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The compromise effect denotes the finding that brands gain share
when they become the intermediate rather than extreme option in a
choice set. Despite the robustness and importance of this phenomenon,
choice modelers have neglected to incorporate the compromise effect in
formal choice models and to test whether such models outperform the
standard value maximization model. In this article, the authors suggest
four context-dependent choice models that can conceptually capture the
compromise effect. Although the models are motivated by theory from
economics and behavioral decision research, they differ with respect to
the particular mechanism that underlies the compromise effect (e.g., con-
textual concavity versus loss aversion). Using two empirical applications,
the authors (1) contrast the alternative models and show that incorporat-
ing the compromise effect by modeling the local choice context leads to
superior predictions and fit compared with the traditional value maximiza-
tion model and a stronger (naive) model that adjusts for possible biases
in utility measurement, (2) generalize the compromise effect by demon-
strating that it systematically affects choice in larger sets of products and
attributes than has been previously shown, (3) show the theoretical and
empirical equivalence of loss aversion and local (contextual) concavity,
and (4) demonstrate the superiority of models that use a single reference
point over “tournament models” in which each option serves as a refer-
ence point. They discuss the theoretical and practical implications of this
research as well as the ability of the proposed models to predict other 

behavioral context effects.

Alternative Models for Capturing the
Compromise Effect

Everything in moderation, including moderation.
—Source unknown

The compromise effect, whereby brands gain share when
they become intermediate options in a choice set, is among
the most important and robust phenomena documented in
behavioral research in marketing. First demonstrated by
Simonson (1989), the compromise effect has since been
investigated in many studies (e.g., Benartzi and Thaler
2002; Chernev 2004; Dhar, Nowlis, and Sherman 2000;
Drolet 2002; Nowlis and Simonson 2000). Although these

studies provide important insights into the effect’s
antecedents and moderators, the questions whether the
compromise effect can be incorporated in formal choice
models and whether doing so increases modelers’ ability to
predict consumer choice have been neglected. This issue
also has important practical implications, because account-
ing for the compromise effect in models that predict con-
sumer demand can enable marketers to construct strategi-
cally choice sets that increase the attractiveness and
purchase likelihood of designated (high-margin) options.

In this article, we build on several theoretical mechanisms
that may underlie the compromise effect, and we propose
four alternative choice models that can conceptually capture
the effect. We contrast these models using two empirical
applications; some key findings indicate the following:

•The importance of modeling the local choice context, as
implied by the superiority of the alternative models over the
context-independent value-maximization model and another
model that incorporates global concavity (i.e., diminishing
sensitivity) and adjusts for possible biases in utility
measurement;
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Notes: Both attributes are such that preference increases with the attrib-
ute value, when the other attribute is held constant.

Figure 1
A SCHEMATIC ILLUSTRATION OF THE COMPROMISE EFFECT

•The (empirical) equivalence of loss aversion and local (contex-
tual) concavity;

•The superiority of models that use a single reference point over
“tournament models” in which each option serves as a refer-
ence point; and

•The generalization of the compromise effect to larger choice
sets and dimensional spaces (a market with five product alter-
natives described on four attributes) than has been previously
shown.

The article is organized as follows: We first review the
compromise effect and its implications for consumer
choice. We then employ several theoretical mechanisms that
may underlie the compromise effect and propose four
choice models that are designed to capture the effect. In
“Empirical Application 1,” we discuss the first study, its
results, and the calibration and validation of the alternative
models. In “Empirical Application 2,” we report a second
study, which generalizes the compromise effect and tests
the alternative models in a choice setting that is more com-
plex than previous demonstrations of the effect. Finally, we
conclude by discussing the theoretical and practical impli-
cations of this research.

THE COMPROMISE EFFECT

The compromise effect denotes the phenomenon that the
share of a product is enhanced when it is the intermediate
option in a choice set and diminished when it is an extreme
option (e.g., Simonson 1989; Simonson and Tversky 1992).
Thus, “compromise” implies a context effect, whereby the
attractiveness of an option is greater in the context of a
triplet in which it is the intermediate (compromise) option
than in a triplet in which it is an extreme. For example, the
share of Option B relative to that of Option C (see Figure 1)
is greater in the set {A, B, C} than in the set {B, C, D}; fol-
lowing Simonson and Tversky (1992), we denote this as
PA(B; C) > PD(B; C). Similarly, compromise implies that
PB(C; D) > PE(C; D).

The compromise effect has been documented in many
studies and across a wide range of domains and product cat-
egories, such as apartments, investment portfolios, and

mouthwashes (e.g., Benartzi and Thaler 2002; Dhar and
Simonson 2003; Lehmann and Pan 1994; Simonson and
Nowlis 2000). The effect has been found to be highly robust
and of substantial magnitude. For example, Simonson
(1989) reports that across five product categories, alterna-
tives gained an average 17.5% (absolute) market share
when they became the compromise option in a choice set.
We find similarly strong compromise effects in the empiri-
cal applications that we report subsequently.

Implications of the Compromise Effect for Consumer
Choice

The compromise effect has important theoretical implica-
tions for consumer choice and its modeling. Tversky and
Simonson (1993) show that under a highly plausible condi-
tion (called the “ranking condition”), the compromise effect
is inconsistent with a (possibly) heterogeneous set of value-
maximizing consumers. In particular, value maximization
implies a “betweenness inequality,” such that the addition
of an extreme option draws more share away from the inter-
mediate (and more similar) option than from the other
extreme (and less similar) option (Tversky and Simonson
1993, pp. 1180, 1188). Thus, betweenness inequality
implies that P(B; C) > PA(B; C) (see Figure 1), whereas
compromise predicts the opposite. Furthermore, Hutchin-
son, Kamakura, and Lynch (2000) show that aggregation
biases are unlikely to explain between-subjects compromise
effects.

The compromise effect also has significant implications
for positioning, branding, and competitive strategies. For
example, it suggests that the introduction of a top-of-the-
line product draws disproportionately more share away
from a lower-end product than from a more similar, inter-
mediate option. Thus, marketers who wish to promote high-
margin products (typically higher-priced options) may be
able to do so by introducing another alternative that is even
more expensive.

Furthermore, product assortments presented according to
the underlying structure of the compromise effect appear to
be pervasive, if not ubiquitous, in the marketplace. Anecdo-
tal evidence suggests that the basic design of three options
defined on two attributes is present in many categories,
including choices among insurance plans, soft drinks, audio
speakers, cellular telephone subscriptions, and so on (for
examples of two sets, see Figure 2). In addition to this sim-
ple design, customers often face market choices among
triplets with a trade-off between price and several quality-
related dimensions that are highly correlated environmen-
tally (e.g., different options such as Toyota Camry SE, LE,
and XLE). Customers are likely to simplify such choices by
construing the (correlated) quality dimensions as one
“meta-attribute” and by making their decision on the basis
of price versus overall product quality (Green and Srini-
vasan 1978; Wright 1975).

Customers often face larger sets of options. Nevertheless,
such market choices can produce compromise effects,
because they often contain sets of Pareto-optimal alterna-
tives that require customers to make attribute trade-offs.
Indeed, in a subsequent section, we demonstrate strong
compromise effects in larger sets of options and attributes.

In summary, the robustness of the compromise effect and
its important theoretical and practical implications empha-
size the need for formal choice models that can predict the
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Figure 2
EXAMPLES OF REAL-WORLD ASSORTMENTS CONSISENT WITH A COMPROMISE STRUCTURE

effect. Accordingly, regardless of whether the compromise
effect can be justified normatively (for related discussions,
see Prelec, Wernerfelt, and Zettelmeyer 1997; Wernerfelt
1995; cf. Drolet, Simonson, and Tversky 2000; Tversky and
Simonson 1993), the standard utility model must be modi-
fied to capture it. This is the goal of this article. Next, we
present four alternative models that incorporate the compro-
mise effect by modeling the local choice context.

THEORY AND MODELS

In this section, we introduce four context-dependent
multiattribute choice models that are designed to capture
the compromise effect. The models are motivated by theory
from economics and behavioral decision research. How-
ever, it should be noted that our main goal is to construct
and test “as-if” models that improve predictive validity
rather than to explore underlying decision processes.

A key characteristic of all models is that they view choice
as a constructive process (e.g., Bettman, Luce, and Payne
1998; Payne, Bettman, and Johnson 1992), whereby con-
sumers modify their preferences on the basis of the local
choice set. Furthermore, in line with the suggestions of
Drolet, Simonson, and Tversky (2000) and Hardie, Johnson,
and Fader (1993), the four alternative models incorporate
both relative (i.e., reference-dependent) and absolute (i.e.,
global) elements of consumer choice. In particular, our
modeling approach assumes that the utilities (partworths) of
attribute levels are known and have been measured at a
global (context-independent) level, with methods such as
conjoint analysis. The global partworth functions can
assume any shape (e.g., linear, concave, convex). The mod-
els then transform the context-independent partworth utili-
ties according to the local context (i.e., based on the rela-
tionship among options in a choice set). Thus, we
subsequently illustrate the alternative models using equa-
tions and graphs that operate at the subjective utility space
rather than the objective attribute space. Moreover, the

alternative models consist of individual-level utility func-
tions and therefore account for heterogeneity through the
estimated context-independent partworths.

It is important to emphasize that the proposed models are
in no way limited to a particular method of preference mod-
eling (e.g., partworth function versus vector [linear] model)
or preference measurement technique (e.g., full-profile ver-
sus self-explicated approach). That is, when discussing the
models in this section, we use the term “partworth” in the
most general sense, to denote the utility or worth of a spe-
cific attribute level for an individual consumer. However,
our models assume additivity such that the overall utility for
the product is the sum of the partworths for the product’s
levels on the different attributes (Green and Srinivasan
1978, p. 105). We also assume that the attributes are such
that preference increases (or decreases) with the levels of an
attribute (i.e., it is not of the ideal-point type).

The models are “general compromise” models in the
sense that they can capture any form of compromise (or
extremeness aversion), that is, compromise of either equal
or different magnitude across attributes.1 It should also be
noted that the models are not limited in terms of the number
of attributes or choice-set size, unlike the extant behavioral
literature on the compromise effect, which uses at most
three options and two attributes. Indeed, in our second
empirical application, we test the models in the context of
larger choice sets (five options described on four attributes).
Next, we discuss each model and its underlying conceptual
mechanism.

