# **GROUNDED FINE-GRAINED CLASSIFICATION**

## **OLIVIA WINN**

### GOAL





#### Image Credit: allaboutbirds.org

Object recognition







- Object recognition
  - Part identification







- Object recognition
  - Part identification
- Properties



"orange"



"yellow"





- Object recognition
  - Part identification
- Properties
  - Gradability



#### "white eye ring"







- Object recognition
  - Part identification
- Properties
  - Gradability
  - Vagueness



#### "mostly white"







- Object recognition
  - Part identification
- Properties
  - Gradability
  - Vagueness
- Composition

"[American Tree Sparrows] don't have as strong of a white eye ring as Field Sparrows"





Image Credit: allaboutbirds.org



"white" + "eye" + "ring"

## OUTLINE

Object recognition

- Part identification
- Properties
  - Gradability
  - Vagueness
- Composition

- Methodology
  - LDA to skipgram
  - Attribute-based learning
- Modifiers
  - Adjective Gradability / Scales
  - Quantifiers / Vagueness
- Composition in Distributional Semantics

## OUTLINE

#### Methodology

- From LDA to Skipgram
- Attribute-Based Learning
- Modifiers
- Compositionality in Distributional Semantics

#### LDA

- Document governed by collection of latent topics
- Words have varying probabilities given each topic

### Skip-Gram

- Similar words are used in similar context
- Words represented as points in high-dimensional space where word similarity is measured through cos angle

#### LDA

- Document governed by collection
- Words have varying probabilities
- How do topics govern multi-modal documents?

### Skip-Gram

- Similar words are used in similar c
- Words represented as points in hi where word similarity is measured

Feng & Lapata (2010)

Blei & Jordan (2003)

Roller & Walde (2013)

Lazaridou et al (2016)

Wang et al (2017)

Silberer et al (2014)

### LDA

- Document governed by collection
- Words have varying probabilities
- How do topics govern multi-modal documents?

### Skip-Gram

- Similar words are used in similar c
- Words represented as points in hi where word similarity is measured

What text should be used?

Feng & Lapata (2010)

Blei & Jordan (2003)

Roller & Walde (2013)

Lazaridou et al (2016)

Wang et al (2017)

Silberer et al (2014)

### LDA

- Document governed by collection
- Words have varying probabilities
- How do topics govern multi-modal documents?

### Skip-Gram

- Similar words are used in similar c
- Words represented as points in hi where word similarity is measured
- What text should be used?
- How can we learn new information?

Feng & Lapata (2010)

Blei & Jordan (2003)

Roller & Walde (2013)

Lazaridou et al (2016)

Wang et al (2017)

Silberer et al (2014)

## **VISUALLY-INFORMED LDA**

Feng & Lapata (2010)



- Document: bag of words and image features (BoVW) together
- Goal: enhance word meaning through visual information
  - Use β as word representation to measure word similarity and word association
- Data: BBC news articles with images
- Result: Visual information improvement over pure text model
- Limitation: No correlation between words and images

#### **MULTI-VARIATE LDA** Blei & Jordan (2003) **GM-MIXTURE GM-LDA** μ μ Ζ σ Ν σ Ν α θ λ Ζ B β W Μ Μ D D

**Corr-LDA** 





**True caption** birds tree

**Corr-LDA** birds nest leaves branch tree



Limitation: Context is lost tree flowers leaves





**GM-Mixture** 

GM-LDA **GM-Mixture** 

### Roller & Walde (2013)



#### Goal: Introduce context as additional variable

### Roller & Walde (2013)



Goal: Introduce context as additional variable

#### Document:

3D-LDA

Roller & Walde (2013)



Goal: Introduce context as additional variable

#### **Document**:

- 3D-LDA
- HybridLDA: concatenate β from separately trained models

Roller & Walde (2013)

Data: ImageNet, deWaC, association norms, feature norms
 Result: Hybrid LDA combining all data is most successful



Limitation: Images represented by feature clusters; semantically unrelated components can be combined

## MULTIMODAL SKIPGRAM

### Lazaridou et al (2016)



MMSkip-Gram-B

Goal: Include visual information in skip-gram context

Data: Wikipedia & ImageNet

## MULTIMODAL SKIPGRAM

### Lazaridou et al (2016)



MMSkip-Gram-A

Goal: Include visual information in skip-gram context

Data: Wikipedia & ImageNet

## MULTIMODAL SKIPGRAM

### Lazaridou et al (2016)

#### Results:

Adding visual information for only some words improves word similarity for all

| Target  | SKIP-GRAM                      | MMSkip-gram-A                 | MMSkip-gram-B                 |
|---------|--------------------------------|-------------------------------|-------------------------------|
| donut   | fridge, diner, candy           | pizza, sushi, sandwich        | pizza, sushi, sandwich        |
| owl     | pheasant, woodpecker, squirrel | eagle, woodpecker, falcon     | eagle, falcon, hawk           |
| mural   | sculpture, painting, portrait  | painting, portrait, sculpture | painting, portrait, sculpture |
| tobacco | coffee, cigarette, corn        | cigarette, cigar, corn        | cigarette, cigar, smoking     |
| depth   | size, bottom, meter            | sea, underwater, level        | sea, size, underwater         |
| chaos   | anarchy, despair, demon        | demon, anarchy, destruction   | demon, anarchy, shadow        |

#### Limitations:

- Word similarity can vary depending on context
- What about uncommon words?

## **ONE-SHOT**

### Wang et al (2017)

 $\beta$  (w,q) (w,q)

zero-shot:

$$P(q|d_u) = \sum_z P(z|\theta_u)P(q|\psi_z)$$
  
one-shot:

$$P(q|w) = \sum_{z} P(z|w)P(q|\psi_{z})$$

- Document: made up of words and properties that appeared as children of the same <word-dependency relation> pair
- Goal: Learn properties from single exposure to object in a context
- Data: QMR & AD (quantified attr. datasets)
  Text-only approach

#### Result:

| Top 5 properties for 'gown'; context undo-dobj |             |                    |         |  |  |  |  |
|------------------------------------------------|-------------|--------------------|---------|--|--|--|--|
| bi-TM                                          | clothing,   | is_long,           | made_of |  |  |  |  |
| one-shot                                       | material,   | different_colours, |         |  |  |  |  |
|                                                | has_sleeves |                    |         |  |  |  |  |

Limitations: Visual properties score lowest

### **VISUAL INFORMATION**

### Silberer et al (2014)

- Document: collection of objects & visual representations which share the same property
- Goal: Use visual information to corroborate properties
- Data: McRae attributes, Wikipedia extracted word-attribute pairs
- Results:
  - Physically grounding text adds meaning



climbs, climbs\_trees, crawls, hops, jumps, eats, eats\_nuts, is\_small, has\_bushy\_tail has\_4\_legs, has\_head, has\_neck, has\_nose, has\_snout, has\_tail, has\_claws has\_eyes, has\_feet, has\_toes,

#### Limitations:

No correlation between image features and individual attributes

|                          | Document                                         | Contribution                                                              | Limitation                                                    |
|--------------------------|--------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|
| Feng & Lapata            | Unordered collection of text and image words     | Images <b>enhance</b> word                                                | <b>No correlation</b> between                                 |
| (2010)                   |                                                  | distributions in LDA                                                      | text and images                                               |
| Blei & Jordan            | Image region -> caption                          | Can name <b>multiple objects</b>                                          | Linguistic and visual                                         |
| (2003)                   | word                                             | in image                                                                  | context lost                                                  |
| Roller & Walde<br>(2013) | Image, name, association<br>norms, feature norms | Images and textual context<br>best governed by separate<br>latent factors | <b>Correlations</b> in the spaces <b>do not map</b>           |
| Lazaridou et al          | <b>Skip-Gram</b> : full text + some images       | Visual information informs                                                | Assume single                                                 |
| (2016)                   |                                                  | entire space                                                              | meaning                                                       |
| Wang et al               | Dependency parse relation                        | Object properties can be                                                  | Without images, <b>visual</b>                                 |
| (2017)                   | (text only)                                      | learned from context                                                      | properties hardest                                            |
| Silberer et al<br>(2014) | Property (object + image)                        | Images inform property<br>understanding                                   | No mapping between<br>visual properties and<br>property words |

|                           | Document                                     | Contribution                                                               | Limitation                                                    |
|---------------------------|----------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|
| Feng & Lapata<br>(2010)   | Unordered collection of text and image words | Images <b>enhance</b> word<br>distributions in LDA                         | <b>No correlation</b> between text and images                 |
| Blei & Jordan<br>(2003)   | Image region -> caption<br>word WING         | Can name multiple objects                                                  | Linguistic and visual context lost                            |
| Roller & Walde<br>(2013)  | Image, nam<br>norms, fea                     | BIRD" s and textual context<br>Sect governed by separate<br>latent factors | <b>Correlations</b> in the spaces <b>do not map</b>           |
| Lazaridou et al<br>(2016) | Skip-Gran TAIL +<br>some images              | Visual information <b>informs</b><br>entire space                          | Assume single<br>meaning                                      |
| Wang et al<br>(2017)      | Dependency parse relation<br>(text only)     | Object properties can be<br>learned from context                           | Without images, <b>visual</b><br>properties hardest           |
| Silberer et al<br>(2014)  | Property (object + image)                    | Images inform property<br>understanding                                    | No mapping between<br>visual properties and<br>property words |



- Name: ??
- Properties:
  - Dog-like
  - Striped
  - Black tail

- Attribute: 'human-nameable mid-level semantic property'
- Object: co-occurring correlated bundles of attributes

- Dog-like
- Striped
- Black tail





- Attribute: 'human-nameable mid-level semantic property'
- Object: co-occurring correlated bundles of attributes



Black tail



Lazaridou et al (2014)

Hwang & Sigal (2014)

Chen et al (2017)

Vedantam et al (2017)

- Attribute: 'human-nameable mid-level semantic property'
- Object: co-occurring correlated bundles of attributes





Lazaridou et al (2014)

Hwang & Sigal (2014)

Chen et al (2017)

Vedantam et al (2017)

- Attribute: 'human-nameable mid-level semantic property'
- Object: co-occurring correlated bundles of attributes

- Dog-like
- Striped -
- Black tail



Lazaridou et al (2014)

Hwang & Sigal (2014)

Chen et al (2017)

Vedantam et al (2017)

- Attribute: 'human-nameable mid-level semantic property'
- Object: co-occurring correlated bundles of attributes

- Dog-like
- Striped
- Black tail



Lazaridou et al (2014) Hwang & Sigal (2014) Chen et al (2017) Vedantam et al (2017)

## **IMPLICIT ATTRIBUTES**

Lazaridou et al (2014)

Fast-mapping: people immediately learn new object from limited info



- "Aardwolf cubs often share the den with their mother" ---- mammal, fur
- Distributional representations bring words of similar context together
- Objects with the same properties have similar image features


# **IMPLICIT ATTRIBUTES**

Lazaridou et al (2014)

**Fast-mapping:** people immediately learn new object from limited info



- "Aardwolf cubs often share the den with their mother" ---- mammal, fur
- Distributional representations bring words of similar context together
- Objects with the same properties have similar image features



Data: Wikipedia articles, CIFAR-10 & ESP images

# **CROSS-MODAL MAPPING**

### Lazaridou et al (2014)

#### Results: Categorization induced by hidden layer of neural network

| Seen Concepts          | Unseen Concept                                                         | Rank of Correct<br>Unseen Concept                                                  | CIFAR-100 Category                                                                                        |
|------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| sunflower, tulip, pear | butterfly                                                              | 2 ( <b>rose</b> )                                                                  | flowers                                                                                                   |
| cattle, camel, bear    | squirrel                                                               | 2 (elephant)                                                                       | large omnivores and herbivores                                                                            |
| castle, bridge, house  | bus                                                                    | 4 (skyscraper)                                                                     | large man-made outdoor things                                                                             |
|                        | sunflower, tulip, pear<br>cattle, camel, bear<br>castle, bridge, house | Sunflower, tulip, pearbutterflycattle, camel, bearsquirrelcastle, bridge, housebus | Sunflower, tulip, pear<br>castle, bridge, housebutterfly<br>bus2 (rose)<br>2 (elephant)<br>4 (skyscraper) |

Neighbors of mapped vectors reveal information



#### spoke, wheel, brake, tyre, motorcycle

Limitation: Similarity in the spaces do not always correspond

dishwasher →







Hwang & Sigal (2014)

- 'Dog-like'
  - ► Inherent, indescribable properties → posture, head shape
  - Attributes → four legs, tail, ears, snout...
- Class = 'super-class' + unique attributes



- Dog-like
- Striped
- Black tail

### Hwang & Sigal (2014)

- Mapping to joint space:
  - 1. Image representation close to class vector (and farther from others)
  - 2. Class vector closer to its super-class than to the other classes
  - 3. Attribute vectors maximize correlation with respective images
- 'Relationship regularization' in joint space:
  - 4. Class = superclass + attributes

$$\mathcal{R}(U,B) = \sum_{c}^{C} ||u_{c} - u_{p} - U^{A}\beta_{c}||_{2}^{2} + \gamma_{2}||\beta_{c} + \beta_{o}||_{2}^{2}$$

### Hwang & Sigal (2014)

- Mapping to joint space:
  - 1. Image representation close to class vector (and farther from others)
  - 2. Class vector closer to its super-class than to the other classes
  - 3. Attribute vectors maximize correlation with respective images
- 'Relationship regularization' in joint space:

4. Class = superclass + attributes  

$$\mathcal{R}(U,B) = \sum_{c}^{C} ||u_{c} - u_{p} - U^{A}\beta_{c}||_{2}^{2} + \gamma_{2}||\beta_{c} + \beta_{o}||_{2}^{2}$$

5.  $0 \leq \beta_c$  Describe objects with the attributes they have

### Hwang & Sigal (2014)

- Mapping to joint space:
  - 1. Image representation close to class vector (and farther from others)
  - 2. Class vector closer to its super-class than to the other classes
  - 3. Attribute vectors maximize correlation with respective images
- 'Relationship regularization' in joint space:
  - 4. Class = superclass + attributes  $\mathcal{R}(U,B) = \sum_{c}^{C} ||u_{c} - u_{p} - U^{A}\beta_{c}||_{2}^{2} + \gamma_{2}||\beta_{c} + \beta_{o}||_{2}^{2}$
  - 5.  $0 \leq \beta_c$  Describe objects with the attributes they have
  - 6. 'exclusive' regularization ensures unique decomposition per class

Hwang & Sigal (2014)

#### Data: Animals with Attributes, super-classes from WordNet hierarchy

| Category                           | Ground-truth attribut                                                                    | tes                                   |  |  |
|------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| Otter                              | An animal that swims, fish, water, new world, small, flippers furry, black, brown, tail, |                                       |  |  |
| Supercategory + learned attributes |                                                                                          |                                       |  |  |
|                                    | A musteline mammal that is quadrapedal, flippers, furrocean                              |                                       |  |  |
| Primate                            | N/A                                                                                      | An animal, that has hands and bipedal |  |  |

#### Limitations:

- Strict hierarchy not applicable to all domains
- Cannot handle recognition through *lack* of attribute

## MULTI-TASK ATTRIBUTE LEARNING

### Chen et al (2017)



Data: CUB, AWA, aPascal/aYahoo images w/ attributes

# MULTI-TASK ATTRIBUTE LEARNING

#### **Chen et al (2017)**

#### Selective Sharing



#### Limitation: Features must match attribute groups

## MULTI-TASK ATTRIBUTE LEARNING

#### **Chen et al (2017)**

### Category-Sensitive Attributes



- Train SVM for each classspecific attribute
  - Use all attribute instances
  - In-class penalty is higher
- Represent models as tensor
- Use tensor completion to 'hypothesize' missing classifiers

METHODOLOGY: ATTRIBUTE-BASED LEARN

MULTI-TASK ATTRIBUTE LEARNIN

Category-Sensitive Attribut



35167

Limitation: Correlation of attributes can be useful

### **VISUALLY GROUNDED IMAGINATION**

Vedantam et al (2017)

- Attribute: Interaction between adjective and noun
- Three aspects: Coverage, Correctness, Compositionality
- Goal: How do we handle cases of missing information?

