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ASSOCIATING WORDS AND IMAGES
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ASSOCIATING WORDS AND IMAGES
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ASSOCIATING WORDS AND IMAGES
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ASSOCIATING WORDS AND IMAGES

» Object recognition

» Part identification

» Properties

» Gradability

Image Credit: allaboutbirds.org



http://allaboutbirds.org

GROUNDED FINE-GRAINED CLASSIFICATION 8

ASSOCIATING WORDS AND IMAGES

» Object recognition

» Part identification

» Properties

» Gradability

» Vagueness

Image Credit: allaboutbirds.org
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ASSOCIATING WORDS AND IMAGES

» Object recognition
» Part identification
» Properties

» Gradability

» Vagueness

» Composition

“[American Tree Sparrows] don’t have as strong
of a white eye ring as Field Sparrows” American Tree Sparrow

R

Image Credit: allaboutbirds.org
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OUTLINE

» Object recognition » Methodology

» LDA to skipgram

» Part identification » Attribute-based learning

» Properties » Modifiers
» Gradability » Adjective Gradability / Scales
» Vagueness » Quantifiers / Vagueness

» Composition » Composition in Distributional Semantics
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OUTLINE

» Methodology
» From LDA to Skipgram
» Attribute-Based Learning

» Modifiers

» Compositionality in Distributional Semantics
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FROM LDA TO SKIPGRAM

» LDA
» Document governed by collection of latent topics

» Words have varying probabilities given each topic

» Skip-Gram
» Similar words are used in similar context

» Words represented as points in high-dimensional space
where word similarity is measured through cos angle
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FROM LDA TO SKIPGRAM

HDJA
Feng & Lapata (2010)

» How do topics govern Blei & Jordan (2003)

multi-modal documents?
Skip-Gram

Roller & Walde (201 3)
Lazaridou et al (2016)
Wang et al (2017)

Silberer et al (2014)
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FROM LDA TO SKIPGRAM

LDA

» How do topics govern
multi-modal documents?

Skip-Gram

» What text should be used?

Feng & Lapata (2010)
Blei & Jordan (2003)
Roller & Walde (201 3)
Lazaridou et al (2016)
Wang et al (2017)

Silberer et al (2014)
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FROM LDA TO SKIPGRAM

LDA
Feng & Lapata (2010)

» How do topics govern Blei & Jordan (2003)

. ?
multi-modal documents~ Roller & Walde (2013)

Skip-Gram
Lazaridou et al (2016)
Wang et al (2017)
» What text should be used? Silberer et al (2014)

» How can we learn new information?
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VISUALLY-INFORMED LDA Feng & Lapata (2010)

» Document: bag of words and image features (BoVW) together

> : enhance word meaning through visual information

» Use B as word representation to measure word similarity and
word association

> : BBC news articles with images
> : Visual information improvement over pure text model

> : No correlation between words and images
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MULTI-VARIATE LDA Blei & Jordan (2003)
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MULTI-VARIATE LDA Blei & Jordan (2003)

» Document: Image w/ words generated by image regions
> : Caption generation & text-based image retrieval

) : 7000 image-caption pairs from Corel database

True caption
birds tree

Corr-LDA
birds nest leaves branch tree

> : Context is lost
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MULTI-VARIATE LDA Roller & Walde (2013)

> : Introduce context as additional variable
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MULTI-VARIATE LDA Roller & Walde (2013)

Associated Nouns

Object Descriptors

> : Introduce context as additional variable
» Document:
» 3D-LDA
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MULTI-VARIATE LDA Roller & Walde (2013)

> : Introduce context as additional variable
» Document:
» 3D-LDA

» HybridLDA: concatenate [3 from separately trained models
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MULTI-VARIATE LDA Roller & Walde (2013)

> : ImageNet, deWaC, association norms, feature norms
> : Hybrid LDA combining all data is most successful

Top Words Prototypical Images
water

ship

lake

sea

meter

clock
Friday
Sunday
Saturday
Monday

p . Images represented by feature clusters;
semantically unrelated components can be combined
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Lazaridou et al (2016)

MMSkip-Gram-B

. Include visual information in skip-gram context

: Wikipedia & ImageNet
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Lazaridou et al (2016)

MMSkip-Gram-A

. Include visual information in skip-gram context

: Wikipedia & ImageNet
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Lazaridou et al (2016)

Adding visual information for only some words improves
word similarity for all

Target SKIP-GRAM MMSKIP-GRAM-A MMSKIP-GRAM-B

donut fridge, diner, candy pizza, sushi, sandwich pizza, sushi, sandwich
owl pheasant, woodpecker, squirrel | eagle, woodpecker, falcon eagle, falcon, hawk

mural sculpture, painting, portrait painting, portrait, sculpture | painting, portrait, sculpture
tobacco coffee, cigarette, corn cigarette, cigar, corn cigarette, cigar, smoking
depth size, bottom, meter sea, underwater, level sea, size, underwater
chaos anarchy, despair, demon demon, anarchy, destruction demon, anarchy, shadow

Word similarity can vary depending on context

What about uncommon words?



METHODOLOGY: FROM LDA TO SKIPGRAM 26

ONE-SHOT Wang et al (2017)

» Document: made up of words and
properties that appeared as children of the
same <word-dependency relation> pair

> : Learn properties from single
exposure to object in a context

> : QMR & AD (quantified attr. datasets)
Text-only approach

zero-shot: Top 5 propertles for ‘gown’; context undo-dobj

P(qldy) ZP 20.) P(q|t)

one-shot:

P(qlw) = ZP (z|lw) P(qle:) > : Visual properties score lowest
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VISUAL INFORMATION Silberer et al (2014)

» Document: collection of objects & visual representations which
share the same property

> : Use visual information to corroborate properties
> : McRae attributes, Wikipedia extracted word-attribute pairs
)

» Physically grounding text adds meaning

climbs, climbs_trees, crawls, hops, jumps, eats, eats_nuts, is_small, has_bushy_tail
has_4_legs, has_head, has_neck, has_nose, has_snout, has_tail, has_claws

has_eyes, has_feet, has_toes,

» No correlation between image features and individual attributes
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FROM LDA TO SKIPGRAM

Document

Contribution

Limitation

Feng & Lapata

Unordered collection of

Images word

between

(2010) text and image words distributions in text and images
Blei & Jordan Image region —> caption | Can name Linguistic and visual
(2003) word in image
Roller & Walde | Image, name, association Imagesanditextualicontext in the
(2013) norms, feature norms best governed by spaces

Lazaridou et al

Skip-Gram: full text +

Visual information

(2016) some images
Wang et al Dependency parse relation | Object properties can be | Without images,
(2017) (text only)

Silberer et al
(2014)

Property (object + image)

Images

between
visual properties and
property words



METHODOLOGY

29

FROM LDA TO SKIPGRAM

Document

Contribution

Limitation

Feng & Lapata | Unordered collection of Images word between
(2010) text and image words distributions in text and images

Blei & Jordan | Image regic Linguistic and visual
(2003) w

Roller & Walde | Image, nam ntext in the
(2013) norms, fe: spaces

Lazaridou et al Skip-Grar
(2016) some imayes

Wang et al Dependency parse relation | Object properties can be | Without images,

(2017) (text only)

Silberer et al

(2014) Property (object + image)

Images

between
visual properties and
property words
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» Name:

» Properties:

Image Credit: arkive.org
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ATTRIBUTE-BASED LEARNING

» Attribute: ‘'human-nameable mid-level semantic property’

» Obiject: co-occurring correlated bundles of attributes

Image Credits: arkive.org, wikipedia.org, wildlife-photographs.blogspot.com
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ATTRIBUTE-BASED LEARNING

» Attribute: ‘'human-nameable mid-level semantic property’

» Obiject: co-occurring correlated bundles of attributes

Lazaridou et al (2014)
Hwang & Sigal (2014)
Chen et al (2017)

Vedantam et al (2017)

Image Credits: arkive.org, wikipedia.org, wildlife-photographs.blogspot.com
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ATTRIBUTE-BASED LEARNING

» Attribute: ‘'human-nameable mid-level semantic property’

» Obiject: co-occurring correlated bundles of attributes

Lazaridou et al (2014)

Hwang & Sigal (2014)

)
> Chen et al (2017)
) Vedantam et al (2017)

Image Credits: arkive.org, wikipedia.org, wildlife-photographs.blogspot.com
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ATTRIBUTE-BASED LEARNING

» Attribute: ‘'human-nameable mid-level semantic property’

» Obiject: co-occurring correlated bundles of attributes

Lazaridou et al (2014)

) Hwang & Sigal (2014)
4
> Chen et al (2017)

Vedantam et al (2017)

Image Credits: arkive.org, wikipedia.org, wildlife-photographs.blogspot.com
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ATTRIBUTE-BASED LEARNING

» Attribute: ‘'human-nameable mid-level semantic property’

» Obiject: co-occurring correlated bundles of attributes

Lazaridou et al (2014)

) Hwang & Sigal (2014)
4
> Chen et al (2017)

Vedantam et al (2017)

Image Credits: arkive.org, wikipedia.org, wildlife-photographs.blogspot.com
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IMPLICIT ATTRIBUTES Lazaridou et al (2014)

» Fast-mapping: people immediately learn new object from limited info

» "Aardwolf cubs often share the den with their mother” —
» Distributional representations bring words of similar context together

» Objects with the same properties have similar image features

/ T~
Cross-Modal

Mapping
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IMPLICIT ATTRIBUTES Lazaridou et al (2014)

» Fast-mapping: people immediately learn new object from limited info

» "Aardwolf cubs often share the den with their mother” —
» Distributional representations bring words of similar context together

» Objects with the same properties have similar image features

Neural Network

fprojw_>V — @W—>V

> : Wikipedia articles, CIFAR-10 & ESP images
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CROSS-MODAL MAPPING Lazaridou et al (2014)

> : Categorization induced by hidden layer of neural network

Seen Concepts Unseen Concept | Rank of Correct | CIFAR-100 Category

Unseen Concept

sunflower, tulip, pear butterfly 2 (rose) flowers
Unit 2 | cattle, camel, bear squirrel 2 (elephant) large omnivores and herbivores
castle, bridge, house bus 4 (skyscraper) large man-made outdoor things

» Neighbors of mapped vectors reveal information
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UNIFIED SEMANTIC EMBEDDING

Hwang & Sigal (2014)

» Inherent, indescribable properties = posture, head shape

» Attributes — four legs, tail, ears, snout...