1Simonson and Tversky (1992) label the finding that intermediate
options fare better than extreme options as “extremeness aversion,” and
they argue that it leads to two types of effects: “compromise,” which repre-
sents cases in which both attributes exhibit extremeness aversion, and
“polarization,” which represents cases in which only one attribute exhibits
such an effect.
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The Contextual Concavity Model

A robust empirical generalization about human percep-
tion and decision making is that of diminishing returns, or
sensitivity (e.g., Meyer and Johnson 1995). Specifically, the
mapping of objective attribute values (or “gains”) onto psy-
chological value is a concave function (e.g., Thaler 1985;
Tversky and Kahneman 1991). We suggest that the compro-
mise effect can be mathematically modeled by combining
the notions of concavity and context dependence, or in
other words by “contextual concavity.” More specifically,
according to the contextual concavity model (CCM), the
deterministic component of utility of alternative j (for con-
sumer i) equals the sum across attributes of concave func-
tions of the partworth gains between this alternative and the
alternative with the minimum partworth in the (local)
choice-set S:2

where

MS
ij = the deterministic component of utility of alter-

native j in context (choice-set) S for consumer i,
Pijk = the partworth (utility) of the level of attribute k

of alternative j for consumer i,
PS

i,min,k = the partworth of attribute k of the alternative
with the lowest partworth on this attribute in
choice-set S for consumer i, and

ck = the concavity parameter of attribute k.

Note that the partworths may already be a concave func-
tion of the objective attribute values. Contextual concavity
adds another layer of concavity on top of that, because the
model operates at the subjective partworth (utility) space.
The overall utility of alternative j in context S includes the
sum of the deterministic part (i.e., MS

ij) and an error term εij
that captures the unobserved (to the researcher) component
of utility.

If we assume that the error term εij is distributed i.i.d. of
the extreme value type, the probability that consumer i will
chose alternative j in the context of S follows the multi-
nomial logit model (McFadden 1974):3

where j, h ∈ S. The parameters for estimation in the CCM
are the logit scale parameter b and the concavity parameters
{ck}. In general, the CCM requires estimation of d + 1
parameters, where d is the number of product dimensions
(attributes). We expect that the parameter b will be positive,
thus capturing the positive effect of utility on choice. In
addition, we expect that the parameters ck will be smaller
than one, thus capturing the contextual concavity in con-
sumers’ preference structure. Furthermore, the CCM can
capture situations in which the magnitude of the compro-
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2We rescaled the partworth utilities to range from 0 to 100. For all prac-
tical purposes, partworth gains (Pijk – PS

i,min,k) are either equal to 0 or
greater than 1.

3We assume that the error term εij is distributed i.i.d. with the extreme
value distribution in all subsequent models as well.

mise effect varies across attributes by allowing the (smaller-
than-one) concavity parameters to differ by attribute.

It is noteworthy that if ck = 1 for all k, we have the simple
multinomial logit based on the value maximization model
(VMM). This is true because MS

ij = ∑k(Pijk – PS
i,min,k)1 =

∑kPijk – ∑kPS
i,min,k, which equals the commonly used part-

worth additive utility function minus a constant (the last
term does not depend on j). Because the multinomial logit
probability is invariant to an additive constant, the proposed
model (given that ck = 1 for all k) and the traditional VMM
are identical. If ck > 1 for all k, there is “extremeness seek-
ing” (i.e., a preference for extreme options rather than com-
promise ones).

Figure 3 illustrates how the CCM captures the compro-
mise effect using the example of three portable personal
computers (PCs), {A, B, C}, that vary in terms of their
speed (s) and memory (m). We used this trinary choice set
in our first empirical application (described in the next sec-
tion). Therefore, Figure 3 employs the measured partworths
of a real participant and the concavity parameters actually
estimated. Panel A of Figure 3 represents the attribute
speed, whereas Panel B represents memory. In Panels A and
B, the x-axis depicts the three options, and the y-axis
depicts the (modeled) deterministic component of utility for
the relevant attribute of each option; that is, the relative
partworth gain, MS

ij(k) = (Pijk – PS
i,min,k)ck. For simplicity of

exposition, we depict the utility for consumer i who has lin-
ear partworth functions and equal importances for speed
and memory (i.e., PS

i,max,s – PS
i,min,s = PS

i,max,m – PS
i,min,m).4

The (45 degree) diagonal lines, which represent the VMM,
are based on Equation 1 and assume concavity parameters
of 1 (i.e., cs = cm = 1, for speed and memory, respectively).
In contrast, the CCM (represented with concave lines)
incorporates compromise with concavity parameters that
are smaller than 1 (i.e., cs, cm < 1).

Panel C of Figure 3 aggregates the modeled utilities
across the two attributes to form graphs of the overall deter-
ministic component of utility of each alternative in context
S (i.e., MS

ij). It is clear that (for this specific consumer) value
maximization implies A ~ B ~ C, because the sum of the
relative partworth gains is equal across the three options
(i.e., 0 + 11.1 = 5.55 + 5.55 = 11.1 + 0, respectively), as is
indicated by the (flat) aggregate VMM graph.5 Conversely,
the CCM implies that A � B � C, because the sum of the
concave partworth gains is highest for option B (i.e., 0 +
2.3 < 2.2 + 1.8 > 3.1 + 0, respectively).

More generally, the relative preference for an intermedi-
ate option (with respect to the extreme options) is greater in
the CCM than in the VMM. The CCM operates as if the
VMM partworth line is pulled downward from its highest
point; all partworths (except the lowest one) are lowered,
but higher partworths are lowered relatively more; thus, the
relative preference for intermediate options is enhanced.

A noteworthy disadvantage of the CCM is that it distorts
the relative importance weights of attributes. The impor-
tance weight of an attribute is defined as the range of varia-
tion of partworths for that attribute (see, e.g., Green and
Srinivasan 1978). If the contextual concavity parameter of

4The ensuing analysis holds even when the partworth functions are non-
linear and/or the importances are unequal.

5In what follows, the notation A ∼ B means that ; similarly
A � [�] B means that .M MiA

S
iB
S> <[ ]

M MiA
S

iB
S=



Capturing the Compromise Effect 241

Partworth of attribute
speed of option j (Pijs)

PiBs = 11.15

PiA s i s
S= P ,min, = 5.6

PiCs i s
S= P ,max, = 16.7

Option j

B

Option j

VMM
cs = 1

CCM
cs = .474

A. Deterministic component of utility
from attribute speed (s) of option j 
in choice-set S

 

2.2

5.55

3.1

11.1

Option j

VMM
cm = 1

CCM
cm = .353

B. Deterministic component of utility
from attribute memory (m) of  
option j in choice-set S

 

2.3

5.55

1.8

11.1

VMM

CCM

A
0

C. Overall deterministic component
of utility of option j in choice-set S

2.3

4.0

3.1

11.1

B C

B CA

0

PiAm i m
S= P ,max, = 27.8

PiBm = 22.25

PiCm i m
S= P ,min, = 16.7

Partworth of attribute
memory of option j (Pijm)

A C

0

A  ≡ {250 MHz, 192 MB}

Objective attribute values 
of option j

B  ≡ {300 MHz, 160 MB}

C  ≡ {350 MHz, 128 MB}

Figure 3
THE CONTEXTUAL CONCAVITY MODEL: ATTRIBUTE-SPECIFIC AND AGGREGATE UTILITY GRAPHS

(FOR A PARTICULAR CONSUMER WITH EQUAL ATTRIBUTE IMPORTANCES)

M s P Pij
S

ijs i s
S cs( ) = −( ),min,

M m P Pij
S

ijm i m
S cm( ) = −( ),min,

M P Pij
S

ijk i k
S c

k

k= −( )∑ ,min,



242 JOURNAL OF MARKETING RESEARCH, AUGUST 2004

an attribute is smaller (i.e., greater concavity) than that of
another attribute, then the former attribute’s relative impor-
tance is diminished (see Figure 3). Consequently, if the
CCM were to predict better than the VMM, a rival explana-
tion would be that the CCM transforms the stated attribute
importances (obtained by conjoint analysis) to importances
revealed through choices. Next, we revise the CCM to avoid
this issue.

The Normalized Contextual Concavity Model

In the normalized contextual concavity model (NCCM),
we normalize the concave partworth gain of each attribute
by the attribute’s weight (see Equation 3). This enables us
to retain the original attribute importance weights while
incorporating compromise through contextual concavity.

As in the original CCM, the probability that consumer i will
chose alternative j according to the NCCM has a multi-
nomial logit structure (see Equation 2). The parameters for
estimation and their interpretations are similar to the ones
used in the CCM.

To better convey the mechanics of the NCCM, we again
present attribute-specific and total utility graphs (see Figure
4) and use the example discussed previously (i.e., set {A, B,
C} and the context-independent partworths of an actual
consumer). The (45 degree) diagonal lines shown in Panels
A and B of Figure 4 represent the VMM and are based on
Equation 3 (assuming that cs = cm = 1). Conversely, the con-
cave NCCM lines capture compromise by cs, cm < 1. As is
evident in Figure 4, compared with the VMM, the NCCM
yields higher attribute utilities and thus a higher total utility
for all intermediate alternatives. However, for both Pijk =
PS

i,min,k and Pijk = PS
i,max,k, the utility from attribute k is the

same according to the NCCM and the VMM. Next, we sug-
gest an alternative model for incorporating the compromise
effect based on a framework proposed by Tversky and
Simonson (1993).