#### "striped" ✓ "dog-like" ✓ → "striped" + "dog-like" = ?



**striped ?** (independent of other aspects)



## **VISUALLY GROUNDED IMAGINATION**

#### Vedantam et al (2017)



6:0:2:0 0:0:0:1

## **ATTRIBUTE-BASED REPRESENTATION**

|                        | Approach                                | Result                                        | Limitation                               |
|------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------|
| Lazaridou et al (2014) | Cross-modal map                         | <b>Context</b> provides information           | Context is not always<br>appropriate     |
| Hwang & Sigal (2014)   | Joint hierarchical map                  | Context can be structured                     | But not too structured                   |
| Chen et al (2017)      | Feature & class specific<br>classifiers | Dependent on<br>components                    | Have classifier but not representation   |
| Vedantam et al (2017)  | Joint latent space                      | <b>Continuous</b> space<br>between attributes | Cannot model space<br>between attributes |

- Attributes are the result of adjectives modifying a noun
  - Nouns are abstract: contain all objects which fit under the label
  - Adjectives provide concrete picture or example
- How do we model that modification in feature space?
- First, examine the linguistics of modification











# OUTLINE

- Methodology
- Modifiers
  - Adjectives
    - Gradability / Scales
    - Comparison
  - Quantifiers, Vagueness
- Compositionality in Distributional Semantics

#### Modification can occur at varying intensities



de Melo & Bansal (2013)

Qing & Franke (2014)

- Modification can occur at varying intensities
  - Can we automatically learn adjective intensity?



de Melo & Bansal (2013)

> Qing & Franke (2014)

- Modification can occur at varying intensities
  - Can we automatically learn adjective intensity?
- Individual adjectives have ranges they can apply to
  - How do we determine these ranges and their cutoffs?



tiny

large huge

de Melo & Bansal (2013)

Qing & Franke (2014)

- Modification can occur at varying intensities
  - Can we automatically learn adjective intensity?
- Individual adjectives have ranges they can apply to
  - How do we determine these ranges and their cutoffs?







large

de Melo & Bansal (2013)

Qing & Franke (2014)





- Modification can occur at varying intensities
  - Can we automatically learn adjective intensity?
- Individual adjectives have ranges they can apply to
  - How do we determine these ranges and their cutoffs?
- Information –> word choice



- Modification can occur at varying intensities
  - Can we automatically learn adjective intensity?
- Individual adjectives have ranges they can apply to
  - How do we determine these ranges and their cutoffs?
- Information –> word choice
- Word –> interpretation



de Melo & Bansal (2013)

Qing & Franke (2014)

## INFERRING SEMANTIC INTENSITIES de Melo 8

de Melo & Bansal (2013)

- Goal: Automatically learn adjective scales
- Use known syntactic patterns to collect word pairs

e.g. ' $\bigstar$  (,) but not  $\bigstar$ '; 'not  $\bigstar$  (,) though still  $\bigstar$ '

Generate weak-strong scores for each word pair based on pattern counts



## **INFERRING SEMANTIC INTENSITIES**

de Melo & Bansal (2013)

Data: WordNet & Web Scraping

#### Results:

| Method                       | Pairwise Accuracy | Avg. $\tau$ | Avg. $ \tau $ | <b>Ανg.</b> <i>ρ</i> | Avg. $ \rho $ |
|------------------------------|-------------------|-------------|---------------|----------------------|---------------|
| Web Baseline                 | 48.2%             | N/A         | N/A           | N/A                  | N/A           |
| Divide-and-Conquer           | 50.6%             | 0.45        | 0.53          | 0.52                 | 0.62          |
| Sheinman and Tokunaga (2009) | 55.5%             | N/A         | N/A           | N/A                  | N/A           |
| MILP                         | 69.6%             | 0.57        | 0.65          | 0.64                 | 0.73          |
| MILP with synonymy           | 78.2%             | 0.57        | 0.66          | 0.67                 | 0.80          |
| Inter-Annotator Agreement    | 78.0%             | 0.67        | 0.76          | 0.75                 | 0.86          |



Limitations: No sense as to scope of individual words

Qing & Franke (2014)

- An adjective is used when the property described exceeds a <u>threshold</u>
  - Ex: A cookie is 'large' if its diameter is more than 4 inches
- Depends on 'comparison class': large cookie vs. large tree
- Vagueness: threshold is uncertain, even with perfect knowledge



Goal: Model word usage as probability –> understand vagueness

- "I made a large cookie"
- Word use is [ideally] efficient: minimal effort accurate statement
- Speaker model:  $\sigma(u_1|b_0, \Pr) = p(\theta \le b_0) = \int_{-\infty}^{b_0} \Pr(\theta) d\theta$



- "I made a large cookie"
- Word use is [ideally] efficient: minimal effort accurate statement
- Speaker model:  $\sigma(u_1|b_0, \Pr) = p(\theta \le b_0) = \int_{-\infty}^{b_0} \Pr(\theta) d\theta$



- "I made a large cookie"
- Word use is [ideally] efficient: minimal effort accurate statement
- Speaker model:  $\sigma(u_1|b_0, \Pr) = p(\theta \le b_0) = \int_{-\infty}^{b_0} (\Pr(\theta)) d\theta$



- "I made a large cookie"
- Word use is [ideally] efficient: minimal effort accurate statement
- Speaker model:  $\sigma(u_1|b_0, \Pr) = p(\theta \le b_0) = \int_{-\infty}^{b_0} \Pr(\theta) d\theta$



- "I made a large cookie"
- Word use is [ideally] efficient: minimal effort accurate statement
- Speaker model:  $\sigma(u_1|b_0, \Pr) = p(\theta \le b_0) = \int_{-\infty}^{b_0} \Pr(\theta) d\theta$



## **SPEAKER-LISTENER INTERACTION**

Qing & Franke (2014)

"I made a large cookie"



## **SPEAKER-LISTENER INTERACTION**

Qing & Franke (2014)

"I made a large cookie"



Limitation: What happens when the priors are different?

## **SPEAKER-LISTENER INTERACTION**

#### Lassiter & Goodman (2017)

"I made a large cookie"



Limitation: What happens when the priors are different?

Goal: How do we interpret the use of an adjective?  $P_S(u|w) \propto P_L(w|u) \cdot P_S(u) \qquad P_L(w|u) \propto P_S(u|w) \cdot P_L(w)$ 

## LISTENER MODEL

Lassiter & Goodman (2017)

"I made a large cookie"



 $\{ \emptyset, 'small', 'large' \}$   $P_{L_0}(A|u, V) = P_{L_0}(A[[u]]^V = 1)$ 

## LISTENER MODEL

Lassiter & Goodman (2017)

"I made a large cookie"



# LISTENER MODEL

Lassiter & Goodman (2017)

"I made a large cookie"


## LISTENER MODEL

#### Lassiter & Goodman (2017)

#### "I made a large cookie"



## **GRADABILITY TO COMPARATIVES**

|                           | Purpose                                            | Result                       | Limitation                                             |
|---------------------------|----------------------------------------------------|------------------------------|--------------------------------------------------------|
| de Melo & Bansal (2013)   | Ordering by intensity                              | Automatic from syntax        | Do not know <b>range</b> of<br>individual words        |
| Qing & Franke (2014)      | & Franke (2014) Modeling word use Model word usage |                              | Assumes basic listener<br>with <mark>same prior</mark> |
| Lassiter & Goodman (2017) | Modeling interpretation                            | Model word<br>interpretation | Model is <b>theoretic</b>                              |

How do we grade words in the context of visual information?

- Individual words can have a range of interpretations, i.e. their groundings are variable
- Multiple words can refer to the same visual feature

## **GRADABILITY TO COMPARATIVES**

|                           | Purpose                                          | Result                                        | Limitation                                             |
|---------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|
| de Melo & Bansal (2013)   | Ordenintensity                                   | Automatic from syntax                         | Do not know <b>range</b> of<br>individual words        |
| Qing & Franke (2014)      | Mo <b>Mo</b> ord use                             | ering"<br>Model                               | Assumes basic listener<br>with <mark>same prior</mark> |
| Lassiter & Goodman (2017) | "[American Tree Spai<br>strong of a white eye ri | rrows] don't have as<br>ng as Field Sparrows' | , Model is theoretic                                   |

- How do we grade words in the context of visual information?
  - Individual words can have a range of interpretations, i.e. their groundings are variable
  - Multiple words can refer to the same visual feature
- Need context to disambiguate, i.e. compare

# **GRADABILITY TO COMPARATIVES**

|                           | Purpose                                          | Result                                        | Limitation                                       |
|---------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| de Melo & Bansal (2013)   | Ord                                              | Automatic from syntax                         | Do not know <b>range</b> of<br>individual words  |
| Qing & Franke (2014)      | Mo <b>enter ey</b><br>Drd use                    | Model                                         | Assumes basic listener<br>with <b>same prior</b> |
| Lassiter & Goodman (2017) | "[American Tree Spai<br>strong of a white eye ri | rrows] don't have as<br>ng as Field Sparrows' | , Model is <b>theoretic</b>                      |
|                           |                                                  |                                               |                                                  |
|                           |                                                  |                                               | McMahan & Stone<br>(2015)                        |
|                           |                                                  |                                               | Monroe et al (2017                               |
|                           |                                                  |                                               | Bagherinezhad et a                               |
|                           |                                                  |                                               | (2016)                                           |

Example groundings in two common properties: color and size

# **GROUNDED COLOR SEMANTICS**

McMahan & Stone (2015)



# **GROUNDED COLOR SEMANTICS**

Data: XKCD online color survey



McMahan & Stone (2015)

# **GROUNDED COLORS IN CONTEXT**

#### Monroe et al (2017)



- Goal: How is color label use affected by other colors present?
- Data:
  - Task: describe target color in context of 2 distractors
  - Distractors could be close, split, or far
- Model: speaker/listener approach
  - Threshold now governed by contextual information

# **GROUNDED COLORS IN CONTEXT**

#### Monroe et al (2017)



 $L_a \propto L_0^{\beta_a} \cdot L_1^{1-\beta_a}$  $L_b \propto L_0^{\beta_b} \cdot L_2^{1-\beta_b}$  $L_e \propto L_a^{\gamma} \cdot L_b^{1-\gamma}$ 



# **GROUNDED COLORS IN CONTEXT**

#### Monroe et al (2017)

#### Results:

Comparative terms used most often when one distractor is similar to the target

| $L_2$ |      |      |      | $L_2$                        |      |      |       |
|-------|------|------|------|------------------------------|------|------|-------|
| blue  | 68   | 32   | <1   | drab green not the bluer one | 5    | <1   | 95    |
| $S_0$ | 5.71 | 7.63 | 0.01 | $S_0 (\times 10^{-9})$       | 5.85 | 0.38 | <0.01 |
| $L_1$ | 43   | 57   | <1   | $L_1$                        | 94   | 6    | <1    |
| $L_a$ | 50   | 50   | <1   | $L_a$                        | 92   | 6    | 2     |
| $L_b$ | 68   | 32   | <1   | $L_b$                        | 8    | 1    | 91    |
| $L_e$ | 59   | 41   | <1   | $L_e$                        | 63   | 6    | 32    |

#### Limitation:

Do not have representation of comparatives

# **COMPARATIVE SIZES**

**Bagherinezhad et al (2016)** 

- Goal: Use images to learn about object sizes
- Text absolute but incomplete; image information only relative



Data: 41 objects, 486 object pairs ,100 Flickr images per pair

# **COMPARATIVE SIZES**

Bagherinezhad et al (2016)

#### Results: Minimal size information required for high accuracy



Transitivity: size of chairs mostly affected by the size of cats

Limitation: Difficult to handle objects with highly variable sizes Do not use comparative textual information

|                      | Purpose              | Purpose Result                        |                            |
|----------------------|----------------------|---------------------------------------|----------------------------|
| McMahan & Stone      | Vagueness of color   | Probabilistic color                   | Assume single              |
| (2015)               |                      | labels                                | cluster of word            |
| Monroe et al (2017)  | Contextual color use | Contextually based color understaning | No explicit<br>comparisons |
| Bagherinezhad (2016) | Automatic size       | Learn absolute                        | Do not use                 |
|                      | understanding        | sizes from relative                   | comparatives               |

- Both useful and limiting that each approach focused on a single property, using property-specific representations of the data
- A combination of both global (absolute) information and local (relative) details are necessary to properly contextualize descriptions
- As of yet, are not handling comparative adjectives themselves, only comparing and contextualizing

## QUANTIFIERS

Adjectives don't always apply to all instances of an object

- 'Most field sparrows have a white eye ring'
- Some dogs are large'



1. Can quantifiers be incorporated into representations?

Herbelot & Vecchi (2015) Sorodoc et al (2016) Pezzelle et al (2017)

## QUANTIFIERS

Adjectives don't always apply to all instances of an object

- 'Most field sparrows have a white eye ring'
- Some dogs are large'



1. Can quantifiers be incorporated into representations?

2. Can quantifiers be grounded?

Herbelot & Vecchi (2015) Sorodoc et al (2016) Pezzelle et al (2017)

### **QUANTIFIERS IN MODEL-THEORETIC SPACE** Herbelot & Vecchi (2015)

Model Theoretic Space: Objects are vectors where each dimension equals the proportion of attribute possession



Goal: Learn quantifiers through linear map from existing distributional spaces to model-theoretic space

