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Abstract 

This chapter reviews recent developments in the application of optimization methods and 

machine learning to the estimation of conjoint-analysis partworths and to the adaptation of con-

joint-analysis questions at the level of the individual respondent.  We review the estimation 

methods within a common framework that considers how the various methods deal with a meas-

ure of fit (on calibration data), a measure of the complexity of the partworths, and a tradeoff be-

tween fit and complexity.  We review the individual-level adaptive questions within the princi-

ples of experimental design and the goal of choosing the next question (based on previous an-

swers) to minimize the estimation errors for the partworths. 

We demonstrate that, while the proposed methods are relatively new, they show consid-

erable potential to improve the accuracy of conjoint-analysis partworths and to improve the pre-

dictive ability of conjoint-analysis models.  The framework provides a means to understand and 

learn these new methods and suggests future tests, improvements, and applications. 

1. Introduction to optimization and machine-learning con-
joint analysis 
Soon after the introduction of conjoint analysis into marketing by Green and Rao (1972), 

Srinivasan and Shocker (1973a, 1973b) introduced a conjoint analysis estimation method, Lin-

map, based on linear programming.  Linmap has been applied successfully in many situations 

and has proven to be a viable alternative to statistical estimation (Jain, et. al. 1979, Wittink and 

Cattin 1981).  Recent modification to deal with “strict pairs” has improved the estimation accu-

racy with the result that, on occasion, the modified Linmap predicts holdout data better than sta-

tistical estimation based on hierarchical Bayes methods (Srinivasan 1998, Hauser, et. al. 2006). 

The last few years have seen a Renaissance of mathematical programming approaches to 

the design of questions for conjoint analysis and to the estimation of conjoint partworths.  These 

methods have been made possible due to faster computers, web-based questionnaires, and new 

tools in both mathematical programming and machine learning.  Empirical applications and 

Monte Carlo simulations with these methods show promise.  While the development and phi-

losophy of such approaches is nascent, the approaches show tremendous promise for predictive 

accuracy, efficient question design, and ease of computation.   
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This chapter provides a unified exposition for the reader interested in exploring these new 

methods.  We focus on six papers: Toubia, Simester, Hauser and Dahan (TSHD), 2003; Toubia, 

Simester and Hauser (TSH), 2004; Evgeniou, Boussios and Zacharia (EBZ), 2005; Toubia, 

Hauser and Garcia (THG), 2006; Abernethy, Evgeniou, Toubia and Vert (AETV), 2006; Evgen-

iou, Pontil and Toubia (EPT), 2006.  To avoid redundancy, we refer to each of the six reviewed 

papers by the initials of their authors after the first mention in each section. 

We use a framework that clarifies the strengths and limitations of these methods as ap-

plied in today’s online environment. Online conjoint analysis is often characterized by a lower 

number of observations per respondent, noisier data, and impatient respondents who have the 

power to terminate the questionnaire at any time. Such an environment favors methods that allow 

adaptive and interactive questionnaires, and that produce partworth estimates that are robust to 

response error even with few observations per respondent.  

The framework is that of statistical machine learning (e.g., Vapnik 1998). Within this 

framework, we interpret recent attempts to improve robustness to response error and to decrease 

the number of observations required for estimation as an application of “complexity control.”  

We complement this framework to review recent adaptive question design methods, by including 

experimental design principles which select questions to minimize the expected uncertainty in 

the estimates.  

In the interest of brevity we focus on the conceptual aspects of the methods, and refer the 

reader to the published papers for implementation details.  

Notation and Definitions 

We assume I consumers indexed by i (i=1,…,I) answering Ji conjoint questions each, in-

dexed by j (j=1,..,Ji). Let wi denote a p-dimensional partworths vector for each consumer i.  For 

ease of exposition, we assume binary features and a main effects specification.  Neither of these 

assumptions are critical to the theory – the reviewed papers address multi-level features and in-

teractions among features.  Indeed, an important benefit of complexity control is that feature in-

teractions of any degree may be estimated in an accurate and computationally efficient manner 

(EBZ; EPT).  
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The methods we review can be used for most conjoint data-collection formats.  For sim-

plicity we focus on the three most common: full-profile analysis, metric paired comparisons, and 

stated-choice questions. 

For full profile rating conjoint data, we assume that the jth question to respondent i con-

sists in rating a profile, xij. The respondent’s answer by yij.  The underlying model is 

ijiijij wxy ε+= . , where εij is a response error term. 

For metric paired-comparison conjoint data, we assume that the jth question asks respon-

dent i to compare two profiles, xij1 and xij2.  We denote the respondent’s answer by yij. The sign 

of yij determines which profile the respondent prefers; the magnitude of yij determines the 

strength of the preference. The underlying model is hence ijiijijij wxxy ε+−= ).( 21  where εij is a 

response error term.  

For stated-preference (choice-based) conjoint data, each respondent is asked to choose 

among a set of profiles.  For ease of exposition, we assume that the jth question asked the respon-

dent to choose among two profiles, xij1 and xij2. Without loss of generality, we code the data such 

that profile 1 is the chosen profile.  (Binary choice simplifies exposition.  Empirical applications 

and simulations use choices among more than two profiles.)  The underlying model is that rela-

tive true utility, uij, is given by ijiijijij wxxu ε+−= ).( 21  where εij is a response error term.  The 

respondent chooses profile 1 if 0≥iju .  The distribution of εij implies alternative probabilistic 

models. 

2. Using complexity control in conjoint analysis 
In statistical estimation of partworths, researchers often worry about over-fitting the data.  

