valois, 1988; Graham, 1989, 1992). For example,
Knutsson and Granlund (1983) suggested that the distribu-
tion of power in different spatial frequency bands might be
wsed 10 segregate natural textures, and ran such a computa-
: mode]l on patchworks of textures drawn from the
8 odatz {1966) collection (a standard collection of texture
" images often used in the computational literature),
| Bergen and Adelson (1988) pointed out that even the
- wample of Xs, Ls, and Ts (Fig. 73.2) could be accounted
 [orby the distribution of power in isotropic channels similar
in form to cells found in the lateral geniculate nucleus (LGN)
s and layer 4 of primary visual cortex. Further, they showed
“that il the size of the Xs was increased o effectively equate
the dominant spatial frequency or salk of the different
- lsture elements, the segregation of Xs from a background
ul' Ls could be made difficult. This was strong evidence
against the texton or feature theories.
* A plethora of similar models based on filters selective for
| spatial frequency and orientation have been investigated
-~ (Bovik er al, 1990; Caelli, 1985; Fogel and Sagi, 1989;
Graham, 1991; Landy and Bergen, 1991; Malik and Perona,
1990; Sutter et al., 1989; Turner, 1986; for an alternative
§ view, sce Victor, 1988), These models are so similar in basic
 design that Chubb and Landy (1991) referred to this class as
the back pocket model of texture segregation, as texture perception
msearchers pull this model from their back pocket 1o explain
Erov phenomena of texture segregation.

 The basic back pocket model consists of three stages (Fig
g ?3 3). First, a set of lincar spatial filters, akin to the simple
- cells of primary visual cortex, is applied to the retinal image,
 Second, the outputs of the first-stage linear filters are trans-
formed in a nonlinear manner {by half- or full-wave rectifi-
aation, squaring, and/or gain control). Finally, another stage
uf lincar filicring is used to enhance texture-defined con-
tours, Tf this third stage consisted only of spatial poacling, the
. resulting outpuis would resemble those of cortical complex
ctlls. But often this linear filter is modeled as bandpass and
onientation-tuned, so that it enhances texture-defined edges
much as an orientation-tuned linear spatial filter enhances
luminance-defined edges.

This process is illustrated in Figure 73.4. Figure 73.44
shaws an orientation-defined texture border (Wolfson and

First-Order . Seccond-Order
Linear Sparial Pointwise | inear Spatial
Filter Menlinearity. Filter
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Fioure 733, The back pocket model of texture segregation, The
retinal image is first processed by 2 bank of linear spadial filters,
Then some form of nonlincaricy is applied. Here, a pointwise full-
wave rectification iz indicated. ‘\Jq::-ct asecond stage of linear spatial
filtering is applied to enhance the texture-defined edge. Subsequent

decision processes are dependent on the particular psvchophysical
task under study:

Landy, 1995). In Figure 73.4B a vertically oriented spatial
filter has been applied. The responses are larger to the ver-
tically oriented portion of the image, but these responses are
both strongly positive (when the filter is centered on a texture
element] and negative (when the filter is positioned off 1o the
side of a texture element). As a result, the average value of
the outpur is identical on either side of the texture border,
but on the left the response variability is greater. In Figure
73.4C the responses of Figure 73.4B have been rectified,
resulting in larger responses in the area of vertically oriented
texture, Finally, in Figure 73,40, a second-order, larger-scale,
vertically oriented spatial filter has been applied, resulting in
a peak response at the location of the texture-defined edge.
For a detection experiment (“Was there a texture-defined
edge in this briefly-lashed stmulus?” or “Were there mwo
different texture regions or only one?”), a model would try
to predict human performance by the strength of the peak
response in Figure 73.40) as compared to peaks in responses
to background naise in stimuli nef containing texture-defined
edges. For further examples, see Bergen (1991} and Bergen
and Landy (1991).

A wide variety of terminology has been used 16 deseribe
the basic model outlined in Figure 74.3, making the litera-
ture difficult for the neophyte, The basic sequence of a
spatial filter, a nonlinearing and a second spatial filter has
been called the back facket model (Chubb and Landy, 1991),
an LML (linear, nonlinear, linear) model, an FRF (filter,
rectify, filter} model (e.g, Dakin et al., 1999), secand-order pro-
cessing (e, Chubb er al., 20010), or a smple or finear channel
(the first L in LNL] followed by a comparison-and-decixion stage
(e.z, Graham et al., 1992).
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Ficure 73.4.