# **QUANTIFIERS IN MODEL-THEORETIC SPACE** Herbelot & Vecchi (2015)

- Data: QMR & AD (quantifiers), Wikipedia & Google News
- Results:
  - Training and testing on animals yields best mapping

| Instance                 | Mapped            | Gold      |     |
|--------------------------|-------------------|-----------|-----|
| raven a_bird             | most              | all       |     |
| pigeon has_hair          | few               | no        |     |
| elephant has_eyes        | most              | all       |     |
| crab is_blind            | few               | few       |     |
| snail a_predator         | no                | no        |     |
|                          | -                 | -         |     |
|                          |                   |           |     |
| plum                     |                   | cottage   |     |
| a_fruit                  |                   | has_a_roo | f   |
| grows_on_trees           | used_for_shelter* |           |     |
| tastes_sweet             | has_doors*        |           |     |
| is_citrus* worn_on_feet* |                   |           | et* |

| axe                 | hatchet          |
|---------------------|------------------|
| a tool              | a tool           |
| is sharp            | is sharp         |
| has a handle        | has a handle     |
| used for cutting    | used for cutting |
| has a metal blade   | made of metal    |
| a weapon            | an axe           |
| has a head          | is small         |
| used for chopping   | _                |
| has a blade         | _                |
| is dangerous        | _                |
| is heavy            | _                |
| used by lumberjacks | _                |
| used for killing    | _                |

Limitation: Missing data negatively affects mapping No contextual dependency - when/where do differences occur

# **QUANTIFIERS IN IMAGES**

#### Sorodoc et al (2016)



- Goal: Grounded quantification
- Data: Generated images of colored circles
- Results: Proportion-based method outperforms count-based method
- Limitations: Highly controlled images and limited queries

# QUANTIFIERS IN IMAGES

#### Pezzelle et al (2017)



How many are dogs? Three/most

- A person recognizes both small numbers and proportions
- Goal: Map from text to image learn quantifiers from varying proportions

**QUANTIFIERS IN IMAGES** 

#### Pezzelle et al (2017)



- A person recognizes both small numbers and proportions
- Goal: Map from text to image learn quantifiers from varying proportions
- Data: ImageNet images constructed into collages
- Result: Quantifiers and cardinals require different similarity measures (cos similarity and dot product, respectively)
- Limitation: Restricted learning space

# QUANTIFIERS

|                                   | Purpose               | Result             | Limitation           |
|-----------------------------------|-----------------------|--------------------|----------------------|
| Herbelot & Vecchi Use MT to learn |                       | Partial attributes | Assumes global truth |
| (2015)                            | quantified attributes | can be inferred    | (not contextual)     |
| Sorodoc et al (2016)              | Ground quantifiers in | Proportional       | Count-based          |
| Joiodoc et al (2010)              | image data            | approach           | representation       |
| Pazzelle et al (2017)             | Ground quantifiers    | Separate metric    | Restricted data      |
|                                   | and cardinals         | from counting      |                      |

#### Quantifiers in images:

- Correspond to proportions
- Can be learned alongside cardinals
- Future work: Applying quantifiers to grounded classification methods

'**mostly** white'

# QUANTIFIERS

|                       | Pu        | rpose Res               | ult                  | Limitation           |
|-----------------------|-----------|-------------------------|----------------------|----------------------|
| Herbelot & Vecchi     | Use M     | T to lear               | ibutes               | Assumes global truth |
| (2015)                | quantifie | d attributes 🔰 can be j | n <sup>f</sup> erred | (not contextual)     |
| Sorodoc et al (2016)  | Ground o  | uantifie <u>rs in</u>   | onal                 | <b>Count-based</b>   |
|                       | imag      | ge data 💽 💦 appro       | oach                 | representation       |
| Pezzelle et al (2017) | Ground    | quantifi                | metric               | Restricted data      |
|                       | and       | ardinals from co        | unting               |                      |

#### Quantifiers in images:

- Correspond to proportions
- Can be learned alongside cardinals
- Future work: Applying quantifiers to grounded classification methods

#### 'mostly white'

How do we put everything together?

# OUTLINE

- Methodology
- Modifiers
- Compositionality in Distributional Semantics
  - Language
  - Language & Vision

Mitchell & Lapata (2010)

Baroni & Zamparelli (2010)

Hartung et al (2017)

- Linguistic aspects:
  - Composition methods

Boleda et al (2013)

Vecchi et al (2013) Dunlop et al (2010)

"black" ? "tail" = "black tail"

Mitchell & Lapata (2010)

Baroni & Zamparelli (2010)

Hartung et al (2017)

- Linguistic aspects:
  - Composition methods
  - Property being described

Boleda et al (2013)

Vecchi et al (2013) Dunlop et al (2010)

"black" ? "tail" = "black tail"

"black" -> color, emotion, legality...

Mitchell & Lapata (2010)

Baroni & Zamparelli (2010)

Hartung et al (2017)

Linguistic aspects:

- Composition methods
- Property being described
- Intensionality

Boleda et al (2013)

Vecchi et al (2013) Dunlop et al (2010)

"black" ? "tail" = "black tail"

"black" -> color, emotion, legality...

"alleged murderer" ≠ "alleged" & "murderer"

Mitchell & Lapata (2010)

Baroni & Zamparelli (2010)

Hartung et al (2017)

- Linguistic aspects:
  - Composition methods
  - Property being described
  - Intensionality
  - Ordering

Boleda et al (2013)

Vecchi et al (2013) Dunlop et al (2010)

"black" ? "tail" = "black tail"

"black" -> color, emotion, legality...

"alleged murderer" ≠ "alleged" & "murderer"

"light grey bag" vs "grey light bag"

Mitchell & Lapata (2010)



 Goal: Find composition function that optimizes similarity between composed vectors, depending on representation

#### Mitchell & Lapata (2010)

- 2 semantic spaces:
  - 1. context co-occurence

 $v_i(t) = \frac{p(c_t|t)}{p(c_i)}$ 

2. LDA topic proportions

 $\beta_{ij} = p(w_i | z_j)$ 

| Spearman's p      | Context-based | LDA |  |
|-------------------|---------------|-----|--|
| Additive          | .36           | .37 |  |
| Kintsch           | .32           | .30 |  |
| Multiplicative    | .46           | .25 |  |
| Tensor product    | .41           | .39 |  |
| Convolution       | .09           | .15 |  |
| Weighted additive | .44           | .38 |  |
| Dilation          | .44           | .38 |  |
| Target unit       | .43           |     |  |
| Head only         | .43           | .35 |  |
| Humans            | .52           | .52 |  |

- Data: BNC corpus
- Results: Multiplication was best for context-based vectors, but additive functions are best overall
- Limitation: Only measuring similarity between the constructed vectors

Baroni & Zamparelli (2010)



- Adjectives transform noun to noun-phrase
- Noun-phrases are corpus-generated vectors
- Goal: Learn adjectives as functions over nouns

Baroni & Zamparelli (2010)

- Data: Wikipedia + BNC
- Results:
  - Composed vectors are semantically related to corpusderived phrase vectors

'young' \* 'man' -> 'small son', 'small daughter', 'mistress'

- Adjectives cluster well based on property described
- Limitations: Vector space derived from dimensionality reduction using only most common words

## **ADJECTIVE-NOUN CLASSES**

Hartung et al (2017)

"hot summer"

temperature

"hot debate"

emotion

Property being described depends on noun in phrase

- Properties have names: these are also nouns
- Find correct property through composition



## **ADJECTIVE-NOUN CLASSES**

Hartung et al (2017)

- Data: HeiPLAS adj-property-noun triples (Hartung 2015) Google News word2vec
- Results:
  - Weighted addition is best
- Limitations:
  - Probability-based spaces do not work
  - Property can be contextdependent

|        | <b>Compositional Model</b>           | P@1  | P@5  |
|--------|--------------------------------------|------|------|
|        | Adjective                            | 0.33 | 0.50 |
|        | Noun                                 | 0.03 | 0.10 |
|        | Vector Addition $(\oplus)$           | 0.24 | 0.45 |
| els    | Weighted Vector Addition             | 0.33 | 0.51 |
| pol    | Vector Multiplication $(\odot)$      | 0.00 | 0.02 |
| dict m | Adj. Dilation ( $\lambda = 2$ )      | 0.06 | 0.18 |
|        | Noun Dilation ( $\lambda = 2$ )      | 0.33 | 0.51 |
| pre    | Full Add. Weighted Noun              | 0.33 | 0.54 |
|        | Full Add. Weighted Adjective         | 0.46 | 0.71 |
|        | Full Add. Weighted Adj. and Noun     | 0.56 | 0.75 |
|        | Trained Tensor Product ( $\otimes$ ) | 0.44 | 0.57 |
| int    | C-LDA (Hartung, 2015)                | 0.09 | n/a  |
| cou    | L-LDA (Hartung, 2015)                | 0.16 | n/a  |

## INTENSIONALITY

#### Boleda et al (2013)

- Intersective:
  - A "white towel" is both white and a towel
- Subsective:
  - A "skilled surgeon" is not necessarily skilled in general
- Intensional:
  - An "alleged murderer" is not a murderer (nor 'alleged')
- Goal: Determine if compositional methods are affected by intensionality of adjective

## INTENSIONALITY

#### Boleda et al (2013)

#### **Data:** Wikipedia + BNC

| l | alleged   | former | future   | hypothetical | impossible | likely   | mere        | mock        |
|---|-----------|--------|----------|--------------|------------|----------|-------------|-------------|
| N | loose     | wide   | white    | naive        | severe     | hard     | intelligent | ripe        |
| l | mecessary | past   | possible | potential    | presumed   | probable | putative    | theoretical |
| N | modern    | black  | free     | safe         | vile       | nasty    | meagre      | stable      |

| Model             | Global            | Intensional       | Non-intensional   | NN=A | NN=N |
|-------------------|-------------------|-------------------|-------------------|------|------|
| observed          | -                 | -                 | -                 | 8.2  | 3.3  |
| lexical function  | <b>0.60</b> ±0.11 | <b>0.60</b> ±0.10 | <b>0.60</b> ±0.10 | 0.9  | 0.6  |
| full additive     | $0.52{\pm}0.13$   | $0.52{\pm}0.13$   | $0.51 {\pm} 0.12$ | 10.0 | 4.8  |
| weighted additive | $0.48{\pm}0.14$   | $0.48{\pm}0.14$   | $0.48 {\pm} 0.14$ | 23.2 | 13.3 |
| dilation          | $0.42{\pm}0.18$   | $0.42{\pm}0.17$   | $0.42{\pm}0.17$   | 31.0 | 11.6 |
| multiplicative    | $0.32{\pm}0.21$   | $0.32 {\pm} 0.20$ | $0.32{\pm}0.20$   | 29.9 | 16.6 |
| noun only         | 0.40±0.18         | $0.40{\pm}0.17$   | $0.40{\pm}0.17$   | -    | -    |

Predicted-to-observed vector

Limitation: Do not compose multiple adjectives

### **ADJECTIVE ORDERING**

Vecchi et al (2013)

- Syntax makes adjective ordering easy to learn (Dunlop 2010)
- Goal: Understand adjective ordering in distributional space as function of adjective modification strength



 $\cos \angle : \vec{x}, \vec{y}, \vec{n}, \vec{x} \cdot \vec{n}, \vec{y} \cdot \vec{n}$ 

- Data: Wikipedia + BNC with dimension reduction
- Limitations: Treat flexible ordering as equivalent meaning

### **ADJECTIVE ORDERING**

Vecchi et al (2013)

- Syntax makes adjective ordering easy to learn (Dunlop 2010)
- Goal: Understand adjective ordering in distributional space as function of adjective modification strength



| Model | ho   | M&L  |
|-------|------|------|
| CORP  | 0.41 | 0.43 |
| W.ADD | 0.41 | 0.44 |
| F.ADD | 0.40 | -    |
| MULT  | 0.33 | 0.46 |
| LFM   | 0.40 | _    |

|       | Gold  | FO    | RO    |
|-------|-------|-------|-------|
| W.ADD | 0.565 | 0.572 | 0.558 |
| F.ADD | 0.618 | 0.622 | 0.614 |
| MULT  | 0.424 | 0.468 | 0.384 |
| LFM   | 0.655 | 0.675 | 0.637 |

- Data: Wikipedia + BNC with dimension reduction
- Limitations: Treat flexible ordering as equivalent meaning
### LINGUISTIC ASPECTS OF COMPOSITIONALITY

|                                  | Initial Data                              | Goal                                             | [Best]<br>Method                     |
|----------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------|
| Mitchell &<br>Lapata (2010)      | Adjective, noun vectors                   | Examine composition<br>methods                   | Multiplication                       |
| Baroni &<br>Zamparelli<br>(2010) | Noun, noun phrase vectors                 | Represent adjective as<br>matrix                 | Linear mapping                       |
| Hartung et al<br>(2017)          | Adjective, noun, property<br>name vectors | Learn adjective property from composition        | Weighted<br>addition                 |
| Boleda et al<br>(2013)           | Adjective, noun, phrase<br>vectors        | Effect of intensionality on composition function | Lexical Function<br>(linear mapping) |
| Vecchi et al<br>(2013)           | Adjective, noun                           | Learn adjective ordering                         | Weighted<br>Addition                 |

Composition depends on representation and purpose

### **GROUNDED COMPOSITION**

How is composition affected by the addition of visual information?

Abstract vs. concrete phrases

Images as visual phrases

What information each modality provides

Shutova et al (2016)

Lazaridou et al (2014)

Collell & Moens (2016)

### **ABSTRACT COMPOSITION**

Shutova et al (2016)

Metaphor comes from combining imagery of different domains

*liquid* ← 'pour money' → *finance* 

- **Goal:** Use visual information to separate abstract vs. concrete
- Data: Wikipedia, ImageNet; MOH and TSV for testing



#### Limitations:

- Dependent on visual representation being incoherent for metaphors
- Assume composition is addition

### Lazaridou et al (2015)

Treat visual features as the phrase representations



Data: Wikipedia CBOW, 384 WordNet/ImageNet synsets

### Lazaridou et al (2015)

#### Goal: Zero-shot attribute learning



Data: Wikipedia CBOW, 384 WordNet/ImageNet synsets

Lazaridou et al (2015)

#### Goal: Zero-shot attribute learning



Limitation: Decomposition only in linguistic space

"Sunflowers are on average yellow (mean rank 2.3), fields are green (4.4), cabinets are wooden (4), and vans metallic (6.6) (strawberries are, suspiciously, blue, 2.7.)"