» Class = ‘super-class’ + unique attributes

| BT
e VN

Domestic Longleg Fast Stalker

Dalmatian Horse  ZebraSiamese Cat Leopard “A striped feline”

Supercategories

Aftributes

Striped Spotted
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UNIFIED SEMANTIC EMBEDDING Hwang & Sigal (2014)

» Mapping to joint space:
1. Image representation close to class vector (and farther from others)
2. Class vector closer to its super-class than to the other classes
3. Attribute vectors maximize correlation with respective images
» 'Relationship regularization’ in joint space:
4. Class = superclass + attributes

C
R(U, B) = ) lluc —up — ULBe][3 + 72]Bc + Boll3
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UNIFIED SEMANTIC EMBEDDING Hwang & Sigal (2014)

» Mapping to joint space:
1. Image representation close to class vector (and farther from others)
2. Class vector closer to its super-class than to the other classes
3. Attribute vectors maximize correlation with respective images
» 'Relationship regularization’ in joint space:
4. Class = superclass + attributes

C
R(.B) =3 e — 1y (Ul + 22ll8e +

5. 0= 0. Describe objects with the attributes they have
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UNIFIED SEMANTIC EMBEDDING Hwang & Sigal (2014)

» Mapping to joint space:
1. Image representation close to class vector (and farther from others)
2. Class vector closer to its super-class than to the other classes
3. Attribute vectors maximize correlation with respective images
» 'Relationship regularization’ in joint space:
4. Class = superclass + attributes
C
R, B) = [[ue = wy = U 5el 5 +() 15 + Bol I
5. 0= 05. Describe ok:jects with the attributes they have

6. ‘exclusive’ reqularization - ensures unique decomposition per class
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Hwang & Sigal (2014)

: Animals with Attributes, super-classes from WordNet hierarchy

Category Ground-truth attributes

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, ...

Strict hierarchy not applicable to all domains

Cannot handle recognition through lack of attribute
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MULTI-TASK ATTRIBUTE LEARNING Chen et al (2017)

Attribute: fluffy

Problem:
Is the definition of “fluffy” the same across
categories? Does “fluffy” indicate different
visual properties in different categories?

Problem:

From training data with correlated attributes
“brown” and “fluffy”, should a model use color
features and learn "brown", or texture features

and learn "fluffy"?

©
Q
p
©
i -
(7))
v
Q
©
@)
&
Q
)
-
o]
-
]
<

Features shared

: CUB, AWA, aPascal/aYahoo images w/ attributes
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METHODOLOGY: ATTRIBUTE-BASED LEARNING

Chen et al (2017)

Selective Sharing

n
o
)
@
| -
O
)
+—
)
O
-
]
—
©

—

: Features must match attribute groups
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Category-Sensitive Attributes

il Learned category-sensitive attributes Inferred
Attribute attribute
Spotted Striped Brown

training
examples

A striped dog? Yes.

46

Chen et al (2017)

Train SVM for each class-
specific attribute

Use all attribute instances
In-class penalty is higher
Represent models as tensor

Use tensor completion to
'hypothesize’ missing
classifiers
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Chen et al (2017)

Category-Sensitive Attributes

il Learned category-sensitive attributes Inferred
Attribute attribute
Spotted Striped Brown

training
examples

Category
&

X
o
Q
=
=
<
&
o
Z.

2\
NVE
i
T ) | ,‘
|

A striped dog? Yes.

: Correlation of attributes can be useful
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VISUALLY GROUNDED IMAGINATION Vedantam et al (2017)

» Attribute: Interaction between adjective and noun
» Three aspects: Coverage, Correctness, Compositionality

> : How do we handle cases of missing information?

11 17 11 17 11 1/ 1 1
V4 S — +

(independent of
other aspects)
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Vedantam et al (2017)

Partial attributes: “ o

a(zlyo) o< p(2) || a(zlyr)
keO

Product of Experts: Latent space only
adjusted by attributes when specified

Novel Composition 1-bit concept
bottom-left

(digit, scale, orientation unspecified)

0, big, upright, top-right 2, big, clockwise, bottom-left

9,

: MNist images and attributes
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Vedantam et al (2017)

Latent Space Interpolation
3, big, upright, top-right 9, big, clockwise, bottom-left

: Not truly learning proper interpolation of attributes
Not representing the attributes themselves
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ATTRIBUTE-BASED REPRESENTATION

Approach Result Limitation
Lazaridou et al (2014) Cross-modal map . pr?vides SR no.t 2l
information appropriate

Context can be

Hwang & Sigal (2014) | Joint hierarchical map But not too structured

Feature & class specific Dependent on Have classifier but not

Chen et al (2017) i .
classifiers representation

space | Cannot model space

Vedantam et al (2017) Joint latent space . ,
between attributes between attributes

» Attributes are the result of adjectives modifying a noun
» Nouns are abstract: contain all objects which fit under the label
» Adjectives provide concrete picture or example

» How do we model that modification in feature space?

» First, examine the linguistics of modification
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OUTLINE

» Methodology
» Modifiers
» Adjectives
» Gradability / Scales
» Comparison
» Quantifiers, Vagueness

» Compositionality in Distributional Semantics
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GRADABILITY

» Modification can occur at varying intensities

de Melo & Bansal
(2013)

Qing & Franke
(2014)

Lassiter & Goodman
(2015)
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GRADABILITY

» Modification can occur at varying intensities

» Can we automatically learn adjective intensity?

de Melo & Bansal
(2013)

Qing & Franke
(2014)

Lassiter & Goodman
(2015)
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GRADABILITY

» Modification can occur at varying intensities
» Can we automatically learn adjective intensity?
» Individual adjectives have ranges they can apply to

» How do we determine these ranges and their cutoffs?

de Melo & Bansal
(2013)

Qing & Franke
(2014)

Lassiter & Goodman
(2015)
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GRADABILITY

» Modification can occur at varying intensities
» Can we automatically learn adjective intensity?
» Individual adjectives have ranges they can apply to

» How do we determine these ranges and their cutoffs?

de Melo & Bansal
(2013)

Qing & Franke
(2014)

Lassiter & Goodman
(2015)
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GRADABILITY

» Modification can occur at varying intensities
» Can we automatically learn adjective intensity?
» Individual adjectives have ranges they can apply to
» How do we determine these ranges and their cutoffs?

» Information —> word choice de Melo & Bansal

(2013)

Qing & Franke
(2014)

Lassiter & Goodman
(2015)
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GRADABILITY

» Modification can occur at varying intensities
» Can we automatically learn adjective intensity?
» Individual adjectives have ranges they can apply to
» How do we determine these ranges and their cutoffs?

» Information —> word choice de Melo & Bansal

» Word —> interpretation (2013)
Qing & Franke
(2014)

Lassiter & Goodman
(2015)
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INFERRING SEMANTIC INTENSITIES de Melo & Bansal (2013)

» Goal: Automatically learn adjective scales

» Use known syntactic patterns to collect word pairs

e.g. "% (,) but not %' ; 'not % (,) though still %

» Generate weak-strong scores for each word pair based on

pattern counts
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de Melo & Bansal (2013)

: WordNet & Web Scraping

Ave, |7 Ave, Ip
Web Baseline : N/A N/A N/A N/A
Divide-and-Conquer : 0.45 0.53

Sheinman and Tokunaga (2009)

N/A
MILP 69. 6% O 57 O 65 O 64 0.73
MILP with synonymy 78 2% 0.57 0.66 0.67 0.80

Inter—Annotator Agreement 78 0% ‘ 0.67 0. 76 0. 75 0. 86

: No sense as to scope of individual words
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SPEAKER-ORIENTED MODEL Qing & Franke (2014)

» An adjective is used when the property described exceeds a
threshold

» Ex: A cookie is if its diameter is more than 4 inches

» Depends on ‘comparison class': cookie vs. tree

» Vagueness: threshold is uncertain, even with perfect knowledge

Sizes of cookies I've baked

> : Model word usage as probability —> understand vagueness
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SPEAKER-ORIENTED MODEL Qing & Franke (2014)

» "I made a cookie”

» Word use is [ideally] efficient: minimal effort accurate statement
» Speaker model:  o(u1|bg, Pr) = p(0 < bg) = ffio Pr(0)d¢

Sizes of cookies I've baked
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SPEAKER-ORIENTED MODEL Qing & Franke (2014)

» "I made a cookie”

» Word use is [ideally] efficient: minimal effort accurate statement

» Speaker model: o (u1]bo, Pr) = p(0 < bg) = fbo @

o(b)
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SPEAKER-ORIENTED MODEL Qing & Franke (2014)

» "I made a cookie”

» Word use is [ideally] efficient: minimal effort accurate statement

» Speaker model: o (u1]bo, Pr) = p(0 < bg) = fbo @

o I |

¢(b) ¢'(b)
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SPEAKER-ORIENTED MODEL Qing & Franke (2014)

» "I made a cookie”

» Word use is [ideally] efficient: minimal effort accurate statement

» Speaker model: o (u1]bo, Pr) = p(0 < bg) = fbo @

® \|H |
& .

\.
¢(b) ¢'(b)  ¢"(D)
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SPEAKER-ORIENTED MODEL Qing & Franke (2014)

» "I made a cookie”

» Word use is [ideally] efficient: minimal effort accurate statement

» Speaker model: o (u1]bo, Pr) = p(0 < bg) = fbo @
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SPEAKER-LISTENER INTERACTION Qing & Franke (2014)

» "l made a cookie”
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SPEAKER-LISTENER INTERACTION Qing & Franke (2014)

» "l made a cookie”

il
61(b) H(b) 6 (b

> : What happens when the priors are different?
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SPEAKER-LISTENER INTERACTION Lassiter & Goodman (2017)

» "l made a cookie”

il
61(b) H(b) 6 (b

> : What happens when the priors are different?

> : How do we interpret the use of an adjective?

Ps(u|w) o< Pr(w|u) - Ps(u)  Pr(w|u) o< Ps(u|lw) - Pr(w)
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LISTENER MODEL Lassiter & Goodman (2017)

» "l made a cookie”

i
Pr,(Alu, V) = Py (A[[u]”

|
—_
~—
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LISTENER MODEL Lassiter & Goodman (2017)

» "l made a cookie”
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LISTENER MODEL Lassiter & Goodman (2017)

» "l made a cookie”

|

| ..|I|!!!!n!FFrH
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LISTENER MODEL Lassiter & Goodman (2017)

» "l made a cookie”

--—  Threshold prior
----- Threshold posterior
——- Height prior

— Height posterior

>
=
n
c
()
©
>
=
o)
©
0
(@)
[ -
o

: Model is theoretic
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GRADABILITY T0 COMPARATIVES

Purpose Result Limitation
de Melo & Bansal (2013) Ordering by intensity from syntax DO, no.t Ifnow &l
individual words
, , Assumes basic listener
Qing & Franke (2014) Modeling word use Model with
Model

Lassiter & Goodman (2017) | Modeling interpretation

Model is

» How do we grade words in the context of visual information?