For example, if one were to use regression to estimate almost as many partworths as there are 

data points, then the conjoint model would fit the (calibration) data well, but we might expect 

that the partworths would be based, in part, on measurement error and would not be able to pre-

dict holdout data.  Classical statistics address over-fitting by accounting for degrees of freedom 

and Bayesian statistics address over-fitting with hyper-parameters and the implied shrinkage to-

ward the population mean.  In statistical learning methods, over-fitting is addressed with the con-

cept of complexity control.  The conceptual idea is that if the model is too complex, it is too sus-

ceptible to over-fitting.  To avoid this unwanted effect, we limit the complexity of the model by 
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defining a measure of fit, a measure of complexity, and a method for determining the trade off 

between fit and complexity. Because the concept is important to understanding the philosophy of 

the new methods, we begin with a brief review of complexity control.  

 Ridge regression is an example of complexity control 

There is a long history in models of consumer behavior that, in the presence of measure-

ment error, unit partworths often predict well (e.g., Einhorn 1971, Dawes and Corrigan 1974.).  

One way to incorporate this concept in conjoint analysis is with ridge regression (e.g., Wahba 

1990; Vapnik 1998; Hastie et al., 2003). Consider a simple ordinary least square regression re-

sulting from a full-profile conjoint questionnaire. Such estimation involves minimizing the fol-

lowing loss function with respect to wi: 

 ∑
=

−=
J

j
iijiji wxywL

1

2).()(  (1) 

Minimizing loss function (1) results in the OLS estimate: 

 i
T
ii

T
i

OLS
i YXXXw .).(ˆ 1−=   (2) 

where Xi and Yi are obtained by stacking all J observations for consumer i. If the number of pro-

files J is relatively small compared to the number of parameters to estimate p, this simple ap-

proach may suffer from over-fitting and the estimates may be very sensitive to small variations 

in the dependent variable. Mathematically, this instability comes from the poor conditioning of 

the matrix (Xi
TXi). 

Ridge regression addresses instability and over-fitting by replacing OLS
iŵ with:   

 i
T
ii

T
i

Ridge
i YXIXXw .)..(ˆ 1−+= γ    (3) 

where I is the identity matrix and the parameter γ may be selected using various methods, such as 

cross-validation (which we will review later). Note that the matrix (Xi
T.Xi + γ.I) is better condi-

tioned than (Xi
TXi): all its eigenvalues are greater than or equal to γ. It is easy to show that (3) is 

the solution to the following modification of the OLS problem (1), where the minimization is 

done over wi, given γ: 
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 ∑
=

+−=
J

j
iiijiji wwxywL

1

22 ||||).(1)|(
γ

γ  (4) 

where ||wi||2 is the Euclidean norm of the vector wi.  

One interpretation of the term, ||wi||2, is as a means to control the complexity of the esti-

mate wi. Complexity control may be viewed as an exogenous constraint imposed on wi to effec-

tively limit the set of possible estimates. The parameter γ in (4) dictates the relative weight on 

complexity versus fit.  As γ  0, Equation 4 becomes equivalent to OLS regression; as γ  +∞, 

Equation 4 simply minimizes complexity.  If we had an additional constraint that the wi’s sum to 

a constant, the solution would be equal weights.  Typically we observe a U-curve relationship 

between the parameter γ and holdout accuracy (e.g., Evgeniou, Pontil, Toubia [EPT] 2006). Ac-

curacy is poor when γ is too small because of over-fitting.  Similarly, accuracy is often poor 

when γ is too large because the data are virtually ignored. Bootstrapping methods like cross-

validation (reviewed in a later section), for example, offer a practical and effective way of 

searching for this optimal value of γ , which is an issue extensively studied within statistical 

learning theory.    

A Bayesian Interpretation of complexity control 

We can use Bayes Theorem to provide another interpretation of complexity control.  We 

augment the data likelihood with a Bayesian prior as follows: 

Likelihood: 
),0(~

.

2σε

ε

N

wxy

ij

ijiijij +=
 (5) 

Prior: ).,0(~ INwi β  

 We compute the posterior distribution on wi conditioned on the data and a specific value 

of the parameters β and σ: 
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The posterior likelihood in Equation 6 is now in the same form as the loss function in 

Equation 4 if 2

2

β
σγ = .  Equation 6 provides a useful interpretation of the trade off parameter γ as 

the ratio of the uncertainty in the data (σ2) relative to the uncertainty in the prior (β2).  We place 

more weight on the data when they are less noisy (small σ2).  We shrink our estimates more to-

ward the prior when the data are noisy (large σ2) or when we have a stronger belief in the prior 

(small β2).  

While there is a mathematical equivalence, the two approaches differ in philosophy and, 

in particular, in how γ is selected. In the Bayesian interpretation, γ is set by the prior beliefs – 

exogenously. In statistical machine learning γ is estimated endogenously from the calibration 

data. This also makes any interpretation of the methods as “maximum likelihood or a posteriori 

estimation” (i.e., estimation of the mode in Equation 6) not straight forward.  This difference is a 

fundamental philosophical interpretation that leads to differences in estimation accuracy between 

statistical machine learning and Bayesian methods, as shown by EPT and discussed below. 

General framework 

Equations 4 and 6 are illustrative. The loss function in its general form, for a given γ, may 

be written as: 

 ∑
=

+=
J

j
iii wJdatawVwL

1
)(),(.1)|(

γ
γ  (7) 

 The first term, V(wi, data), measures the fit between a candidate partworth estimate, wi, 

and the observed data. The second term, J(wi), measures the complexity of wi The quadratic 

complexity function, ||wi||2, is common, but any function may be used. In general the choice of 

J(wi) in Equation 7 may also depend on the data.  

Minimization of the loss function 

A potential (but not necessary) restriction is that both functions V and J in (7) should be 

convex. In that case, the large literature on convex optimization provides efficient methods to 

minimize the loss function given γ.  Otherwise, non-convex (even combinatorial, for discrete de-

cision variables) optimization methods can be used, leading to solutions that may be only locally 
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optimal. Most of the reviewed papers use some variation of Newton’s method and achieve con-

vergence after few (e.g., 20) iterations. In some cases (Abernethy, Evgeniou, Toubia and Vert 

(AETV), 2006; EPT) the loss function is minimized using closed-form expressions. Computation 

time is rarely a limitation, and often an advantage compared to other methods such as hierarchi-

cal Bayes. 