### Lazaridou et al (2015)

#### Goal: Zero-shot attribute learning



### Lazaridou et al (2015)

#### Results:

| Image                     | Model            | Top item             | Top hit (Rank)         |
|---------------------------|------------------|----------------------|------------------------|
|                           | DEC              | A: white<br>N: dog   | white (1)<br>dog (1)   |
|                           | DIR <sup>O</sup> | A: animal<br>N: goat | white (27)<br>dog (25) |
| A·white brown             | LM               | A: stray             | brown (74)             |
| A: white, brown<br>N: dog | vLM              | A: pet               | brown (17)             |

| Image | Object    | Predicted<br>Attributes                                        |
|-------|-----------|----------------------------------------------------------------|
|       | aeroplane | thick, wet, dry,<br>cylindrical,<br>motionless,<br>translucent |
|       | dog       | cuddly, wild,<br>cute, furry,<br>white, coloured               |

Limitations: Single object per image; have no correspondence between adjective closeness and relevance

### **VISUAL & LINGUISTIC INFORMATION**

Collell & Moens (2016)

- Goal: Understand the information each modality captures
- Data: ImageNet, GloVe, McRae



### **VISUAL & LINGUISTIC REPRESENTATION**

Collell & Moens (2016)

#### Results: Positive is visual contribution, negative is text



Limitation: Examined one textual and one visual representation

### **GROUNDED COMPOSITION**

|                           | Hypothesis                                          | Result                                                    | Limitation                                   |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|
| Shutova et al (2016)      | Metaphor based on<br>visual dichotomy               | Phrase composition<br>reveals<br>metaphoricity            | Assumed addition-<br>based composition       |
| Lazaridou et al<br>(2015) | Image represents<br>adjective-noun<br>composition   | Zero-shot attribute<br>learning                           | Decomposition<br>only in linguistic<br>space |
| Collell & Moens<br>(2016) | Text and images<br>provide different<br>information | Images inform visual<br>properties, text<br>abstract ones | Limited<br>representation<br>analysis        |

Different representations have different strengths and weaknesses, as do the different modalities

The more different the semantics of the linguistic space and visual space are, the more difficult it is to map between them

### CONCLUSION

#### • What we can do:

- Recognize objects and their component parts
- Handle vagueness of adjective modification
- Quantify attribute exhibition in a class
- Compose adjectives and nouns
- Future considerations:
  - Applying quantifiers to properties of a single object (not just proportions of countable features)
  - Grounding comparative terms
  - Using attribute absence as a property of an object
  - Understanding human limits of differentiation





# THANK YOU

### **QUESTIONS?**

# **BACKUP SLIDES**

### **FENG & LAPATA (2010)**



 $\prod_{d=1}^{M} \int P(\theta_d | \alpha) \left( \prod_{n=1}^{N_d} \sum_{z_i} P(z_{dn} | \theta_d) P(w_{dn} | z_{dn}, \beta) \right) d\theta_d \qquad (\gamma^*, \phi^*) = \operatorname*{argmin}_{\gamma \phi} d(q(\theta, \mathbf{z} | \gamma, \phi) | | p(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta))$ 

- **KL** divergence
- Jensen Shannon Divergence
- **Conditional distribution**
- Measure correlation with human similarity metrics using Pearson's r

$$D(p,q) = \sum_{j=1}^{K} p_j \log_2 \frac{p_j}{q_j}$$
  

$$JS(p,q) = \frac{1}{2} \left[ D\left(p, \frac{(p+q)}{2}\right) + D\left(q, \frac{(p+q)}{2}\right) \right]$$
  

$$P(w_2|w_1) = \sum_{z=1}^{K} P(w_2|z)P(z|w_1)$$
  

$$P(z|w_1) \propto P(w_1|z)P(z|w_1)$$

### **FENG & LAPATA (2010)**



Figure 2: Performance of multimodal topic model on predicting word association under varying topics and visual terms (development set).



Figure 3: Performance of multimodal topic model on predicting word similarity under varying topics and visual terms (development set).



| Model    | Word Association | Word Similarity |
|----------|------------------|-----------------|
| UpperBnd | 0.400            | 0.545           |
| MixLDA   | 0.123            | 0.318           |
| TxtLDA   | 0.077            | 0.247           |

Table 2: Model performance on word association and similarity (test set).

### **BLEI & JORDAN (2003)**



**Corr-LDA** 

α

θ

Ν

Μ

m=1

**GM-LDA** 

$$(z, \mathbf{r}, \mathbf{w}) = p(z|\lambda) \Big(\prod_{n=1}^{M} p(r_n|z, \mu, \sigma)\Big)$$
  
 $\Big(\prod_{m=1}^{M} p(w_m|z, \beta)\Big)$ 

ß

$$p(\mathbf{r}, \mathbf{w}, \theta, \mathbf{z}, \mathbf{v}) = p(\theta | \alpha) \Big( \prod_{n=1}^{N} p(z_n | \theta) p(r_n | z_n, \mu, \sigma) \Big)$$
$$\Big( \prod_{m=1}^{M} p(y_m | N) p(w_m | y_m, z, \beta) \Big)$$

### BLEI & JORDAN (2003)

### Variational Inference: $q(\theta, \mathbf{z}, \mathbf{y}) = q(\theta|\gamma) \Big(\prod_{n=1}^{N} q(z_n|\phi_n)\Big) \Big(\prod_{m=1}^{M} q(y_m|\lambda_m)\Big)$

#### Update posterior Dirichlet

 $\gamma_i = \alpha_i + \sum_{n=1}^N \phi_{ni}$ 

## Update posterior for each image region $\phi_{ni} \propto p(r_n | z_n = i, \mu, \sigma) \exp\{ E_q[\log \theta_i | \gamma] \} \bullet \\ \cdot \exp\left\{ \sum_{m=1}^M \lambda_{mn} \log p(w_m | y_m = n, z_m = i, \beta) \right\}$ $E_q[\log \theta_i | \gamma] = \Phi(\gamma_i) - \Phi(\sum \gamma_j)$ Update posterior for each word $\lambda_{mn} \propto \exp\left\{ \sum_{i=1}^K \phi_{ni} \log p(w_m | y_m = n, z_n = i, \beta) \right\}$

#### Approximate word dist:

$$p(w|\mathbf{r}) \approx \sum_{n=1}^{N} \sum_{z_n} q(z_n|\phi_n) p(w|z_n,\beta)$$

$$p(w|\mathbf{r}, r_n) \approx \sum_{z_n} q(z_n|\phi_n) p(w|z_n, \beta)$$

#### Smoothing: add prior dist. to $\beta$

 $\beta_{i} \sim \operatorname{Dir}(\eta, \eta, ..., \eta)$   $\rho_{ij} = \eta + \sum_{d=1}^{D} \sum_{m=1}^{M} \mathbb{1}(w_{d}m = j) \sum_{n=1}^{N} \phi_{ni} \lambda_{mn}$   $\beta \to \exp\{\operatorname{E}[\log \beta | \rho]\}$ 

### BLEI & JORDAN (2003)



annotation perplexity = exp{
$$-\sum_{d=1}^{D}\sum_{m=1}^{M_d} \log p(w_m | r_d) / \sum_{d=1}^{D} M_d$$
}

inverse of geometric mean per-word likelihood

### ROLLER & WALDE (2014)

- Text: DeWaC
   1,038,883 documents
   consisting of 75,678
   word types and 466M
   word tokens
- Association Norms: 95,214 cue-response pairs for 1,012 nouns and 5,716 response types
- Feature Norms: 11,714
   cue-response pairs for
   569 nouns and 2,589
   response types
- Images: BidlerNetle
   2022 word-synset
   mappings for just 309
   words

| Modality                                 | K          | Assoc.   |  |  |  |  |  |
|------------------------------------------|------------|----------|--|--|--|--|--|
| Text Only                                |            |          |  |  |  |  |  |
| Text Only (LDA)         200         .679 |            |          |  |  |  |  |  |
| Bimod                                    | al mLDA    |          |  |  |  |  |  |
| Text + Feature Norms                     | 150        | .676     |  |  |  |  |  |
| Text + SURF                              | 50         | .789 *** |  |  |  |  |  |
| Text + GIST                              | 100        | .739 *** |  |  |  |  |  |
| Text + SURF Clusters                     | 200        | .618 *** |  |  |  |  |  |
| Text + GIST Clusters                     | 150        | .690     |  |  |  |  |  |
| 3D 1                                     | nLDA       |          |  |  |  |  |  |
| Text + FN + SURF                         | 100        | .722 *** |  |  |  |  |  |
| Text + FN + GC                           | 200        | .601 *** |  |  |  |  |  |
| Hybrid                                   | d mLDA     |          |  |  |  |  |  |
| FN, SURF                                 | 150+50     | .800 *** |  |  |  |  |  |
| FN, GC                                   | 150+150    | .742 *** |  |  |  |  |  |
| FN, GC, SURF                             | 150+150+50 | .804 *** |  |  |  |  |  |

Table 2: Average predicted rank similarity between cue words and their associates. Stars indicate statistical significance compared to the text-only modality, with gray stars indicating the model is statistically worse than the text model. The Hybrid models are the concatenation of the corresponding Bimodal mLDA models.

Images: SURF & GIST ft

Clusters: k-means 500 clusters of BoVW, images are membership in clusters

| Modality                                 | K              | $\rho$   |  |  |  |  |  |
|------------------------------------------|----------------|----------|--|--|--|--|--|
| Text Only                                |                |          |  |  |  |  |  |
| Text Only (LDA)         200         .204 |                |          |  |  |  |  |  |
| Bimod                                    | lal mLDA       |          |  |  |  |  |  |
| Text + Feature Norms                     | 150            | .310 *** |  |  |  |  |  |
| Text + Assoc. Norms                      | 200            | .328 **  |  |  |  |  |  |
| Text + SURF                              | 50             | .251     |  |  |  |  |  |
| Text + GIST                              | 100            | .204     |  |  |  |  |  |
| Text + SURF Clusters                     | 200            | .159     |  |  |  |  |  |
| Text + GIST Clusters                     | 150            | .233     |  |  |  |  |  |
| 3D mLDA                                  |                |          |  |  |  |  |  |
| Text + FN + AN                           | 250            | .259     |  |  |  |  |  |
| Text + FN + SURF                         | 100            | .286 *   |  |  |  |  |  |
| Text + FN + GC                           | 200            | .261 *   |  |  |  |  |  |
| Hybr                                     | id mLDA        |          |  |  |  |  |  |
| FN, AN                                   | 150+200        | .390 *** |  |  |  |  |  |
| FN, SURF                                 | 150+50         | .350 *** |  |  |  |  |  |
| FN, GC                                   | 150+150        | .340 *** |  |  |  |  |  |
| FN, AN, GC                               | 150+200+150    | .395 *** |  |  |  |  |  |
| FN, AN, SURF                             | 150+200+50     | .404 *** |  |  |  |  |  |
| FN, AN, SURF, GC                         | 150+200+50+150 | .406 *** |  |  |  |  |  |

Table 1: Average rank correlations between  $-sKL(w_{compound}, w_{constituent})$  and our Compositionality gold standard. The Hybrid models are the concatenation of the corresponding Bimodal mLDA models. Stars indicate statistical significance compared to the text-only setting at the .05, .01 and .001 levels using a two-tailed *t*-test.

### LAZARIDOU ET AL (2015)

Skip-Gram:

$$\frac{1}{T} \sum_{t=1}^{T} \left( \sum_{\substack{-c \le j \le c, j \ne 0 \\ \mathcal{L}_{ling}(w_t)}} \log p(w_{t+j}|w_t) \right) \qquad p(w_{t+j}|w_t) = \frac{e^{u'_{w_{t+j}} T u_{w_t}}}{\sum_{w'=1}^{W} e^{u'_{w'} T u_{w_t}}}$$

Visual knowledge:

$$\frac{1}{T} \sum_{t=1}^{T} (\mathcal{L}_{ling}(w_t) + \mathcal{L}_{vision}(w_t))$$

MM-Skipgram-A:

$$\mathcal{L}_{vision}(w_t) = -\sum_{w' P_n(w)} \max(0, \gamma - \cos(u_{w_t}, v_{w_t}) + \cos(u_{w_t}, v_{w'}))$$

**MM-Skipgram-B:**  $u_{w_t}$  replaced by  $z_{w_t} = M^{u \to v} u_{w_t}$ 

### LAZARIDOU ET AL (2015)

| <b>MEN:</b> General relatedness |
|---------------------------------|
| Simlex: Taxonomic sim.          |
| SemSim: Semantic sim.           |
| VisSim: Visual sim.             |

Pickle –> hamburger PIckle –> cucumber Pickle –> onion Pickle –> zucchini

| Model               | MEN  |      | Simlex-999 |      | SemSim |      | VisSim |      |
|---------------------|------|------|------------|------|--------|------|--------|------|
| Iviouei             | 100% | 42%  | 100%       | 29%  | 100%   | 85%  | 100%   | 85%  |
| KIELA AND BOTTOU    | -    | 0.74 | -          | 0.33 | -      | 0.60 | -      | 0.50 |
| BRUNI ET AL.        | -    | 0.77 | -          | 0.44 | -      | 0.69 | -      | 0.56 |
| SILBERER AND LAPATA | -    | -    | -          | -    | 0.70   | -    | 0.64   | -    |
| CNN FEATURES        | -    | 0.62 | -          | 0.54 | -      | 0.55 | -      | 0.56 |
| SKIP-GRAM           | 0.70 | 0.68 | 0.33       | 0.29 | 0.62   | 0.62 | 0.48   | 0.48 |
| CONCATENATION       | -    | 0.74 | -          | 0.46 | -      | 0.68 | -      | 0.60 |
| SVD                 | 0.61 | 0.74 | 0.28       | 0.46 | 0.65   | 0.68 | 0.58   | 0.60 |
| MMSkip-gram-A       | 0.75 | 0.74 | 0.37       | 0.50 | 0.72   | 0.72 | 0.63   | 0.63 |
| MMSKIP-GRAM-B       | 0.74 | 0.76 | 0.40       | 0.53 | 0.66   | 0.68 | 0.60   | 0.60 |

Human preference for nearest neighbor vs random image

|          | global | words | unseen | words |
|----------|--------|-------|--------|-------|
| all      | 48%    | 198   | 30%    | 127   |
| concrete | 73%    | 99    | 53%    | 30    |
| abstract | 23%    | 99    | 23%    | 97    |
|          | 1      |       | 1      |       |

|               | P@1 | P@2 | P@10 | P@20 | P@50 |
|---------------|-----|-----|------|------|------|
| SKIP-GRAM     | 1.5 | 2.6 | 14.2 | 23.5 | 36.1 |
| MMSkip-gram-A | 2.1 | 3.7 | 16.7 | 24.6 | 37.6 |
| MMSkip-gram-B | 2.2 | 5.1 | 20.2 | 28.5 | 43.5 |

Table 3: Percentage precision@k results in the zeroshot image labeling task.

|               | P@1 | P@2 | P@10 | P@20 | P@50 |
|---------------|-----|-----|------|------|------|
| SKIP-GRAM     | 1.9 | 3.3 | 11.5 | 18.5 | 30.4 |
| MMSkip-gram-A | 1.9 | 3.2 | 13.9 | 20.2 | 33.6 |
| MMSkip-gram-B | 1.9 | 3.8 | 13.2 | 22.5 | 38.3 |

Table 4: Percentage precision@k results in the zeroshot image retrieval task.