» Individual words can have a range of interpretations, i.e.

their groundings are variable

» Multiple words can refer to the same visual feature
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GRADABILITY T0 COMPARATIVES

Purpose Result Limitation
do not know of
de Melo & Bansal (2013) , R
N ‘ individual words
I e ssumes basic listener
Qing & Franke (2014) - ' .
with
“[American Tree Sparrows] don’t have as
Lassiter & Goodman (2017 Model is

strong of a white eye ring as Field Sparrows”

» How do we grade words in the context of visual information?

» Individual words can have a range of interpretations, i.e.
their groundings are variable

» Multiple words can refer to the same visual feature

» Need context to disambiguate, i.e. compare
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GRADABILITY T0 COMPARATIVES

Purpose Result Limitation
)o not kn f
de Melo & Bansal (2013) , 0. O.t . ow o)
‘5\ : individual words
Ge \ssumes basic listener

Qing & Franke (2014)

with

“[American Tree Sparrows] don’t have as

Lassi 2017 : : : !
AL (o (Gler i (24 strong of a white eye ring as Field Sparrows

Model is

McMahan & Stone
(2015)

Monroe et al (2017)

Bagherinezhad et al
(2016)

» Example groundings in two common properties: color and size
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GROUNDED COLOR SEMANTICS McMahan & Stone (2015)

r(qlowerlplower) r(aupperlpupper)

A _AL

r \ ( )

Applicability: P(ktrue | x)
Availability: P(ksaid | ktrue)

TUpper

“
A J
"’
“‘.“‘ 0‘..
. )
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GROUNDED COLOR SEMANTICS McMahan & Stone (2015)

> : XKCD online color survey

) . r(qlowerlplower) r(qupper'pupper)

AL _AL

» Words with split distributions : | r !
are not modeled well

» Do not handle contextual use

TUpper

S
.
“
LEN ".
. *
A ‘..O.




MODIFIERS: ADJECTIVE COMPARATIVES 79

GROUNDED COLORS IN CONTEXT Monroe et al (2017)

Context Utterance

p : How is color label use affected by other colors present?

» Task: describe target color in context of 2 distractors
» Distractors could be close, split, or far
» Model: speaker/listener approach

» Threshold now governed by contextual information
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GROUNDED COLORS IN CONTEXT Monroe et al (2017)

e R

Lb X LOBb . L21_/Bb

Lo o< Ly - Lyt
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Monroe et al (2017)

Comparative terms used most often when one
distractor is similar to the target

Lo

585 038 <0.01
9

Do not have representation of comparatives
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COMPARATIVE SIZES Bagherinezhad et al (2016)

> : Use images to learn about object sizes
» Text absolute but incomplete; image information only relative

v dog is 83 cm tall
v dog is ~0.5 m tall

v tree is about 6 m tall
v'tree is 4-12 m tall

> : 41 objects, 486 object pairs ,100 Flickr images per pair
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COMPARATIVE SIZES Bagherinezhad et al (2016)

> : Minimal size information required for high accuracy

" Language Only = Vision Only *® Our Model (textual only) = Our Model (visual only) = Our Model

| | MI‘IM\]

» Transitivity: size of chairs mostly affected by the size of cats

o .

T |

20

35 %

3

<04

02

Ea"
&

eueURq |
ADS
20Ys |

ey
urydjop |
yueydoro |
oy |
ouejdoioe
oy1qI0jOW |
/(U,Iennq

Seeei] -
o |

adoosororu
UO[oULIdIEM

> : Difficult to handle objects with highly variable sizes
Do not use comparative textual information
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COMPARATIVES

Purpose Result

Limitation

McMahan & Stone

(2015) Vagueness of color

Monroe et al (2017) Contextual color use

Automatic size

Bagherinezhad (2016
J ( ) understanding

» Both useful and limiting that each approach focused on a single
property, using property-specific representations of the data

» A combination of both global (absolute) information and local (relative)
details are necessary to properly contextualize descriptions

» As of yet, are not handling comparative adjectives themselves, only

comparing and contextualizing
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QUANTIFIERS

» Adjectives don't always apply to all instances of an object

1

> field sparrows have a white eye ring’

4

1

dogs are large’

Can quantifiers be incorporated into representations?

Herbelot & Vecchi (2015) | Sorodoc et al (2016) Pezzelle et al (2017)
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QUANTIFIERS

» Adjectives don't always apply to all instances of an object

1

> field sparrows have a white eye ring’

4

1

dogs are large’

Can quantifiers be incorporated into representations?

Can quantifiers be grounded?

Herbelot & Vecchi (2015) | Sorodoc et al (2016) Pezzelle et al (2017)
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QUANTIFIERS IN MODEL-THEORETIC SPACE Herbelot & Vecchi (2013)

» Model Theoretic Space: Objects are vectors where each
dimension equals the proportion of attribute possession

HORSE HORSE

a _mammal 1

has_four_legs |0.95

is_brown 0.35
is_scaly 0
> : Learn quantifiers through linear map from existing

distributional spaces to model-theoretic space
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Herhelot & Vecchi (2015)

: QMR & AD (quantifiers), Wikipedia & Google News

Training and testing on animals yields best mapping

Instance hatchet

raven a_bird a tool a tool
pigeon has_hair is sharp is sharp
elephant has_eyes has a handle has a handle
crab is_blind used for cutting used for cutting
has a metal blade made of metal
a weapon an axe
has a head 1s small
used for chopping -
has a blade
1s dangerous

snail a_predator

cottage
a_fruit has_a_roof
grows_on_trees used_for_shelter” _
tastes_sweet has_doors™ 1s heavy
used by lumberjacks

is_citrus™ worn_on_feet™ .
used for killing

: Missing data negatively affects mapping
No contextual dependency - when/where do differences occur
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Sorodoc et al (2016)

Vector associated with the query: For the query
‘green ? ', it will be the standard vector of 'green'’

Matrix with
geometrical

. Cell1:'em vector
figures, used as pty

7
" -" Probabilty
input Dot robavl

distribution

Ce" 3: gfeen VeClOf product Soft-max classifier
Cell 4 : ‘'empty’ vector results /
Cell5: empty vector between - ™
memory GMN wlo softmax -
Cell 6: empty vector g qugry N Weighted average of

N the memory using the

~

Cell 16: green vector softmax result :Gist

qMN w/o so'ftmax/gist

All ;
Rropabl!lty Concatenation of the
distribution . gftmax classifier—Non linear transformation query vector and the

of gist vector

quantifiers
: Grounded quantification

: Generated images of colored circles

: Proportion-based method outperforms count-based
method

: Highly controlled images and limited queries
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QUANTIFIERS IN IMAGES Pezzelle et al (2017)

How many are dogs? Three/most

» A person recognizes both small numbers and proportions

> : Map from text to image learn quantifiers from varying proportions
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QUANTIFIERS IN IMAGES Pezzelle et al (2017)

» A person recognizes both small numbers and proportions

> : Map from text to image learn quantifiers from varying proportions
> : ImageNet images constructed into collages
> : Quantifiers and cardinals require different similarity measures

(cos similarity and dot product, respectively)

> : Restricted learning space
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QUANTIFIERS

Purpose

Result

Limitation

Herbelot & Vecchi

Use MT to learn

(2015) quantified attributes

can be inferred

Assumes global truth

( )

Ground quantifiers in

Sorodoc et al (2016) .
image data

approach

representation

Ground quantifiers

Pezzelle et al (2017) .
and cardinals

» Quantifiers in images:

» Correspond to proportions

from counting

» Can be learned alongside cardinals

» Future work: Applying quantifiers to grounded classification methods
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QUANTIFIERS

It Limitation
Herbelot & Vecchi Use | Assumes global truth
(2015) quantifi ‘erred ( )
Sorodoc et al (2016) Grou.nd .
im: 1ch representation
Pezzelle et al (2017) Groune .
and nting

» Quantifiers in images:
» Correspond to proportions
» Can be learned alongside cardinals

» Future work: Applying quantifiers to grounded classification methods

» How do we put everything together?
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OUTLINE

» Methodology

» Modifiers

» Compositionality in Distributional Semantics
» Language

» Language & Vision
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COMPOSITIONALITY IN DISTRIBUTIONAL SEMANTICS

Mitchell & Lapata (2010) Boleda et al (2013)
Baroni & Zamparelli (2010) Vecchi et al (2013)
Dunlop et al (2010)
Hartung et al (2017)
» Linguistic aspects:

» Composition methods ?
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COMPOSITIONALITY IN DISTRIBUTIONAL SEMANTICS

Mitchell & Lapata (2010) Boleda et al (2013)
Baroni & Zamparelli (2010) Vecchi et al (2013)

Dunlop et al (2010)
Hartung et al (2017)

» Linguistic aspects:

» Composition methods ?

» Property being described —> color, emotion, legality...
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COMPOSITIONALITY IN DISTRIBUTIONAL SEMANTICS

Mitchell & Lapata (2010) Boleda et al (2013)
Baroni & Zamparelli (2010) Vecchi et al (2013)

Dunlop et al (2010)
Hartung et al (2017)

» Linguistic aspects:

» Composition methods ?
» Property being described —> color, emotion, legality...

» Intensionality # &
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COMPOSITIONALITY IN DISTRIBUTIONAL SEMANTICS

Mitchell & Lapata (2010) Boleda et al (2013)
Baroni & Zamparelli (2010) Vecchi et al (2013)

Dunlop et al (2010)
Hartung et al (2017)

» Linguistic aspects:

» Composition methods ? -
» Property being described —> color, emotion, legality...
» Intensionality # &

» Ordering vs
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ADJECTIVE-NOUN PHRASES Mitchell & Lapata (2010)

Adjective Noun Phrase

i IXXXXED B ' OIIIEm - /I
Adjective Noun . Phrase
1Beeccce. ol ! Kfecccce. BTN 000006...0
‘ : Find composition function that optimizes similarity

between composed vectors, depending on representation
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ADJECTIVE-NOUN PHRASES Mitchell & Lapata (2010)

» 2 semantic spaces: Spearman’s p
1. context co-occurence Additive
Kintsch
p(celt) Multiplicative
Us (t) — Tensor product
p (C”L) Convolution

Weighted additive
Dilation

2. LDA topic proportions

Target unit

57,] — p(wZ‘ZJ> Head only

Humans

g : BNC corpus

‘ : Multiplication was best for context-based
vectors, but additive functions are best overall

‘ : Only measuring similarity between the

constructed vectors
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ADJECTIVE-NOUN PHRASES Baroni & Zamparelli (2010)

Adjective

Noun Phrase

x XD - XXX

<

AN [Adj-Noun]

o CEEND

U

» Adjectives transform noun to noun-phrase

» Noun-phrases are corpus-generated vectors

) : Learn adjectives as functions over nouns
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ADJECTIVE-NOUN PHRASES Baroni & Zamparelli (2010)
D : Wikipedia + BNC
2

