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SEEKERS 
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This web appendix contains the following main sections: 

A. Alternative approach to the stochastic fusion PHMM 

B. Markov Chain Monte Carlo (MCMC) algorithm details for the proposed Partially 

Hidden Markov Model (PHMM) 

C. Posterior mean and standard deviation of the variances of the heterogeneity 

distribution for the 6-state deterministic fusion PHMM (112345) and the 6-state 

stochastic fusion PHMM (123455) 

D. LASSO and Random Forest (RF) ordered logit benchmark models  

E. Robustness analyses predictions through 5-fold cross validation 

F. PHMM estimation results for the second dataset applying the model to d-mail targeting 

(Section 6 in the main document) 

G. Web appendix references 
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Appendix A: Alternative approach for the stochastic fusion PHMM  

The Stochastic PHMM in section 4.1.5 in the paper fuses the survey response by modifying the transition 

probabilities in the month of the survey, adding a penalization parameter  to the likelihood of transition 

into states that do not match the “stated” job seeking status in the survey. Here we propose a second way 

of fusing the survey responses to the states by adding an error term to the survey response to account for 

possible survey response errors. Instead of constraining the transition matrix at the month of the survey, we 

include in the state dependent activity distribution !!"# another activity during the month of the survey that 

captures the survey response. Specifically, we take the job seeking response to the survey as an ordinal 

variable following an ordinal logit model during the month of the survey. More specifically, 
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where	$!"$%&'() is the observed survey response of user i in period t, 53,5$%&'() , 2 = 1,2, … , 3 − 1, are the 

ordered logit thresholds, and 3 is the number of survey response categories. In order to fuse the survey 

response into the HMM, we include an additional term in the state dependent activity distribution !!"# in 

Equation (4) in the main document, by multiplying !!"# with the distribution in (A1) during the month(s) 

of the survey, and use Equation (4) in the main document without this term during the other time periods. 

Doing so, anchors the states to the survey responses, facilitating identification and interpretation of the 

latent state behavior, while allowing for response error in the survey responses. The likelihood function of 

the standard HMM in Equation (6) in the main document can now be used to estimate the stochastic 

PHMM. Thus, this way of fusing the survey responses into the latent states of behavior, requires a minor 

modification to a traditional HMM. 
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Appendix B: Markov Chain Monte Carlo (MCMC) algorithm details for the proposed 
Partially Hidden Markov Model (PHMM) 

Given the presence of user-level heterogeneity, a Bayesian framework to estimate the 

PHMM is most appropriate (e.g., Netzer et al. 2017; Netzer et al. 2008; Schweidel et al. 2011; 

Ascarza and Hardie 2013; Zhang et al. 2014). We use a Markov Chain Monte Carlo (MCMC) 

algorithm to sample the posterior distribution directly through Metropolis-Hastings (MH) steps 

(Hastings, 1970). Given the complexity of our model due to the multivariate nature of the 

activity variables and the mix of distribution types, we block the parameters into separate sets 

and each set of parameters is updated separately using a MH step. We implement the adaptive 

MH algorithm as described in Atchadé and Rosenthal (2005), in short AR, which automatically 

adjusts the tuning parameter (the variance of the proposal density) of the MH algorithm, to 

improve efficiency of the MH algorithm. We next outline the main block steps of our MCMC 

sampler. After that we discuss the detailed implementation of each step.  

(1) Update in a MH step the parameters of the logit probabilities for the discrete activity 

variables !!"# and !$" for  " = 1,2, … , ($, ) = 1,2, … , *, using a multivariate normal proposal 

density with AR flexible tuning. 

(2) Update in a MH step the location parameters of the type 1 Tobit models for the continuous 

activity variables +!"# and +$" for  " = 1,2, … , (%, ) = 1,2, … , *, using a multivariate normal 

proposal density with AR flexible tuning. 

(3) Update in a MH step the variance parameters of the type 1 Tobit models for the continuous 

activity variables  ,"#%  for  " = 1,2, … , (%, ) = 1,2, … , *. Here we create proposals for log	(,"#% ), 

which facilitates the implementation of AR flexible tuning from a multivariate normal proposal 

density. 
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(4) Update in a MH step the baseline logit threshold parameters for the initial state 3&, 4 =

1,2, … , * − 1  and transition probabilities 6#& ) = 1,2, … , *, 4 = 1,2, … , * − 1 using a 

multivariate normal proposal density with AR flexible tuning. 