### **WANG ET AL (2017)**

#### **Count-based comparison models**

#### Independent Bernoulli

$$\mathbf{w}^{\alpha} = \mathbf{w}^{\alpha} + \underline{\mathbf{c}}$$
$$\mathbf{w}^{\beta} = \mathbf{w}^{\beta} + (1 - \underline{\mathbf{c}})$$
$$\mathbf{w}^{Ind} = \frac{\mathbf{w}^{\alpha}}{\mathbf{w}^{\alpha} + \mathbf{w}^{\beta}}$$

- α and β are parameters of Beta distribution
- Represents uncertainty about probability of property through Beta distribution over Bernoulli probabilities

#### Multinomial (properties compete)

- **c**<sub>Mult</sub> is multinomial over properties
- w is Dirichlet with Q parameters

#### bi-TM

- c<sub>Mult</sub> is Bernoulli mixture instead of independent properties (can represent co-occurrences)
- no competition between properties

### **WANG ET AL (2017)**

| Models   |            | QM   | Animal |      |
|----------|------------|------|--------|------|
| widdeis  |            | BOW5 | Syn    | Syn  |
| Baseline | 2          | 0.12 | 0.16   | 0.63 |
| PLS      |            | 0.24 | 0.35   | 0.71 |
| Count    | Mult.      | 0.13 | 0.25   | 0.64 |
|          | Ind.       | 0.11 | 0.23   | 0.64 |
|          | BernMix H1 | 0.11 | 0.17   | 0.65 |
|          | BernMix H2 | 0.10 | 0.18   | 0.63 |
| bi-TM    | plain      | 0.23 | 0.36   | 0.80 |
|          | BernMix H2 | 0.20 | 0.34   | 0.81 |

### Table 1: MAP scores, multi-shot learning on the QMR and Animal datasets

|     | Models |            | all  | oracle<br>top20 | AvgCos<br>top20 |
|-----|--------|------------|------|-----------------|-----------------|
|     | Count  | Mult.      | 0.16 | 0.37            | 0.28            |
| 2   |        | BernMix H1 | 0.14 | 0.33            | 0.21            |
|     |        | BernMix H2 | 0.15 | 0.31            | 0.22            |
|     | bi-TM  | plain      | 0.21 | 0.47            | 0.35            |
|     |        | BernMix H2 | 0.18 | 0.45            | 0.34            |
|     | Count  | Mult.      | 0.58 | 0.77            | 0.61            |
| nal |        | BernMix H1 | 0.60 | 0.80            | 0.57            |
| nin |        | BernMix H2 | 0.59 | 0.81            | 0.59            |
| ΓĀ  | bi-TM  | plain      | 0.64 | 0.88            | 0.63            |
|     |        | BernMix H2 | 0.65 | 0.89            | 0.66            |

Table 2: MAP scores, one-shot learning on theQMR and Animal datasets

#### MAP: Mean Average Precision

Measure what extent the model ranks definitional properties in the correct order

$$AP = \frac{1}{\sum_{i=1}^{n} I(i)} \sum_{i=1}^{n} \operatorname{Prec}_{i} \cdot I(i)$$

| Туре          | MAP  |
|---------------|------|
| Function      | 0.45 |
| Taxonomic     | 0.62 |
| Visual        | 0.34 |
| Encyclopaedic | 0.35 |
| Perc          | 0.40 |

Table 6: QMR, bi-TM, one-shot: MAP by prop-erty type over (oracle) top 20 context items

### SILBERER ET AL (2014)

- Attribute classifiers
  - SVM trained on 4 features: color, texture, visual words, edges
- Image representation: normalized vector of attribute classification scores

$$\mathbf{p}_w = \frac{(sum_{i_w \in I_w} \operatorname{score}_a(i_w))_{a=1,\dots,F}}{\sum_{a=1}^F \sum_{i_w \in I_w} \operatorname{score}_a(i_w)}$$

- Comparison Models
  - Concatenation
  - CCA

### SILBERER ET AL (2014)

|           | Nelson | Concat | CCA  | TopicAttr | TextAttr |
|-----------|--------|--------|------|-----------|----------|
| Concat    | 0.24   |        |      |           |          |
| CCA       | 0.30   | 0.72   |      |           |          |
| TopicAttr | 0.26   | 0.55   | 0.28 |           |          |
| TextAttr  | 0.21   | 0.80   | 0.83 | 0.34      |          |
| VisAttr   | 0.23   | 0.65   | 0.52 | 0.40      | 0.39     |

Table 5: Correlation matrix for seen Nelson et al. (1998) cue-associate pairs and five distributional models. All correlation coefficients are statistically significant (p < 0.01, N = 435).

|           | Nelson | Concat | CCA  | TopicAttr | TextAttr |
|-----------|--------|--------|------|-----------|----------|
| Concat    | 0.11   |        |      |           |          |
| CCA       | 0.15   | 0.66   |      |           |          |
| TopicAttr | 0.17   | 0.69   | 0.48 |           |          |
| TextAttr  | 0.11   | 0.65   | 0.25 | 0.39      |          |
| VisAttr   | 0.13   | 0.57   | 0.87 | 0.57      | 0.34     |

Table 6: Correlation matrix for unseen Nelson et al. (1998) cue-associate pairs and five distributional models. All correlation coefficients are statistically significant (p < 0.01, N = 1,716).

| Models            | Seen |
|-------------------|------|
| All Attributes    | 0.28 |
| Text Attributes   | 0.20 |
| Visual Attributes | 0.25 |

Table 7: Model performance on seen Nelson et al. (1998) cue-associate pairs; models are based on gold human generated attributes (McRae et al., 2005). All correlation coefficients are statistically significant (p < 0.01, N = 435).

| Models    | Seen | Unseen |
|-----------|------|--------|
| Concat    | 0.22 | 0.10   |
| CCA       | 0.26 | 0.15   |
| TopicAttr | 0.23 | 0.19   |
| TextAttr  | 0.20 | 0.08   |
| VisAttr   | 0.21 | 0.13   |
| MixLDA    | 0.16 | 0.11   |

Table 8: Model performance on a subset of Nelson et al. (1998) cue-associate pairs. Seen are concepts known to the attribute classifiers and covered by MixLDA (N = 85). Unseen are concepts covered by LDA but unknown to the attribute classifiers (N = 388). All correlation coefficients are statistically significant (p < 0.05).

### LAZARIDOU ET AL (2014)

- 4 zero-shot approaches
  - Linear Projection:

CCA:

> SVD:

$$\begin{aligned} \mathbf{f}_{\text{proj}_{\mathbf{v}\to\mathbf{w}}} &= (\mathbf{V}_s^T \mathbf{V} s)^{-1} \mathbf{V}_s^T \mathbf{W}_s \\ \mathbf{f}_{\text{proj}_{\mathbf{v}\to\mathbf{w}}} &= \mathbf{C}_V \mathbf{C}_W^{-1} \\ \mathbf{f}_{\text{proj}_{\mathbf{v}\to\mathbf{w}}} &= \mathbf{Z}_k \mathbf{Z}_k^T \\ \mathbf{f}_{\text{proj}_{\mathbf{v}\to\mathbf{w}}} &= \mathbf{Z}_k \mathbf{Z}_k^T \\ \begin{bmatrix} \hat{\mathbf{V}}_s \hat{\mathbf{W}}_s \end{bmatrix} = \mathbf{U}_k \Sigma_k \mathbf{Z}_k^T \end{aligned}$$

Neural Network (used hyperbolic tangent)

| k<br>Model | 1   | 2   | 3    | 5    | 10   | 20   |
|------------|-----|-----|------|------|------|------|
| Chance     | 1.1 | 2.2 | 3.3  | 5.5  | 11.0 | 22.0 |
| SVD        | 1.9 | 5.0 | 8.1  | 14.5 | 29.0 | 48.6 |
| CCA        | 3.0 | 6.9 | 10.7 | 17.9 | 31.7 | 51.7 |
| lin        | 2.4 | 6.4 | 10.5 | 18.7 | 33.0 | 55.0 |
| NN         | 3.9 | 6.6 | 10.6 | 21.9 | 37.9 | 58.2 |

Table 2: Percentage accuracy among top k nearestneighbors on CIFAR-100.

| Mapping<br>Context | $v \rightarrow w$ | $w \rightarrow v$ |
|--------------------|-------------------|-------------------|
| Chance             | 17                | 17                |
| context 1          | 12.6              | 14.5              |
| context 5          | 8.08              | 13.29             |
| context 10         | 7.29              | 13.44             |
| context 20         | 6.02              | 12.17             |
| context full       | 5.52              | 5.88              |

Table 7: Mean rank results averaged across 34 concepts when mapping an image-based vector and retrieving its linguistic neighbors  $(v \rightarrow w)$  as well as when mapping a text-based vector and retrieving its visual neighbors  $(w \rightarrow v)$ . Lower numbers cue better performance.

### HWANG & SIGAL (2014)

$$\mathcal{L}_{C}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{x}_{i}, y_{i}) = \sum_{c} [1 + || \boldsymbol{W} \boldsymbol{x}_{i} - \boldsymbol{u}_{y_{i}} ||_{2}^{2} - || \boldsymbol{W} \boldsymbol{x}_{i} - \boldsymbol{u}_{c} ||_{2}^{2}]_{+}, \ \forall c \neq y_{i} \quad (1)$$

$$\min_{\boldsymbol{W},\boldsymbol{U}}\sum_{i}^{N} \mathcal{L}_{C}(\boldsymbol{W},\boldsymbol{U},\boldsymbol{x}_{i},y_{i}) + \lambda ||\boldsymbol{W}||_{F}^{2} + \lambda ||\boldsymbol{U}||_{F}^{2}, y_{i} \in \{1,...,m\}$$
(2)

$$\mathcal{L}_{S}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{x}_{i}, y_{i}) = \sum_{s \in \mathcal{P}_{\dagger_{\mathcal{V}}}} \sum_{c \in \mathcal{S}_{s}} [1 + ||\boldsymbol{W}\boldsymbol{x}_{i} - \boldsymbol{u}_{s}||_{2}^{2} - ||\boldsymbol{W}\boldsymbol{x}_{i} - \boldsymbol{u}_{c}||_{2}^{2}]_{+} \qquad (3)$$

$$\mathcal{L}_{A}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{x}_{i}, y_{i}) = 1 - \sum_{a} (\boldsymbol{W}\boldsymbol{x}_{i})^{T} y_{i}^{a} \boldsymbol{u}_{a}, ||\boldsymbol{u}_{a}||^{2} \leq 1, y_{i}^{a} \in \{0, 1\}, \forall a \in \mathcal{A}_{y_{i}} \quad (4)$$

$$\boldsymbol{u}_{c} = \boldsymbol{u}_{p} + \boldsymbol{U}^{A}\beta c, c \in \mathcal{C}_{p}, ||\beta_{c}||_{0} \leq \gamma_{1}, \beta_{c} \succeq 0, \forall c \in \{1, ..., C\}$$
(5)

$$\mathcal{R}(\boldsymbol{U},\boldsymbol{B}) = \sum_{c}^{C} ||\boldsymbol{u}_{c} - \boldsymbol{u}_{p} - \boldsymbol{U}^{A}\beta_{c}||_{2}^{2} + \gamma_{2}||\beta_{c} + \beta_{o}||_{2}^{2}$$
$$c \in \mathcal{C}_{p}, o \in \mathcal{P}_{c} \cup \mathcal{S}_{c}, 0 \leq \beta_{c} \leq \gamma_{1}, \forall c \in \{1, ..., C\} \quad (6)$$

### **CHEN ET AL**

#### **Selective Sharing**

Multi-task lasso: all-competing  $\lambda$  balances sparcity against classification loss

$$\begin{split} \mathbf{W}^* & \operatorname{argmin}_{\mathbf{W}} L(\mathbf{X}, \mathbf{Y}; \mathbf{W}) + \lambda \sum_{m} ||\mathbf{w}^m||_1 \\ W^* &= \arg\min_{W} \sum_{m,n} \log(1 + \exp((1 - 2y_n^m) \boldsymbol{x}_n^T \boldsymbol{w}^m)) + \lambda \sum_{d=1}^{D} \sum_{l=1}^{L} ||\boldsymbol{w}_d^{S_l}| \\ \mathbf{Category-Specific Attributes} \\ \\ \text{Tategory-Specific Attributes} \\ & ||V||_1 \\ \mininimize \left(\frac{1}{2} ||\mathbf{w}||^2 + C_S \sum_{i} \xi_i + C_O \sum_{j} \gamma_j\right) \\ & \text{s.t.} \quad y_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1 - \xi_i; \forall i \in \mathscr{I} \\ & y_j \boldsymbol{w}^T \boldsymbol{x}_j \ge 1 - \gamma_j; \forall j \in \mathcal{O} \\ & \xi_i \ge 0; \gamma_j \ge 0 \end{split}$$

|2



Attribute Independence:

$$p(y|z) = \prod_{k \in \mathcal{A}} p(y_k|z)$$

**Product of Experts**:

 $q(z|y_O) \propto p(z) \prod_{k \in O} q(z|y_k)$ 

correctness
$$(\mathcal{S}, y_{\mathcal{O}}) = \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} \frac{1}{|\mathcal{O}|} \sum_{k \in \mathcal{O}} \mathbb{I}(\hat{y}(x)_k = y_k)$$

Frac. of attr. that match desc.

coverage(
$$\mathcal{S}, y_{\mathcal{O}}$$
) =  $\frac{1}{|\mathcal{M}|} \sum_{k \in \mathcal{M}} (1 - JS(p_k, q_k))$ 

Meas. diversity of underspec attr.

q(z|x,y), q(z|x), q(z|y)

p(x, y, z) = p(z)p(x|z)p(y|z)

 $p(y|x) = \int p(y|z)q(z|x)dz$  $p(x|y) = \int p(x|z)q(z|y)dz$ 

| Name                          | Ref                                                                | Model                                          | Objective                                                                                                                                                                                                                                      |
|-------------------------------|--------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VAE                           | (Kingma et al., 2014)                                              | p(z)p(x z)                                     | $\operatorname{elbo}(x z;  z x)$                                                                                                                                                                                                               |
| triple ELBO                   | This                                                               | p(z)p(x z)p(y z)                               | elbo(x, y z; z x, y)<br>+ $olbo(x z; z x)$ + $olbo(y z; z y)$                                                                                                                                                                                  |
| JMVAE                         | (Suzuki et al., 2017)                                              | p(z)p(x z)p(y z)                               | $ \begin{array}{l} + \operatorname{enbo}(x z,  z x) + \operatorname{enbo}(y z,  z y) \\ + \operatorname{enbo}(x, y z;  z x, y) \\ - \alpha \operatorname{KL}(q(z x, y), q(z x)) \\ - \alpha \operatorname{KL}(q(z x, y), q(z x)) \end{array} $ |
| bi-VCCA                       | (Wang et al., 2016)                                                | p(z)p(x z)p(y z)                               | $-\alpha \operatorname{KL}(q(z x, y), q(z y))$<br>$\mu \operatorname{elbo}(x, y z; z x)$<br>$+(1 - \mu)\operatorname{elbo}(x, y z; z y)$                                                                                                       |
| JVAE-Pu                       | (Pu et al., 2016)                                                  | p(z)p(x z)p(y z)                               | elbo(x, y z; z x) + elbo(x z; z x)                                                                                                                                                                                                             |
| JVAE-Kingma                   | (Kingma et al., 2014)                                              | p(z)p(y)p(x z,y)                               | $elbo(x y,z; z x,y) + \log p(y)$                                                                                                                                                                                                               |
| CVAE-Yan<br>CVAE-Sohn<br>CMMA | (Yan et al., 2016)<br>(Sohn et al., 2015)<br>(Pandey et al., 2017) | $p(z)p(x y,z) \ p(z x)p(y x,z) \ p(z y)p(x z)$ | elbo $(x y, z; z x, y)$<br>elbo $(y x, z; z x, y; z x)$<br>See text.                                                                                                                                                                           |