» Composed vectors are semantically related to corpus-

derived phrase vectors
—>

I I

» Adjectives cluster well based on property described

> : Vector space derived from dimensionality
reduction using only most common words
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ADJECTIVE-NOUN CLASSES Hartung et al (2017)

temperature emotion

» Property being described depends on noun in phrase
» Properties have names: these are also nouns
» Find correct property through composition

Adjective Noun Composition

i XXXXED B ' IXIIIED
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ADJECTIVE-NOUN CLASSES Hartung et al (2017)

> : HeiPLAS adj-property-noun triples (Hartung 2015)
Google News word2vec
4
» Weighted addition is best Compositional Model
ﬁgjl'lenctive
} . Vector Addition (®)

Weighted Vector Addition
Vector Multiplication (®)
Adj. Dilation (A = 2)
Noun Dilation (A =2)

Full Add. Weighted Noun
Eull Add._Weighted Adiective

Full Add. Weighted Adj. and Noun

} Pro pe rty can b e co nteXt' Tramed Tensor Product (&)

C-LDA (Hartung, 2015)
de pen dent L-LDA (Hartung, 2015)

» Probability-based spaces
do not work

5]
p—
Q
o)
@)
g
N
Q
o p—
b
O
—
o
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INTENSIONALITY Boleda et al (2013)

» Intersective:

» A" "is both and a

» Subsective:

» A" " is not necessarily in

» Intensional:

» An"” "is not a (nor’ )

> : Determine if compositional methods are affected by
intensionality of adjective
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Boleda et al (2013)

: Wikipedia + BNC

| |alleged former future hypothetical impossible likely mere mock

N |loose wide white naive severe hard intelligent  ripe

| | mecessary past possible potential presumed  probable putative theoretical
N | modern black free safe vile nasty meagre stable

Model Global Intensional Non-intensional
observed - - -
lexical function 0.60+0.11

full additive 0.5240.13 0.5240.13 0.5140.12

weighted additive  0.48+0.14 0.48+0.14 0.48+0.14
dilation 0.4240.18 0.4240.17 0.4240.17
multiplicative 0.32+0.21 0.3240.20 0.3240.20
noun only 0.4040.18 0.4040.17 0.4040.17

Predicted-to-observed vector

: Do not compose multiple adjectives
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ADJECTIVE ORDERING Vecchi et al (2013)

» Syntax makes adjective ordering easy to learn (Dunlop 2010)

> : Understand adjective ordering in distributional space as
function of adjective modification strength

= Adjective X ~ Adjective Y . Noun . Phrase
r QRD v XD » QXD = XD
~ Adjective Y . Adjective X . Noun . Phrase
y XD » QXXIXIED "XmD = 2D
cosZ T, Y,m, T N, Y- "N
> : Wikipedia + BNC with dimension reduction

> : Treat flexible ordering as equivalent meaning
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ADJECTIVE ORDERING Vecchi et al (2013)

» Syntax makes adjective ordering easy to learn (Dunlop 2010)

p : Understand adjective ordering in distributional space as
function of adjective modification strength

Adjective X Adjective Y Noun

feeccce. ollfecccce. olle00000 0

Adjective Y Adjective X Noun

y XD~ XIXIXED ' XXXIXIND

—

cos/ T, Y,MN, T N, Y- 1N

> : Wikipedia + BNC with dimension reduction
> : Treat flexible ordering as equivalent meaning
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LINGUISTIC ASPECTS OF COMPOSITIONALITY

Initial Data

Goal

[Best]
Method

Mitchell & Adiective. noun vectors Examine composition Multiolication
ive, noun v ultiplicati
Lapata (2010) J methods P
ZELBII Represent adjective as , ,
Zamparelli | Noun, noun phrase vectors : Linear mapping
matrix
(2010)
Hartung etal | Adjective, noun, property | Learn adjective property Weighted
(2017) name vectors from composition addition
Boleda et al Adjective, noun, phrase | Effect of intensionality on | Lexical Function
(2013) vectors composition function |(linear mapping)
Vecchi et al . . : Weighted
Adjective, noun Learn adjective orderin .
(2013) . J J Addition

» Composition depends on representation and purpose
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GROUNDED COMPQSITION

How is composition affected by the addition of visual
information?

Shutova et al

» Abstract vs. concrete phrases (2016)

Lazaridou et

» Images as visual phrases al (2014)

» What information each modality provides Collell &
Moens (2016)
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ABSTRACT COMPQSITION Shutova et al (2016)

» Metaphor comes from combining imagery of different domains

liquid <« — finance
> : Use visual information to separate abstract vs. concrete
> : Wikipedia, ImageNet; MOH and TSV for testing

Text: 7CXIXXXED cos/ JXIIXED

~pour~

-/ XXIED = « XD cos Z 7 D

» Dependent on visual representation being incoherent for metaphors

» Assume composition is addition
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Lazaridou et al (2015)

Treat visual features as the phrase representations

sparkling wine

liqueur

white rum
irish cream

smooth paste herbal liqueur

rich chocolate

mixed fruit
clear honey
orange liqueur

vibrant red

only fruit

orange
mobile visit

new orange

: Wikipedia CBOW, 384 WordNet/ImageNet synsets
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Lazaridou et al (2015)

: Zero-shot attribute learning

sparkling wine

liqueur
white rum
herbal liqueur
, CCA A . = clear honey
Regression iqueur
vibrant red
j only fruit

orange
mobile visit

new orange

: Wikipedia CBOW, 384 WordNet/ImageNet synsets
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ATTRIBUTE COMPOSITION Lazaridou et al (2015)

b : Zero-shot attribute learning

DirA: Attributes Dec: Leave-one-
outside training out training

I DirA-Ridge W Dec
DirA-nCCA mmmm Russakovsky and Fei-Fei (2010)

Ridge

: CCA
Regression

Attributes

> : Decomposition only in linguistic space

“Sunflowers are on average yellow (mean rank 2.3), fields are green (4.4), cabinets

are wooden (4), and vans metallic (6.6) (strawberries are, suspiciously, blue, 2.7.)"
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Lazaridou et al (2015)

: Zero-shot attribute learning

sparkling wine

smooth aste herbal liqueur
. 7 rich chocolate
Ridge R = mixed fruit
R ) CCA _ - cleaphoney
egression = orange liqueu
vibrant red
only fruit

orange
mobile visit

new orange
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Model Top item
A: white
N: dog
A: animal
N: goat

DEC

DIR®

LM A: stray

A: white, brown
N: dog Al pet

Top hit (Rank)

white (1)

dog (1)
white (27)
dog (25)

brown (74)
brown (17)

116

Lazaridou et al (2015)

Object

aeroplane

: Single object per image; have no

Predicted
Attributes

thick, wet, dry,
cylindrical,
motionless,
translucent

cuddly, wild,
cute, furry,
white, coloured

correspondence between adjective closeness and relevance
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Collell & Moens (2016)

: Understand the information each modality captures

: ImageNet, GloVe, McRae

Learning

X= visual repr. (CNN)
airplane [13,-32,
dog [7.1,825,

cat [2.1,-2.6,

X= word embeddings
L | airplane [13,-326
dog [2.1,21.8,

cat

Attribute

Y=Has legs?

learn

Model

Vlsual

Testing

predict

Has legs ?

aligator [7.1,826, wue 91] —> 1

aligator [s.2,325, ... 28]

predict
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Collell & Moens (2016)

: Positive is visual contribution, negative is text

Spearman
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taxonomic

encyclopedic function

: Examined one textual and one visual representation
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GROUNDED COMPOSITION

‘ Hypothesis

Result

Limitation

Shutova et al (2016)

Metaphor based on
visual dichotomy

Lazaridou et al
(2015)

Image represents
adjective-noun
composition

Collell & Moens
(2016)

Text and images
provide different
information

» Different representations have different strengths and

weaknesses, as do the different modalities

» The more different the semantics of the linguistic space and
visual space are, the more difficult it is to map between them
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CONCLUSION

» What we can do:
» Recognize objects and their component parts
» Handle vagueness of adjective modification
» Quantify attribute exhibition in a class

» Compose adjectives and nouns

» Future considerations:

» Applying quantifiers to properties of a single
object (not just proportions of countable
features)

» Grounding comparative terms

» Using attribute absence as a property of an
object

» Understanding human limits of differentiation
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FENG & LAPATA (2010)

11/~ u)( T X Planlbo Ptz )0 (47,6) = avgui d(g(6. 213, (6. 2w, 0, )

n=1 Zdn '77¢

Mx

» KL divergence

10g2

J

» Jensen Shannon Divergence s, -

l

D(p
» Conditional distribution P(wslwi) = Y P(ws|z)P(z|w)
i Bl ) e oo |2 )E ()

1
2

» Measure correlation with human
similarity metrics using Pearson’s r
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Figure 2: Performance of multimodal topic model on pre- Figure 3: Performance of multimodal topic model on pre-
dicting word association under varying topics and visual dicting word similarity under varying topics and visual
terms (development set). terms (development set).

Word Association Word Similarity

UpperBnd
MixLDA
TxtLDA

Table 2: Model performance on word association and
similarity (test set).
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BLEI & JORDAN (2003)
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BLEI & JORDAN (2003)

a(znl9n)) ( I (Yl ) )

m=1

=P

q(0,2,y) = Q(HW)(

Update posterior Dirichlet
N
Vi = O + Z Ui
n=1

Update posterior for each image region

Do O(p(?“n|2n =1, I, 0) exp{Eq [1Og ezh/]}

M
- exp { > A 10g p(Win [y = 11, 2m = 1, 5)}
m=1

= ®(3) ~ (L 7)

Update posterior for each word
K

D — eXp {Z anz logp(wm‘ym =N, 2, =1, 6)

1=1

B log 0;|7]

H

Approximate word dist:

Smoothing: add prior dist. to 3

Bi ~ Dlr(na ... 77)

Pij =1+ ZdDzl Z%:l 1<wdm — ]) Zvjjzl ?bm')‘mn
B — exp{Ellog S|p}
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Maximum likelihood Empirical Bayes smoothed

Caption perplexity
Caption perplexity
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Number of factors Number of factors Number of factors

annotation perplexity = exp{— ZdDzl Z%il log p(wo,|rq)/ 25:1 Mg}

inverse of geometric mean per-word likelihood



Text: DeWaC
1,038,883 documents
consisting of 75,678
word types and 466M
word tokens

Association Norms:
95,214 cue-response
pairs for 1,012 nouns
and 5,716 response

types

Feature Norms: 11,714
cue-response pairs for

569 nouns and 2,589
response types

Images: BidlerNetle
2022 word-synset
mappings for just 309
words

METHODOLOGY: FROM LDA TO SKIPGRAM

Modality

Text Only
Bimodal mLDA
Text + Feature Norms .676
Text + SURF V189
Text + GIST 139 wE*
Text + SURF Clusters 618 FF*
Text + GIST Clusters .690
3D mLDA
722w
601 F#*

Text + FN + SURF 100
Hybrid mLDA
150+50
150+150

150+150+50

FN, SURF
FN, GC
FN, GC, SURF

800 ¥
742
804

Table 2: Average predicted rank similarity between cue
words and their associates. Stars indicate statistical sig-
nificance compared to the text-only modality, with gray
stars indicating the model is statistically worse than the
text model. The Hybrid models are the concatenation of
the corresponding Bimodal mLDA models.