(5) Update in a MH step the user-level heterogeneity parameters of the PHMM 7' for 8 =

1,2, … , 9, using a multivariate normal proposal density with AR flexible tuning. 

(6) For the stochastic fusion PHMM, update in a MH step the parameters of the penalization 

parameters :(, ; = 1,2, … , <, using a multivariate normal proposal density with AR flexible 

tuning. We constrain the =(’s to be positive (through rejection sampling). 

(7) Update in a standard Gibbs step the variance-covariance matrix Σ) of the upper-level Normal 

model for the user-level heterogeneity. 

Metropolis-Hastings steps (1)—(6) 

As steps (1)—(6) are conceptually the same, we discuss how to generate draws for these 

parameters in each step of the MCMC algorithm for the general case. Let ? denote the 

@ × 1	vector of parameters to be updated (e.g., in step (1) above, ? would contain the elements 

!!"#  and !$" for  " = 1,2, … , ($, ) = 1,2, … , *).  Let B be the vector containing all other model 

parameters excluding the parameters in ?, and let C be the 9( × D matrix of observed activity. 

As the full conditional distribution E(?|B, C) does not have a closed form expression for our 

model, we use a MH step to generate a new value for ? in each step of the MCMC algorithm.  

We generate a proposal value for ?, say ?", from a @-variate normal proposal 

distribution with the current value ?, say ?(, as the mean, and 3*+Ω*+ as the variance 

covariance matrix, where 3*+ is a (scalar) parameter and Ω*+ is a @ × @ positive definite 

symmetric matrix. Both 3*+ and Ω*+ are flexible tuning parameters that are updated using an 

algorithm proposed by Atchadé and Rosenthal (2005), which we outline below. 
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The proposed value ?" is accepted with probability: 

H8I J
exp N−1/2P?" − ?!Q′S!

,$P?" − ?!QT UPC|?", BQ

expP−1/2(?( − ?!)′S!
,$(?( − ?!)QU(C|?( , B)

, 1V, 

where UPC|?", BQ is the value of the full-sample likelihood, given parameters (?", B), which is 

developed in the main document. Furthermore, ?! and S! are the mean and variance-covariance 

matrix, respectively, of the @-variate normal prior distribution. In our study, we set ?! = 0 and 

S! = 100 × X- for all parameters. 

The flexible tuning parameters 3*+ and Ω*+ are updated after the first 1,000 iterations. 

Initially, we set Ω*+ to the identity matrix and 3*+ to a value such that proposals are accepted in 

a broad range of 20-80%. This requires initial tuning, which we found to be easily doable. After 

1,000 iterations, the parameters 3*+ and Ω*+ are automatically adjusted to target an acceptance 

probability of Y, which we set to 0.28.  

The main steps to automatically tune 3*+ and Ω*+ are the following (for details and 

proofs we refer to Atchadé and Rosenthal, 2005). Let Z$ = 10,., Z% = 10,/, [$ = 10. and 

\*+ = 10/] where ] is the ]-th iteration of the MCMC sampler. First, the parameter 3*+ is 

updated in the ]-th iteration of the MH algorithm as:   

3*+
(12$) = 3*+

(1) + \*+ × (Y(1) − Y) if Z$ < 3*+
(12$) < [$,   

3*+
(12$) = Z$ if 3*+

(12$) < Z$, and  

3*+
(12$) = [$ if 3*+

(12$) > [$.  

Here, Y(1) is the current accept rate in the ]-th iteration of the MH algorithm. In other 

words, if the current accept rate Y(1) is below (above) the target Y accept rate, the updated value 
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3*+
(12$) will be decreased (increased), which reduces (increases) the variance in the proposal 

distribution above. As such, the future proposed values are more (less) likely to be accepted.  

The second tuning parameter Ω*+ is updated in the ]-th iteration of the MH algorithm as: 

Ω*+
(12$) = Γ*+

(12$) + Z% × X- , 

where the parameter Γ*+
(12$) is computed as: 

Γ*+
(12$) = Γ*+

(1) + \*+ × bcN?( − d*+
(1) TN?( − d*+

(1) T
4
e − Γ*+

(1) f, 

with  

d*+
(12$) = d*+

(1) + \*+ × N?( − d*+
(1) T. 