The Relative Advantage Model

Although previous research has neglected to examine
empirically choice models that capture the compromise
effect, Tversky and Simonson (1993) take a step in this
direction. Specifically, they propose the following modeling
framework in which the compromise effect is incorporated
through a linear combination of two elements:

The first element (i.e., Vij) is the context-independent value
of option j for consumer i. This component equals the sum
of the attribute partworths (i.e., ΣkPijk), which are independ-
ent of the local choice set. The second element (i.e., RS

ij)
captures the impact of the relative position of option j with
respect to all other options in choice-set S. This component
equals the sum of the relative advantages of option j with
respect to each of the other options in the choice set and is
defined as

(4) .M bV qRij
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where

j, h ∈S;
Ai(j, h) = ΣkAik(j, h) = Σk(Pijk – Pihk) × 1(Pijk > Pihk),

that is, the advantage of option j relative to
option h for consumer i;

1(Pijk > Pihk) = an indicator function that equals 1 if Pijk >
Pihk and equals 0 otherwise; and

Di(j, h) = ΣkDik(j, h), that is, the disadvantage of
option j relative to option h for consumer i.

Following Tversky and Simonson (1993), we define the
disadvantage of option j with respect to option h on each
attribute k (i.e., Dik(j, h)) as an increasing convex function
of the corresponding advantage of h relative to j (i.e.,
Aik(h, j)), such that Dik(j, h) > Aik(h, j). Although Tversky
and Simonson (1993) do not specify a particular function, a
general form that satisfies these requirements is the follow-
ing power function:6

(6) Dik(j, h) = [Aik(h, j) + Lk × Aik(h, j)ψk] × 1(Pihk > Pijk) 

= [(Pihk – Pijk) + Lk × (Pihk – Pijk)ψk] × 1(Pihk > Pijk).

The probability that consumer i will chose alternative j in
the context of S has the multinomial logit form

where j, h ∈ S. The parameters for estimation in this rela-
tive advantage model (RAM) are the logit parameters b and
q, the loss-aversion parameters Lk, and the power parame-
ters ψk (in general, there are 2d + 2 parameters, where d is
the number of dimensions). Note that when q = 0, the RAM
reduces to the standard value maximization multinomial
logit. However, we expect that the parameters b and q will
be positive, thus capturing the positive effect of higher util-
ity and greater relative advantages on choice, respectively.
In addition, by examining the square-bracketed expression
in Equation 6, we expect that the loss-aversion parameters
Lk will be greater than 0, thus capturing the notion that dis-
advantages loom larger than advantages (e.g., Simonson
and Tversky 1992). The loss-aversion parameters are
allowed to vary by attribute, which is consistent with evi-
dence that the magnitude of loss aversion may differ across
attributes (e.g., Dhar and Wertenbroch 2000; Hardie, John-
son, and Fader 1993; Heath et al. 2000; Tversky and Kah-
neman 1991; Viscusi, Magat, and Huber 1987). We also
expect that the power parameters ψk will be greater than 1
(which satisfies the convexity assumption), and we employ
attribute-specific power parameters to allow for situations
in which the strength of the compromise effect varies across
attributes (see Tversky and Simonson 1993).

Although Tversky and Simonson (1993) explain compro-
mise using loss aversion, it is noteworthy that the key driver
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6An alternative formulation for Dik(j, h) is an exponential rather than a
power function; that is, Dik(j, h) = [Lk × exp(ψkAik(h, j))] × (Pihk > Pijk).
We tested this alternative function, but the parameter estimates were not
consistent with the theory.
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in the RAM is that disadvantages (Dk(j, h)) are convex
functions of the corresponding advantages.7 For example,
without convexity in the disadvantage function (i.e., ψ = 1),
the relative advantages of any set of options with equal
context-independent utility (i.e., equal Vij) would be identi-
cal even when loss aversion is assumed (i.e., L > 0). Next,
we present a model that strictly employs loss aversion as the
principal mechanism that underlies the compromise effect.

The Loss-Aversion Model

Two major principles that have emerged from behavioral
decision research are that consumers evaluate attribute val-
ues on the basis of their deviation from a reference point
(i.e., reference dependence) and that such deviations have
greater impact when consumers perceive them as losses
rather than gains (i.e., loss aversion) (Kahneman and Tver-
sky 1979). These principles have also been suggested as
empirical generalizations in marketing (e.g., Kalyanaram
and Winer 1995; Meyer and Johnson 1995; cf. Bell and Lat-
tin 2000). We suggest that a multiattribute choice model
that incorporates reference dependence and loss aversion
can capture the compromise effect.

In particular, we model choice as if each alternative were
evaluated relative to a reference point defined using the
midpoint of the range of objective attribute levels observed
in the local choice set. That is, consistent with Tversky and
Kahneman’s (1991) reference-dependent model, we assume
that all alternatives in the local choice set are evaluated rel-
ative to a single reference point R. This reference point is
context dependent, because the midpoint of the attribute
range is determined on the basis of the particular alterna-
tives observed in the local choice set. The use of a reference
point that is not necessarily an existing choice option is
consistent with a great deal of research on reference
dependence (e.g., Heath, Larrick, and Wu 1999; Kahneman
and Tversky 1979; Kivetz 2003; Thaler 1985; Winer 1986).

Thus, building on Tversky and Kahneman’s (1991)
reference-dependent model, we suggest that the compro-
mise effect can be captured by the following loss-aversion
model (LAM):

where

λk = the loss-aversion parameter of attribute k;
R = the reference option, defined as the midpoint of

each attribute’s observable range in the local
choice set; and

PS
iRk = the partworth of attribute k at the reference point

(R) in choice-set S for consumer i.

According to the LAM, the probability that consumer i will
choose alternative j in the context of S has the multinomial
logit form (see Equation 2). The parameters for estimation
are the logit scale parameter b, which we expect to be posi-
tive, and the loss-aversion parameters λk, which we expect
to be greater than 1 (in general, there are d + 1 parameters,
where d is the number of dimensions). When λk = 1 for all
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7A detailed proof for this proposition is available from the authors.

k, the LAM reduces to the standard value-maximization
multinomial logit. This is true because we have MS

ij =
∑k(Pijk – PS

iRk) = ∑kPijk – ∑kPS
iRk, which equals the com-

monly used partworth additive utility function minus a con-
stant. (The additive constant given by the second term does
not affect the logit choice probabilities.)

The LAM assumes that the marginal utility of an increase
in an attribute level is greater below the attribute’s midrange
than above it. The model employs constant loss aversion,
and the parameter λk can be interpreted as the coefficient of
loss aversion for attribute k (see Tversky and Kahneman
1991, pp. 1050–51). Moreover, the LAM can capture situa-
tions in which the magnitude of the compromise effect
varies across attributes by allowing the loss-aversion param-
eters to differ by attribute.

To illustrate how the LAM incorporates the compromise
effect, we employ attribute-specific and aggregate utility
graphs and use the previous example of three portable PCs
(see Figure 5). The (45 degree) diagonal lines shown in
Panels A and B represent the VMM and are based on Equa-
tion 8; the graphs assume that λs = λm = 1. Conversely, the
“kinked” LAM graphs capture compromise by λs, λm > 1.

Panels A and B of Figure 5 show that, compared with the
VMM, the LAM penalizes alternatives with lower part-
worths compared with the (context-dependent) reference
point R. Accordingly, as is shown in the aggregate utility
graph, value maximization implies that A ∼ B ∼ C, whereas
the LAM implies that A � B � C. More generally, the
LAM suggests that the gain in utility due to a positive devi-
ation (from R) on one attribute typically does not suffice for
the loss of utility due to the corresponding negative devia-
tion on another attribute.

Next, we report two empirical applications that we used
to compare the alternative models with one another, with
the VMM, and with another (stronger) context-independent
(naive) model. The first application employs the common
design for investigating the compromise effect, namely, tri-
nary choice sets defined on two attributes. The second
empirical application is intended to provide a stronger and
more general test of both the compromise effect and the
proposed models by using larger sets of options and
attributes.

EMPIRICAL APPLICATION 1: TWO-DIMENSIONAL
TRIPLETS

In this empirical application, we employ a partworth
function preference model (see, e.g., Green and Srinivasan
1978, 1990) and determine the individual-level partworths
using the self-explicated approach (e.g., Srinivasan and
Park 1997). The self-explicated task covers the entire range
of attribute levels used in the choice study; thus, the self-
explicated partworths are independent of the local choice
context. We briefly describe this approach and subsequently
detail the method we used to obtain the experimental choice
data and the self-explicated partworths. We then report the
calibration and validation of the alternative models using
these data.

Self-Explicated Partworths

There is growing evidence on the robust validity of meas-
uring attribute partworths with the self-explicated approach
(Leigh, MacKay, and Summers 1984; Srinivasan 1988;
Srinivasan and Park 1997). We used a self-explicated proce-



Capturing the Compromise Effect 245

Option j

Option j

Option j

A B
= R

A B = R

A. Deterministic component of
utility from attribute speed (s) 
of option j in choice-set S

VMM

–16.3

B. Deterministic component of
utility from attribute memory (m)
of option j in choice-set S

–5.55

0

5.55

   LAM
  λm = 2.939

≈

λ m = 1

Partworth of attribute
speed of option j (Pijs)

PiRs
S

iBs= P = 11.15

PiAs = 5.6

PiCs = 16.7

PiAm = 27.8

PiRm
S

iBm= P = 22.25

PiCm = 16.7

Partworth of attribute 
memory of option j (Pijm)

A  ≡ {250 MHz, 192 MB}

Objective attribute values
of option j

B  ≡ {300 MHz, 160 MB}

C  ≡ {350 MHz, 128 MB}

VMM
λ s = 1

–34.0

–5.55

0

5.55

 

LAM

VMM

LAM

A
0

C. Overall deterministic
component of utility of
option j in choice-set S

–28.5

–10.8

B
= R

C

≈

 

C

C

.λ s = 6 134

Figure 5
THE LOSS-AVERSION MODEL: ATTRIBUTE-SPECIFIC AND AGGREGATE UTILITY GRAPHS 

(FOR A PARTICULAR CONSUMER WITH EQUAL ATTRIBUTE IMPORTANCES

M s P P P Pij
S

ijs iRs
S

ijs iRs
S

s

( ) = −( ) × ≥( )


+

1

λ ×× −( ) × <( ) P P P Pijs iRs
S

ijs iRs
S1

M m P P P Pij
S

ijm iRm
S

ijm iRm
S

m

( ) = −( ) × ≥( )


+

1

λ ×× −( ) × <( ) P P P Pijm iRm
S

ijm iRm
S1

M M s M mij
S

ij
S

ij
S= ( ) + ( )