Trade off between fit and complexity 

The tradeoff, γ, between maximizing fit and minimizing complexity can be set exoge-

nously by the modeler or the Bayesian prior or endogenously, for example by means of cross-

validation. For example, the polyhedral methods of Toubia, Simester, Hauser and Dahan (TSHD, 

2003) and Toubia, Hauser and Simester (THS, 2004) implicitly assume an infinite weight on fit 

by maximizing fit first and then minimizing complexity among the set of estimates that maxi-

mize fit. The probabilistic polyhedral methods of Toubia, Hauser and Garcia (THG, 2006) use 

pretest information to select the tradeoff between fit and complexity, captured by a response er-

ror parameter α’. AETV set γ to the inverse of the number of questions, to ensure that the weight 

on fit increases as the amount of data increases (Vapnik 1998). 

Of the conjoint analysis papers reviewed in this chapter, EBZ and EPT select γ using 

cross-validation – a typical approach in statistical machine learning. (See for example Wahba 

1990; Efron and Tibshirani 1993; Shao 1993; Vapnik 1998; Hastie et al., 2003, and references 

therein). It is important to stress that cross-validation does not require any data beyond the cali-

bration data.  

The parameter γ is set to the value that minimizes the cross-validation error, typically es-

timated as follows:  

• Set Cross-Validation(γ)= 0.  

• For k = 1 to J:   

o Consider the subset of the calibration data that consists of all questions except the 

kth one for each of the I respondents.1  

o Using only this subset of the calibration data, estimate the individual partworths 

{wi
-k} for the given γ. 

                                                 
1 Variations exist. For example one can remove only one question in total from all I respondents and iterate I x J 
times instead of J times. 
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o Using the estimated partworths {wi
-k}, predict the responses to the I questions 

(one per respondent) left out from the calibration data and let CV(k) be the predic-

tive performance achieved on these questions (e.g., root mean square error be-

tween observed and predicted responses for metric questions, logistic error for 

choice questions). 

o Set Cross-Validation(γ) = Cross-Validation(γ) + CV(k). 

 

The parameter γ is set to the value that minimizes the cross-validation error, and is typi-

cally identified by using a line search. The cross-validation error is, effectively, a “simulation” of 

the out-of-sample error without using any out-of-sample data.  

3. Recent optimization-based and machine-learning esti-
mation methods 
Five of the reviewed papers propose and test new estimation methods (Abernethy, Ev-

geniou, Toubia and Vert [AETV], 2006 is the only reviewed paper that focuses exclusively on 

questionnaire design and not on estimation). We examine these methods in light of the general 

framework outlined above. Each method may be viewed as a combination of a specific fit func-

tion, a specific complexity function, and a method for selecting the amount of trade off between 

fit and complexity. 

Support vector machine estimation for choice-based conjoint 

analysis 

Evgeniou, Boussios, and Zacharia (EBZ, 2005) focus on choice-based conjoint analysis 

and use a standard formulation known as the Support Vector Machine (SVM, Vapnik 1998). 

This has been arguably the most popular statistical machine learning method over the past 10 

years, with numerous applications in various fields outside of marketing such as text mining, 

computational biology, speech recognition, or computer vision. An SVM uses the following loss 

function:  

 ( )[ ]∑
=

+−−−−=
J

j
iiijijiijiji wwxxwxxwL

1

2
2121 ||||).(1).(11)|( θ

γ
γ   (8) 
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where the function θ is chosen such that θ(a) = 1 if a > 0 and 0 otherwise. Equation 8 combines 

quadratic complexity control with a fit function that is slightly different from that normally used 

in conjoint analysis.  

Recall that we assume, without loss of generality, that xij1 is chosen over xij2. Hence a 

partworth vector wi is consistent with choice j if 0).( 21 ≥− iijij wxx .  If iijij wxxa ).(1 21 −−= , then 

θ(a) = 0 if 1).( 21 ≥− iijij wxx , hence, the product ]).(1)[).(1( 2121 iijijiijij wxxwxx −−−−θ  equals 0 

whenever 1).( 21 ≥− iijij wxx .  This will happen whenever the observed choice j is predicted by wi 

with a margin of at least 1. If choice j is not predicted by a margin of at least 1, the loss function 

introduces a penalty equal to the distance between iijij wxx ).( 21 − and 1. Fit is measured by the 

sum of these penalties across choices. Setting the margin to 1 plays the role of scaling the magni-

tudes of the partworths; any other scaling number could be used. EBZ select the parameter γ us-

ing cross-validation. 

This loss function may be related to the analytic center criterion reviewed below. In par-

ticular, if each choice is interpreted as a constraint 1).( 21 ≥− iijij wxx , then the set of points wi 

that satisfy all the constraints forms a polyhedron, and for each point wi in this polyhedron, the 

complexity term || wi||2 becomes the inverse of the radius of the largest sphere centered at wi in-

scribed in this polyhedron (Vapnik 1998). As a result, the value of wi that minimizes complexity 

is the center of the largest sphere inscribed in the polyhedron.  

Analytic center estimation for metric paired-comparison conjoint 

analysis 

Polyhedral methods introduced by Toubia, Dahan, Simester and Hauser (TDSH, 2003) 

and Toubia, Hauser and Simester (THS, 2004), and extended by Toubia, Hauser and Garcia 

(THG, 2006) were developed explicitly to improve adaptive question design.  The primary appli-

cation of these methods is to web-based conjoint analysis where respondents are free to leave the 

questionnaire at any time.  Polyhedral methods provide means to gather the most efficient infor-

mation from each question. 

However, each of the three polyhedral methods provides an estimation method as a by-

product of question design.  This estimation method is based on the analytic center of the set of 
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feasible partworths – possibly probabilistic.  We provide here an interpretation of analytic-center 

estimation within the framework of statistical machine learning. 