Images: SURF & GIST ft

Clusters: k-means 500
clusters of BoVW, images are
membership in clusters

128

Modality _ p

Text Only (LDA)

Text + Feature Norms 310 =
Text + Assoc. Norms 328 **
Text + SURF 251
Text + GIST 204
Text + SURF Clusters 159
Text + GIST Clusters 233
Text + FN + AN .

Text + FN + SURF

Text + FN + GC

Hybrid mLDA
150+200
150+50
150+150
150+200+150
150+200+50
150+200+50+150

FN, AN

FN, SURF

FN, GC

FN, AN, GC

FN, AN, SURF
FN, AN, SURF, GC

390 ¥
350
340
395
404
406

Table 1: Average rank correlations between
_SKL(wcmnpoundawconstituent) and our COTI]pOSi-
tionality gold standard. The Hybrid models are the
concatenation of the corresponding Bimodal mLDA
models. Stars indicate statistical significance compared
to the text-only setting at the .05, .01 and .001 levels
using a two-tailed ¢-test.




METHODOLOGY: FROM LDA TO SKIPGRAMTEXT 129

LAZARIDOU ET AL (2015)

» Skip-Gram:
/ T
| T e “Ytts wt
(X eptwled)  plwigjlwy) = 7
t=1 —c<j<c,j#0 4 we
Zw’zl € w
Y J
L:ling(wt)
1 T
» Visual knowledge: = > (Liing(wi) + Luision(wr))
t=1
) MM-Skipgram-A: Loision(we) == > max(0,y — cos(thw,, Vw,) + €08(Uap,; Vo))

w’ Pp(w)

> MM-Skipgram-B: Uq, replaced by z,,, = MY uy,,
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MEN: General relatedness
Simlex: Taxonomic sim.
SemSim: Semantic sim.
VisSim: Visual sim.

MEN
100% 42% | 100%
KIELA AND BOTTOU
BRUNI ET AL.
SILBERER AND LAPATA
CNN FEATURES
SKIP-GRAM
CONCATENATION
SVD
MMSKIP-GRAM-A

MMSKIP-GRAM-B

SKIP-GRAM
MMSKIP-GRAM-A
MMSKIP-GRAM-B

Table 3: Percentage precision @k results in the zero-

shot image labeling task.

Simlex-999

Pickle —> hamburger
Plckle —> cucumber
Pickle —> onion
Pickle —> zucchini

SemSim

29% | 100% 85%

- 0.62 | - 0.54 | - 0.55
0.70 0.68 | 0.33 0.29 | 0.62 0.62

0.68
0.68
0.72
0.68

0.65
0.72
0.66

SKIP-GRAM
MMSKIP-GRAM-A
MMSKIP-GRAM-B

130

Human preference for nearest

neighbor vs random image

unseen
30%
53%
23%

\words|
127
30
97

\words|
198
99
99

global
48%
73%
23%

all
concrete
abstract

Table 4: Percentage precision @k results in the zero-

shot image retrieval task.
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WANG ET AL (2017)

Count-based comparison models

Independent Bernoulli Multinomial (properties compete)

o 87
W =W +C > cmult is multinomial over properties

WB — WB + (1 — Q) » wis Dirichlet with Q parameters
WCV
Wind —
we +w bi-TM

» o and 3 are parameters of Beta

distribution > cwmuit is Bernoulli mixture instead of

independent properties (can

» Represents uncertainty about represent co-occurrences)

probability of property through » no competition between

Beta distribution over Bernoulli oroperties

probabilities
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oracle  AvgCos

Count  Mult. 0.16  0.37 0.28
Y BernMix H1 | 0.14  0.33 0.21
% BernMix H2 | 0.15 0.31 0.22

QMR Animal

Baseline 0.12 0.16
0.24 0.35

Count  Mult. 0.13 0.25
Ind. 0.11 0.23
BernMix H1 0.11 0.17
BernMix H2 0.10 0.18

bi-TM  plain 0.23 0.36 0.80
BernMix H2 0.20 0.34 0.81

bi-TM  plain 021 047 0.35
BernMix H2 | 0.18 0.45 0.34

Count  Mult. 0.58 0.77 0.61
BernMix H1 | 0.60 0.80 0.57
BernMix H2 | 0.59 0.81 0.59
bi-TM  plain 0.64 0.88 0.63
BernMix H2 | 0.65 0.89 0.66

Table 1: MAP scores, multi-shot learning on the
QMR and Animal datasets

Table 2: MAP scores, one-shot learning on the
QMR and Animal datasets

MAP: Mean Average Precision
Measure what extent the model ranks definitional properties in the correct order

1
AP = , , Z Precz I(Z) Function
) Taxonomic
Visual
Encyclopaedic
Perc

Table 6: QMR, bi-TM, one-shot: MAP by prop-
erty type over (oracle) top 20 context items
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SILBERER ET AL (2014)

» Attribute classifiers

» SVM trained on 4 features: color, texture, visual words,
edges

» Image representation: normalized vector of attribute
classification scores

(sumg;, er,scoreq(iy))a=1.... F

F :
Zazl Ziw el SCOI'€q (Z’w)

Pw =

» Comparison Models

» Concatenation
» CCA
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-I | [Nelson|Concat|CCA|TopicAttr TextAtt

Concat

CCA

TopicAtt 0.28
TextAttr 0.83| 0.34
VisAttr 0.52| 040

Table 5: Correlation matrix for seen Nelson et al.
(1998) cue-associate pairs and five distributional
models. All correlation coefficients are statisti-
cally significant (p < 0.01, N = 435).

|Nelson|Concat|CCA|TopicAur|TextAus

Concat
CCA
TopicAtt
TextAttr
VisAttr

Table 6: Correlation matrix for unseen Nelson
et al. (1998) cue-associate pairs and five distribu-
tional models. All correlation coefficients are sta-
tistically significant (p < 0.01, N =1,716).

 Model [ Seen

All Attributes
Text Attributes
Visual Attributes

Table 7: Model performance on seen Nelson et
al. (1998) cue-associate pairs; models are based
on gold human generated attributes (McRae et al.,
2005). All correlation coefficients are statistically
significant (p < 0.01, N = 435).

" Models [ Seen | Unseen |

Concat
CCA
TopicAttr
TextAttr
VisAttr
MixLDA

Table 8: Model performance on a subset of Nelson
et al. (1998) cue-associate pairs. Seen are concepts
known to the attribute classifiers and covered by
MixLDA (N = 85). Unseen are concepts covered
by LDA but unknown to the attribute classifiers
(N = 388). All correlation coefficients are statisti-
cally significant (p < 0.05).

134
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4 zero-shot approaches

Linear Projection: f, = (VIvs)~ivIw,

1

CCA: fprojv_>W — CVCW_

SVD: e, = Ay,
V. W,] =U,X,ZE

Neural Network (used hyperbolic tangent)

Mapping

VoW | W—vV
Context

Chance
context 1

Chance 20
19 | 5.0 | 8.1

context 10
context 20
context full

Table 7: Mean rank results averaged across 34
concepts when mapping an image-based vector
and retrieving its linguistic neighbors (v — w) as
well as when mapping a text-based vector and

Table 2: Percentage accuracy among top k nearest
neighbors on CIFAR-100. retrieving its visual neighbors (w — v). Lower

numbers cue better performance.
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HWANG & SIGAL (2014)

C

5 — [IWa; —u 3]y, Ve#y (1)

N
Vrr‘;,igzﬁc(W, U,z;,y:) + MWIp + AlUIE, 9 € {1,...m}  (2)

Ls(W,U,as,95) = » > [1+|[Was —uf - |[Was —ucll3ly  (3)

SE'PT> ceES;

£A(W7 U7$iayi) =1- Z(Wwi)Tyzquaa ||’LLaH2 S 17y§b S {07 1},\V/CL S Ayz (4)

a

ue. = u, + U?Be,c € Cp,||Bello = 71, 8 = 0,Ve € {1,...,C} (5)

C
R(U,B) = Z lue —up — UABCHS +72|Bc + Boll3

ceCp0oeP.US.,0=XpP.2m,Vcedl,...C} (6)
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CHEN ET AL

Selective Sharing

Multi-task lasso: all-competing A balances sparcity against classification loss

W*argmin L(X,Y; W) + A Z I
W

W= —argmleog 1 4+ exp((1 —2y.")x —I—)\S‘S‘ngl\\
w m,n d=1 =1
\v_/
Category-Specific Attributes VI

L 1 2
minimize (§HWH +CSZ& + Co Z%’)
1 J

st. ywlae;, >1-¢&;Vie 7
ijij > 1 —yj;Vj co
§& > 0,7, =0
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VEDANTAM ET AL (2017)

» Attribute Independence:

p(ylz) = erA P(Yr|2)

» Product of Experts:

(zlyo) < p(2) || a(zlyk)
keO

t 87 1T~ T o~ ]I ) —
p(a:, Y, Z) _ p(Z)p(w\z)p(y\z) correctness(S, yop) = S Z 1] Z (9(z)k = yx)
Frac. of attr. that match desc.

q(z|z,y), q(z|x), ¢(2|y)
coverage(S, yo) = Z (1 —JS(pr,qx))
|M‘ v

plylr) = fp(y\z)q(z]:v)dz Meas. diversity of underspec attr.
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Name Ref Model
VAE (Kingma et al., 2014)  p(z)p(x|z)
triple ELBO This

Objective
elbo(x|z; z|z)
elbo(z,y|z; z|z,y)
+elbo(z|z; z|x) + elbo(y|z; z|y)
elbo(z,y|z; 2|z, v)
z))

—aKL(q(z|z,vy), q(z|z)
—aKL(q(z|z,v), q(z|y))
p elbo(z, yl|z; z|x)

p(2)p(z|2)p(yl2)

JMVAE (Suzuki et al., 2017)  p(2)p(z|2)p(y|2)

bi-VCCA (Wang et al., 2016)

p(2)p(z|2)p(y|2)

+(1 = pelbo(z, y|2; zly)
elbo(x, y|z; z|z) + elbo(x|z; z|x)