246 JOURNAL OF MARKETING RESEARCH, AUGUST 2004

Table 1
CHOICE OPTIONS AND SHARES (EMPIRICAL APPLICATION 1)

Share (%)

Calibration Sample Validation Sample

Speed in Memory in Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Option/Attribute MHz (w) MB (v) (n = 151) (n = 148) (n = 164) (n = 205) (n = 200) (n = 220)

Portable PC
A 250 192 6 — — 13 — —
B 300 160 50 18 — 49 15 —
C 350 128 44 51 24 38 51 25
D 400 96 — 31 47 — 35 47
E 450 64 — — 29 — — 28

Calibration Sample Validation Sample

Power in Price in US$ Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Watts (w) (v) (n = 119) (n = 107) (n = 125) (n = 206) (n = 199) (n = 216)

Speakers
A 50 100 9 — — 17 — —
B 75 130 45 15 — 40 21 —
C 100 160 46 46 26 44 44 29
D 125 190 — 39 46 — 35 45
E 150 220 — — 28 — — 26

8A detailed description of the procedure used in this application is avail-
able from the authors.

dure based on the work of Srinivasan (1988).8 According to
this approach, there are two stages in the data collection of
the self-explicated partworths: (1) rating the desirability of
each attribute level used in the study and (2) indicating the
relative importance of each attribute. The individual-level
self-explicated partworths for the various attribute levels are
then calculated by multiplying the attribute importances by
the desirability ratings. For each respondent, the ranges
(i.e., maximum – minimum) of the partworth functions sum
to 100 over the two attributes, and the range is proportional
to the importance rating. Individual-level analysis indicates
that participants vary greatly with respect to the shape of
their partworth functions (e.g., concave, convex, linear).
The finding that the individual-level partworth functions
vary widely across participants highlights the advantage of
using an individual-level partworth function preference
model rather than less flexible models, such as the (linear)
vector model or the ideal-point model (see Green and Srini-
vasan 1978, 1990). Next, we describe a questionnaire-based
study in which we obtained the (context-independent) self-
explicated partworths and the choice data used to calibrate
and validate the alternative models.

Method

Participants. The participants were 1088 travelers who
were waiting for their flights at domestic terminals in 
a major airport. They were between 18 and 70 years of 
age and represented a wide range of demographic
characteristics.

Choice stimuli. We used two product categories that most
airport travelers are familiar with: portable PCs and speak-
ers. For each attribute, the introduction to all tasks (self-
explicated and choice) specified the “range of typical attrib-
ute values offered in the marketplace,” which is consistent
with the finding of Assar and Chakravarti (1984) that attrib-
ute range knowledge enables respondents to comprehend

9For the speaker category, the attribute v of Figure 1 represents the neg-
ative of price so that larger v values denote less expensive options.

better brand-attribute information and to make meaningful
attribute trade-offs. Each product category included two
attributes with five levels each (in addition to the two
boundary levels that marked the typical market range of an
attribute); the attribute levels were also used in the self-
explicated task. Accordingly, in each category, there were
five Pareto-optimal choice options that were derived from a
linear attribute trade-off function, similar to the design of
choice stimuli in previous studies of the compromise effect.
The attribute levels and ranges were based on the typical
values found in the market at the time of the data collection.
Given the evidence that responses to price may differ quali-
tatively from responses to other attributes (e.g., Hardie,
Johnson, and Fader 1993; Simonson and Tversky 1992), we
intentionally included price as an attribute in the speakers
category but not in the portable PC category. Table 1
describes the five product options used in the portable PC
and speakers categories. In each category, the five alterna-
tives served as the basis for three different trinary choice
sets, as was previously shown in Figure 1.9

Procedure and design. Participants were randomly
assigned to one of six major conditions in a 2 (choice type:
calibration versus validation) × 3 (choice set: 1 versus 2
versus 3) between-subjects design. Each respondent pro-
vided information on both product categories. Following
their choice (in each product category) in one of the three
choice sets, the calibration participants completed the two
stages of the self-explicated task described previously (we
used this order of tasks to ensure that calibration choices
were not biased by the self-explicated task). Regardless of
their choice-set condition, all the calibration participants
faced the same self-explicated task that covered the entire
range of attribute levels used in the choice study. The vali-
dation sample participants also made one trinary choice in
each category, but they did not complete the self-explicated
task. Participants in all conditions were instructed not to
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Table 2
EXPERIMENTAL DESIGN AND SAMPLE SIZES

Part 1 Part 1 Part 2
(Validation Sample: (Calibration Sample: (Calibration Sample: 

Condition Choice Task) Choice Task) Self-Explicated Tasks)

Condition 1 Set 3 — —
Npc = 220
Nspeakers = 216

Condition 2 — Set 3 Full range of attribute levels
Npc = 164
Nspeakers = 125

Condition 3 Set 2 — —
Npc = 200
Nspeakers = 199

Condition 4 — Set 2 Full range of attribute levels
Npc = 148
Nspeakers = 107

Condition 5 Set 1 — —
Npc = 205
Nspeakers = 206

Condition 6 — Set 1 Full range of attribute levels
Npc = 151
Nspeakers = 119

Notes: For definitions of Sets 1, 2, and 3, see Figure 1. Fewer participants had detailed familiarity with the speakers product category in order to provide
the information required for the self-explicated task; thus, in general, the sample sizes in the calibration conditions are lower for the speakers category than
for the portable PC category.

look back at their previous responses (for a description of
the design and the sample sizes in each condition, see Table
2).

It is important to note that in all conditions, we counter-
balanced both the order of product categories and the posi-
tions of choice options on the page (see Drolet 2002; Huber
et al. 1993). However, because we did not find any signifi-
cant order or position effects, we subsequently aggregated
the results across the order and position subconditions.

Results

Table 1 reports the choice shares for the portable PC and
speakers categories in the calibration and validation sam-
ples. Options were relatively more attractive when they
were in the middle than when they were extreme. As
Simonson and Tversky (1992, p. 290) suggest, the compro-
mise effect can be measured by statistically testing whether
PA(B; C) > PD(B; C) and whether PB(C; D) > PE(C; D). For

example, in the calibration sample of the portable PC cate-
gory, the share of B relative to C is 53% in set 1 (i.e., 
.5/[.5 + .44]) versus 26% in set 2 (i.e., .18/[.18 + .51]), a dif-
ference of 27% (z = 4.2; p < .001). The “Calibration” and
“Validation” columns in Table 3 show statistically signifi-
cant compromise effects in all eight possible tests (i.e., two
compromise effect measures in two categories and two sam-
ples); the measures of compromise ranged from 15% to
34% (mean = 24%; median = 25%).

Calibration and Validation of Models

We subsequently report the results of the calibration
(estimation) and validation of the alternative choice models
that are designed to capture the compromise effect. We
begin by estimating the models and considering the inter-
pretation of their parameters. Subsequently, we compare the
models with one another, with the VMM, and with a
stronger context-independent (naive) model that adjusts for

Table 3
PREDICTED AND OBSERVED COMPROMISE EFFECT MEASURES (EMPIRICAL APPLICATION 1)

Category VMM GCM CCM NCCM LAM RAM Calibration Validation

Portable PCs
PA(B, C) – PD(B, C) –1% 1% 20% 20% 22% 3% 27% 34%
PB(C, D) – PE(C, D) –3% 0% 26% 21% 30% 1% 28% 25%
Average compromise measure MAD 32% 29% 8% 9% 9% 28% — —

Speakers
PA(B, C) – PD(B, C) –7% –5% 20% 19% 19% –4% 25% 15%
PB(C, D) – PE(C, D) –5% 0% 23% 18% 21% –2% 18% 17%
Average compromise measure MAD 22% 19% 6% 3% 4% 19% — —

Overall Model MAD 26.8% 24.0% 6.5% 5.8% 6.3% 23.3% — —

Notes: All eight observed compromise measures in the calibration and the validation samples are significantly greater than 0 (all ps < .01).
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Table 4
MODEL ESTIMATES USING THE FULL CALIBRATION SAMPLE IN EMPIRICAL APPLICATION 1

Portable PCs (N = 454) Speakers (N = 345)

Estimate Standard Error p-Value Estimate Standard Error p-Value

CCM Estimatesa

b .387 .084 .000 b .446 .088 .000
cspeed .474 .067 .000 cpower .574 .055 .000
cmemory .353 .086 .000 cprice .378 .068 .000
–2LL 920.4 –2LL 638.7

NCCM Estimates
b .051 .007 .000 b .064 .009 .000
c .160 .095 .000 c .315 .098 .000
–2LL 914.8 –2LL 673.5

RAM Estimatesb

b .022 .009 .011 b .031 .009 .000
q .673 .196 .001 q 1.304 .262 .000
Lspeed .015 .033 .650 Lpower 1.745 4.664 .708
Lmemory .181e-03 .274e-03 .510 Lprice .268e-03 .267e-03 .316
–2LL 941.1 –2LL 667.0

LAM Estimatesc

b .020 .007 .008 b .040 .008 .000
λspeed 6.134 2.170 .009 λpower 4.161 .853 .000
λmemory 2.939 1.048 .032 λprice 1.605 .397 .064
–2LL 905.6 –2LL 654.5

GCM Estimates
b .100 .069 .150 b .469 .188 .013
cspeed .824 .221 .213 cpower .621 .086 .000
cmemory .716 .216 .095 cprice .471 .088 .000
–2LL 949.6 –2LL 657.5

aFor the parameters cw and cv, the meaningful null hypothesis is the VMM (cw = 1 and cv = 1). Thus, the p-values reported for these parameters in the
CCM, NCCM, and GCM are with respect to cw ≥ 1 and cv ≥ 1.

bψspeed = ψmemory = ψ = 5 for PCs, and ψpower = ψprice = ψ = 5 for speakers.
cFor the parameters λw and λv, the meaningful null hypothesis is the VMM (λw = 1 and λv = 1). Thus, the p-values reported for these parameters in the

LAM are with respect to λw ≤ 1 and λv ≤ 1.

10We performed the maximum likelihood estimation using the TSP sta-
tistical package (Hall and Cummins 1999).