We begin with TDSH, who assume a metric paired-comparison conjoint format. TDSH 

first consider the case in which there is no response error (εij=0), and observe that the answer to 

each question may be interpreted as a constraint on wi: iijijij wxxy ).( 21 −= . The set of “feasible” 

estimates that satisfy all the constraints associated with all the questions is a polyhedron, defined 

as:  

 Ф{1,…J}={wi, 0 ≤  wi  ≤  100, (xij1 - xij2).wi = yij for j=1,…J}  (9) 

where the constraint, 0 ≤ wi ≤ 100, is chosen without loss of generality to establish the scale of 

the partworths. Out of all feasible estimates defined by this polyhedron, TDSH select the analytic 

center of the polyhedron as their working estimate, defined as: 

 ∑
=

−+=
p

k
ikikw

AC
i www

i 1
)100log()log(maxargˆ  (10) 

 subject to: (xij1 - xij2).wi = yij for j=1,…J 

where wik is the kth element of wi. The analytic center is the point that maximizes the geometric 

mean of the slack variables associated with the inequality constraints. The logarithmic function is 

called a “barrier function” in interior point programming.  It prevents the expression inside the 

logarithm from being non-positive. 

For small number of questions the feasible polyhedron will be non-empty, however, as 

the number of questions grows in the presence of response error, it will no longer be possible to 

find partworths that are consistent with all of the questions and the feasible polyhedron Ф{1,…J} 

will become empty. Toubia et al. (2003) follow a two-step estimation procedure: (1) find the 

minimum amount of response error δ* necessary for the polyhedron to become non-empty, (2) 

find the analytic center of the resulting polyhedron. In particular, they first find the minimum δ* 

such that the polyhedron defined as: 

Ф{1,…J}={wi, 0 ≤  wi  ≤  100,  yij - δ* ≤  (xij1 - xij2).wi  ≤  yij + δ* for j = 1,…J}   

is non empty, and then estimate the partworths using the analytic center of this new polyhedron: 
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)100log()log(maxargˆ

δδ
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We now reformulate Equation 7 within the general framework.  We begin by rewriting 

the polyhedron Ф{1,…J} in standard form:  

*}).(*;).(;100;0~);,,,(~{ 2121 δδ +=+−−=−−=+≥= ijijiijijijijiijijiiiiiiii ycwxxybwxxawwcbaww  

TDSH’s fit measure becomes  *),~( δ=datawV i
AC  and their complexity control becomes: 

 ∑ ∑
= =

−−+−−=
p

k

J

j
ijijikiki

AC cbawwJ
1 1

)log()log()log()log()~(  (12) 

Their two-step procedure becomes the limiting case (when γ→0) of the following loss 

function: 

 )~(),~(1)|~( i
AC

i
AC

i wJdatawVwL +=
γ

γ  (13) 

If one wishes, one can generalize TDSH’s analytic-center estimation by choosing a non-

limiting parameter γ to balance fit and complexity.  

Analytic center estimation for choice-based conjoint analysis 

THS developed a choice-based polyhedral conjoint method. Each stated-choice question 

is interpreted as an inequality constraint of the form (xij1 - xij2).wi  ≥ - δ*, where δ* is a non-

negative parameter that captures response error. The polyhedron of feasible partworths becomes:  

 Ф{1,…J}={wi,  wi  ≥ 0, 1.wi = 100, (xij1 - xij2).wi  ≥ - δ* for j = 1,…J} (14) 

where 0 ≤  wi and 1.wi = 100 are scaling constraints chosen without loss of generality.  (1 is a 

vector of one’s, such that 1.wi is equal to the sum of the elements of wi).  

 Like the metric version, the primary goal of polyhedral choice-based conjoint analysis is 

to select questions efficiently.  Using the proposed method, THS select questions such that each 

choice by a respondent selects a subset of the feasible polyhedron of partworths.  With this 

method, the feasible polyhedron never becomes empty.  Ideally, with no measurement error the 
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polyhedron will shrink toward the true value of a respondent’s partworths.  Intermediate esti-

mates are the analytic center of the feasible polyhedron. 

 When choice-based polyhedral methods are not used to select questions, it is possible that 

the feasible polyhedron will become empty.  In this case, THS again follow a two-step estima-

tion procedure: (1) find the minimum value of δ* such that the polyhedron Ф{1,…J} is non-empty, 

(2) find the analytic center of the resulting polyhedron, defined as:  

 ∑∑
==

+−+=
J

j
iijij

p

k
ikw

AC
i wxxww

i 1
21

1
*)).log(()log(maxargˆ δ  (15) 

 subject to: 1.wi=100 

The polyhedron may again be written in standard form as: 

Ф{1,…J}= *}).(;100.1;0~);,(~{ 21 δ−=−−=≥= ijiijijiiiii awxxwwaww . 

The two-step estimation procedure becomes the limiting case (γ→0) of the following loss 

function: 

         )~(*.1)|~( i
AC

i wJwL += δ
γ

γ  (16) 

 subject to: 1.wi=100 

where: 
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==

−+−=
J

j
ij

p

k
iki

AC awwJ
11

)log()log()~(          (17) 

Probabilistic analytic center estimation  

THG offer a Bayesian interpretation of the method proposed by THS, which enables a 

richer treatment of response error and which allows capturing informative priors on the part-

worths. They consider prior distributions represented by mixtures of uniform distributions sup-

ported by polyhedra. (In one dimension, a uniform distribution supported by a polyhedron sim-

ply becomes a uniform distribution on an interval; in two dimensions, it is a uniform distribution 

on a rectangle, etc.) Mixtures of such distributions may be used to approximate any prior distri-

bution. THG also provide a method by which prior beliefs are not directly captured by probabil-

ity distributions, but rather by probabilistic constraints on some combinations of the parameters 



Optimization and machine-learning methods for conjoint analysis 13

(e.g., the importance of feature A is greater than m with probability q). The general expression 

for this class of distributions is as follows: 

 ∑ = Ψ=
M

m imi wPwP
m1

)()( ω  

where M is any positive integer, },...,{ 1 Mωω is a set of positive weights such that∑ =
=

M

m m1
1ω , 

},...,{ 1 MΨΨ is a set of polyhedra, and )( iwP
mΨ is the uniform probability distribution with sup-

port Ψm. The previous methods of TDSH and THS implicitly assume a uniform prior on the 

polyhedron defined by the scaling constraints.  