Loosely speaking, d*+
(12$) approximates the posterior mean and Γ*+

(12$) approximates the 

posterior variance-covariance matrix of the parameter ? when ] becomes large. Let h*+$ =

i∑ NΓ*+
(12$)(8, 4)T

%
	',& , i.e., the square root of the sum of all squared elements of Γ*+

(12$), then 

Γ*+
(12$) = ([$/h*+

$ ) × Γ*+
(1)  if h*+$ > [$. Similarly, let h*+% = i∑ Nd*+

(12$)(8)T
%
	' , i.e., the square 

root of the sum of all squared elements of d*+
(12$), then d*+

(12$) = ([$/h*+
% ) × d*+

(1)  if h*+% > [$. 

The parameters h*+$  and h*+%  prevent Γ*+
(12$) and d*+

(12$) from drifting away to infinity. 

We note that for the variance parameters in the type 1 Tobit model we specify a log 

normal prior (e.g., Zellner, 1971). The advantage of such a specification in our particular case is 

that Atchadé and Rosenthal’s (2005) algorithm for flexible tuning in the MH algorithm can be 

straightforwardly adapted (step 3 above). We separately update the variance parameters for the 

variables that we observe in each time period and the variables which we partly observe during 

the observation window. 
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Step (6) – Gibbs step to generate a draw for the variance-covariance matrix k6 of the 

upper-level Normal model for the user-level heterogeneity 

The full conditional distribution or Σ) is given by  

"(Σ)|− −)~Xm(E7 , n7
,$), 

where ‘−−’ indicates all data and all other parameters, Xm is the inverse Wishart probability 

density distribution, with degrees of freedom 

E7 = E! + 9, 

where E! is the prior degrees of freedom and 9 is the number of users in the sample, and scale 

matrix  

n7 = n! +o(7' − 0)
7

'8$
(7' − 0)′, 

where 7' is the vector of user-level heterogeneity random intercepts of length (say) @ and n! is 

the prior scale matrix. We set n! = X- and E! = @ + 15 a priori. 

 

Starting values of the MCMC algorithm 

To facilitate faster convergence of the MCMC sampler, we first estimate a basic HMM 

using maximum-likelihood without user-level heterogeneity and no data fusion (Netzer et al. 

2017). We take the maximum-likelihood estimates as starting values for the MCMC sampler for 

the parameters of the likelihood core of the PHMMs. We set the heterogeneity intercepts to zero 

and the variance-covariance matrix of the upper level model to the identity matrix.  

We use the alternative stochastic fusion PHMM presented in Web Appendix A to obtain 

reasonable starting values for the two PHMMs presented in the main document.1 The alternative 

 
1 Alternatively, one could also estimate a HMM without data fusion for the starting value.  
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specification is relatively easy to implement irrespective of the number of states and survey 

response categories, and captures the relationship between the survey response categories and the 

latent states. Specifically, we take the last draw of the *-state alternative stochastic fusion 

PHMM (Web Appendix A) as starting value for the MCMC algorithm of the *-state 

deterministic and stochastic fusion PHMMs in the main document. For the PHMMs with a one to 

many mapping between the number of states and the job seeking survey response categories, we 

not only need to determine the starting values of all parameters but also the mapping of the 

observed survey responses to the states. We manually set the mapping of the survey response 

categories to the states based on the estimated ordered logit probabilities of the alternative 

stochastic fusion PHMM (Web Appendix A). For our empirical application, we found that this 

procedure works reasonably well.  

Convergence and label switching 

We run the MCMC chain for at least one million iterations burn-in. We ran the MCMC 

sampler after that for another 500K iterations retaining 2,500 iterations for posterior analysis 

(because we ran our models on the Amazon EC2 cluster, we reduced computational/memory 

burden for the cloud computer and data transfer between cloud and local computer by retaining 

every 200th iteration). Convergence was monitored by inspection of iteration plots of the sampler 

outputs. We also computed Geweke’s (1992) convergence diagnostic (a Z-score) for all fixed-

effects parameters of the likelihood kernel (including the initial and transition probability 

baseline intercepts). For the four PHMMs, Table B1 summarizes the median Z-score (absolute 

values) across all fixed effects parameters, where values less than 2 suggest that the front and 

back end of the chain have similar means. 
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Model Npars Geweke 
Main dataset 
Det-PHMM 12345 108 0.93 
Stoch-PHMM 12345 113 1.09 
Det-PHMM 112345 134 1.14 
Stoch-PHMM 123455 139 1.12 
Dataset used in Section 6 (targeting active job seekers) 
Det-PHMM 112345  108 1.00 

 
Table B1. Summary of Geweke’s z-score to assess convergence of the MCMC chain. Reported 
values are median values of the z-scores of the ‘Npars’ fixed-effects parameters of the likelihood 
kernel.  
 