11Nine participants from the calibration sample in the portable PC cate-
gory and six in the speakers category were ignored because they had non-
increasing partworth functions with respect to the attribute levels.

12For nested models, significance is determined according to the likeli-
hood ratio test: (2LL[unrestricted model]) – (2LL[restricted model]) ∼
χ2(∆r), where ∆r is the difference in the number of parameters between the
unrestricted and restricted models.

possible biases in the measurement of partworths; we com-
pare the models in terms of their predictive validity, fit, and
ability to capture the observed compromise effects.

Estimation of models. Using maximum likelihood esti-
mation, we estimated the parameters of the four alternative
models (and the two additional benchmark models) using
the full calibration sample.10 We calibrated the models sep-
arately for the portable PC and speakers product cate-
gories.11 For all the models, in general, the estimation
results were consistent across the two categories.

CCM (Equations 1 and 2). As is shown in Table 4, the
logit scale parameter b and the concavity parameters cw and
cv are positive and significant. Furthermore, consistent with
the notion of a contextual concavity in the utility function,
both concavity parameters are significantly smaller than 1
(p < .001). We also tested for the possibility of restricting
cw = cv. However, based on the likelihood ratio test, the
improvement from relaxing this restriction was statistically
significant at the 1% level.12 In particular, in the portable

PC category, the attribute memory was significantly more
concave than the attribute speed (i.e., cmemory < cspeed; p <
.01). In the speakers category, consistent with the notion
that consumers avoid the lowest-price, lowest-quality
option (Simonson and Tversky 1992), the attribute price
was significantly more concave than the attribute power
(i.e., cprice < cpower; p < .01). Therefore, the subsequent tests
of fit and predictive validity for the CCM employ attribute-
specific concavity parameters.

NCCM (Equations 2 and 3). We found that using a
restricted NCCM with cw = cv = c did not result in a signif-
icant loss of fit (p > .1). We therefore proceeded with the
more parsimonious NCCM. Table 4 shows that the logit
scale parameter b and the concavity parameter c are positive
and significant. Furthermore, consistent with contextual
concavity, the c parameter is significantly smaller than 1
(p < .001).

RAM (Equations 4–7). Because of the high nonlinearity
in the estimated disadvantage functions (Equation 6), we
needed to restrict ψw = ψv = ψ and employ a grid search
over the values of ψ to find an optimal estimate of ψ = 5.
We also tested the restriction Lw = Lv, but it resulted in a
significant loss of fit (p < .01). Specifically, in the portable
PC category, the attribute speed exhibited greater loss aver-
sion than did the attribute memory (i.e., Lspeed > Lmemory;
p < .01). In the speakers category, consistent with prior
research (see Hardie, Johnson, and Fader 1993; Simonson
and Tversky 1992), the attribute power exhibited more loss
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13This result is consistent with the previous result for the CCM that cus-
tomers avoided the lowest-price, lowest-quality option.

aversion than did the attribute price (i.e., Lpower > Lprice; p <
.01). Furthermore, Table 4 indicates that all the estimated
RAM parameters (b, q, Lw, Lv) are positive, as we expected.
It is noteworthy that the estimated RAM satisfies the mod-
eling requirements that Tversky and Simonson (1993) set
for capturing the compromise effect, albeit the L parameters
are not statistically significant. In particular, disadvantages
both outweigh and grow faster than corresponding
advantages.

LAM (Equations 2 and 8). Table 4 shows that for LAM
estimates, the logit scale parameter b and the loss-aversion
parameters λw and λv are positive and significant. Further-
more, as we predicted, all loss-aversion parameters are
greater than 1 (all ps < .05, except for λprice, for which p <
.07). Averaging across attributes, the loss-aversion coeffi-
cient λ was approximately 4.5 in the PC category and 2.9 in
the speakers category. However, given that the restriction
λw = λv resulted in significant loss in fit (p < .01), we pro-
ceeded with attribute-specific loss-aversion parameters.
More specifically, the attribute speed exhibited greater loss
aversion than did the attribute memory (i.e., λspeed >
λmemory; p < .01), and the attribute power exhibited greater
loss aversion than did the attribute price (i.e., λpower > λprice;
p < .01).13

VMM. To test whether incorporating the compromise
effect improves fit and predictive validity compared with
the standard VMM, we also estimated the logit scale param-
eter b of the VMM in Equation 9. This scale parameter is
positive and significant, both in the PC category (b = .04;
p < .001; –2 log-likelihood [LL] = 956.9) and in the speak-
ers category (b = .05; p < .001; –2LL = 698.6).

where Mij = Σk(Pijk), and j, h ∈ S.

Global concavity model. We also compared the alterna-
tive models with a stronger context-independent (naive)
model than the VMM. The global concavity model (GCM)
is similar to the CCM in that it induces additional concavity
(i.e., diminishing sensitivity) on the estimated (context-
independent) partworth functions (see Equation 10). That
is, regardless of the original shape of a measured partworth
function (which transforms objective attribute values into
subjective utilities), the GCM adds another layer of concav-
ity based on the choice data. However, unlike the CCM, this
additional concavity is applied globally (i.e., independent of
the choice set) to all attribute levels used in the study, such
that the modeled utility of an option does not vary across
choice sets. The GCM, then, is a naive model because it
does not account for the impact of the local choice set, and
it is not expected to capture the compromise effect.

The GCM is a stronger model than the VMM because it
allows for adjustments in the estimated partworths, which
may be needed because of possible measurement biases.
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14In terms of the experimental design in Table 2, in this case we cali-
brated the model on the basis of experimental conditions 2 and 4 to predict
the results in condition 5.

Use of the GCM also allows for partitioning of the context-
free and context-dependent effects of the various models. In
particular, any superior predictive ability of the alternative
models over the VMM might be attributed to adjustments of
stated preferences (obtained in the partworth estimation
phase) to observed choices (i.e., revealed preferences).
However, any such effects should also aid the GCM, which
can correct the measured utilities. Thus, better performance
of the proposed models over the (context-independent)
GCM would indicate the importance of the models being
context specific.

We estimated the parameters of the GCM on the basis of
Equation 10 and a multinomial logit form similar to that of
the VMM (see Equation 9). As we expected, the GCM’s
logit scale parameter b and concavity parameters cw and cv
are positive (see Table 4). Furthermore, consistent with the
notion that the GCM can adjust the measured (stated) part-
worths by inducing global concavity, the concavity parame-
ters are significantly smaller than 1 in the speakers category
(both ps < .001) but not in the PC category. We also tested
the restriction cw = cv, but the improvement from relaxing
this restriction is statistically significant at the 1% level, and
therefore we calibrate and validate the GCM using
attribute-specific concavity parameters.

Predictive validity and fit. We used several measures to
compare the predictive validity and fit of the competing
models, which we discuss next.

Aggregate-level predictive validity. We measured the
aggregate-level predictive validity of the alternative models
using choice data from two choice-set calibration condi-
tions and one choice-set validation condition. For example,
we used the self-explicated partworths and observed
choices of the (calibration) participants assigned to sets 2
and 3 to calibrate the models; we then used the estimated
parameters to predict the choices of the (validation) partici-
pants assigned to set 1. That is, we compared the average
predicted logit choice probabilities for set 1 (based on cali-
bration sets 2 and 3) with the choice proportions obtained in
the validation sample for set 1.14 Thus, the procedure con-
sists of a cross–choice set, cross-samples validation. We
applied the same aggregate-level validation procedure to
predict choice sets 2 and 3.

As a measure of the aggregate-level predictive validity,
we used the mean absolute deviation (MAD) between the
predicted choice shares (based on the calibration sample)
and the observed validation choice shares. Table 5 shows
that, averaged across the three choice sets and in both prod-
uct categories, the CCM, NCCM, and LAM have superior
MAD measures than the VMM, GCM, and RAM. Further-
more, the two contextual concavity models have improved
predictive validity compared with the LAM, and the NCCM
is somewhat better than the CCM.

Because this is a cross-samples validation, we expected
some sampling error to result from the calibration being
based on a different sample of respondents than the valida-
tion sample (see Huber et al. 1993). To estimate the degree
of sampling error, we used a bootstrap procedure with 100
replications; each replication consisted of n pseudorespon-
dents (n is the number of respondents summed over the two
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Table 5
COMPARISON OF MODELS’ FIT AND PREDICTIVE VALIDITY

(ACROSS CHOICE SETS IN EMPIRICAL APPLICATION 1)

VMM GCM CCM NCCM LAM RAM 

Portable PCs
Aggregate-level prediction (MAD) 11.1% 10.4% 6.3% 6.4% 7.0% 10.4%
Improvement in aggregate-level prediction 

(MAD) over VMM (Equation 11) — 8% 54% 52% 46% 8%
Improvement in aggregate-level prediction 

(MAD) over GCM — — 50% 48% 41% 0%
Individual-level prediction (–2LL) 960.4 965.5 947.1 920.2 956.2 956.9
Model fit (BIC) 963.0 968.0 938.8 927.1 924.0 971.7

Speakers
Aggregate-level prediction (MAD) 9.5% 8.4% 5.9% 5.4% 6.2% 10.0%
Improvement in aggregate-level prediction 

(MAD) over VMM (Equation 11) — 16% 51% 58% 47% –7%
Improvement in aggregate-level prediction 

(MAD) over GCM — — 42% 50% 37% –27%
Individual-level prediction (-2LL) 702.3 670.7 662.5 683.3 674.3 692.2
Model fit (BIC) 704.4 675.0 656.2 685.2 672.0 697.2

Number of parameters 1 3 3 2a 3 5b

aThe NCCM had only two parameters because the concavity parameters did not vary by attribute (i.e., cw = cv = c).
bThe RAM had five parameters because we restricted ψw = ψv = ψ.

calibration samples used to predict the shares in a validation
sample). To construct a population that resembles the vali-
dation sample, each pseudorespondent was randomly drawn
from the validation sample with replacement. We obtained
the MAD for a replication by calculating the choice propor-
tions in the pseudosample and by comparing them with the
actual validation choice proportions. We averaged the boot-
strap MADs over the 100 replications. We repeated this
entire process for the three validation sets for each product
category. The bootstrap average MAD estimates (averaged
across choice sets) for the PC and the speakers categories
were 2.1% and 2.4%, respectively. On the basis of these
estimates, we calculated the improvement in predictive
validity obtained by using each of the alternative models
rather than the standard VMM (after accounting for the
sampling error-based MAD) as follows:

As Table 5 shows, the contextual concavity models and
the LAM provided a substantial improvement (46%–58%)
over the VMM, whereas the GCM and RAM did not. Using
Equation 11 (but with VMM replaced by GCM), we also
found that the contextual concavity models and the LAM
provided large improvements (37%–50%) in predictive
validity over the context-independent GCM. The results
convincingly show that accounting for the (local) choice
context can significantly improve aggregate predictive
validity. In addition, the two contextual concavity models
yielded greater improvements than the LAM.