THG combine this class of prior distributions with a conjugate class of likelihood func-

tion such that in each question, the profile with the highest deterministic utility is chosen with 

probability α’, and the (J-1) other profiles are chosen with probability (1- α’)/(J-1) each. Such 

likelihood functions are step functions with two values, one taken by all points that are consistent 

with the choice, and the other taken by all points that are inconsistent with the choice. The spe-

cific values are driven by the parameter α’. This class of likelihood functions is attractive be-

cause the posterior distribution on the partworths is also equal to a mixture of uniform distribu-

tions supported by polyhedra. After J questions, the posterior distribution on wi may be written 

as follows: 

 ∑ ∑
= ∈

Ψ∩Φ=
M

m Ss
ismi

J

ms
wPwP

1
)()( ω , 

where SJ is the set of all subsets of the questions {1, 2, …, J}, and for a subset s of SJ, Фs is the 

polyhedron corresponding to the questions in s. The parameter ωms is the mixture weight on the 

polyhedron defined by the intersection between Фs and the prior polyhedron Ψm (see THG for a 

method to approximate these weights). 

 Although other techniques could be used as well, THG select the parameter α’ from a 

pretest sample of respondents, following the tradition of aggregate customization (Arora and 

Huber 2001, Huber and Zwerina 1996). 

Given the posterior distribution written as a mixture of uniform distributions supported 

by polyhedra, several methods could be used to produce point estimates of the partworths. For 

example, an algorithm could be developed that allows sampling from this posterior distribution 
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and estimating the partworths as the mean of this distribution. For simplicity, THG estimate the 

partworths as the mixture of the analytic centers of the polyhedra involved in the mixture.  

THG essentially shift the focus from the minimization of a loss function to the explora-

tion of a posterior distribution. However their approach may be still be framed within statistical 

machine learning. In particular, complexity control is achieved by the prior distribution.  The pa-

rameter α’ effectively controls the trade off between fit and complexity. For example, α’=1 im-

plies no response error and the estimates fit the data perfectly;  α’=1/J implies non-informative 

choices and all inference will be based only on the prior.  

Using complexity control to model heterogeneity  

Hierarchical Bayes has been one of the most successful developments in the estimation of 

conjoint-analysis partworths (Lenk et al., 1996; Allenby and Rossi 1999; Rossi and Allenby 

2003; Rossi, Allenby and McCulloch., 2005).2 Liu, Otter, and Allenby (2006) suggest that one 

reason for this accuracy is the likelihood principle which states that the likelihood best summa-

rizes the information in the data.  Another, less formal hypothesis is that Bayesian methods are 

accurate because they robustly shrink individual-level estimates toward the mean of the popula-

tion.   As motivated by the analogy of ridge regression and Bayesian priors, the shrinkage in hi-

erarchical Bayes can be seen as analogous to complexity control. 

EPT explore this interpretation for both metric and choice data. In the metric case, the 

loss function can be formulated as follows: 

 ∑∑ ∑
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subject to D being a positive semi-definite matrix scaled to have a trace of 1.  

We note that this formulation is not identical to hierarchical Bayes methods.  It differs in 

both philosophy and computation.  Nonetheless, it is an interesting analogy. 

There are a number of interesting characteristics associated with this loss function: (1) es-

timates are obtained simultaneously for all respondents, (2) estimates are shrunk toward a com-

                                                 
2 Technically, Bayesian methods sample from the posterior distribution of the parameters rather than provide esti-
mates in the classical sense.  For simplicity, we refer to the mean of the posterior distribution as the partworth esti-
mates. 
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mon partworth vector that may differ from the unit vector, and (3) the parameter γ dictates the 

trade off between fit and shrinkage.   

Although the population vector w0 is not defined to be the population means, EPT show 

that the value of w0 that minimizes the loss function must equal the population mean. The matrix 

D is analogous to the covariance matrix of the partworths; the shrinkage penalty is greater for 

partworths that are distant from the mean w0 along directions in which there is less variation 

across respondents. By scaling D with its trace, the authors assure that the optimization problem 

is convex.  Although the actual minimization is beyond the scope of this chapter, we note that, 

for a given γ, the optimal solution is in closed form and hence computationally efficient (see pa-

per for more details). 

For choice data, EPT substitute the logit log-likelihood as the fit measure.  The loss func-

tion becomes: 
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Because closed-form expressions are not available with this formulation, Newton’s 

method is used (any other convex optimization method could be used) to minimize the loss func-

tion for a given γ. 

To assess the impact of the differing philosophies, EPT compare their approach to hierar-

chical Bayes. In particular, they consider the following two HB models for metric and choice 

data respectively (in both cases a diffuse prior is assumed on w0): 

Metric data: 

Likelihood:   yij=xij.wi+εij, εij~N(0,σ2) 

First-stage prior:  wi~N(w0,D) 

Second-stage priors:  σ2~IG(r0/2,s0/2) 

   D-1~W(η0, η0.∆0) 
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Choice data: 

Likelihood:  Prob(xij1 chosen)= 
).exp().exp(

).exp(

21

1

iijiij

iij

wxwx
wx

+
 

First-stage prior: wi~N(w0,D) 

Second-stage prior:  D-1~W(η0, η0.∆0), 

 

where IG denotes the inverse gamma distribution and W the Wishart distribution.  

Both the machine learning and hierarchical Bayes approaches shrink estimates toward the 

population mean. Moreover, in the case of metric data, EPT are able to show that the individual-

level estimates conditional on D and w0 are given by the exact same mathematical expressions.  