JVAE-Pu (Pu et al., 2016)

p(2)p(z|2)p(y|2)
JVAE-Kingma (Kingmaetal., 2014) p(2)p(y)p(x|z,y) elbo(z|y, z; z|x,y) + log p(y)

CVAE-Yan (Yan et al., 2016)
CVAE-Sohn (Sohn et al., 2015)
CMMA (Pandey et al., 2017)

elbo(z|y, z; z|z,y)
elbo(ylz, z; z|z,y; z|z)
See text.

p(2)p(z|y, 2)
p(z|z)p(y|z, 2)
p(z|y)p(x|2)

Table 2: Comparison of different approaches on MNIST-a test set. Higher numbers are better. Error bars (in
parentheses) are standard error of the mean. For concrete concepts (where all 4 attributes are specified), we do
not use a PoE inference network, and we do not report coverage. Hyperparameter settings for each result are
discussed in the supplementary material.

triple ELBO
JMVAE
bi-VCCA

triple ELBO
JMVAE
bi-VCCA

triple ELBO
JMVAE
bi-VCCA

triple ELBO
JMVAE
bi-VCCA

triple ELBO
JIMVAE
bi-VCCA

AR A== =N VWVWWLWW|EAADD

90.76 (0.21)
89.99 (0.20)
85.60 (0.34)

90.58 (0.17)
89.55 (0.30)
85.75 (0.32)

91.55 (0.05)
89.50 (0.09)
87.77 (0.10)

90.76 (0.11)
86.38 (0.14)
80.57 (0.26)

77.79 (0.30)
79.30 (0.26)
75.52(0.43)

80.10 (0.47)
77.32 (0.44)
75.98 (0.78)

81.90 (0.48)
81.06 (0.23)
76.33 (0.67)

83.10 (0.07)
79.34 (0.52)
75.18 (0.51)

Method #Attributes Coverage (%) Correctness (%) PoE? Training set

iid
iid
iid
iid
iid
iid
iid
iid
iid
iid
iid
iid
comp

comp
comp

ZZZ | KKK | KKK KKK 2272
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Labd porfifioning: for eadh DeY, feeisne f €Y, dhed is identical
L "J Mmﬂisx:zj‘“d\ic\nj‘m&ha*m
E adiribute wHh 5"“
L

Y=1(b,),b),5,0),(5W} Cactesian product of (big,smald with (red, white)
Y, ={0p,r), (5,w)]

)
\/Lz {(b,w) ,(s,r)} __—L’_] g(x,j)-pm‘_ (x,:j‘ 56‘/,)) }dio\n'b-\aa\ ovu a.ul

&(xo) 'Pm("ojl y&€%s) ) conupls Br each

o
D'gf =L (xy)~pa}

Evalvation

Slhy) = ¥~ plxle, )i nei:N}: (»MJG) M% (doserved dexcripti Y N Smes
B(x prul-c;d 3&\:0"! vw\: » "
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VAE-bosped wmode)s:

Po(%:2) = Py@Ip,yx/2)
I—) L likelihood L‘Auo&r“)-uwulj done With anwral nedwerk
fﬂor - assume (Cavssian (p(ﬂ =N(2l07))

Pooterior mherence : &+ 94 (21x) Cenodes) 1o moximize Eddence Lowes BOd

dbbd = E““#“M [loj Po(x‘l)] -KL(q‘(ﬂx), p(z))
b TR\PLE

(x4, =p@p (2| TT, ., plyul2)

s el i ¢ kA *"’N.Pk‘wk“‘ mm-wa&m&&.
over possible valves for

mejt.dwdu (used DCOAN anchitecture)

5’.4\3\4. nndo\.'ubz
SZ?(x,gl%ﬁ? [pxledpylal] = pls|e) [% p(glﬂ] =plxl2) > inCrence: g(akd

-7
6330mes independence Ly Mwe gy(t,-jla\ . 75313) “inberense: a'(tlj)
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TaPLe ELRO:

£ (x,9)=Extatn g2 togtata | X7 log 1 1) -KLlglabrgholeh | - A2, 2,22 %
¥ mﬂj s
FE ot ) Vs oy ¢lat)] - KL ab, o) belanes Vkalnad
wwiribvions of
+ExlabD g 1) - KL alg) ls) o deh typ

Justification: ‘
q(t\D,,)‘ \ Dy | Z.‘eD.., 1(1"*,'1) ik Lk space of chivibutes
medch ldu*xu- of um‘:wb’
;- ; .\moéa.-aﬂr’tb Poirs
Wont Q(Clj) 4 modeh q'(al'D.,) to ‘over

ol cunr'u, ok need some wow de andle
novl exomples (i.e. ve reod', untropic; as dase to V(0,2 priec as possivle

Pacometess of oy |2) onby droined i albols,) (net dlbo )]
Foﬁmﬂgh ci\oo(.‘,)-l-uu MAps ino ?IWMPM ing Space
Enforas Jhe mode o use Jae MM:SW\&«M«M%M&?&«A
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.‘>wl.'vjl1m: 1>¢4:clw> (?Cxl:), Fl.b\s)) ove Lovssiens

’2%: ) (x—,a.(a)fi(a)' (k@D * comst.

xExfod (109 00 ]~ KL La (o), o)

- rg,,,,,,)nog pirledl- B KL(abd, oY oy < VX
o

551, e 21, AT/RE>) = imasgs mowe wieemeiive. than adribuies
> ansons lokork spue Mh&m'«nﬁciw&:\u
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DE MELO & BANSAL (2013)

» Word scoring

1 1

Wy = 2% Z cnt(pr(a1,az2))  S1= 2% Z cnt(pz2(a1, az))
plEPws pQEPS’w
1 1
W2 — Fl Z Cnt(pl(a’Qaal)) SZ — FQ Z Cnt(pQ(a27a1))
P1ELPys D2 € Psqy

P = Z cnt(pr) Py = Z cnt(p2)

plEPws pQEPsw

(W1 = 51) — (W2 — 52)

cnt(aq) - ent(asg)

score(ay, as) =
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DE MELO

» MILP
maximize
Z (wz-j — sij)écore(ai, CLj) — Z (wij + SZ])C
(4,0) ¢ E IS
subject to
dij =T; — T V1,9 € {1, ,N}
dij — wijC’ <0 Vi, € {1, ,N}
dij—l—(l—wij)C>O V1,7 € {1,,N}
df,;j =+ SijC >0 V1,9 € {1, ,N}
df,;j — (1 — S”)C < 0 V1,9 € {1, ,N}
z; € [0,1] Vi e {1,... N}
Wi; € {O, 1} V1,9 € {1, ,N}

si; € 10,1} Vi,je{l,...,N}
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Method

Pairwise Accuracy

Avg. T

Web Baseline
Divide-and-Conquer

Sheinman and Tokunaga (2009)

48.2%
50.6%
55.5%

N/A
0.45
N/A

MILP

MILP with synonymy

69.6%
78.2%

0.57
0.57

Inter-Annotator Agreement

78.0%

0.67

Table 3: Main test results

Predicted Class

Weaker

Tie

Stronger

Predicted Class

Weaker

Tie

Stronger

Weaker
Tie
Stronger

True Class

117
5
11

127
42
122

15
15
115

True Class

Weaker
Tie
Stronger

177
9
15

29
24
38

53
29

Table 4: Confusion matrix (Web baseline)

Table 5: Confusion matrix (MILP)
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QING & FRANKE (2014)

Speaker: o(ulbo, Pr) = p(6 < by) = [*°_ Pr(H)dd
Listener believes correct height: 1_f_§b§ob(;)(b)db
Expected success: — [° _(b)p(blug, 0)db + [ $(b)p(bluy, 0)db
Utility: U(0) = ESO) — [,° ¢(b) - edb

Threshold distribution: Pr(0) o (exp(X- U(6))
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1.0

—— Pr(8),c=0
p(hluy), c=0

0.8

p(hluy),c=2

0.6

o("tall" I h)

0.4

0.2

0.0

2 0 1
Degree (6 or h)

(a) Pr(0) and p(h | uy) (b) o(uy | h)
SOM predictions for Gaussian prior N(0,1), with A = 4.

Totally open: Beta(3,7) —— Totally Closed: Beta(0.7,1)
Upper closed: Beta(5,0.9)

Lower closed: Beta(1,5) Totally Closed: Beta(0.4,1)
Totally closed: Beta(1,1) —— Totally Closed: Beta(0.3,1)
Totally closed: Beta(0.5,0.5) —— Totally Closed: Beta(0.1,1)

(a) Beta(a, B) (b) Beta(a, 1)
Correspondence between beta distributions and scale structures.
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LASSITER & GOODMAN (2015)

» Pragmatic Listener

PLl (A7 V|u) X PSl (U‘A7 V) ' PLl (A) ' PLl (V)

Ps, (u|A, V) < exp(\ - In[Pr, (Alu, V) — C(u)])

Pr,(Alu, V) = Py (A[[u]]”

|
—_
~—
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I ate cookies”
Ps, (u|A) - Pr, (A)
Pr, (Alu) = 1 — ,
PRAGMATIC > 4 Ps, (u|A") - Pr, (A')
LISTENER exp(r - Us. (15 A)
L Ps, (u|A) = 1 :
Zu’EALT exp()\ - Usg, (U EA))
{ I I }
PRAGMAT": Literal LO posterior Pragmatic L1 posterior
SPEAKER o o
Si - o
LITERAL S S
LISTENER S o
Lo

Number of cookies eaten (n) Number of cookies eaten (n)

150
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Thresholds: Availability & Applicability
ower,d ower,d

T,f ~ ,ué - T

7_Iifpper,d -~ lUJ}lf]pper ,d

( Lower,d ﬁéower,d) P(ksaid7 ktrue‘x) _ P(ksaid‘ktrue)P(ktrue‘x)

4 F( Upper, d7 Upper,d) P(k‘said7 ktrue|X> =y H ¢z(xd

k

d d
Probability of x falling in category k: Plat > 7).t <y

dat) = { Pl <7, 2t >l
( Lower, H

T} <z < T/gpper H) X 1, otherwise
Lower, S Upper, S
P(7, <z’ < Ty ) X

" P(k.saz'd’ kt’r’ue)
( k ower, V P(ktrue)

H d _ a: < ng) ~ count(k)/N
d

[, Plkree|z) P(a)

Upper,V A =
V<1, )
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HM: Histogram model (bins colorspace and counts frequency)

GM: P(x|k'""¢) Gaussian model w/ diagonal covariance
P(ksaz’d’ ktrue’x) x P(x‘ktrue)P(ksaid7 ktrue)

TOPY
80.46%
82.53%
79.99%

TOP?
69.80%
71.89%
69.25%

TOP!
39.55%
39.40%
39.05%

HM
GM

¢Hu(‘
— O .
Greenish

Greenish data

Table 1: Decision-based results. The percentage of cor-
rect responses of 544,764 test-set data points are shown.