Individual-level predictive validity. We estimated the
models’ parameters using two calibration choice-set condi-
tions, and using the self-explicated partworths obtained in a
third calibration choice-set condition, we predicted the
choice probabilities in this third set. In contrast to the
aggregate-level predictions, because the calibration sample

(11) Improvement in predictive validity

=
MADD VMM MAD alternative

MAD VMM M

( ) − ( ) 
( ) −

model

AAD bootstrap sampling( ) 
.

15To conserve space, we report the predicted versus observed choices for
only one of the six choice sets (2 product categories × 3 choice sets). Over-
all, the CCM, NCCM, and LAM dominate the VMM, GCM, and RAM

includes partworth estimates and choices at the individual
level, we can calculate the –2LL individual-level measure
of predictive validity (smaller values indicate better predic-
tion ability). However, a confounding aspect of these pre-
dictions, which the aggregate-level predictions do not suf-
fer, is that the choice made in the calibration set may have
affected the partworths elicited in the subsequent self-
explicated task. Table 5 shows that, pooled across the three
choice sets and two product categories, the individual-level
measure of predictive validity favored the contextual con-
cavity models and the LAM over the VMM and RAM. In
addition, the three leading models (i.e., CCM, NCCM, and
LAM) outperformed the GCM in the PC category but not in
the speakers category. Overall, this pattern is consistent
with the results of the aggregate-level predictions.

Model fit. We also compared the models’ fit using the
entire calibration sample. To penalize for the number of
parameters, we employed the Schwarz Bayesian informa-
tion criterion (BIC) measure (smaller values indicate better
fit). As is shown in Table 5, the pattern of the BIC results is
consistent with the validation findings.

Recall that the VMM is nested in all five models. Thus,
we employed the likelihood ratio test described previously
to compare the alternative models with the VMM. The like-
lihood ratio test indicated that all the models provided a sig-
nificant improvement in fit over the VMM, though the
improvements were most pronounced for the three leading
context-dependent models.

Additional evidence. To illustrate the superior predictive
validity of the CCM, NCCM, and LAM and to demonstrate
their ability to predict the compromise effect, in Table 6 we
report the aggregate-level predictions of the six models and
the actual observed choices in choice-set 3 of the PC cate-
gory.15 The three leading models were better able to predict



Capturing the Compromise Effect 251

Table 6
AGGREGATE-LEVEL PREDICTIONS AND VALIDATION CHOICE SHARES FOR CHOICE SET 3 IN THE PORTABLE PC CATEGORY

(EMPIRICAL APPLICATION 1)

Option/Model VMM GCM CCM NCCM LAM RAM Validation Sample

C 35% 30% 19% 28% 16% 28% 25%
D 32% 34% 45% 45% 46% 33% 47%
E 33% 36% 35% 27% 38% 39% 28%
MAD 10% 9% 5% 2% 7% 9% —

across the six choice sets. The predicted shares for the remaining five sets
are available from the authors.

the compromise effects observed in the choice data. Recall
that the compromise effect states that PA(B; C) > PD(B; C)
and PB(C; D) > PE(C; D). In contrast, value maximization
combined with the highly plausible ranking condition actu-
ally predicts a result that is diametrically opposed to the
compromise effect; that is, PA(B; C) < PD(B; C) and
PB(C; D) < PE(C; D). Indeed, as is shown in Table 3, the
VMM consistently predicted a “reverse” (or negative) com-
promise effect. However, the choice data obtained in the
calibration and validation samples exhibited substantial
compromise effects. Table 3 also reports the compromise
measures derived from the aggregate-level predictions of
the alternative models. Consistent with the predictive valid-
ity and fit measures reported previously, the CCM, NCCM,
and LAM captured the observed compromise effects quite
well, whereas the other models did not. More specifically,
we calculated the MAD between the predicted compromise
measures (based on the calibration sample) and the compro-
mise measures observed in the validation sample. We aver-
aged the MAD across the two compromise measures—that
is, PA(B, C) – PD(B, C) and PB(C, D) – PE(C, D)—and we
report it separately for each alternative model and product
category. The MAD compromise measures were consis-
tently much better for the CCM, NCCM, and LAM than for
the VMM, GCM, and RAM. It is noteworthy that the over-
all superiority of the three leading models to the GCM sup-
ports the notion that these models capture context effects
rather than only adjust for discrepancies between stated
(partworth) utilities and revealed preferences (based on
choices).

EMPIRICAL APPLICATION 2: LARGER SETS OF
OPTIONS AND ATTRIBUTES

The previous empirical application tested the alternative
models in a context similar to previous demonstrations of
the compromise effect. A question that naturally arises is
whether the effect survives in choice sets with more than
three options and two dimensions. Relatedly, it is important
to test the proposed models compared with the context-
independent VMM and GCM in a more complex setting
that is closer, in terms of task dimensionality, to a typical
conjoint analysis study. The present empirical application
addresses these issues by employing choice sets with five
alternatives defined on four attributes. In addition, instead
of measuring partworths using the self-explicated approach,
we employ the commonly used full-profile conjoint analy-
sis technique (see, e.g., Green and Srinivasan 1990). The
conjoint analysis task covers the entire range of attribute
levels used in the choice study and therefore estimates
context-independent partworths. We briefly describe the

16Of 205 participants, 7 (i.e., 3%) had inconsistent preferences (greater
than 15% violations while fitting the data) in the conjoint task; thus, we
dropped them from subsequent analyses.

conjoint analysis used and then report the method and
results that pertain to the choice data and the calibration and
validation of the models.

Conjoint Analysis Partworths

To construct the stimulus set of the full-profile conjoint
analysis, we used a fractional factorial design with three
levels of each of four attributes (i.e., the conjoint analysis
task used the two extreme levels and an intermediate level
of each attribute used in the choice study). We created a set
of 18 cards, and each participant in the conjoint task was
asked to rank-order the 18 profiles. We estimated each
respondent’s partworths using Conjoint Linmap software
(Bretton-Clark 1989). An analysis of the individual-level
partworth functions revealed that the shape of the partworth
functions (e.g., concave, convex, linear) varied greatly
across participants. Next, we describe a lab study in which
we obtained the (context-independent) partworths and
choice data required for calibrating and validating the alter-
native models.

Method

Participants. The participants were 205 students at a pri-
vate West Coast university.16 They were paid $7 each for
their participation in the study, which took place in a behav-
ioral research lab.

Choice stimuli. We used a product category that univer-
sity students are familiar with, namely, portable PCs. The
introduction to both the conjoint analysis and the choice
tasks specified, for each attribute, the “range of typical
attribute values offered in the marketplace.” There were
four attributes with six levels each (in addition to the two
boundary levels that marked the typical market range of an
attribute). Accordingly, there were six Pareto-optimal
choice alternatives, which we used to construct two differ-
ent choice sets, each of which included five portable PCs
(see Table 7). We based the attribute levels and ranges on
the typical values found in the market at the time of data
collection. Respondents were told that all the options were
identical on all other attributes, including price.

Procedure and design. Participants were randomly
assigned to one of two conditions: either choice-set 1 (n =
101) or choice-set 2 (n = 97). We counterbalanced, between
subjects, the positions of choice options on the page (there
were no significant position effects). After making a choice
in one of the two sets, participants received an unrelated
filler task (that took about ten minutes), before completing
the conjoint analysis card-sorting. Regardless of their
choice-set condition, all participants faced the same con-
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Table 7
CHOICE OPTIONS AND SHARES IN THE PORTABLE PC CATEGORY (EMPIRICAL APPLICATION 2)

Share (%)

Set 1 Set 2
Option/Attribute Memory (MB) Hard Drive (GB) Speed (MHz) Battery Life (Hours) (n = 101) (n = 97)

A 128 15 2000 4.5 3 —
B 256 20 1900 4.0 24 9
C 384 25 1800 3.5 32 26
D 512 30 1700 3.0 32 42
E 640 35 1600 2.5 9 13
F 768 40 1500 2.0 — 9

Table 8
PREDICTED AND OBSERVED COMPROMISE MEASURES (EMPIRICAL APPLICATION 2)

Portable PC VMM GCM CCM NCCM LAM RAM Observed Compromise Measurea

PA,D,E(B, C) – PD,E,F(B, C) –4% –8% 16% 20% –7% 5% 16%
PA,C,E(B, D) – PC,E,F(B, D) –5% –7% 18% 22% 6% 9% 25%
PA,C,D(B, E) – PC,D,F(B, E) –7% –6% 28% 32% 9% 9% 32%
PA,B,D(C, E) – PB,D,F(C, E) –4% 3% 11% 12% 18% 4% 12%
PA,B,C(D, E) – PB,C,F(D, E) –3% 2% 8% 9% 1% –1% 2%
Average compromise measure MAD 22% 21% 4% 3% 14% 12% —

aThe first four (of five) observed compromise measures are significantly greater than 0 (all ps < .01).
Notes: The five measures are based on the notion of extremeness aversion (see Simonson and Tversky 1992) and capture the extent to which options lose

(gain) relative share when they become (move away from being) the extreme option in the choice set. An alternative compromise measure assumes that
options gain (lose) share as they become (move away from being) the middle option. This measure, which implies that PA,B,E(C, D) – PB,E,F(C, D) > 0, is
equal to 12% (p < .01) in the observed choices.

joint analysis task, which covered the entire range of attrib-
ute levels used in the choice study.