However they identify two major and fundamental differences between their approach 

and HB. First, while the former involves the minimization of a loss function, the latter involves 

sampling from a posterior distribution. Hence in HB point estimates are only one of the many 

ways to summarize and describe the posterior distribution. Other important statistics include the 

standard deviation of this distribution. EPT illustrate that standard deviations and confidence in-

tervals may also be obtained in their framework, using for example bootstrapping (Efron and 

Tibshirani, 1993).  

Second, the two methods differ on how they select the amount of shrinkage.  In HB the 

amount of shrinkage is selected, in part, by prior judgment embodied in the second-stage prior 

parameters (η0, ∆0, r0, and s0 in the metric case; η0 and ∆0 in the choice case); in machine-

learning it is determined from the calibration data (γ).  By selecting γ through cross-validation, it 

may not be surprising that the machine-learning approach can outperform HB unless, of course, 

the second-stage priors are chosen with prescience.  See EPT for detailed results.  

Summary of optimization and machine-learning estimation 

Table 1 describes and contrasts the estimation methods reviewed in this section.  
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Table 1 
Characteristics of the reviewed estimation methods  

 

4. Recent optimization-based and machine-learning adap-
tive questionnaire design methods 
One of the breakthroughs in the 1980s was the ability to adapt conjoint analysis questions 

to the observed responses of consumers.  Algorithms developed by Johnson (1987, 1991) for 

Adaptive Conjoint Analysis (ACA) enabled researchers using computer-aided interviews to ask 

more efficient questions.  For almost 20 years ACA was one of the most commonly applied 

methods, only recently surpassed by choice-based conjoint analysis.   It is only in the past few 

years that we have seen a resurgence in adaptive questionnaire design.  This resurgence has been 

made possible by the development of new efficient computational algorithms and the continued 

growth in computing power.  It is now feasible to adapt questions in an on-line environment us-

ing sophisticated background computations that run in the time it takes to download the code for 

the next page display – the respondent notices little or no delay due to this computation.  While 

the methods are still being perfected, the results to date suggest that in many applications these 

adaptive questioning methods enable researchers to design methods that ask fewer questions yet 

still provide estimates that are sufficiently accurate for important managerial decisions.  The 

methods work for a variety of conjoint analysis formats, including both metric paired-

comparison data and choice-based data.   

Paper(s) Fit measured by Complexity 
measured by Trade off fit / complexity 

Evgeniou, Boussios, 
Zacharia (2005) Support vector machine Quadratic norm on 

the partworths 
Determined by cross-

validation 

Toubia, Simester, 
Hauser, Dahan (2003) 

Response error to obtain 
feasible polyhedron Analytic center Maximize fit first, then 

minimize complexity 

Toubia, Simester, 
Hauser (2004) 

Response error to obtain 
feasible polyhedron Analytic center Maximize fit first, then 

minimize complexity 

Toubia, Hauser, Garcia 
(2006) Polyhedral mixture Informative prior Based on pretest 

Evgeniou, Pontil, Toubia 
(2006) 

Sum of squared errors / 
logistic likelihood 

Difference from 
population means 

Determined by cross-
validation 
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In this chapter we review four newly proposed methods that enable researchers to adapt 

questions at the level of the individual respondent.  

Experimental design principles 

Non-adaptive questionnaire design builds primarily on the field of experimental design 

(Chaloner and Verdinelli 1995; Ford, Kitsos and Titterington 1989; Kuhfeld, Tobias and Garratt 

1994; Pukelsheim 1993; Steinberg 1984). The approach can be summarized as minimizing a 

norm of the asymptotic covariance matrix of the parameter estimate iŵ . Under mild assumptions 

(Newey and McFadden 1994), it can be shown that the maximum likelihood estimate of wi is as-

ymptotically normal with covariance matrix equal to the inverse of the information matrix Ω, 

given by the Hessian (second-derivative matrix) of the loss function minimized in estimation. 

Non-adaptive efficient designs maximize a norm of the information matrix Ω, the inverse 

of the covariance matrix. The most widely used norm is the determinant, giving rise to so-called 

D-efficient designs (Arora and Huber 2001; Huber and Zwerina 1996; Kuhfeld, Tobias and Gar-

ratt 1994; Kuhfeld 2005). D-efficiency minimizes the volume of the confidence ellipsoid around 

the maximum likelihood estimate iŵ , defined by }1)ˆ()ˆ(:{ ≤−Ω− i
T

i wwwww , and makes this el-

lipsoid as spherical as possible (Greene 2000). For example, the well-known orthogonal and bal-

anced designs (Addelman 1962, Kuhfeld, Tobias and Garratt 1994), when they exist, maximize 

efficiency. 

For stated-choice data, the information matrix depends on the true partworths wi.  In most 

cases, efficiency can be improved by attempting to achieve utility (or choice) balance such that 

the alternatives in each choice set are close in utility (close in probability of choice) where utility 

is often calculated based on prior beliefs about the partworths. There are many algorithms to in-

crease efficiency: Arora and Huber (2001), Huber and Zwerina (1996), Kanninen (2002), Sandor 

and Wedel (2001), and Hauser and Toubia (2005). Abernethy, Evgeniou, Toubia and Vert 

(AETV, 2006) note that similar principles have been used in other fields such as active learning 

(Tong and Koller 2000). 

The adaptive question design methods use similar fundamental principles. For example,  

Toubia, Dahan, Simester and Hauser (TDSH, 2004), Toubia, Hauser and Garcia (THG, 2006), 

and AETV select the next questions to achieve utility balance based on estimates from the an-

swers to previous questions. These methods attempt to minimize the amount of “uncertainty” 
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around the estimate and to make uncertainty similar in all directions.  Questions are chosen to 

reduce the uncertainty along the most uncertain dimension. 