Table B1 confirms the iteration plots and suggests that the MCMC chains converged. 

Convergence of HMMs can become problematic as the number of states increase. While in 

theory we could fit seven (or higher) state PHMMs, we believe that our data is not rich enough to 

support a 7-state PHMM and to identify which mapping with the survey is best (e.g., 1122345, 

1123345, 1123445, 1123455, 1223345, …, 1112345, 1222345,…,1234555). To empirically fit 

such complex models, we recommend (a) a larger cross section, (b) a longer time period or a 

more granular time interval (e.g., bi-weekly data instead of monthly data), and (c) multiple time 

periods in which survey observations are observed for a subset of users.   

Lastly, when the number of latent PHMM states exceeds the number of survey categories 

in the PHMM, one needs to control for label switching for the latent states that correspond to the 

same survey category in estimation, by either ordering the expected values for one of the 

activities (e.g., Netzer et al. 2008) or by post-processing techniques (Celeux 1998). We used the 

post processing approach following Celeux (1998). 
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Appendix C: Posterior mean and standard deviation of the variances of the heterogeneity 

distribution for the 6-state deterministic fusion PHMM (112345) and the 6-state stochastic 

fusion PHMM (123455) 

 Mean St.Dev.  Mean St.Dev. 

7'$
* 2.26 (0.20) 7'99

:  1.58 (0.40) 

7'%
* 0.88 (0.07) 7'9;

:  0.15 (0.08) 

7'$
<  2.13 (0.49) 7'9=

:  0.76 (0.30) 

7'%
<  0.25 (0.18) 7';$

:  1.98 (0.59) 

7'9
<  0.26 (0.14) 7';%

:  0.56 (0.20) 

7';
<  0.98 (0.30) 7';9

:  0.10 (0.05) 

7'=
<  0.38 (0.23) 7';;

:  0.14 (0.07) 

7'$$
:  0.13 (0.05) 7';=

:  1.71 (0.46) 

7'$%
:  0.40 (0.17) 7'=$

:  2.93 (0.97) 

7'$9
:  0.10 (0.06) 7'=%

:  0.12 (0.06) 

7'$;
:  0.11 (0.06) 7'=9

:  0.58 (0.29) 

7'$=
:  0.47 (0.37) 7'=;

:  0.24 (0.15) 

7'%$
:  2.02 (0.75) 7'==

:  2.16 (0.52) 

7'%%
:  0.35 (0.15) 7'/$

:  3.79 (1.06) 

7'%9
:  0.12 (0.07) 7'/%

:  0.22 (0.10) 

7'%;
:  0.50 (0.20) 7'/9

:  0.44 (0.23) 

7'%=
:  0.30 (0.19) 7'/;

:  1.84 (0.48) 

7'9$
:  0.74 (0.22) 7'/=

:  0.10 (0.04) 

7'9%
:  0.58 (0.32)    

  
Table C1. Posterior means and standard deviations diagonal elements of Σ) (upper level model) 
for the deterministic fusion PHMM (112345). 7'$* is the random intercept for the variable total 
searches and 7'%* for the variable pageviews.  
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 Mean St.Dev.  Mean St.Dev. 