Back pocket model. 4, An orientation-defined edge. B, The result of the application of a linear, vertically oriented spatial

filter. €, The result of a pointwise nonlinearity (squaring). D, A second, large-scale, vertically oriented spatial filter yields a peak response

at the location of the texture-defined border in A.

The term second-order can be
particularly troublesome. In some hands, and as we will use
it here, it merely refers to the second stage of linear filtering
following the nonlinearity in a model like that of Figure 73.3.
As such, it has been applied to models in a wide variety
of visual tasks (Chubb et al., 2001). But second-order has
another technical definition that has also been used in
similar contexts. If the nonlinearity in Figure 73.3 is a
squaring operation, then the pixels in the output image (after
the second stage of linear filtering) are all computed as
second-order (i.e., quadratic) polynomials of the pixels in the
model input.

In this chapter, we will refer to the model of Figure
73.3 as a second-order model, meaning that it contains
a second-order linear spatial filter. Of necessity, this
second-order linear filter must follow an intervening

About the term “second-order”
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nonlinearity. Otherwise, there would simply be two
sequential linear filters, which are indistinguishable from a
single, lumped linear spatial filtler. We will use this
term regardless of the polynomial order of the intervening
nonlinearity.

There is also a more general use of second-order. In this
usage, a second-order entity (e.g., a neuron) pools, after some
intervening nonlinearity, the responses from a number of
other entities (called first-order) but, in this more general
usage, the first-order entities do not form a linear filter char-
acterized by a single spatial weighting function, as they do
in Figure 73.3. Rather, the first-order entities can be an
assortment of neurons sensitive to various things (e.g,
different orientations or different spatial frequencies). See
the introduction to Graham and Sutter (1998) for a brief
review of such general suggestions.




‘windowed sine wave graﬁng}l and the two types of elements
Vdier only in spatial fequency Consider a second-order
 mode] like that just described, with the first linear flter tuned
Wone of the two tvpes of Gabor patches and the second
linear filter tuned to the width and orientation of stripes of
A &mcnts This second-order model would vield a response
Iﬂ theze element-arrangement textures that is of the same
- werage level, although of high contrast in the striped region
~and low contrast in the checked region. To reveal the
i t:xlurcvd?ﬁna-d edee berween the checkerboard and striped
regons, therefore, requires another stage of processing,
 which could be a pointwise nonlinearity followed by an even
 lrger-seale linear spatial filter (another NL), thus producing
- asequence LNLNL. For an illustration of such a model's
- responses, see Graham et al. (1993), Figure 4,
. Here we will call this LNLNL sequence a third-order
L model. But, to avoid confusion, let us note that Graham and
© her colleagues refer to the first LNL as a complex channel
~ orsecond-order channel and the final NL is an instance of
what they call the comparison-and-decision stage.

& Aboul the terms “Fourier” and “non-Fourier”  There i also pos-
| sble confusion about the terms Fourter and non-Fourier, A
[ stimulus like that in Figure 73.44, in which the cdge can be
- found by the model in Figure 73.3, has been referred to as
[ ron-Fiurier (first applied to mation stimuli by Chubb and
" Sperling, 1988), The term was used because the Fourier
~ spectrum of this stimulus does not contain components that
: correspond directly to the texture-defined edge. But some
| others (e.g, Graham and Sutter, 2000) have used the term
" fownier channels for the first linear filters (the simpile channels)
{ inFgore 73.3 and reserved the term non-Fourier for the
© wmplex channels (the initial LNL} in what we called third-
E order models above (LNLNLY).
i Thisconfusing terminalogy is the result of a difference in
i emphasis. In this chapter, we concentrate on models that
IP' Incalize: {i.e., produce a peak response at) edges between two
i abuting textures, But, others (e.g, Graham and Surer
£ 2000; Lin and Wilson, 1996] have emphasized response
measures that can be used to discriminate between pairs of
textures (whether simultaneously present and abutting or
- nat) by any later; nonlinear deeision process. Thus, finding
the edge in an orientation-defined texture like that of Figure
73335, in Graham and Sutter’s terms, Fourter-based, as the
power spectra of the two constituent textures differ, whereas
finding the edge in a Gabor-patch element-arrangement
texture like that of Graham et al. (1993) is non-Fourier-based,

TS ] W T

as the power spectra of the two constituent textures do not
differ,

Mopzr Seecipication  The models of texture segregation
Just described are complicated, with many details that
require elucidation. Are the initial linear filters of a second-
order pathway the same spatial filters as the sparial fre-
quency channels that have been described using grating
experiments? What is the nature of the following non-
linearity? Are there fixed, second-order linear filters, and
what is their form? This is an area of current active research,
and most of these issucs have not been convincingly decided.