l?robabiljty

—LL —LLV AIC Perp

HM
GM

1.13*107
1.13%107
1.34%107

2.05%10°
2.09%10°
2.08*106

4.13%10°
4.82%106
4.17*%106

13.61
14.41
14.14

Table 2: Likelihood-based evaluation results:
log likelihood of the data, negative log likelihood of
labels given points, number of parameters, Akaike In-
formation Criterion and perplexity of labels given color
values. Parameter counts for AIC are 15751 for LUX,

315669 for HM and 5803 for GM.

negative

Figure 6: For the Hue dimension, the data for “greenish”

is plotted against the LUX model’s ¢ curve.
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W w (/s)
| | |

Softmax A A A

Fully connected - - -

st (O O

O—O—
LITERAL | | LITERAL
NSTENERS [o(t | v, C0) So(u [ ,C;¢) SSpERKER

) S
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MONROE ET AL (2017)

Dgioe Bpe I

. .
Lo(t| u, C;0) = <Lt Ly oc Lo - Ly' =7

Doy Si(ult’,Cs0)
L. L,Y - Lyt="

L u,C';0
Sl (U ‘ t, C; 9) — Zu,ol(,?(ﬂu’,c)’;@)

So(ult,C;0
Ll(t ‘ Uu, C? 9) — Zt/OS(o("ZH/aC)’;Q)

SO(U ‘ t? C; ¢)

LO(t ‘ ’U,/, Ca (9)
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distractor 2 target

Ly
80
drab green not the bluer one
) 60
gray
40
blue dull green
blue 20
| :
0

distractor 1

Saturation

bluish 0
S— s —
green 60 120 180

yellow Hue

51 Figure 6: Ly’s log marginal probability density, marginal-
izing over V (value) in HSV space, of color conditioned
on the utterance drab green not the bluer one. White
sray regions have higher probability. Labeled colors are the

Eiue dull green three colors from the right column of Figure 5.
ue

bluish
green

drab green not the bluer one

yellow

Ly

agent
literal (Lo)

. pragmatic (Le)
L human

drab green not the bluer one

split
condition
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far

# Chars 7.8
# Words 1.7
% Comparatives 1.7
% High Specificity 7.0
% Negatives 2.8
% Superlatives 2.2

Table 2: Corpus statistics and statistics of samples from artificial speakers (rates per utterance). So: RNN speaker; S :
pragmatic speaker derived from RNN listener (see Section 4.3). The human and artificial speakers show many of the

human

split

12.3
2.7
14.2
7.6
10.0
6.1

close

14.9
3.3
12.8
7.4
12.9
16.7

far

9.0
2.0
3.6
6.4
4.8
4.7

same correlations between language use and context type.

S0

split

12.8
2.8
8.8
8.4
8.9
9.7

close

16.6
3.7
13.1
7.6
13.3
17.2

accuracy (%) perplexity

83.30
80.51
83.95
84.72
83.98
84.84

90.40
85.08
86.98
91.08

1.73
1.59
1.51
1.47
1.50
1.45

1.62
1.39

far

9.0
2.0
4.2
6.8
4.4
4.8

S1

split

12.8
2.8
9.0
7.9
8.5

10.3

close

16.4
3.7
13.7
7.5
14.1
16.6
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# train

vec.
MTomr 400
MT 4p 60

MT G ReAD 410

Space

Distributional
DScooc | DS prikolow

Model-Theoretic

| | % of gold in...
test

19% (27/145)

train top 5 neighbours

MToumr
MTap
MTgonRreAD

MToumr
MT4p
MTgonRreAD

0.350
0.641
0.569

0.346
0.634
0.523

MTgormR+AD
MTgorRreAD

MTanimals
MTno—animals

0.663
0.353

0.612
0.341

MToumr
MTgonRreAD

MTQMRanimals
MTQMRanimals

0.419
0.666

0.405
0.600

no

Gold
few

most

no
few
some
most
all

0
-0.05
-0.35
-0.95

-1

-0.05
0
-0.2
-0.9
-0.95

-0.35
0.2
0
-0.6
-0.65

-0.95
0.9
0.6

0

-0.05

29% (42/145)
46% (67/145)

top 10 neighbours
top 20 neighbours

Table 4: Percentage of gold vectors found in the top
neighbours of the mapped concepts, shown for the
DScooc — MTgum r+ap transformation.

some
no 20
few 30
some 2
most 4
all 0

Table &: Confusion matrix for the results of the natural
language quantifiers generation.

Table 7: Distance matrix for the evaluation of the natu-
ral language quantifiers generation step.
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Instance

plum

cottage

raven a_bird

pigeon has_hair
elephant has_eyes

crab is_blind

snail a_predator
octopus is_stout

turtle roosts

moose is_yellow

cobra hunted_by_people
snail forages

chicken is_nocturnal
moose has_a_heart
pigeon hunted_by_people
cobra bites

Table 9: Examples of mapped concept-predicate pairs

no
no
no
no
some
few
few
most
no
few

no
no
all
few
most

a_fruit
grows_on_trees
tastes_sweet
is_edible
1s_round
is_small
has_skin
1s_juicy
tastes_good
has_seeds™
is_green”
has_peel™
is_orange™
is_citrus”
is_yellow™
has_vitamin_C”*
has_leaves”™
has_a_pit
has_a_stem™
grows_in_warm_climates™

has_a_roof
used_for_shelter™
has_doors™
a_house
has_windows
1s_small
a_building™
used_for_living_in
made_of_wood™
made_by_humans™
worn_on_feet™
has_rooms”™
used_for_storing_farm_equipment™
found_on_farms™
found_in_the_country
an_appliance™
has_tenants”™
has_a_bathroom™
requires_rent”
requires_a_landlord™
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Vector associated with the query: For the query
‘green ? ', it will be the standard vector of 'green’

Matrix with
geometrical
figures, used as

Cell 1 : 'empty’ vector M

Cell 2 : ‘green’ vector Probability

input Dot o
Cell 3 : ‘green’ vector product  Soft-max classifier distribution

Cell 4 : 'empty' vector results

Cell 5 : 'empty' vector between - ™
memory GMN w/o softmax

and query \

Cell 6 : 'empty' vector Weighted average of

N .,] the memory using the

Cell 16 : ‘green’ vector ) softmax result :Gist

gMN w/o so'ftmax/gist

Rropabi!ity : Concatenation of the
| distribution | go¢tmay classifier—Non linear transformation——  query vector and the

of gist vector
guantifiers

Models familiar unseen unseen CO untin 9 .

quantities | colors — |mage is 16-D vector (one dimension per color plus
RNN 65.7 620 | 497

Counting | 865 78.4 32.8 empty cell)

GMN $8.8 97.0 | 54.9 : T :
i 259 o 0 d Value is freq. of color scaled by color similarity (colors in

-softmax/gist | 51.4 51.8 44.4 image governed by small Gaussian to add noise)

Table 1: Model accuracies (in %).
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Train-q

Train-c

no

few most

all

one

two  three

four

0/1
0/2
0/3
0/4

1/6  2/3
2/5  3/4
2/7  3/5
3/8  4/5

71
2/2
3/3
4/4

171
1/3
1/4
1/6

2/2 3/3
2/3 3/4
2/5 3/5
217 3/8

4/4
4/5
4/6
477

Test-q

Test-c

T

|

three four

L L

few most all one two three four no few

no few most all | one two three four
o5 1/7 4/6 5/5 | 172 2/4 3/7 4/8 no
0/8 4/9 6/8 9/9 | 1/7 2/9 3/9 4/9

most  all one two

Figure 2: Left: quantifiers against cosine distance.
Right: cardinals against dot product.

Figure 3: Left: quantifiers against dot product.

Table 1: Combinations in Train and Test. Right: cardinals against cosine distance.

nn-dot few  most all
mAP 88 0 0
0.54 . 38 6
0.59 . 0 0 111 265
0.62 ) all 0 0 0 376
0.33 . one two three four
0.61 ) one 168 113 54 41
0.57 two 64 136 124 52
0.56 three | 23 80 130 145
0.76 four 10 24 72 272

lin nn-cos

mAP P2 mAP
no 0.78 0.65 | 0.87
few 0.59 0.39 | 0.68
most | 0.61 0.36 | 0.60
all 075 066 | 1

one 044 0.30 | 0.38
two 035 0.15 | 0.38
three | 0.38 0.16 | 0.36
four | 0.65 047 | 0.75

Table 2: R-target. mAP and P2 for each model. Table 3: Top: Q nn-cos, number of cases retrieved

in top-2 positions. Bottom: same for C nn-dot.
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Model Function

Additive
Kintsch
Multiplicative
Tensor product

Circular convolution
Weighted additive
Dilation

Head only

Target unit

Training set creation:

Phrase similarity: sum of similarity of constituents
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Table 6
Correlation coefficients of model predictions with subject similarity ratings
(Spearman’s p) using a simple semantic space

Model Adjective—Noun Noun—Noun Verb—Object

Additive .36 .39 .30
Kintsch 32 22 29
Multiplicative 46 49 37
Tensor product 41 .36 33
Convolution .09 .05 10
Weighted additive A4 41 .34
Dilation 44 41 .38
Target unit 43 34 29
Head only 43 A7 24
Humans 52 49 S5

Table 7
Correlation coefficients of model predictions with subject similarity ratings
(Spearman’s p) using the LDA topic model

Model Adjective—Noun Noun—Noun Verb—Object

Additive 37 45 40
Kintsch .30 28 33
Multiplicative 25 45 .34
Tensor product .39 43 .33
Convolution A5 17 12
Weighted additive .38 46 40
Dilation .38 45 41
Head only .35 27 A7
Humans 52 49 55
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American N

Am. representative
Am. territory
Am. source

green (n)

red road

green colour
necessary N
necessary
necessary degree
sufficient

Nearest neighbors of centroid ANs

black N

black face

black (n)

historical N| mental N
mental activity

historical
hist. event

hist. contentf mental energy

nice
good bit
nice break

Quartile ranks of observed ANs in cosine-

bad electronic historical
easy start luck communication | map

black hand | quick bad elec. storage
bad weekend elec. transmissio

good spirit purpose
important transport| good girl
important road big girl

little cost

mental experience

major road

ranked list of predicted AN vectors

topographical
hist. material

great war
major war
small war

youthful black cover general collectlon small son
young doctor hardback small collection | small daughter
young staff red label archives mistress

Nearest neighbors of specific ANs

163
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BARONI & ZAMPARELLI (2010)

matrix 73.77 (68.4-94.7)
centroid | 73.7 (63.2-94.7)

vector 68.4 (63.2-89.5)
random | 45.9 (36.8-57.9)

» Matrix: learned adjective matrix
» Centroid: center of all ANs containing the adjective
» Vector: traditional co-occurrence