7'$
* 1.68 (0.15) 7'99

:  1.55 (0.41) 

7'%
* 0.47 (0.04) 7'9;

:  0.14 (0.09) 

7'$
<  1.74 (0.52) 7'9=

:  0.83 (0.30) 

7'%
<  0.32 (0.16) 7';$

:  1.96 (0.50) 

7'9
<  0.52 (0.20) 7';%

:  0.39 (0.22) 

7';
<  0.40 (0.21) 7';9

:  1.29 (0.48) 

7'=
<  0.52 (0.21) 7';;

:  0.67 (0.23) 

7'$$
:  0.76 (0.25) 7';=

:  0.13 (0.09) 

7'$%
:  0.81 (0.39) 7'=$

:  0.11 (0.05) 

7'$9
:  0.61 (0.24) 7'=%

:  0.15 (0.07) 

7'$;
:  0.23 (0.12) 7'=9

:  0.22 (0.18) 

7'$=
:  0.13 (0.08) 7'=;

:  0.11 (0.06) 

7'%$
:  2.17 (0.86) 7'==

:  0.71 (0.33) 

7'%%
:  0.19 (0.09) 7'/$

:  2.09 (0.66) 

7'%9
:  0.75 (0.26) 7'/%

:  0.21 (0.10) 

7'%;
:  0.14 (0.10) 7'/9

:  0.35 (0.17) 

7'%=
:  1.43 (0.50) 7'/;

:  1.58 (0.40) 

7'9$
:  0.55 (0.21) 7'/=

:  0.90 (0.26) 

7'9%
:  0.26 (0.10)    

 
Table C2. Posterior means and standard deviations diagonal elements of Σ) (upper level model) 
for the stochastic fusion PHMM (123455). 7'$* is the random intercept for the variable total 
searches and 7'%* for the variable pageviews.  
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Appendix D: Lasso and Random Forest (RF) ordered logit benchmark models 

We used the R packages ‘glmnetcr’ (Archer and Williams, 2012) for the estimation of the 

Lasso ordered logit benchmark model and ‘ordinalForest’ (Horning, 2019) for the estimation of the 

RF order logit benchmark model. As reported in the main document, to calibrate the Lasso and RF 

models we regress the observed survey response in month 5 as an ordinal variable on the same 

(nine) variables that were used to calibrate the PHMMs in months 1,2, 3, and 4. To predict the job 

seeking status for the second survey we use the user activity in months 11,12, 13, and 14. Thus, the 

machine learning models include dynamics via the lagged observed activities as covariates. 

For the Lasso approach, we used the backward selection methods with a maximum of 

500 iterations. We selected the best model using the AIC criterion. The (non-zero) beta 

coefficients and ordered logit intercepts for the best Lasso models are given in Table D1.  

Predicting first survey Beta Predicting second survey Beta 
Total searches LAG1 0.022 Total searches LAG1 0.027 
Pageviews LAG1 0.044 Pageviews LAG1 0.087 
Pageviews LAG3 0.006 Pageviews LAG2 -0.062 
Profile updates (dum) LAG1 -0.351 Pageviews LAG3 0.025 
Job searched (dum) LAG2 0.442 Profile updates (dum) LAG1 -0.586 
Job searched (dum) LAG3 0.600 Profile updates (dum) LAG4 -0.021 
Job searched (dum) LAG4 0.301 Job searched (dum) LAG1 0.056 
Invitations received LAG2 -0.050 Job searched (dum) LAG2 0.498 
Connections formed LAG2 -0.028 Job searched (dum) LAG3 0.630 
Number of connections of invitee 
LAG1 0.040 Job searched (dum) LAG4 0.375 
More invitations outside company 
(dum) LAG3 -0.158   
cp1 2.966 cp1 3.005 
cp2 0.536 cp2 0.545 
cp3 0.104 cp3 0.105 
cp4 -0.209 cp4 -0.214 

Table D1. Non-zero coefficients and ordered logit thresholds for the LASSO ordered logit model 
based on the AIC criterion for predicting the first and second survey responses. 
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The Lasso ordered logit results, although at large a prediction model, nevertheless 

provides some insights into what behaviors correlate with job search. In particular, pageviews 

and whether the user used the job search tool in the months prior to the survey are important 

predictors of the responses to the job seeking status survey. Interestingly, users that update their 

profile are less likely to be job seekers in the next month, probably because job seekers ‘window 

dressed’ their profile page a few months in advance of actively seeking a job. 

For the RF ordered logit model, we mostly use the settings as recommended by Hornung 

(2019), including 5,000 trees. We used the proportional performance function, which is preferred 

if the main goal is to classify correctly as many observations as possible. We used the 100 best 

score sets with the highest out-of-bag prediction performance. It is possible to use only the single 

best score set, however, this outcome may be purely due to chance. We found for our empirical 

application that using the 100 best score sets led to fairly stable prediction outcomes when 

running the procedure several times. A lower number of score sets led to higher variability in the 

prediction outcomes whereas a higher number of score sets led to lower predictive performance. 