Graham et al. (1993} and Dakin and Mareschal 20007
provide evidence that the inital spatial filters in a second-
order pathway used to detect contrast modulations of
texture are themselves tuned for spatial frequency and ori-
entation. In the same article, Graham and colleagues also
demenstrated that the initial spatal filers in a third-order
pathway (their complex channels) were orientation- and
spatial-frequency-tuned as well.

The back pocket model includes a nonlinearity between
the two stages of lincar spatial filiering that is required to
demodulate the input sumuli. For small first-order spatial
filters, Chubh et al, (1994) provided a technigue called
histggram  conirast analpsis that allowed them to measure
aspects of the static nonlinearity, showing that it included
components of higher order than merely squaring the input
luminances, Graham and Sutter (1998) found that this non-
linearity must be expansive. They also (Graham and Sutter,
2000) suggested that a gain control mechanism acts as an
inhibitory influence among multiple pathways of the types
called sccond-order and third-order here.

First-order spatial [requency channels were first measured
using sine wave grating stimuli and various experimental
paradigms including adaptation, masking, and summation
experiments  (reviewed in Graham, 1989). Recently,
researchers used analogous expeniments to examine the
second-order linear filters. To do so, researchers hope to
deliver 1o the second-order filter something like the sine wave
grating stimuli of classical spatial frequency channel studies,
The usual ploy is to use a stimulus that has a sine wave (or
Gabor) pattern to modulate some aspect of textural content
across the stimulus. The assumed first-order filter and the
subsequent nonlinearity demodulate this stmulus, providing
as input to the second-order linear filter a noisy version of
the intended grating or Gabor pattern.

Studies of texture modulation detection have revealed a
very broadband second-order texture contrast sensitivity
function (OSF) using a varety of texture modulations
including contrast (Schofield and Georgesan, 1999, 2000;
Sutter et al., 1993), local orientation content (Kingdom et
al., 1995), and modulation between vertically and harizan-
tally oriented, filtered noise (Landy and Orug, 2002}, This
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Freure 73.5. The second-order contrast sensitivity function. 4,
This figure is constructed using a modulator image to additively
combine vertical and horizontal noise images (Landy and Orug,
2002). The modulator, shown as a function above the texture, has
a spatial frequency that increases from lefi to right, and its contrast
increases from bottom to top. Large modulator values result in a
local texture dominated by vertically oriented noise and small
values by horizontally oriented noise. Note that threshold modula-
tion contrast is nearly independent of spatial frequency. B, Example
data from a forced-choice modulation contrast detection experi-
ment using sine wave modulators of noise patterns,

function is far more broadband than the corresponding
luminance CSE. A demonstration of this effect is shown
in Figure 73.54. A modulator pattern is used to combine
additively a vertical and a horizontal noise texture. The
modulator increases in spatial frequency from left to right
and in contrast from bottom to top. As you can see, the
texture modulation becomes impossible to discern at
approximately the same level for all spatial frequencies. The
sample data in Figure 73.58 confirm this observation.
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Evidence for multiple second-order filters underlying this
broad second-order CSF has been equivocal, with evidenge:
both pro (Arsenault et al., 1999; Landy and Orug, 200%
Schoficld and Georgeson, 1999) and con (Kingdom and
Keeble, 1996). Many studies have found texture discrimina-
tion to be scale-invariant, suggesting the existence of a link
between the scale of the corresponding first- and second:
order spatial filters (Kingdom and Keeble, 1999; Landy and
Bergen, 1991; Sutter et al., 1995). It has also been suggested
that the orientation preferences of the first- and second-ordet
filters tend to be aligned (Dakin and Mareschal, 2000; Wolfson:
and Landy, 1995). This alignment of first- and second-order:
filters has also been supported for element-arrangement
stimuli that require a third-order model to detect the texture:
defined edges (Graham and Wolfson, 2001).