» Random: constraint that no cluster is left empty
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BARONI & ZAMPARELLI (2010)

» 36 adjectives:

size (big, great, huge, large, major, small, little),

denominal (American, European, national, mental, historical, electronic)

colors (white, black, red, green)

positive evaluation (nice, excellent, important, appropriate)

temporal (old, recent, new, young, current), modal (necessary, possible)

common abstract antonymous pairs (difficult, easy, good, bad, special, general, different, common)

» 1420 nouns (occurring = 300 times w/ adjective)

» Semantic space
» LMI scores of co-occurrence counts w/ 10k most common

words
» SVD to 300D

vV VvV VvV VvV VvV Vv
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Num. Num.
Subset Attributes  Train. Triples Example Phrases

Core 10 72 silvery hair (COLOR), huge wave (SIZE), longstanding conflict (DURATION)
Selected 23 153 sufficient food (QUANTITY), grave decision (IMPORTANCE), broad river (WIDTH)
Measurable 65 261 heavy load (WEIGHT), short hair (LENGTH), slow walker (SPEED)

Property 73 300 young people (AGE), high mountain (HEIGHT), straight line (SHAPE)

All 254 869 dry paint (WETNESS), scentless wisp (SMELL), vehement defense (STRENGTH)

Table 1: Overview of subsets of attributes contained in HeiPLAS data, together with example phrases

Compositional Model

train-all o— Adjective
train-specific K&y
zero-shot r———4 NOU.H

L-LDA (Baseline) — Vector Addition (D)
Weighted Vector Addition
Vector Multiplication (©®)
Adj. Dilation (A = 2)
Noun Dilation (A =2)

Full Add. Weighted Noun

Full Add. Weighted Adjective

Full Add. Weighted Adj. and Noun
Trained Tensor Product (®)

RIS
9 0.0,
XS

S
LRRK
SRR

,vvv
35
Retede!
RRRLS

QXK
S
K

<X
<
%

o
RS

5
predict models

O

X/
RS

KIS
RIS
%S

(XK
58
K5

X
&
5585

XSS
KRS
o

o

Selected Measurable Property C-LDA (Hartung, 2015)
L-LDA (Hartung, 2015)
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Full Additive
Weighted Addition - - - -

Tensor Product
Adjective Dilation —-—-—-
Noun Dilation —--—---

Underlying Word Weighted Full

ASTA-5 score

Representation © @ Addition Additive

word2vec 0.42 0.50

M&L-BoW 0.44 n/a
M&L-Topic 0.38 n/a S
C-LDA n/a n/a Similarity Rating Level

Figure 2: ASTA-5 scores over different levels of
human similarity ratings (cf. Experiment 4)
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Figure 1: Distribution of cosines for observed vectors, by adjective type (intensional, I, or non-
intensional, N). From left to right, adjective vs. noun, adjective vs. phrase, and noun vs. phrase cosines.

Monosemous Polysemous
alleged accomplice, former surname, mock charge, putative point, past range
necessary competence
modern aircraft, severe hypertension, nasty review, ripe shock, meagre part
wide disparity
Typical Nontypical
I  former mayor, likely threat, alleged killer former retreat, likely base, alleged fact
N severe pain, free download, wide perspective severe budget, free attention, wide detail
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Measure t

2478
-4.348
4.656
5913
1.970
4.805
-1.109
1.140
1.059
0.584
2.050
-1.451
4.493
-0.445
2.300
3.830
-0.503
5.090
4.435
3.900
-1.649
-1.272
5.539
3.336
4.215
8.701

COSA,
CosA,
cosN
cosA, N
cosAyN
COSA,
COsA,
cosN
cosA N
cosAyN
COSA,
COsA,
cosN
cosA N
cosAyN
COSA,
COsA,
cosN
cosA N
cosAyN
COSA,
COsA,
cosN
cosA N
cosAyN

FO>RO
FO>RO
FO>RO
FO>RO

APMI

Table 4: Flexible vs. Rigid Order AANSs. ¢-normalized
differences between flexible order (FO) and rigid order
(FO) mean cosines (or mean APMI values) for corpus-
extracted and model-generated vectors. For significant
differences (p<<0.05 after Bonferroni correction), the last
column reports whether mean cosine (or APMI) is larger
for flexible order (FO) or rigid order (RO) class.

Measure t

-7.840
7.924
2.394

-5.462
3.627

-8.418
6.534

-1.927

-3.583

-2.185

-5.100
5.100
0.000

-0.598
0.598

-7.498
7.227

-2.172

-5.792
0.774

-11.448  *

COsA,
COsA,
cosN
cosA N
cosAyN
COSA,
COsA,
cosN
cosA,N
cosAyN
COsA,
COSA,
cosN
cosA N
cosAyN
COSA,
COosA,
cosN
cosA, N
cosAyN

U>A
A>U

U>A

APMI U>A

Table 5: Attested- vs. unattested-order rigid order
AANSs. t-normalized mean paired cosine (or ApMI) dif-
ferences between attested (A) and unattested (U) AANSs
with their components. For significant differences (paired
t-test p<0.05 after Bonferroni correction), last column
reports whether cosines (or APMI) are on average larger
for A or U.

national daily newspaper

new regional government

national newspaper
major newspaper
daily newspaper

regional government
local reform
regional council

daily national newspaper

fresh organic vegetable

national daily newspaper
well-known journalist
weekly column

organic vegetable
organic fruit
organic product
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Features
Linguistic

Visual

Multimodal

Table 1: System performance on Mohammad et al.

Method
WORDCOS
PHRASCoOS1
WORDCOS
PHRASCoOS1
WORDMID
PHRASMID
WORDLATE
PHRASLATE
MIXLATE

P

0.67
0.38
0.49
0.56
0.56
0.44
0.49
0.41
0.65

R

0.76
0.94
0.97
0.79
0.86
0.93
0.96
0.92
0.87

F1

0.71
0.54
0.65
0.66
0.68
0.59
0.65
0.57
0.75

dataset

(MOH) 1n terms of precision (P), recall (R) and F-score (F'1)

Features
Linguistic

Visual

Multimodal

Method
WORDCOS
PHRASCoOSI
WORDCOS
PHRASCoOS1
WORDMID
PHRASMID
WORDLATE
PHRASLATE
MIXLATE

P

0.73
0.43
0.50
0.60
0.59
0.54
0.69
0.50
0.67

R

0.80
0.96
0.95
0.91
0.85
0.93
0.72
1.00
0.96

F1

0.76
0.57
0.66
0.73
0.70
0.68
0.70
0.67
0.79

Table 2: System performance on Tsvetkov et al. test set (TSV-
TEST) in terms of precision (P), recall (R) and F-score (F'1)

170
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Ridge Regression:
Training Evaluation

#im. #attr. #obj. | #im.  #attr. #obj.
Exp. 1 10,749 97 - leave-one-attribute-out
Exp. 2 23,000 - 750 | 8,449 25 203

W — Fproi V15 = [|A Fproj |3

Decomposition:

IWIE W 1= F W2 — (A Feel 2 Table 3: Summary of training and evaluation sets.

adjsr VY noun

I Dir*-Ridge W Dec
DirA-nCCA mmmm Russakovsky and Fei-Fei (2010)

Roc Area
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DEC
@1 5 10 7 @1 1 4
@5 16 31 23 @5 2 15
@10 29 44 37 @10 3 15 23
@20 18 17 50 59 51 @20 9 30 35
@50 33 | 32 72 81 68 @50 20 49 59
@100 56 | 55 82 89 77 @100 35 61 70

Table 4: Percentage hit@¥ attribute retrieval scores. Table 5: Percentage recall @£ attribute retrieval scores.

Concreteness:
@1 5 Average concreteness
@5 10 of the nouns the
@10 14 adjective modifies in

@20 20 the corpus ]
@50 29 LM vLM DIR® DEC DIR?

@100 33 41 Figure 4: Distributions of (per-image) concreteness

scores across different models. Red line marks median

. . . values, box edges correspond to 1st and 3rd quartiles, the

Table 6 Percentage hlt@ k noun retrleval SCOTES. wiskers extend to the most extreme data points and out-

liers are plotted individually.
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aeroplane
diningtable
dog
pottedplant
sheep

sofa

bicycle

bird

\boat
bottle
cow
horse
motorbike
train
tvmonitor

aeroplane

Attribute-based classification: object-trained method
is improvement over standard BoVW features i

boat

bottle

bus

car

cat

chair

cow
diningtable
dog

horse
motorbike
pottedplant
sheep
sofa

train
tvmonitor

aeroplane
bicycle
bird

boat

bottle

bus

car

cat

chair

cow
diningtable
dog

horse
motorbike
pottedplant
sheep
sofa

train
tvmonitor

Figure 5: Confusion matrices for PHOW (top) and DEC
(bottom). Warmer-color cells correspond to higher pro-
portions of images with gold row label tagged by an algo-
rithm with the column label (e.g., the first cells show that
DEC tags a larger proportion of aeroplanes correctly).
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COLLELL & MOENS (2016)

» Image representations:

» (i) Averaging: Component-wise average of the CNN
feature vectors of individual images. (i.e. cluster center
of individual representations)

» (ii) Maxpool: Computes the component-wise maximum
of the CNN feature vectors of individual image (i.e.
vector components “visual properties.” )
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M Spearman

tactile ™™
colour IEE=—

form_and_surface IE== "

tactile ™
colour ST

function

motion

function

motion
form_and_surface —

taxonomic —_

taxonomic

taxonomic

encyclopaedic T ==

encyclopaedic
encyclopaedic INES

@
o
i)
=
3
2
-
£
o
£
£
]

Figure 2: Averages of F1 (classification) and Spearman (regression) measures per attribute type (i.e.,
averaging individual attributes) for VIS,,4 (A), VIS4, (B) and GloVe (C). Error bars show standard

€1ror.
A mF1 mSpearman

Figure 4: Averages of performance difference per attribute type. For each attribute type (e.g., taxonomic,
taste, etc.), the bar indicates the average performance difference of its set of attributes. Plot A shows
performance difference between V15,4, and GloVe and B between VI5,,,, and GloVe. As in Fig. 3,
positive bars indicate better performance of visual embeddings and negative bars otherwise. Error bars
show standard error.
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RSA - RATIONAL SPEECH ACT

» Pragmatic listener can start
so(u, | t, L) o< L(u, t)e—'f(u) from a literal speaker or a
pragmatic speaker
[1(t | u, L) o< sg(u, | t, L)P(t
(# ], L) (w, |1, £)P() » Set of utterances U and L
usually specified by hand

» If U not finite, cannot

lo(t | u, L) o< L(u,t)P(t)

s1(u | t, L) oc exloglo(t|uL))=r(U)

lo(t | u, L) o< s1(u, | t, L)P(t)