Results

Table 7 reports the choice shares in both sets of portable
PCs. Options were more attractive when they were closer to
the middle than to the extreme ends of the choice set.
According to the notion of extremeness aversion (see
Simonson and Tversky 1992), the compromise effect can be
statistically tested in this design by means of five different
contrasts, each between the relative shares of two options
that exist in both choice sets. The five measures capture the
extent to which options lose (gain) relative share when they
become (move away from being) the extreme option in the
choice set. For example, the share of B relative to D is 43%
(.24/[.24 + .32]) when both options are intermediate (in set
1), but the share of B relative to D drops to 18% (.09/[.09 +
.42]) when B becomes an extreme option (in set 2), thus
creating a difference of 25% (z = 2.764; p < .01). The right-
most column of Table 8 shows that the results were in the
predicted direction in all five possible tests of the compro-
mise effect and were statistically significant in four of them;
the measures of compromise ranged from 2% to 32%
(mean = 17%; median = 16%). Next, we report the results
of the calibration and validation of the alternative choice
models.

Calibration and Validation of Models

Estimation of models. Using the data and maximum like-
lihood estimation, we calibrated the four alternative models
and the benchmark (context-independent) VMM and GCM.
We estimated a parsimonious version of each model, which
involved model parameters that did not vary across the four
attributes. Given that in this section we focus on applying

the models to expanded dimensional spaces, it is important
to validate parsimonious models because the use of
attribute-specific parameters becomes prohibitively expen-
sive (i.e., in terms of degrees of freedom) as the number of
attributes increases. As is shown in Table 9, the estimated
parameters of all models are consistent with the underlying
theoretical motivation. For example, the contextual concav-
ity parameters of the CCM and NCCM are significantly
smaller than 1 (both ps < .001), whereas the loss-aversion
parameter of the LAM is greater than 1 (though it did not
approach statistical significance). It is important to note that
we also calibrated and tested an attribute-specific GCM, but
the predictive validity and fit comparisons remained the
same even when we tested this more flexible model against
our restricted (context-dependent) models.

Predictive validity and fit. To compare the alternative
models, we employed the measures of predictive validity
and fit reported previously.

Aggregate-level predictive validity. The aggregate-level
predictions consisted of a cross–choice set, cross-samples
validation. Specifically, we calibrated the models by using
the conjoint partworths and the observed choices of partici-
pants assigned to one set; we then predicted the choices of
participants assigned to the other set. For example, we com-
pared the average predicted logit choice probabilities for set
1 (based on a calibration using set 2) with the choice pro-
portions actually observed in set 1. We applied the same
aggregate-level validation procedure to the other choice set.
Table 10 shows that, averaged across the two choice sets,
the CCM, NCCM, and LAM have superior MAD measures
than the VMM, GCM, and RAM.

We estimated the degree of sampling error using the
bootstrap procedure discussed previously; the bootstrap
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Table 9
MODEL ESTIMATES USING THE FULL CALIBRATION SAMPLE

IN EMPIRICAL APPLICATION 2 (N = 198)

Estimate Standard Error p-Value

CCM Estimatesa

b .301 .064 .000
c .595 .051 .000
–2LL 533.5

NCCM Estimates
b .075 .011 .000
c .364 .071 .000
–2LL 531.2

RAM Estimatesb

b .010 .013 .476
q .453 .118 .000
L .54e-9 .60e-9 .370
–2LL 550.0

LAM Estimatesc

b .009 .010 .385
λ 8.817 9.823 .213
–2LL 527.8

GCM Estimates
b .263 .075 .000
c .645 .059 .000
–2LL 547.3

aFor the parameter c, the meaningful null hypothesis is the utility maxi-
mization model (c = 1). Thus, the p-values reported for this parameter in
the CCM, NCCM, and GCM are with respect to the null hypothesis: c ≥ 1.

bψ = 10. 
cFor the parameter λ, the meaningful null hypothesis is the utility maxi-

mization model (λ = 1). Thus, the p-value reported for this parameter in the
LAM is with respect to the null hypothesis: λ ≤ 1.

average MAD estimate (averaged across the two choice
sets) was 3%. On the basis of this estimate and Equation 11,
we calculated the improvement in predictive validity
obtained by using each of the alternative models rather than
the standard VMM and the naive GCM. As Table 10 shows,
across the two choice sets, all five competing models pro-
vided substantial improvements (48%–68%) over the
VMM. Furthermore, the contextual concavity models and
the LAM provided large improvements (26%–38%) over
the GCM, which demonstrates that the leading models yield
improved aggregate predictive validity by accounting for
context effects rather than just correcting for possible biases
in utility measurement (stated preferences versus revealed
preferences).

Individual-level predictive validity. We estimated the
models’ parameters using one choice-set condition, and
using the conjoint partworths of a participant in the other
choice-set condition, we predicted the choice probabilities
in that latter set (we applied the same procedure to the other
choice set). It is noteworthy that unlike the first empirical
application, we separated the partworths elicitation from the
preceding choice by a (ten-minute) filler task, which
reduces the possibility that choice affected the estimated
partworths. Table 10 shows that, pooled across the two
choice sets, the individual-level measure of predictive valid-
ity favors the two contextual concavity models and the
LAM over the VMM, GCM, and RAM.

Model fit. As is shown in Table 10, the three leading
models yielded superior BIC measures than the VMM,
GCM, and RAM (in all nine comparisons). In addition, the
likelihood ratio test indicates that all the models provided a
significant improvement over the VMM, though the
improvements were most pronounced for the three leading
context-dependent models.

Additional evidence. The various measures of predictive
validity and fit provide strong support for the proposition
that accounting for the local choice context can improve the
performance of choice models, beyond any improvements
that arise from adjustments to utility measurement. Indeed,
although the GCM outperformed the simpler VMM, both
were far inferior to the contextual concavity models and the
LAM.

As is shown in Table 8, the context-dependent models
were also better able to predict the strong compromise
effects that we observed in the choice data; this was partic-
ularly true for the contextual concavity models. In contrast,
the context-independent models did not predict the compro-
mise effects. Moreover, consistent with betweenness
inequality, the VMM even predicted reversed (negative)
compromise effects for all five possible measures. Accord-
ingly, the average compromise measure MAD (calculated
across the five measures) between the predicted and
observed compromise effects was the best for the CCM and
NCCM (4% and 3%, respectively) and the worst for the
VMM and GCM (22% and 21%, respectively).

GENERAL DISCUSSION

The compromise effect is a major finding documented in
behavioral marketing and decision research. It has substan-

Table 10
COMPARISON OF MODELS’ FIT AND PREDICTIVE VALIDITY

(ACROSS CHOICE SETS IN EMPIRICAL APPLICATION 2)

VMM GCM CCM NCCM LAM RAM 

Portable PCs
Aggregate-level prediction (MAD) 9.6% 6.4% 5.1% 5.5% 5.3% 6.0%
Improvement in aggregate-level prediction

(MAD) over VMM (Equation 11) — 48% 68% 62% 65% 54%
Improvement in aggregate-level prediction 

(MAD) over GCM — — 38% 26% 32% 12%
Individual-level prediction (–2LL) 565.6 561.8 534.4 535.0 532.1 575.1
Model fit (BIC) 570.3 557.9 544.1 541.8 538.4 571.2

Number of parameters 1 2 2 2 2 4
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tial implications for consumer choice, and it represents a
significant violation of standard microeconomic theory.
Nevertheless, so far, there have been no attempts to incor-
porate the compromise effect in formal choice models and
to test the fit and predictive validity of such models. Indeed,
in an address to the 2001 University of California–Berkeley
Choice Symposium, the Nobel laureate Daniel McFadden
called for the incorporation of behavioral context effects in
choice models and for a comparison of such models with
existing practice to establish the contribution. We take a
step in this direction by incorporating the compromise
effect in four context-dependent choice models and by com-
paring the alternative models with one another, with the
standard VMM, and with a stronger naive model that
adjusts for possible biases in utility measurement. As we
discuss subsequently, our models can theoretically capture
other context effects, including the well-known “asymmet-
ric dominance effect” (Huber, Payne, and Puto 1982).

The current research can be viewed as part of the ongo-
ing (fruitful) attempt to bridge the consumer behavior and
marketing science disciplines. Such cross-fertilization often
involves choice modeling based on theory and empirical
generalizations from decision research, social psychology,
and consumer behavior (e.g., Bell and Lattin 2000; Hardie,
Johnson, and Fader 1993; Winer 1986). It should be empha-
sized that the contribution of such research is maximized
when choice models are actually calibrated and validated
using empirical data, not just postulated at an axiomatic
level.

Main Findings and Theoretical Implications

Using two empirical applications, we estimated and then
tested four alternative choice models that incorporate the
compromise effect. The two empirical applications used
different preference-elicitation methods (self-explicated
approach versus full-profile conjoint analysis) to estimate
the (context-independent) partworths. Furthermore,
whereas the first empirical application tested the alternative
models using the traditional design of the compromise
effect (i.e., three options defined on two attributes), the sec-
ond application employed a more complex choice setting
with five alternatives defined on four attributes. The use of
different utility-measurement techniques and increased
dimensionality allows for generalization of the results that
pertain to the compromise effect and the calibration and
validation of the models. To the best of our knowledge, this
article is the first to demonstrate robust, systematic compro-
mise effects in choices that involve more than three options
and two product attributes. However, it is noteworthy that
the average compromise effect was greater in the first
empirical application (24%) than in the second application
(17%). A possibility that merits further research is that
increasing the dimensionality and/or choice-set size attenu-
ates the compromise effect.

A main result is that accounting for the local choice con-
text or the relative positions of options in the choice set can
significantly improve predictive validity and fit over the
standard choice model. However, an alternative explanation
for the superiority of such models to the VMM is that they
adjust for possible discrepancies between the measured
(partworth) utilities and the revealed utilities (based on
choices). To rule out this rival account, we tested a stronger

17To place the models on a comparable scale, we rescaled the context-
independent partworths by subtracting from each partworth. We also
rescaled the LAM by adding to each partworth.PRk
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context-independent model: the GCM. The GCM is similar
to the contextual concavity models because it adds a layer
of concavity to the estimated partworths and can correct the
measured utilities to be consistent with choices. Yet unlike
the contextual concavity models, in the GCM, the induced
concavity and possible adjustment of utilities is done at a
global level, independent of the local choice context.