If there is an obligatory link between the scales of the first
and second-order filters, this suggests that the preferred
second-order scale should depend on eccentricity. This was
first demonstrated by Kehrer (1989), who noted that perfor
mance on an orientation-defined texture-segregation task ar
first improves as the target texture moves into the periphery’
and then worsens as the eccentricity increases further. The
poor foveal performance was dubbed the central performane
drop (GPD). This argument that the CPD is due to the rela-
tion between the scale of the second-order pattern and the
local scale of the second-order filter was made by Yeshurun
and Carrasco (2000), who, in addition, suggested that the
second-order spatial filters are narrowed as a consequence
of the allocation of selective attention.

The temporal properties of the first- and second-order
filters are not well understood, although some information
is available (Lin and Wilson, 1996; Motoyoshi and Nishida,
2001; Schofield and Georgeson, 2000; Sutter and Graham,
1995, Sutter and Hwang, 1999).

The possibility that the wiring between first- and second:
order filters is more complicated than that shown in Figure
73.3 remains open as well (see, e.g., the appendix in Graham
and Sutter, 1998; Mussap, 2001), with particular interest it
possible lateral excitatory and inhibitory interactions among
different positions within the same filter (Motoyoshi, 199%
Wollson and Landy, 1999).

Early filters are not the only visual processes that play
an important role in determining the conscious perception
of textured stimuli. Consider He and Nakayama (1994
who constructed a series of hinocular demonstration stiml
involving both texture and disparity. The foreground surfac
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as occluded by the squares. They underwent surface coms
pletion; that is, they were both perceived as larger rectangle
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ftpresentations are involved in judgments about the ohjects
grecived on the basis of textured regions in the stimulus.

livture appearance

Ihe previous section concentrated on research concerning
thservers’  ability to detect borders between differing
tures. Here we consider research more directly measur-
ng the appearance of textures. If two images both appear
bbe a grassy field, then at some level of analysis, the rep-
mentations of the two images must be similar. To under-
wind the appearance of texture might involve developing
ich a representation, as well as a metric within that repre-
entation space so that textures are perceived as similar if
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lieir representations are close and dissimilar if’ far, Indeed,
liere is even evidence that texture appearance (or, at least,
ngion-based) mechanisms can be responsible for texture
sgiegation in some cases (Wolfson and Landy, 1998), as
ietain texture pairs can be discriminated just as well when
liey are separated as when they abut (forming an cdge).
lsing region-based as well as edge-based mechanisms may
e optimal for segregation processes (Lee, 1995),

Dne approach to this problem of measuring texture
ippearance is a classical one: elicit similarity judgments from
thservers and try to build a representation. H aving done so,
one can then ask whether the underlying dimensions have
any semantic basis or whether dimensions satisfy any of the
properties of’ other perceptual dimensions (such as the addi-
ity and metamerism of color space). Three dimensions
ippeared to suffice for sets of natural textures (Rao and
Lohse, 1996) as well as artificial ones (Gurnsey and Fleet,
101 Harvey and Gervais, 1978). A texture analogy to color
maching  experiments with artificial one-dimensional
kxtures provides satisfactory appearance matches with four
witure primaries (Richards and Polit, 1974). As with color
matching, this technique shows that one can account for
listure matches with the four primaries, but it does not
tiplain texture appearance. Color appearance depends on
lle particular metameric match, as well as on color context.
Similarly, texture appearance can depend on context. For
sample, Durgin (2001) shows that the perceived texture
density of a texture patch depends on the density of the
arounding texture.

An alternative approach is to analyze an instance of
titure (o estimate its representation and then use that rep-
iesentation to generate new instances of texture. The pro-
psed representational scheme is considered successful if’ the
iewly generated textures are classified as “made of the same
stuff as the original” by observers. The first such model, by
Heeger and Bergen (1995), represented the input texture
image as the histograms of values in cach level of an

Froure 73.6. Texture appearance, representation, and extrapola-
tian. In the technique of Portilla and Simoncelli (2000), a texture
is first analyzed using a bank of lincar spatial filters varying in pre-
ferred spatial frequency and orientation. A set of statistics, both
first-ordler and correlational, on that set of filter responses becomes
the representation of the given texture. This representation may be
used to generate new instances of the texture. In each panel, the
inset square is the original texture, and the rest of the image is new
texture generated using the technique.