In polyhedral methods, uncertainty is characterized by the polyhedron of feasible esti-

mates (which may conceptually be related to the confidence ellipsoid in maximum likelihood es-

timation), and questions are selected to maximally reduce the volume of this polyhedron and 

minimize the length of its longest axis (making it more spherical). In a similar vein, AETV char-

acterize uncertainty by the inverse of the Hessian of the loss function (equal to the information 

matrix), and select questions to maximally increase the smallest positive eigenvalue of the Hes-

sian.  We now review these methods in greater detail. 

Polyhedral question design 

For ease of exposition, we describe the intuition for polyhedral methods when the feasi-

ble polyhedron is non-empty.  The same intuition applies to the expanded polyhedron.  

In polyhedral question design, the constraints imposed by the answers to previous ques-

tions form a polyhedron. All points in the polyhedron are consistent with prior answers. A 

smaller polyhedron implies a smaller set of feasible estimates and, hence, less uncertainty about 

the partworths.  For example, the gray region in Figure 1 is the feasible polyhedron after a set of 

questions and all points (partworths) in that gray area are consistent with the answers to prior 

questions.  Our goal is to select the next question such that when the question is answered, the 

resulting polyhedron is as small as possible. 

Formally, let Ф{1,…J} denote the polyhedron defined by the answers to the first J ques-

tions asked of a given respondent. Let Ф{1,…J+1} denote the new polyhedron formed when the J + 

1st answer constrains Ф{1,…J}.  Consider first metric paired-comparison questions.  The new con-

straint will be of the form (xi(J+1)1-xi(J+1)2).wi = yi(J+1). The set of points, wi that satisfy this new 

constraint is a hyperplane perpendicular to the vector (xi(J+1)1-xi(J+1)2).  This is shown as the green 

surface in Figure 1. The new polyhedron, Ф{1,…J+1}, is the intersection between the current poly-

hedron, Ф{1,…J}, and this hyperplane.  

We must now select a question that, when answered, minimizes the volume of the new 

polyhedron, Ф{1,…J+1}.  In addition we want to make it more spherical.  Intuitively, we satisfy 

these criteria if we select the hyperplane to be orthogonal to the longest axis of the current poly-

hedron.  Mathematically, this means that we select the two profiles in the next question such that 
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the line, (xi(J+1)1-xi(J+1)2),  is as close as possible to the longest axis of the polyhedron. (At mini-

mum, by intersecting the current polyhedron with a hyperplane perpendicular to the current 

longest axis will ensures that the longest axis of the next polyhedron will be strictly smaller than 

the longest axis of the current polyhedron.)  

The mathematics are complex, but the basic idea is to find the analytic center of the poly-

hedron and choose the smallest ellipsoid such that the polyhedron is surrounded by the ellipsoid 

with its center at the polyhedron’s analytical center.  Then, by solving an eigenvalues problem, 

TDSH select the longest axis of the ellipsoid as representing the longest axis of the polyhedron. 

Figure 1 
Cut perpendicular to the longest axis – metric data case 

(From Toubia, Simester, Hauser, and Dahan 2003) 

 
The methods and philosophy for choice-based data follow the same intuition, with a few 

modifications (THS, THG).  For binary stated-choice data, new constraints are inequality con-

straints of the form (xi(J+1)1-xi(J+1)2).wi ≥ 0.  (The method is extended easily to multiple alterna-

tives in the choice set.)  The set of points that satisfy the constraint implied by the J+1st answer is 

a half-space.  If the boundary of his half-space intersects the feasible polyhedron, Ф{1,…J}, it will 

divide the polyhedron into two sub-polyhedra.  One sub-polyhedron corresponds to the choice of 

xi(J+1)1 and the other to the choice of xi(J+1)2.   In other words, the respondent’s choice in the J+1st 

question identifies one or the other sub-polyhedron.  All points in the chosen sub-polyhedron are 

consistent with the answers to all J+1 questions.  

THS again seek to choose questions such that the resulting sub-polyhedron will be as 

small and spherical as feasible.  THS show that the expected volume of Ф{1,…J+1} is reduced effi-

ciently if the separating hyperplane is chosen so that it goes through the center of the feasible 

polyhedron, such that each choice alternative is as equally likely as possible.  Such choice bal-
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ance assures that the resulting polyhedra are of approximately equal volume.  This is illustrated 

in Figure 2a. 

Of the many hyperplanes that split the feasible polyhedron, the hyperplane that will make 

the resulting sub-polyhedra as spherical as possible is the hyperplane that is perpendicular to the 

longest axis of the polyhedron.  This is illustrated in Figure 2b. 

The two points at which the longest axis intersects the boundary of the polyhedron pro-

vide two target partworth vectors. The final step is to construct one profile associated with each 

of them.  Each profile is obtained by simply solving a budget constraint problem. That is, for 

each target partworth vector, THS construct a choice alternative that maximizes utility subject to 

a budget constraint. 

A strength of adaptive polyhedral question design is that questions are chosen such that 

the resulting polyhedra are always feasible and non-empty.  However, this strength is also a 

weakness.  When there is response error, early errors propagate.  A choice made in error forever 

assures that the true partworths are not in any subsequent polyhedra.  As a result, early tests indi-

cated that adaptive choice-based questions improved accuracy and efficiency when response er-

ror was small, but not when it was large.   

THG address response error with a probabilistic generalization of polyhedral methods.  

They model potential response error by assuming that each constraint applies with probability 

α,3 where α is based on pretest data. They then show that polyhedral methods can be given a 

Bayesian interpretation such that the posterior distribution of the partworths is a mixture of poly-

hedra, each defined by a subset of the constraints imposed by the respondent’s answers to the 

chosen questions (see details above). With this interpretation, it is simple conceptually to extend 

adaptive polyhedral choice-based question design.  New questions are chosen based on the long-

est axis of the appropriate mixture of polyhedra.  