Table 2: Comparison of different approaches on MNIST-a test set. Higher numbers are better. Error bars (in parentheses) are standard error of the mean. For concrete concepts (where all 4 attributes are specified), we do not use a PoE inference network, and we do not report coverage. Hyperparameter settings for each result are discussed in the supplementary material.

| 11          | 5           |              |                 |      |              |
|-------------|-------------|--------------|-----------------|------|--------------|
| Method      | #Attributes | Coverage (%) | Correctness (%) | PoE? | Training set |
| triple ELBO | 4           | -            | 90.76 (0.11)    | Ν    | iid          |
| JMVAE       | 4           | -            | 86.38 (0.14)    | Ν    | iid          |
| bi-VCCA     | 4           | -            | 80.57 (0.26)    | Ν    | iid          |
| triple ELBO | 3           | 90.76 (0.21) | 77.79 (0.30)    | Y    | iid          |
| JMVAE       | 3           | 89.99 (0.20) | 79.30 (0.26)    | Y    | iid          |
| bi-VCCA     | 3           | 85.60 (0.34) | 75.52 (0.43)    | Y    | iid          |
| triple ELBO | 2           | 90.58 (0.17) | 80.10 (0.47)    | Y    | iid          |
| JMVAE       | 2           | 89.55 (0.30) | 77.32 (0.44)    | Y    | iid          |
| bi-VCCA     | 2           | 85.75 (0.32) | 75.98 (0.78)    | Y    | iid          |
| triple ELBO | 1           | 91.55 (0.05) | 81.90 (0.48)    | Y    | iid          |
| JMVAE       | 1           | 89.50 (0.09) | 81.06 (0.23)    | Y    | iid          |
| bi-VCCA     | 1           | 87.77 (0.10) | 76.33 (0.67)    | Y    | iid          |
| triple ELBO | 4           | -            | 83.10 (0.07)    | Ν    | comp         |
| JMVAE       | 4           | -            | 79.34 (0.52)    | Ν    | comp         |
| bi-VCCA     | 4           | -            | 75.18 (0.51)    | Ν    | comp         |
|             |             |              |                 |      |              |



Evaluation. S(y\_)={x<sup>an,</sup>~p(xly\_):n=1:N}: x (images) generated from y\_ (observed descriptions) N times y(x) predicted attribute vector







### DE MELO & BANSAL (2013)

#### Word scoring

$$W_{1} = \frac{1}{P_{1}} \sum_{p_{1} \in P_{ws}} cnt(p_{1}(a_{1}, a_{2})) \qquad S_{1} = \frac{1}{P_{2}} \sum_{p_{2} \in P_{sw}} cnt(p_{2}(a_{1}, a_{2}))$$
$$W_{2} = \frac{1}{P_{1}} \sum_{p_{1} \in P_{ws}} cnt(p_{1}(a_{2}, a_{1})) \qquad S_{2} = \frac{1}{P_{2}} \sum_{p_{2} \in P_{sw}} cnt(p_{2}(a_{2}, a_{1}))$$

$$P_1 = \sum_{p_1 \in P_{ws}} cnt(p_1)$$
  $P_2 = \sum_{p_2 \in P_{sw}} cnt(p_2)$ 

$$score(a_1, a_2) = \frac{(W_1 - S_1) - (W_2 - S_2)}{cnt(a_1) \cdot cnt(a_2)}$$
### **DE MELO**

### MILP

### maximize

$$\sum_{(i,j)\notin E} (w_{ij} - s_{ij}) \dot{s}core(a_i, a_j) - \sum_{(i,j)\in E} (w_{ij} + s_{ij})C$$

### subject to

$$d_{ij} = x_j - x_i$$
  

$$d_{ij} - w_{ij}C \le 0$$
  

$$d_{ij} + (1 - w_{ij})C > 0$$
  

$$d_{ij} + s_{ij}C \ge 0$$
  

$$d_{ij} - (1 - s_{ij})C < 0$$
  

$$x_i \in [0, 1]$$
  

$$w_{ij} \in \{0, 1\}$$
  

$$s_{ij} \in \{0, 1\}$$

$$egin{aligned} &orall i, j \in \{1, ..., N\} \ &orall i, j \in \{1, ..., N\} \ &orall i, j \in \{1, ..., N\} \ &orall i, j \in \{1, ..., N\} \ &orall i, j \in \{1, ..., N\} \ &orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & orall i \in \{1, ..., N\} \ & \end t \in \{1,$$

## DE MELO & BANSAL (2013)

| Method                       | Pairwise Accuracy | Avg. $\tau$ | Avg. $ \tau $ | <b>Ανg.</b> <i>ρ</i> | Avg. $ \rho $ |
|------------------------------|-------------------|-------------|---------------|----------------------|---------------|
| Web Baseline                 | 48.2%             | N/A         | N/A           | N/A                  | N/A           |
| Divide-and-Conquer           | 50.6%             | 0.45        | 0.53          | 0.52                 | 0.62          |
| Sheinman and Tokunaga (2009) | 55.5%             | N/A         | N/A           | N/A                  | N/A           |
| MILP                         | 69.6%             | 0.57        | 0.65          | 0.64                 | 0.73          |
| MILP with synonymy           | 78.2%             | 0.57        | 0.66          | 0.67                 | 0.80          |
| Inter-Annotator Agreement    | 78.0%             | 0.67        | 0.76          | 0.75                 | 0.86          |

| Table 3: | Main | test results |
|----------|------|--------------|
|----------|------|--------------|

|            |          | Prec   | Predicted Class |          |            |          | Predicted Class |     | Class    |
|------------|----------|--------|-----------------|----------|------------|----------|-----------------|-----|----------|
|            |          | Weaker | Tie             | Stronger |            |          | Weaker          | Tie | Stronger |
|            | Weaker   | 117    | 127             | 15       |            | Weaker   | 177             | 29  | 53       |
| True Class | Tie      | 5      | 42              | 15       | True Class | Tie      | 9               | 24  | 29       |
|            | Stronger | 11     | 122             | 115      |            | Stronger | 15              | 38  | 195      |

Table 4: Confusion matrix (Web baseline)

Table 5: Confusion matrix (MILP)

## QING & FRANKE (2014)

Speaker: $\sigma(u_1|b_0, \Pr) = p(\theta \le b_0) = \int_{-\infty}^{b_0} \Pr(\theta) d\theta$ Listener believes correct height: $\frac{\phi(b_0)}{1 - \int_{-\infty}^{\theta} \phi(b) db}$ Expected success: $ES(\theta) = \int_{-\infty}^{\theta} \phi(b)\phi(b|u_0, \theta) db + \int_{\theta}^{\infty} \phi(b)\phi(b|u_1, \theta) db$ Utility: $U(\theta) = ES(\theta) - \int_{\theta}^{\infty} \phi(b) \cdot c db$ Threshold distribution: $\Pr(\theta) \propto (\exp(\lambda \cdot U(\theta)))$ 

### QING & FRANKE (2014)





(a)  $Beta(\alpha, \beta)$  (b)  $Beta(\alpha, 1)$ Correspondence between beta distributions and scale structures.

# LASSITER & GOODMAN (2015)

Pragmatic Listener



 $P_{L_1}(A, V|u) \propto P_{S_1}(u|A, V) \cdot P_{L_1}(A) \cdot P_{L_1}(V)$ 

 $P_{S_1}(u|A,V) \propto \exp(\lambda \cdot \ln[P_{L_0}(A|u,V) - C(u)])$ 

{Ø, 'small', 'large'}

 $P_{L_0}(A|u, V) = P_{L_0}(A[[u]]^V = 1)$ 

# LASSITER & GOODMAN (2015)

"I ate some cookies"



# MCMAHAN & STONE (2015)



### Thresholds:

$$\begin{split} \tau_k^{\textit{Lower},d} &\sim \mu_k^{\textit{Lower},d} - \Gamma(\alpha_k^{\textit{Lower},d},\beta_k^{\textit{Lower},d}) \\ \tau_k^{\textit{Upper},d} &\sim \mu_k^{\textit{Upper},d} + \Gamma(\alpha_k^{\textit{Upper},d},\beta_k^{\textit{Upper},d}) \end{split}$$

### Probability of x falling in category k:

$$\begin{split} & P(\tau_k^{Lower,\,H} < x^H < \tau_k^{Upper,\,H}) \times \\ & P(\tau_k^{Lower,\,S} < x^S < \tau_k^{Upper,\,S}) \times \\ & P(\tau_k^{Lower,\,V} < x^V < \tau_k^{Upper,\,V}) \\ & = \prod_d P(\tau_k^{L,d} < x_i^d < \tau_k^{U,d}) \end{split}$$

### Availability & Applicability

$$P(k^{said}, k^{true} | x) = P(k^{said} | k^{true}) P(k^{true} | x)$$

$$P(k^{said}, k^{true} | \mathbf{x}) = \alpha_k \prod_d \phi_k^d(x^d)$$

$$\phi_k^d(x^d) = \begin{cases} P(x^d > \tau_k^{L,d}), & x^d \le \mu_k^{L,d} \\ P(x^d < \tau_k^{U,d}), & x^d \ge \mu_k^{U,d} \\ 1, & otherwise \end{cases}$$

$$\alpha_k = \frac{P(k^{said}, k^{true})}{P(k^{true})}$$

$$= \frac{count(k)/N}{\int_x P(k^{true} | x) P(x)}$$

### MCMAHAN & STONE (2015)

HM: Histogram model (bins colorspace and counts frequency)

GM:  $P(x|k^{true})$  Gaussian model w/ diagonal covariance  $P(k^{said}, k^{true}|x) \propto P(x|k^{true})P(k^{said}, k^{true})$ 

|     | $TOP^1$ | $TOP^5$ | $TOP^{10}$ |
|-----|---------|---------|------------|
| LUX | 39.55%  | 69.80%  | 80.46%     |
| HM  | 39.40%  | 71.89%  | 82.53%     |
| GM  | 39.05%  | 69.25%  | 79.99%     |

Table 1: Decision-based results. The percentage of correct responses of 544,764 test-set data points are shown.

|     | -LL           | -LLV          | AIC           | Perp  |
|-----|---------------|---------------|---------------|-------|
| LUX | $1.13*10^{7}$ | $2.05*10^{6}$ | $4.13*10^{6}$ | 13.61 |
| HM  | $1.13*10^{7}$ | $2.09*10^{6}$ | $4.82*10^{6}$ | 14.41 |
| GM  | $1.34*10^{7}$ | $2.08*10^{6}$ | $4.17*10^{6}$ | 14.14 |

Table 2: Likelihood-based evaluation results: negative log likelihood of the data, negative log likelihood of labels given points, number of parameters, Akaike Information Criterion and perplexity of labels given color values. Parameter counts for AIC are 15751 for LUX, 315669 for HM and 5803 for GM.



Figure 6: For the Hue dimension, the data for "greenish" is plotted against the LUX model's  $\phi$  curve.





| $L_0$                        |      |      |       |
|------------------------------|------|------|-------|
| drab green not the bluer one | <1   | <1   | >99   |
| gray                         | 96   | 4    | <1    |
| blue dull green              | 24   | 76   | <1    |
| blue                         | <1   | >99  | <1    |
| bluish                       | <1   | >99  | <1    |
| green                        | 4    | 1    | 95    |
| yellow                       | <1   | <1   | >99   |
| $S_1$                        |      |      |       |
| drab green not the bluer one | 1    | <1   | 34    |
| gray                         | 58   | 5    | <1    |
| blue dull green              | 27   | 28   | <1    |
| blue                         | 2    | 32   | <1    |
| bluish                       | 1    | 32   | <1    |
| green                        | 10   | 3    | 33    |
| yellow                       | <1   | <1   | 34    |
| $L_2$                        |      |      |       |
| drab green not the bluer one | 5    | <1   | 95    |
| $S_0 (\times 10^{-9})$       | 5.85 | 0.38 | <0.01 |
| $L_1$                        | 94   | 6    | <1    |
| $L_a$                        | 92   | 6    | 2     |
| $L_b$                        | 8    | 1    | 91    |
| $L_e$                        | 63   | 6    | 32    |



Figure 6:  $L_0$ 's log marginal probability density, marginalizing over V (value) in HSV space, of color conditioned on the utterance *drab green not the bluer one*. White regions have higher probability. Labeled colors are the three colors from the right column of Figure 5.



|                    |     | huma  | n     |     | $S_0$ |       |     | $S_1$ |       |
|--------------------|-----|-------|-------|-----|-------|-------|-----|-------|-------|
|                    | far | split | close | far | split | close | far | split | close |
| # Chars            | 7.8 | 12.3  | 14.9  | 9.0 | 12.8  | 16.6  | 9.0 | 12.8  | 16.4  |
| # Words            | 1.7 | 2.7   | 3.3   | 2.0 | 2.8   | 3.7   | 2.0 | 2.8   | 3.7   |
| % Comparatives     | 1.7 | 14.2  | 12.8  | 3.6 | 8.8   | 13.1  | 4.2 | 9.0   | 13.7  |
| % High Specificity | 7.0 | 7.6   | 7.4   | 6.4 | 8.4   | 7.6   | 6.8 | 7.9   | 7.5   |
| % Negatives        | 2.8 | 10.0  | 12.9  | 4.8 | 8.9   | 13.3  | 4.4 | 8.5   | 14.1  |
| % Superlatives     | 2.2 | 6.1   | 16.7  | 4.7 | 9.7   | 17.2  | 4.8 | 10.3  | 16.0  |

Table 2: Corpus statistics and statistics of samples from artificial speakers (rates per utterance).  $S_0$ : RNN speaker;  $S_1$ : pragmatic speaker derived from RNN listener (see Section 4.3). The human and artificial speakers show many of the same correlations between language use and context type.

| model                 | accuracy (%) | perplexity |
|-----------------------|--------------|------------|
| $L_0$                 | 83.30        | 1.73       |
| $L_1 = L(S_0)$        | 80.51        | 1.59       |
| $L_2 = L(S(L_0))$     | 83.95        | 1.51       |
| $L_a = L_0 \cdot L_1$ | 84.72        | 1.47       |
| $L_b = L_0 \cdot L_2$ | 83.98        | 1.50       |
| $L_e = L_a \cdot L_b$ | 84.84        | 1.45       |
| human                 | 90.40        |            |
| $L_0$                 | 85.08        | 1.62       |
| $L_e$                 | 86.98        | 1.39       |
| human                 | 91.08        |            |