oriented pyramid representation of the image, that is, as the
statistics of the responses from a collection of orientation-
and spatial frequency—tuned spatial filters. The resulting
newly generated texture images were occasionally striking in
their similarity to the original. But, in other instances, espe-
cially those involving correlations between different image
arcas at long distances, the results were quite poor. More
recent models incorporate higher-order statistics including
correlations hetween pairs of filter responses across space,
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spatial frequency, and orlentation (De Bonet and Viela,
1998; Portilla and Simoncelli, 2000; Zhu et al., 1998). Figure
736 shows two sample textures {inset squares) that were
extrapolated using the technique of Portilla and Simoncelli
(2000), Clearly, the technique has captured a good deal of
that which defines the appearance of these textures. The
technique is somewhat less successful with purely periodic
textures (tiles), binary or pen-and-ink textures, or with
pseudotextures that are, for example, collections of small
ahjects (e, a pile of jellybeans). It remains to he seen
whether a metrie (Euclidean, Minkowski, or other] applicd
10 one of these texture representation spaces will correlate
well with observers’ judgments of the perceptual similarity
of textures.

Few psychophysical tests of these new statistical charac-
terizations of texture have been carried out. Kingdom et al.
(2001}, in an analogy to the work of Chubb and colleagues
in the luminance domain [1994), found that observers were
most sensitive to kurtosis in the histograms of wavelet (that
i, multiscale, orientation-tuned) coefficicnts in artificial
textures, Durgin (2001} has suggested that texture density
15 a separate dimension from cither mean (luminance] or
variance (root-mean-squared contrast),

The texture representation schemes just discussed are
image-based. That is, all content of the representation is
based on simple statistics based on responses of filters to
the texture. A complete theory of texture perception might
involve recognition that natural textures are associated with
real-world materials, and the appearance of texture may
well relate to perception of the particular material from
which the image derived (woad, plastic, water, grassland,
i) or properties of the real-world material thal might
relate to actions the ohserver might wish to take, This is the
concept of an affirdance (Gibson, 1979), Is this material
sticky? Will it crumble in my hand? Will T be able to walk
on it in bare feet? A great deal of work has been done,
notably in the computer graphics world, to understand
image properties of naturgl materials in order to simulate
these materials in vireual displays, By contrast, very litde
rescarch has been done on the perception of real-warld
textural properties. Recently, some effort has been made
10 understand the variety of images one can find of natural
lextures as viewpoint and lighting conditions are varied
iDana et al,, 1999},

Shape from texture

Gibson (1950) pointed out that the perspective distortion of
surface texture is a cue to surface layout. For example, con-
sider a ground plane that is painted with randomly placed
cireles. As the surface recedes into the distance, three differ-
ent lexture gradients may be distinguished: size (farther-away
texture elements are smaller in the retinal image), density
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(farther-away texture elements are closer together in the
retinal image), and compression (farther-away elements are
more slanted relative to the line of sight and hence form |
more eccentric ellipses in the retinal image),

The compurational literature is replete with suggested
algorithmns for the computation of shape from texture,
These algorithms vary in how restrictive an assumption i is ]
made about the surface texture. The earliest algorithms (eg)
that of Witkin, 1981) assumed an isotropic texture fall
orientations were equally represented on the surface, which
is true of the above example). More recent algorithms
ie.g, that of Aloimonos, 1988) only assume (exture home B
geneity (ie, the texore is statistically the same at all
positions on the surface). A particularly interesting algorithm
is that of Malik and Rosenholtz {1997}, This algorithm. |
makes weak assumptions about the underlying surface §
texture. It loaks for affine distortions in image statistics from - i
one location to another, as seen in the responses of a bank
of spatial filters varying in orientation and spatial frequency |
preference, much like the first stage in the current models of
exture segregation. £k

Psychophysical research on the perception of shape from |

(1984) discussed the threc possible texture gradients and |
manipulated them independently in their stimuli, They
found that perception of slant for planar stimuli depended |
mainly on the size gradient, whereas perception of curved |
stimuli was almost completely determined by the compres
sion gradient. Rosenholz and Malik (1997 found texture
isotropy to be unnecessary for human observers to estimae |
surface orientation, consistent with their cﬂmpuratianal'-
theory. Li and Zaidi (2000) examined the tvpes of surfal:t,
texture that would give a veridical percept of shape when |
mapped onto a corrugated surface in perspective, and found
that several aspects of the Fourier power spectrum were |
predictive of observer accuracy, corresponding to the avall |
a.bllity of oriented energy along lines of maximum :md
minimum curvature in the surface, ]