The validation and fit measures indicate that the three
leading models outperformed the VMM and the GCM. In
particular, after we accounted for the sampling-based
error, the aggregate-level cross–choice set predictions
(which is probably the most relevant prediction criterion
from a managerial point of view) showed that the contex-
tual concavity models and the LAM yielded major
improvements in the MAD measure over the VMM and
the GCM (the improvements ranged from 46% to 68% and
from 26% to 50%, respectively). The NCCM, CCM, and
LAM also predicted the enhanced shares of the compro-
mise options and the observed compromise effects. In
contrast, the GCM and RAM were unable to predict the
compromise effects, and the VMM (and at times the
GCM) even predicted reversed (negative) compromise
effects. These findings provide strong support for the
notion that the improved performance of the models was
driven, at least in part, by their context-dependent
component.

A limitation of the empirical applications is that we did
not calibrate the model parameters (e.g., the concavity and
loss-aversion parameters) at the individual level (though we
fully accounted for heterogeneity in the utility functions). It
is likely that because of individual differences in the deci-
sion process and susceptibility to the compromise effect,
consumers differ with regard to their context-dependent
effect. Therefore, further research can use methods such as
hierarchical Bayes (e.g., Rossi and Allenby 2003) to capture
heterogeneity in the context-effect parameters. Next, we
compare the alternative models in terms of their conceptual
characteristics and ability to account for additional context
effects.

Conceptual Similarities and Differences Among the
Alternative Models

All four alternative models operate as if consumers have
some absolute (context-independent) utilities (i.e., valua-
tions for different attribute levels), but the utilities are
affected by the relative positions of the choice options (i.e.,
by the local choice context). Thus, the models depict con-
sumer choice as context and reference dependent. Next, we
elaborate on some of the distinctions underlying the alterna-
tive models.

Effects on attribute importance weights. Figure 6 illus-
trates the relationship between the three leading models and
the VMM.17 Figure 6 highlights that only the NCCM
retains the original attribute importance weights, as defined
by the range of the partworths in the local choice set. Both
the CCM and the LAM distort the attribute importances; in
the CCM, greater concavity (smaller value of ck) decreases
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Figure 6
A GRAPHICAL ILLUSTRATION OF THE RELATIONSHIP AMONG THE ALTERNATIVE MODELS

the attribute importance, whereas in the LAM, greater loss
aversion enhances the attribute importance. It is noteworthy
that because the NCCM preserves the original importance
weights, this model rules out an alternative explanation that
the enhanced performance of the models is due to differ-
ences between stated and revealed preferences in terms of
attribute importances (see Heath et al. 2000).

The relationship between concavity and loss aversion.
Figure 6 also illustrates that a smooth (continuous) concave
function and a kinked loss-aversion function are good
approximations for each other. Indeed, it is interesting that
diminishing returns, which underlie the nonkinked contex-
tual concavity models, imply that the impact of a loss on an
attribute always outweighs the impact of a corresponding
gain (with any point on the function as a reference point).
Thus, diminishing sensitivity to gains (i.e., concavity) is
similar to increased sensitivity to losses (i.e., loss aversion).
In light of this similarity, it is not surprising that the two
models perform similarly in our empirical applications.
However, whereas the LAM employs constant loss aver-
sion, the contextual concavity models imply increasing loss
aversion.

Single versus multiple reference points. Whereas all the
alternative models are reference dependent, the contextual
concavity models and the LAM employ a single reference
point (i.e., the partworth of the lowest and midrange attrib-
ute levels, respectively), and the RAM uses multiple refer-
ences. More specifically, the RAM assumes that each alter-
native is evaluated against all of the other options in the
choice set, in what could be described as a tournament (see
Tversky and Simonson 1993, p. 1185). We also tested an
additional family of tournament models, the multireference
LAM, in which each option is evaluated on the basis of its
gains and losses compared with those of all other options in

18The most general form of the multireference LAM can be written as
follows: 

where gk[lk] is the relative gain (loss) parameter for attribute k. Although
the multireference LAMs had acceptable predictive validity, their gain
parameters were counterintuitively negative because of the models’ sub-
stantial gain–loss multicollinearity.
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the choice set.18 On both modeling and behavioral grounds,
we find tournament models such as the multireference
LAM and the RAM less appealing than unireference mod-
els. From a modeling perspective, in Pareto-optimal choice
sets, tournament models lead to estimation problems due to
multicollinearity between the magnitudes of the multiple
advantages (gains) and disadvantages (losses). This multi-
collinearity may have contributed to the underperformance
of the RAM. From a behavioral standpoint, tournament
models are less feasible than single reference models
because they place inordinate processing demands on con-
sumers (see, e.g., Shugan 1980).

Parsimony in the parameter space. The alternative mod-
els also differ with regard to their number of parameters. In
particular, the contextual concavity models and the LAM
not only provide better predictive validity and fit but also
require estimation of fewer parameters (d + 1 parameters
for the contextual concavity models and the LAM versus
2d + 2 parameters for the RAM, where d is the number of
product dimensions). Furthermore, the results in Empirical
Application 1 indicated that the concavity parameter of the
NCCM did not significantly vary across the two product
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19Further details are provided in the work of Kivetz, Netzer, and Srini-
vasan (2004).

attributes in either product category; thus, the NCCM
requires estimation of the lowest number of parameters
(i.e., two). The excellent performance of the NCCM with a
uniform concavity parameter in both empirical applications
represents an advantage for the NCCM over the other alter-
native models.

Our empirical results do not provide a clear choice among
the three winning models, namely, the CCM, the NCCM,
and the LAM. Further research is required to compare the
alternative models in settings different from the one we
employed. For example, as we discuss next, the models dif-
fer in their ability to capture other choice-set (context)
effects, which provides a fertile ground for future tests.

Modeling other context effects. Several behavioral con-
text effects other than the compromise effect and extreme-
ness aversion have been documented, including asymmetric
dominance, asymmetric advantage, enhancement, and
detraction (for details, see Huber, Payne, and Puto 1982;
Huber and Puto 1983; Simonson and Tversky 1992). Under
most conditions, the contextual concavity models and the
LAM can conceptually capture the asymmetric dominance
and advantage effects. However, in certain specific cases
(when the added alternative does not affect the attribute
ranges), unireference models such as the contextual concav-
ity models and the LAM cannot capture these context
effects, whereas tournament (multireference) models can. In
addition, although the contextual concavity models and the
LAM effectively incorporate the enhancement effect, only
the LAM can simultaneously capture detraction and
compromise.19

In conclusion, the alternative models can theoretically
account for a wide range of context effects, including com-
promise, polarization, asymmetric dominance, and other
local contrast effects. Another model that can theoretically
capture multiple context effects is the loss-aversion–based
centroid model of Bodner and Prelec (1994). Further
research can construct and empirically test a unifying
model that accounts for the greatest number of context
effects across the widest range of choice situations.

Practical Implications

Beyond the theoretical significance of incorporating the
compromise effect in formal choice models, this issue has
important practical implications. First, consider conjoint
choice simulators, which define a market scenario and a set
of competitive products, and then perform sensitivity analy-
ses. Such simulators employ the standard value-
maximization utility function, which is estimated with one
of various traditional methods that are not necessarily
choice based, such as full-profile, trade-off tables, adaptive
conjoint analysis, self-explicated, and hybrid (see Green
and Srinivasan 1990). However, as the present research
demonstrates, by neglecting context effects, the VMM will
lead to inaccurate estimates of the choice probabilities.
Thus, by using the proposed models, choice simulations can
potentially yield more accurate predictions and analyses. It
would also be worthwhile to test the alternative models
using utilities obtained from adaptive conjoint analysis,
full-profile ratings, and other common preference-
measurement techniques.

Second, in addition to possible improvements in the pre-
diction of consumer choice, managers can use a context-
dependent model such as the NCCM to define the optimal
set of product or service offerings so as to maximize
product-line profitability. That is, the alternative models
enable more accurate calculation of the predicted choice
shares for any given product-line portfolio. Furthermore,
the pervasiveness of product offerings in the marketplace
assorted according to the underlying structure of the com-
promise effect (see Figure 2 and previous discussion) sug-
gests that marketers can employ context-dependent models
to construct product menus that enhance the share of high-
margin products.

Recent statistical advances that enable the obtaining of
individual-level estimates from scarce data (i.e., hierarchi-
cal Bayes models) have promoted the application of meth-
ods that use choices to estimate utility functions, such as
choice-based conjoint (CBC). A notable question arises
about the applicability of the models proposed herein to
such domains in which the partworths are estimated directly
from choices (and simultaneously with the model parame-
ters). On the one hand, CBC may minimize context effects
during model estimation because of the use of within-
subjects repeated choices (see, e.g., Huber, Payne, and Puto
1982; Kahneman and Tversky 1996), thus reducing the use-
fulness of our models. On the other hand, predictions
derived from CBC may sometime be inaccurate, because
the compromise effect is likely when consumers make a
real purchase decision, as in Figure 2.

Finally, it is important to note that the present results will
not apply to market choices that obscure the identity of com-
promise options. For example, many purchase decisions
involve cases in which certain attribute values are missing
for some of the products (e.g., Kivetz and Simonson 2000).
Furthermore, the compromise effect may be less likely in
CBC-type choice sets chosen from experimental designs that
are not located on (or near) the efficient frontier or that com-
prise many attributes that cannot be represented with a one-
dimensional subspace of options (e.g., price versus overall
quality trade-offs in Figure 2, memory and hard drive versus
speed and battery life in Table 7). In addition, consumers
may face many alternatives at the point of purchase, but they
may choose from a narrower consideration set that is unob-
servable to the researcher (as is often the case in scanner-
panel data). Indeed, searching for and modeling the compro-
mise effect and, more generally, other behavioral context
effects using marketplace data and marketing science appli-
cations is fertile ground for further research.
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