### HERBELOT & VECCHI (2015)

| Space         | # train | # test | # dims | # test |
|---------------|---------|--------|--------|--------|
|               | vec.    | vec.   |        | inst.  |
| $MT_{QMR}$    | 400     | 141    | 2172   | 1570   |
| $MT_{AD}$     | 60      | 12     | 54     | 648    |
| $MT_{QMR+AD}$ | 410     | 145    | 2193   | 1595   |

| Model-               | Theoretic                     | Distr              | ibutional      |       |
|----------------------|-------------------------------|--------------------|----------------|-------|
| train                | test                          | DS <sub>cooc</sub> | $DS_{Mikolov}$ | human |
| MT <sub>QMR</sub>    | $MT_{QMR}$                    | 0.350              | 0.346          | 0.624 |
| $MT_{AD}$            | $MT_{AD}$                     | 0.641              | 0.634          | _     |
| $MT_{QMR+AD}$        | $MT_{QMR+AD}$                 | 0.569              | 0.523          | _     |
| MT <sub>QMR+AD</sub> | MT <sub>animals</sub>         | 0.663              | 0.612          | _     |
| $MT_{QMR+AD}$        | $MT_{no-animals}$             | 0.353              | 0.341          | _     |
| MT <sub>QMR</sub>    | $MT_{QMR^{animals}}$          | 0.419              | 0.405          | _     |
| $MT_{QMR+AD}$        | $\mathrm{MT}_{QMR^{animals}}$ | 0.666              | 0.600          | 0.663 |

|         |      |       | Gold  |       |       |      |
|---------|------|-------|-------|-------|-------|------|
|         |      | no    | few   | some  | most  | all  |
|         | no   | 0     | -0.05 | -0.35 | -0.95 | -1   |
| pəq     | few  | -0.05 | 0     | 0.2   | 0.9   | 0.95 |
| ddv     | some | -0.35 | -0.2  | 0     | 0.6   | 0.65 |
| $M_{i}$ | most | -0.95 | -0.9  | -0.6  | 0     | 0.05 |
|         | all  | -1    | -0.95 | -0.65 | -0.05 | 0    |

Table 7: Distance matrix for the evaluation of the natural language quantifiers generation step.

|                   | % of gold in |
|-------------------|--------------|
| top 5 neighbours  | 19% (27/145) |
| top 10 neighbours | 29% (42/145) |
| top 20 neighbours | 46% (67/145) |

Table 4: Percentage of gold vectors found in the top neighbours of the mapped concepts, shown for the  $DS_{cooc} \rightarrow MT_{QMR+AD}$  transformation.

| Gold |                                  |                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                |  |
|------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
|      | no                               | few                                                                                                                            | some                                                                                                                                                                                                          | most                                                                                                                                                                                                                                                                           | all                                                            |  |
| no   | 238                              | 66                                                                                                                             | 20                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                              | 2                                                              |  |
| few  | 53                               | 45                                                                                                                             | 30                                                                                                                                                                                                            | 19                                                                                                                                                                                                                                                                             | 12                                                             |  |
| some | 6                                | 1                                                                                                                              | 2                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                              | 2                                                              |  |
| most | 4                                | 6                                                                                                                              | 4                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                             | 56                                                             |  |
| all  | 0                                | 0                                                                                                                              | 0                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                              | 3                                                              |  |
|      | no<br>few<br>some<br>most<br>all | no           no         238           few         53           some         6           most         4           all         0 | Gold           no         few           no         238         66           few         53         45           some         6         1           most         4         6           all         0         0 | Gold           no         few         some           no         238         66         20           few         53         45         30           some         6         1         2           most         4         6         4           all         0         0         0 | Goldnofewsomemostno23866204few53453019some6123most46416all0002 |  |

Table 8: Confusion matrix for the results of the naturallanguage quantifiers generation.

### HERBELOT & VECCHI (2015)

| Instance                | Mapped | Gold |
|-------------------------|--------|------|
| raven a_bird            | most   | all  |
| pigeon has_hair         | few    | no   |
| elephant has_eyes       | most   | all  |
| crab is_blind           | few    | few  |
| snail a_predator        | no     | no   |
| octopus is_stout        | no     | few  |
| turtle roosts           | no     | few  |
| moose is_yellow         | no     | no   |
| cobra hunted_by_people  | some   | some |
| snail forages           | few    | no   |
| chicken is_nocturnal    | few    | no   |
| moose has_a_heart       | most   | all  |
| pigeon hunted_by_people | no     | few  |
| cobra bites             | few    | most |

 Table 9: Examples of mapped concept-predicate pairs

| plum                    | cottage                          |
|-------------------------|----------------------------------|
| a_fruit                 | has_a_roof                       |
| grows_on_trees          | used_for_shelter*                |
| tastes_sweet            | has_doors*                       |
| is_edible               | a_house                          |
| is_round                | has_windows                      |
| is_small                | is_small                         |
| has_skin                | a_building*                      |
| is_juicy                | used_for_living_in               |
| tastes_good             | made_of_wood*                    |
| has_seeds*              | made_by_humans*                  |
| is_green*               | worn_on_feet*                    |
| has_peel*               | has_rooms*                       |
| is_orange*              | used_for_storing_farm_equipment* |
| is_citrus*              | found_on_farms*                  |
| is_yellow*              | found_in_the_country             |
| has_vitamin_C*          | an_appliance*                    |
| has_leaves*             | has_tenants*                     |
| has_a_pit               | has_a_bathroom*                  |
| has_a_stem*             | requires_rent*                   |
| grows_in_warm_climates* | requires_a_landlord*             |

### SORODOC ET AL (2016)



| Models        | familiar | unseen<br>quantities | unseen<br>colors |
|---------------|----------|----------------------|------------------|
| RNN           | 65.7     | 62.0                 | 49.7             |
| Counting      | 86.5     | 78.4                 | 32.8             |
| qMN           | 88.8     | 97.0                 | 54.9             |
| -softmax      | 85.9     | 66.6                 | 54.4             |
| -softmax/gist | 51.4     | 51.8                 | 44.4             |

### Counting:

Image is 16-D vector (one dimension per color plus empty cell)

Value is freq. of color scaled by color similarity (colors in image governed by small Gaussian to add noise)

Table 1: Model accuracies (in %).

### PEZZELLE ET AL (2016)

| Train-q |        |      |     | Tra | ain-c |       |      |
|---------|--------|------|-----|-----|-------|-------|------|
| no      | few    | most | all | one | two   | three | four |
| 0/1     | 1/6    | 2/3  | 1/1 | 1/1 | 2/2   | 3/3   | 4/4  |
| 0/2     | 2/5    | 3/4  | 2/2 | 1/3 | 2/3   | 3/4   | 4/5  |
| 0/3     | 2/7    | 3/5  | 3/3 | 1/4 | 2/5   | 3/5   | 4/6  |
| 0/4     | 3/8    | 4/5  | 4/4 | 1/6 | 2/7   | 3/8   | 4/7  |
|         | Test-q |      |     |     | Te    | est-c |      |
| no      | few    | most | all | one | two   | three | four |
| 0/5     | 1/7    | 4/6  | 5/5 | 1/2 | 2/4   | 3/7   | 4/8  |
| 0/8     | 4/9    | 6/8  | 9/9 | 1/7 | 2/9   | 3/9   | 4/9  |

Table 1: Combinations in Train and Test.



Figure 2: Left: quantifiers against cosine distance. Right: cardinals against dot product.

| 1.5                                |   |
|------------------------------------|---|
|                                    |   |
|                                    |   |
|                                    |   |
|                                    | ] |
| no few most all one two three four |   |

Figure 3: Left: quantifiers against dot product. Right: cardinals against cosine distance.

|       | li   | n    | nn-  | cos      | nn-  | dot  |
|-------|------|------|------|----------|------|------|
|       | mAP  | P2   | mAP  | P2       | mAP  | P2   |
| no    | 0.78 | 0.65 | 0.87 | 0.77     | 0.54 | 0.37 |
| few   | 0.59 | 0.39 | 0.68 | 0.51     | 0.59 | 0.43 |
| most  | 0.61 | 0.36 | 0.60 | 0.29     | 0.62 | 0.45 |
| all   | 0.75 | 0.66 | 1    | <u>1</u> | 0.33 | 0.12 |
| one   | 0.44 | 0.30 | 0.38 | 0.21     | 0.61 | 0.45 |
| two   | 0.35 | 0.15 | 0.38 | 0.21     | 0.57 | 0.43 |
| three | 0.38 | 0.16 | 0.36 | 0.13     | 0.56 | 0.40 |
| four  | 0.65 | 0.47 | 0.75 | 0.60     | 0.76 | 0.61 |

Table 2: R-target. *mAP* and *P2* for each model.

|                     | no                            | few                            | most                      | all                     |
|---------------------|-------------------------------|--------------------------------|---------------------------|-------------------------|
| no                  | 288                           | 88                             | 0                         | 0                       |
| few                 | 141                           | 191                            | 38                        | 6                       |
| most                | 0                             | 0                              | 111                       | 265                     |
| all                 | 0                             | 0                              | 0                         | 376                     |
|                     | -                             |                                |                           |                         |
|                     | one                           | two                            | three                     | four                    |
| one                 | one <b>168</b>                | two<br>113                     | three 54                  | four<br>41              |
| one<br>two          | one<br><b>168</b><br>64       | two<br>113<br><b>136</b>       | three<br>54<br>124        | four<br>41<br>52        |
| one<br>two<br>three | one<br><b>168</b><br>64<br>23 | two<br>113<br><b>136</b><br>80 | three<br>54<br>124<br>130 | four<br>41<br>52<br>145 |

Table 3: Top: Q nn-cos, number of cases retrieved in top-2 positions. Bottom: same for C nn-dot.

### MITCHELL & LAPATA (2010)

| Model                | Function                                                      |
|----------------------|---------------------------------------------------------------|
| Additive             | $p_i = u_i + v_i$                                             |
| Kintsch              | $p_i = u_i + v_i + n_i$                                       |
| Multiplicative       | $p_i = u_i \cdot v_i$                                         |
| Tensor product       | $p_{i,i} = u_i \cdot v_i$                                     |
| Circular convolution | $p_i = \sum_i u_i v_{i-i}$                                    |
| Weighted additive    | $p_i = \alpha v_i + \beta u_i$                                |
| Dilation             | $p_i = v_i \sum_j u_j u_j + (\lambda - 1) u_i \sum_j u_j v_j$ |
| Head only            | $p_i = v_i$                                                   |
| Target unit          | $p_i = v_i(t_1 t_2)$                                          |

Training set creation:

Phrase similarity: sum of similarity of constituents

# MITCHEL & LAPATA (2010)

#### Table 6

Correlation coefficients of model predictions with subject similarity ratings (Spearman's  $\rho$ ) using a simple semantic space

| Model             | Adjective-Noun | Noun–Noun | Verb-Object |
|-------------------|----------------|-----------|-------------|
| Additive          | .36            | .39       | .30         |
| Kintsch           | .32            | .22       | .29         |
| Multiplicative    | .46            | .49       | .37         |
| Tensor product    | .41            | .36       | .33         |
| Convolution       | .09            | .05       | .10         |
| Weighted additive | .44            | .41       | .34         |
| Dilation          | .44            | .41       | .38         |
| Target unit       | .43            | .34       | .29         |
| Head only         | .43            | .17       | .24         |
| Humans            | .52            | .49       | .55         |

#### Table 7

Correlation coefficients of model predictions with subject similarity ratings (Spearman's  $\rho$ ) using the LDA topic model

| Model             | Adjective-Noun | Noun–Noun | Verb-Object |
|-------------------|----------------|-----------|-------------|
| Additive          | .37            | .45       | .40         |
| Kintsch           | .30            | .28       | .33         |
| Multiplicative    | .25            | .45       | .34         |
| Tensor product    | .39            | .43       | .33         |
| Convolution       | .15            | .17       | .12         |
| Weighted additive | .38            | .46       | .40         |
| Dilation          | .38            | .45       | .41         |
| Head only         | .35            | .27       | .17         |
| Humans            | .52            | .49       | .55         |

### **BARONI & ZAMPARELLI (2010)**

| American N         | black N       | easy N            |
|--------------------|---------------|-------------------|
| Am. representative | black face    | easy start        |
| Am. territory      | black hand    | quick             |
| Am. source         | black (n)     | little cost       |
| green N            | historical N  | mental N          |
| green (n)          | historical    | mental activity   |
| red road           | hist. event   | mental experience |
| green colour       | hist. content | mental energy     |
| necessary N        | nice N        | young N           |
| necessary          | nice          | youthful          |
| necessary degree   | good bit      | young doctor      |
| sufficient         | nice break    | young staff       |

### Nearest neighbors of centroid ANs

| bad                 | electronic         | historical     |
|---------------------|--------------------|----------------|
| luck                | communication      | тар            |
| bad                 | elec. storage      | topographical  |
| bad weekend         | elec. transmission | atlas          |
| good spirit         | purpose            | hist. material |
| important route     | nice girl          | little war     |
| important transport | good girl          | great war      |
| important road      | big girl           | major war      |
| major road          | guy                | small war      |
| red cover           | special collection | young husband  |
| black cover         | general collection | small son      |
| hardback            | small collection   | small daughter |
| red label           | archives           | mistress       |

### Nearest neighbors of specific ANs

| method | 25%                 | median              | 75%                 |
|--------|---------------------|---------------------|---------------------|
| alm    | 17                  | 170                 | >1K                 |
| add    | 27                  | 257                 | $\ge 1 \mathrm{K}$  |
| noun   | 72                  | 448                 | $\geq 1K$           |
| mult   | 279                 | $\geq 1 \mathrm{K}$ | $\geq 1 \mathrm{K}$ |
| slm    | 629                 | $\geq 1K$           | $\geq 1K$           |
| adj    | $\geq 1 \mathrm{K}$ | $\geq 1 \mathrm{K}$ | $\geq 1 \mathrm{K}$ |

Quartile ranks of observed ANs in cosineranked list of predicted AN vectors

### **BARONI & ZAMPARELLI (2010)**

| input    | purity           |
|----------|------------------|
| matrix   | 73.7 (68.4-94.7) |
| centroid | 73.7 (63.2-94.7) |
| vector   | 68.4 (63.2-89.5) |
| random   | 45.9 (36.8-57.9) |

- Matrix: learned adjective matrix
- Centroid: center of all ANs containing the adjective
- Vector: traditional co-occurrence
- Random: constraint that no cluster is left empty

# **BARONI & ZAMPARELLI (2010)**

### 36 adjectives:

- size (big, great, huge, large, major, small, little),
- denominal (American, European, national, mental, historical, electronic)
- colors (white, black, red, green)
- positive evaluation (nice, excellent, important, appropriate)
- temporal (old, recent, new, young, current), modal (necessary, possible)
- common abstract antonymous pairs (difficult, easy, good, bad, special, general, different, common)
- ▶ 1420 nouns (occurring  $\geq$  300 times w/ adjective)