A second line of psychophysical research has been t{r'._-'
derive ideal (maximum a posteriori) observers and 32
compare the reliability of human observers’ estimates
of surface layour with those of the ideal ohserver Biakzl
et al. (1993) derived such a model with the assumption of |
isotropic, homogeneous surface texture and demnonstrated
that observers' estimates of surface curvature must use the |
compression gradient, Buekley et al. (1996} applicd the same
strategy 1o the estimation of surface slant, and found that
texture compression dominates observer judgments even for 1
fields of view large enough that, for the ideal, texture density |
should dominate. Finally, in a series of three papers, Knil
(1998a, 1998b, 1998c) derived ideal observers for slant from |
texture that use the three texture gradient cues and derived
the reliability of each cue as a function of slant and field.




ol view, He found that human observers became more reli-
fable with increasing slant and field of view, just as did the
Hel observers. Again, performance was so good that
s must have used texture compression and, at least
In part, an assumption of isotropy:
HNarophysiology
he physiological substrate for the first-stage linear filters in
re. segregation models is likely to be the spatial fre-
ency and orientation-selective cells in cortical area V1.
urthcr, V1 is sufficiently complicated that other attributes
Lol the current models, such as the normalization or other
nnnhm:mt!cs and subsequent spatial pooling, could cer-
Ilmi)' also occur in W1, There are also lateral interactions
- belween neurons in V1 (both excitatory and inhibitory} that
beyond the classical receptive field, There has been some
eontroversy over the function of these lateral interactions
'- V1. 5ome have suggested that lateral interactions enhance
fesponses to popout stimuli (Kastner et al,, 1997, 1999;
01hdurﬁ et al, 1999), to texture elements near texture
barders (Nothdurft ct al., 2000, to orientation contrast
(Knierim and Van Essen, 1992; Sillito et al., 1995), and 1o
e rather than ground (Lamme, 1995; Zipser et al,,
|5‘Dﬁ) Li (2000 even described a neural network model of
wgmentation that includes such processes,
- However, the responses to orientation contrast stinuli are
acomplex function of the contrasts of the figuere and ground
:': it and Lund, 1997), suggesting that these V1 responses
‘tre primarily the result of a gain control mechanism that is
~only an initial stage of the computation of texture borders
and figure-ground, Consistent with this view, several groups
have found that input from outside the classical receptive
field is mainly suppressive and suggest that it is not involved
with figure-ground analysis (Freeman et al., 2001; Rossi
qta!., 2001; Sceniak ot al., 2001; Walker et al., QUDG] An
- indepth review of a large range of results from areas V1 up
through MT, and V4 (Lennie, 1998) concludes that it may
be oo much to attribute such functions as papout and figure-
trm:nd segregation to area V1, and that these functions
probably occur in V2 through V4 or even at higher levels.
* Lennie sugpests that “Spatial interactions in V1 probably
- have a less exotic role; they provide lateral inhibition in the
& doniain of local structure so that, by analogy with lateral
inh:bmon in the luminance domain, signals from regions of
: mmﬂwn structure are suppressed and contrasts in structure
are made salient.” In this view; it is not untdl area V4 that
the system has even grouped regions of similar structure to
- find contours, regions, and surfaces and, perhaps, computed
* wrface slant. And thus, in this view, many of the processes
ﬂﬂnd into play by texture stirmuli (e.g, the conscious per-
ption of a surface as having a particular texture) would be
determined predominantly by still higher-level cortical areas.
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A recent functional magnetic resonance imaging study of
static texture segregation (Kastner et al., 2000 concurs,
finding little response to texture borders in V1 or V2/VP
and increasing responses as one proceeds downstream from
V3 to V4 and TEQ.

Conclusions

The perception of texture is a rich and varied area of study;
In the early coding of texture borders, there is some
comman ground between current psychophysical data and
models and the physiology of primary visual cortex, such as
the suggestion that texture border coding invalves a succes-
ston of linear spatial filiers and nonlinearities that include
static nonlinearities as well as contrast gain contral mecha-
nisms. Less well understood, however, are such higher-level
computations involving texture as the caleulation of figure-
ground, the coding of texture appearance, and the deter-
mination of depth and three-dimensional shape from
lexture cues.
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