Table D2 lists for the RF approach the 10 most important variables for predicting next month 

survey responses to the job seeking question (in alphabetical order). 
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Predicting first survey Predicting second survey 
Connections formed LAG1 Job searched (dum) LAG1 
Connections formed LAG4 Job searched (dum) LAG2 
Invitations received  LAG4 Job searched (dum) LAG3 
Job searched (dum) LAG3 Job searched (dum) LAG4 
Number of connections of invitee  LAG2 Pageviews LAG1 
Pageviews LAG1 Pageviews LAG2 
Pageviews LAG3 Pageviews LAG4 
Pageviews LAG4 Total searches LAG1 
Total searches  LAG1 Total searches LAG2 
Total searches  LAG4 Total searches LAG4 

Table D2. The 10 most important predictors (in alphabetical order) for predicting the responses 
to the first and second survey from the RF ordinal logit approach. 
 

Comparing the results for the RF to the Lasso approach, we see a lot of similarities. In 

particular, pageviews and total searches help predicting the job seeking status for users in the 

next month, as well as past usage of the job search tool. Similar to the Lasso approach, the RF 

also does not list profile updates activity as an important predictor for next month job seeking 

status. 
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Appendix E: Robustness analyses predictions through 5-fold cross validation 

In this Web Appendix we perform the similar predictions to one reported in Table 6 of 

the main document but using a 5-fold cross validation. We create a 5-fold split of the data and fit 

all models 5 times. Table E1 reports the average values for the prediction metrics across the 5 

sets of results. The cross-validation analysis supports the results reported in Table 6 in the main 

document. Hence, the prediction findings in Section 5.3 of the main document using a random 

split of the 491 users into a calibration sample (9( = 400) and a holdout sample (9> = 91) is 

robust to alternative splits.   

Table E1. Five-fold cross validation results holdout predictions for the four versions of the PHMM, and the RF 
and Lasso ordered logit benchmarks. Performance metrics (JI, F1, PRC, AUC) indicate model performance to 
predict the users’ job seeking status in month 5 and month 14. Higher numbers indicate better performance.  

 

 

  

   Month 5 – Survey 1 Month 14 – Survey 2 
   JI F1 PRC AUC JI F1 PRC AUC 

C
ro

ss
 s

ec
tio

n  

Calibration Det. PHMM 12345     0.14 0.25 0.24 0.56 
Sample Det. PHMM 112345  0.14 0.25 0.24 0.55 
4-fold Stoch. PHMM 12345  N/A   0.13 0.23 0.23 0.54 
 Stoch. PHMM 123455     0.13 0.23 0.23 0.53 
 RF     0.12 0.21 0.23 0.55 
 Lasso     0.08 0.15 0.23 0.50 

Holdout  Det. PHMM 12345 0.16 0.28 0.26 0.59 0.15 0.26 0.25 0.56 
sample Det. PHMM 112345 0.13 0.23 0.24 0.56 0.16 0.27 0.26 0.56 
1-fold Stoch. PHMM 12345 0.16 0.27 0.26 0.57 0.14 0.24 0.24 0.54 
 Stoch. PHMM 123455 0.13 0.23 0.25 0.55 0.13 0.23 0.23 0.53 
 RF 0.10 0.18 0.24 0.55 0.10 0.18 0.23 0.55 
 Lasso 0.06 0.12 0.24 0.47 0.08 0.15 0.26 0.51 
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Appendix F: PHMM estimation results for the second dataset applying the model to d-mail 

targeting (Section 6 in the main document) 

We obtained a second sample of 1,621 users from the platform. For this sample we 

observe the users’ activity for a different sample of users than the ones used in Section 5, during 

the time period June 2011—May 2012. These users responded to the same job search survey as 

discussed in Section 3 of the main document. This survey was fielded in October 2011 (5th 

month of the observation window). For these users we also observe whether they received a d-

mail in each month and, if they received a d-mail, whether they responded to it. The activity 

variables we observe for this sample are similar, but not identical, to the activity variables 

observed in the sample used for the main analyses. We observe the following monthly activities: 

whether or not the user viewed a job ad (0/1 variable), whether or not the user updated his/her 

educational information on the profile page (0/1 variable), whether or not the user updated 

his/her position information on the profile page (0/1 variable), how many invitations to connect 

the user received, how many invitations to connect the user sent, how many page views the user 

made, and how many times the user’s profile page was viewed. All variables are observed for the 

full time period. 