### Semantic space

- LMI scores of co-occurrence counts w/ 10k most common words
- SVD to 300D

### HARTUNG ET AL (2017)

| Subset     | Num.<br>Attributes | Num.<br>Train. Triples | Example Phrases                                                              |
|------------|--------------------|------------------------|------------------------------------------------------------------------------|
| Core       | 10                 | 72                     | silvery hair (COLOR), huge wave (SIZE), longstanding conflict (DURATION)     |
| Selected   | 23                 | 153                    | sufficient food (QUANTITY), grave decision (IMPORTANCE), broad river (WIDTH) |
| Measurable | 65                 | 261                    | heavy load (WEIGHT), short hair (LENGTH), slow walker (SPEED)                |
| Property   | 73                 | 300                    | young people (AGE), high mountain (HEIGHT), straight line (SHAPE)            |
| All        | 254                | 869                    | dry paint (WETNESS), scentless wisp (SMELL), vehement defense (STRENGTH)     |

Table 1: Overview of subsets of attributes contained in HeiPLAS data, together with example phrases



|      | <b>Compositional Model</b>           | P@1  | P@5  |
|------|--------------------------------------|------|------|
|      | Adjective                            | 0.33 | 0.50 |
|      | Noun                                 | 0.03 | 0.10 |
|      | Vector Addition $(\oplus)$           | 0.24 | 0.45 |
| els  | Weighted Vector Addition             | 0.33 | 0.51 |
| pou  | Vector Multiplication $(\odot)$      | 0.00 | 0.02 |
| t m  | Adj. Dilation ( $\lambda = 2$ )      | 0.06 | 0.18 |
| dict | Noun Dilation ( $\lambda = 2$ )      | 0.33 | 0.51 |
| pre  | Full Add. Weighted Noun              | 0.33 | 0.54 |
|      | Full Add. Weighted Adjective         | 0.46 | 0.71 |
|      | Full Add. Weighted Adj. and Noun     | 0.56 | 0.75 |
|      | Trained Tensor Product ( $\otimes$ ) | 0.44 | 0.57 |
| int  | C-LDA (Hartung, 2015)                | 0.09 | n/a  |
| cor  | L-LDA (Hartung, 2015)                | 0.16 | n/a  |

## HARTUNG ET AL (2017)

| Underlying Word<br>Representation | $\odot$              | $\oplus$             | Weighted<br>Addition | Full<br>Additive  |
|-----------------------------------|----------------------|----------------------|----------------------|-------------------|
| word2vec                          | 0.36                 | 0.48                 | 0.42                 | 0.50              |
| M&L-BoW<br>M&L-Topic<br>C-LDA     | 0.46<br>0.25<br>0.28 | 0.36<br>0.37<br>0.19 | 0.44<br>0.38<br>n/a  | n/a<br>n/a<br>n/a |



Figure 2: ASTA-5 scores over different levels of human similarity ratings (cf. Experiment 4)

# **BOLEDA ET AL (2013)**



Figure 1: Distribution of cosines for observed vectors, by adjective type (intensional, I, or non-intensional, N). From left to right, adjective vs. noun, adjective vs. phrase, and noun vs. phrase cosines.

|   | Monosemous                                   | Polysemous                                 |
|---|----------------------------------------------|--------------------------------------------|
| Ι | alleged accomplice, former surname,          | mock charge, putative point, past range    |
|   | necessary competence                         |                                            |
| Ν | modern aircraft, severe hypertension,        | nasty review, ripe shock, meagre part      |
|   | wide disparity                               |                                            |
|   | Typical                                      | Nontypical                                 |
| Ι | former mayor, likely threat, alleged killer  | former retreat, likely base, alleged fact  |
| Ν | severe pain, free download, wide perspective | severe budget, free attention, wide detail |

### VECCHI ET AL (2013)

|              | Measure      | t      | sig. |       |
|--------------|--------------|--------|------|-------|
|              | $\cos A_x$   | 2.478  |      |       |
|              | $\cos A_y$   | -4.348 | *    | RO>FO |
| CORP         | cosN         | 4.656  | *    | FO>RO |
|              | $\cos A_x N$ | 5.913  | *    | FO>RO |
|              | $\cos A_y N$ | 1.970  |      |       |
|              | $\cos A_x$   | 4.805  | *    | FO>RO |
|              | $\cos A_y$   | -1.109 |      |       |
|              | cosN         | 1.140  |      |       |
| w.ADD        | $\cos A_x N$ | 1.059  |      |       |
|              | $\cos A_y N$ | 0.584  |      |       |
|              | $\cos A_x$   | 2.050  |      |       |
|              | $\cos A_y$   | -1.451 |      |       |
|              | cosN         | 4.493  | *    | FO>RO |
| F.ADD        | $\cos A_x N$ | -0.445 |      |       |
|              | $\cos A_y N$ | 2.300  |      |       |
|              | $\cos A_x$   | 3.830  | *    | FO>RO |
|              | $\cos A_y$   | -0.503 |      |       |
|              | cosN         | 5.090  | *    | FO>RO |
| MULI         | $\cos A_x N$ | 4.435  | *    | FO>RO |
|              | $\cos A_y N$ | 3.900  | *    | FO>RO |
|              | $\cos A_x$   | -1.649 |      |       |
|              | $\cos A_y$   | -1.272 |      |       |
| LEM          | cosN         | 5.539  | *    | FO>RO |
| LFM          | $\cos A_x N$ | 3.336  | *    | FO>RO |
|              | $\cos A_y N$ | 4.215  | *    | FO>RO |
| $\Delta$ PMI | -            | 8.701  | *    | FO>RO |

|              | Measure      | t       | sig. |     |
|--------------|--------------|---------|------|-----|
|              | $\cos A_x$   | -7.840  | *    | U>A |
|              | $\cos A_y$   | 7.924   | *    | A>U |
| WADD         | cosN         | 2.394   |      |     |
| w.ADD        | $\cos A_x N$ | -5.462  | *    | U>A |
|              | $\cos A_y N$ | 3.627   | *    | A>U |
|              | $\cos A_x$   | -8.418  | *    | U>A |
|              | $\cos A_y$   | 6.534   | *    | A>U |
|              | cosN         | -1.927  |      |     |
| F.ADD        | $\cos A_x N$ | -3.583  | *    | U>A |
|              | $\cos A_y N$ | -2.185  |      |     |
|              | $\cos A_x$   | -5.100  | *    | U>A |
|              | $\cos A_y$   | 5.100   | *    | A>U |
| MUIT         | cosN         | 0.000   |      |     |
| NIULI        | $\cos A_x N$ | -0.598  |      |     |
|              | $\cos A_y N$ | 0.598   |      |     |
|              | $\cos A_x$   | -7.498  | *    | U>A |
|              | $\cos A_y$   | 7.227   | *    | A>U |
| IEM          | cosN         | -2.172  |      |     |
|              | $\cos A_x N$ | -5.792  | *    | U>A |
|              | $\cos A_y N$ | 0.774   |      |     |
| $\Delta$ PMI |              | -11.448 | *    | U>A |
|              |              |         |      |     |

Table 4: Flexible vs. Rigid Order AANs. *t*-normalized differences between flexible order (FO) and rigid order (FO) mean cosines (or mean  $\Delta$ PMI values) for corpusextracted and model-generated vectors. For significant differences (p<0.05 after Bonferroni correction), the last column reports whether mean cosine (or  $\Delta$ PMI) is larger for flexible order (FO) or rigid order (RO) class.

Table 5: Attested- vs. unattested-order rigid order AANs. *t*-normalized mean paired cosine (or  $\Delta$ PMI) differences between attested (A) and unattested (U) AANs with their components. For significant differences (paired *t*-test *p*<0.05 after Bonferroni correction), last column reports whether cosines (or  $\Delta$ PMI) are on average larger for A or U.

| national daily newspaper | new regional government |
|--------------------------|-------------------------|
| national newspaper       | regional government     |
| major newspaper          | local reform            |
| daily newspaper          | regional council        |
| daily national newspaper | fresh organic vegetable |
| national daily newspaper | organic vegetable       |
| well-known journalist    | organic fruit           |
| weekly column            | organic product         |

### SHUTOVA ET AL (2016)

| <u> </u>                                                     |                  | -      | -         |         |  |
|--------------------------------------------------------------|------------------|--------|-----------|---------|--|
| Features                                                     | Method           | P      | R         | F1      |  |
| Linguistic                                                   | WordCos          | 0.67   | 0.76      | 0.71    |  |
|                                                              | PHRASCOS1        | 0.38   | 0.94      | 0.54    |  |
| Visual                                                       | WORDCOS          | 0.49   | 0.97      | 0.65    |  |
|                                                              | PHRASCOS1        | 0.56   | 0.79      | 0.66    |  |
| Multimodal                                                   | WordMid          | 0.56   | 0.86      | 0.68    |  |
|                                                              | PhrasMid         | 0.44   | 0.93      | 0.59    |  |
|                                                              | WORDLATE         | 0.49   | 0.96      | 0.65    |  |
|                                                              | PHRASLATE        | 0.41   | 0.92      | 0.57    |  |
|                                                              | MIXLATE          | 0.65   | 0.87      | 0.75    |  |
| Table 1:         System                                      | performance on N | Aohamm | ad et al. | dataset |  |
| (MOH) in terms of precision (P), recall (R) and F-score (F1) |                  |        |           |         |  |

| Features                                                      | Method    | $\overline{P}$ | R    | F1   |  |
|---------------------------------------------------------------|-----------|----------------|------|------|--|
| Linguistic                                                    | WORDCOS   | 0.73           | 0.80 | 0.76 |  |
|                                                               | PHRASCOS1 | 0.43           | 0.96 | 0.57 |  |
| Visual                                                        | WORDCOS   | 0.50           | 0.95 | 0.66 |  |
|                                                               | PHRASCOS1 | 0.60           | 0.91 | 0.73 |  |
| Multimodal                                                    | WordMid   | 0.59           | 0.85 | 0.70 |  |
|                                                               | PhrasMid  | 0.54           | 0.93 | 0.68 |  |
|                                                               | WORDLATE  | 0.69           | 0.72 | 0.70 |  |
|                                                               | PHRASLATE | 0.50           | 1.00 | 0.67 |  |
|                                                               | MIXLATE   | 0.67           | 0.96 | 0.79 |  |
| Table 1. System menformenes on Toyothoy at all test act (TOY) |           |                |      |      |  |

**Table 2:** System performance on Tsvetkov et al. test set (TSV-TEST) in terms of precision (P), recall (R) and F-score (F1)

# LAZARIDOU ET AL (2016)

### Ridge Regression:

$$||W^{Tr} - F_{proj}V^{Tr}||_2^2 - ||\lambda F_{proj}||_2^2$$

Decomposition:

 $||[W_{adj}^{Tr}; W_{noun}^{Tr}] - F_{dec} W_{AN}^{Tr}||_{2}^{2} - ||\lambda F_{dec}||_{2}^{2}$ 

|        | Training  |        |       | Evaluation              |        |       |
|--------|-----------|--------|-------|-------------------------|--------|-------|
|        | #im.      | #attr. | #obj. | #im.                    | #attr. | #obj. |
| Exp. 1 | 10,749 97 |        | -     | leave-one-attribute-out |        |       |
| Exp. 2 | 23,00     | - 0    | 750   | 8,449                   | 25     | 203   |

Table 3: Summary of training and evaluation sets.



## LAZARIDOU ET AL (2016)

|      | LM | SP | VLM | DIR <sup>O</sup> | DEC | DIR <sup>A</sup> |
|------|----|----|-----|------------------|-----|------------------|
| @1   | 2  | 0  | 5   | 1                | 10  | 7                |
| @5   | 5  | 7  | 16  | 4                | 31  | 23               |
| @10  | 8  | 9  | 29  | 9                | 44  | 37               |
| @20  | 18 | 17 | 50  | 19               | 59  | 51               |
| @50  | 33 | 32 | 72  | 43               | 81  | 68               |
| @100 | 56 | 55 | 82  | 67               | 89  | 77               |

Table 4: Percentage hit@k attribute retrieval scores.

|      | LM | SP | vLM | DIR <sup>O</sup> | DEC |
|------|----|----|-----|------------------|-----|
| @1   | 1  | 0  | 2   | 0                | 4   |
| @5   | 2  | 3  | 7   | 2                | 15  |
| @10  | 3  | 5  | 15  | 4                | 23  |
| @20  | 9  | 10 | 30  | 9                | 35  |
| @50  | 20 | 20 | 49  | 22               | 59  |
| @100 | 35 | 34 | 61  | 44               | 70  |



|      | DIR <sup>O</sup> | DEC | DIRA |
|------|------------------|-----|------|
| @1   | 1                | 2   | 0    |
| @5   | 3                | 10  | 0    |
| @10  | 5                | 14  | 1    |
| @20  | 9                | 20  | 2    |
| @50  | 20               | 29  | 6    |
| @100 | 33               | 41  | 12   |

Table 6: Percentage hit@k noun retrieval scores.

#### **Concreteness**:

Average concreteness of the nouns the adjective modifies in the corpus



Figure 4: Distributions of (per-image) concreteness scores across different models. Red line marks median values, box edges correspond to 1st and 3rd quartiles, the wiskers extend to the most extreme data points and outliers are plotted individually.

## LAZARIDOU ET AL (2016)

### Attribute-based classification: object-trained method is improvement over standard BoVW features



Figure 5: Confusion matrices for PHOW (**top**) and DEC (**bottom**). Warmer-color cells correspond to higher proportions of images with gold row label tagged by an algorithm with the column label (e.g., the first cells show that DEC tags a larger proportion of aeroplanes correctly).

### COLLELL & MOENS (2016)

- Image representations:
  - (i) Averaging: Component-wise average of the CNN feature vectors of individual images. (i.e. cluster center of individual representations)
  - (ii) Maxpool: Computes the component-wise maximum of the CNN feature vectors of individual image (i.e. vector components "visual properties.")

### COLLELL & MOENS (2016)



Figure 2: Averages of F1 (classification) and Spearman (regression) measures per attribute type (i.e., averaging individual attributes) for  $VIS_{avg}$  (A),  $VIS_{max}$  (B) and GloVe (C). Error bars show standard error.



Figure 4: Averages of performance difference per attribute type. For each attribute type (e.g., taxonomic, taste, etc.), the bar indicates the average performance difference of its set of attributes. Plot A shows performance difference between  $VIS_{avg}$  and GloVe and B between  $VIS_{max}$  and GloVe. As in Fig. 3, positive bars indicate better performance of visual embeddings and negative bars otherwise. Error bars show standard error.

### **RSA – RATIONAL SPEECH ACT**

$$s_0(u, \mid t, \mathcal{L}) \propto \mathcal{L}(u, t) e^{-\kappa(u)}$$
  
 $l_1(t \mid u, \mathcal{L}) \propto s_0(u, \mid t, \mathcal{L}) P(t)$ 

 $l_0(t \mid u, \mathcal{L}) \propto \mathcal{L}(u, t) P(t)$   $s_1(u \mid t, \mathcal{L}) \propto e^{\alpha \log(l_0(t, | u, \mathcal{L})) - \kappa(U)}$  $l_2(t \mid u, \mathcal{L}) \propto s_1(u, | t, \mathcal{L}) P(t)$ 

- Pragmatic listener can start from a literal speaker or a pragmatic speaker
- $\blacktriangleright$  Set of utterances U and  $\mathcal L$  usually specified by hand
- $\blacktriangleright$  If U not finite, cannot