The posterior results for the 6-state deterministic fusion PHMM (112345) are given in 

table F1. As in Section 5 in the main text, we report the transformed working parameters (7' and 

B). The trend parameters are reported at the working parameter level. Similar to the results in 

Section 5 of the main document, we masked the absolute monthly activity levels by multiplying 

them with the same random number, which was a single draw from a uniform distribution on the 

interval [0.5, 1.5]. 
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State 1  2  3  4  5  6    
Survey Response  1  1  2  3  4  5  Trend  
Job views (dum) 0.00 (0.00) 0.02 (0.00) 0.07 (0.01) 0.27 (0.01) 0.76 (0.01) 0.21 (0.01) 0.01 (0.00) 
Education modified 
(dum) 0.00 (0.00) 0.06 (0.01) 0.03 (0.00) 0.05 (0.01) 0.20 (0.01) 0.23 (0.01) -0.04 (0.00) 
Positions modified 
(dum) 0.00 (0.00) 0.15 (0.01) 0.08 (0.01) 0.13 (0.01) 0.40 (0.01) 0.43 (0.01) -0.03 (0.00) 
Invitations received 1.73 (0.06) 3.41 (0.07) 2.17 (0.04) 2.76 (0.06) 3.33 (0.10) 4.00 (0.14) 0.01 (0.00) 
Invitations sent 1.73 (0.30) 7.91 (0.38) 3.08 (0.13) 2.50 (0.09) 8.71 (0.43) 39.81 (2.71) -0.01 (0.00) 
Page views 6.68 (0.72) 496.70 (11.61) 133.13 (3.09) 222.23 (3.74) 598.70 (14.83) 2,285.73 (88.94) 0.01 (0.00) 
Profile views 
received 1.63 (0.27) 23.30 (0.70) 4.60 (0.13) 9.46 (0.22) 29.55 (0.91) 68.72 (3.27) 0.00 (0.00) 

               
Initial state 
distribution 0.28 (0.01) 0.17 (0.01) 0.22 (0.01) 0.15 (0.01) 0.09 (0.01) 0.09 (0.01)   
Transition matrix 0.45 (0.02) 0.11 (0.02) 0.24 (0.02) 0.04 (0.01) 0.03 (0.01) 0.11 (0.01)   
 0.08 (0.01) 0.40 (0.02) 0.24 (0.01) 0.14 (0.01) 0.04 (0.01) 0.11 (0.01)   
 0.14 (0.01) 0.16 (0.01) 0.34 (0.01) 0.17 (0.01) 0.09 (0.01) 0.10 (0.01)   
 0.17 (0.02) 0.15 (0.02) 0.28 (0.02) 0.24 (0.01) 0.09 (0.01) 0.07 (0.01)   
 0.01 (0.01) 0.18 (0.03) 0.34 (0.03) 0.14 (0.02) 0.26 (0.01) 0.07 (0.01)   
 0.07 (0.01) 0.42 (0.02) 0.15 (0.02) 0.01 (0.00) 0.13 (0.01) 0.23 (0.01)   

Table F1. Posterior means and standard deviations (in parentheses) for the proposed 6-state deterministic fusion PHMM. 
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When we compare the posterior estimates of the PHMM for this dataset with the 

posterior estimates of the same model in the main document (Table 3A), we can see that the 

findings are fairly similar. The active job seekers (State 6) exhibit the highest activity. As in the 

main document, we find two types of non-seekers, a type that rarely uses the site, and a type that 

uses the site quite actively almost to the level of (casually looking) job seekers (State 5), except 

that they do not view jobs. Interestingly, the active job seekers (State 6) are less likely to view 

jobs than users that are casually looking. As before, we find that job seekers send more 

invitations to connect than what they receive. In addition, the posterior results for the initial state 

distribution and the transition probability matrix are similar to the posterior results reported in 

the main document for the first dataset (Table 3A). Thus, the estimation of the PHMM for this 

new dataset at a different time period and with somewhat different set of activities suggests that 

the estimates of the PHMM are fairly robust and generalizable to a new sample of users and 

activities.  
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