                                                 
3 This is equivalent to a respondent choosing the maximum utility profile with probability α’, where, under reason-
able conditions there is an algebraic relation between α and α’. 
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Figure 2 
Utility balance cuts and cuts perpendicular to the longest axis – choice data case 

(from Toubia, Hauser, Simester 2004) 

 

Hessian-based adaptive question design for choice-based con-

joint analysis 

Statistical learning methods also provide a means to adapt conjoint questions. AETV de-

fine loss functions that are convex and twice differentiable.  For such loss functions, uncertainty 

with respect to the partworths is captured by the inverse of the Hessian of the loss function.  

Their goal is then to design a question by selecting a direction in parameter space that maximally 

decreases this matrix subject to enforcing utility balance.  

In particular, AETV propose solving the following quadratic optimization problem in or-

der to find a direction of maximal uncertainty: 

 T
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The question-design algorithm is implemented as follows: 
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1. Find iŵ  such that iŵ  minimizes the loss function L(wi | γ).  Because L is convex, there 

are many convex optimization methods that are efficient. 

2. Find the (normalized) eigenvector z associated with the smallest positive eigenvalue of 

the matrix )|ˆ().
ˆ.ˆ

ˆ.ˆ
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T
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3. Find a pair of profiles such that (xi(J+1)1-xi(J+1)2) is as close as possible to being propor-

tional to z and such that utility balance is preserved: (xi(J+1)1-xi(J+1)2) 0ˆ. ≈iw .4 

AETV illustrate the Hessian approach with a Ridge Regression loss function – similar to 

that used in support vector machines (where the constant, 1, scales the partworths): 

 ∑
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With this loss function, the minimum iŵ and the Hessian are given in closed form. To avoid the 

computational delays of cross-validation, γ is set equal to the inverse of the number of questions 

so that the data are weighed more heavily as more data become available. This specification is 

motivated by Vapnik (1998).   

Summary of adaptive question design 

 Machine-learning and fast polyhedral algorithms have made it feasible to adapt both met-

ric paired-comparison and choice-based conjoint questions to each respondent.  Such questions 

promise to be more accurate and customized to focus precision where it is most needed.  The ba-

sic concept is that each conjoint question constrains the set of feasible partworths.  A re-

searcher’s goal is to find the questions that impose the most efficient constraints, where effi-

ciency is defined as maximally decreasing the uncertainty in the estimated partworths. 

 To date, all question-design algorithms use information from a single respondent to select 

questions for that respondent.  However, one of the lessons of both hierarchical Bayes and the 

machine learning approaches of EPT is that population-level information can improve accuracy 

at the individual level.  We predict that such pooling methods will be feasible in the near future 

and make promising areas for research. For example one could adapt the Hessian method of 

AETV to a loss function like the ones in Equations 18 or 19 used by EPT.  
                                                 

4 AETV use the Knapsack approach of THS. 
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4. Applications, simulations, and empirical tests 
Conjoint analysis has a long history of validation and application.  See, for example, 

Green (2004).  Methods such as ACA, logit analysis of choice-based conjoint analysis, and hier-

archical Bayes estimation have been improved through hundreds of applications.  Such use and 

its related research has led to incremental improvement of these standard methods.  By contrast, 

the methods reviewed in this paper are relatively new, each with only a few applications. On one 

hand, such tests usually involve only one or a few applications and, thus, must be considered ex-

perimental.  On the other hand, we expect the performance on these tests to be lower bounds on 

eventual performance which is likely to improve with experience. 

Despite the nascent nature of these methods, they have performed remarkably well in 

both Monte Carlo simulations and empirical applications.  We review here applications, com-

parisons of estimation methods, and comparisons of question design methods. 

Applications 

Metric paired-comparison polyhedral methods.  Toubia, Dahan, Simester and Hauser 

(TDSH, 2003) study preferences for the features of laptop computer bags.  In their experiments, 

respondents were given the choice of real laptop bags worth approximately $100.  Predictions 

were quite accurate.  In addition, the models appear to have described market shares when the 

laptop bags were introduced to a real market.   

Adaptive choice-based polyhedral conjoint methods.  Toubia, Hauser, and Simester (THS, 

2004) studied the preferences for the features of executive educational programs.  The data were 

used to design MIT’s 12-month executive program, which has since been implemented success-

fully.  Toubia, Hauser and Garcia (THG, 2006) study the diffusion of non-traditional closures, 

“Stelvin” screw-tops, for premium wines by interviewing over 2,200 leading-edge wine consum-

ers in the US, Australia and New-Zealand.  They were able to identify the marketing actions that 

would be necessary to achieve market penetration in the US to match that in Australia and New 

Zealand. 

Hessian-based adaptive choice-based conjoint analysis. Abernethy, Evgeniou, Toubia 

and Vert (AETV, 2006) study consumer preferences for digital cameras. They explore how re-

spondents value different levels of price, resolution, battery life, optical zoom, and camera size. 
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Heterogeneous partworth estimation with complexity control. Evgeniou, Pontil and 

Toubia (EPT, 2006) test their method with a full-profile ratings study of personal computers col-

lected by Lenk et al. (1996) and apply their method using data from a choice-based conjoint 

study of carbonated soft drinks collected by a professional market research company.  

Comparisons of estimation methods 

The basic results from the papers reviewed in this chapter are three-fold.  (1) Individual-

level optimization methods tend to outperform traditional individual-level methods that use nei-

ther complexity control nor shrinkage.  (2) Individual-level methods often under-perform meth-

ods that use population-based shrinkage (either Bayesian or complexity-control shrinkage).  (3) 

Complexity-control shrinkage often outperforms Bayesian shrinkage. 

Metric paired-comparison analytic-center estimation.  TDSH test metric analytic-center 

estimations with both Monte Carlo simulations and an empirical application.  In the simulations 

they find that, for homogeneous populations, HB consistently performs better than analytic cen-

ter estimation, likely because HB uses population-level data to moderate individual estimates.  

For heterogeneous populations, analytic-center estimation performs better, especially when 

paired with polyhedral question design.  They also find that HB is relatively more accurate when 

response errors are high, but analytic center estimation is more accurate when response errors are 

low.  For external validity tests, they found that HB outperforms analytic-center estimation for 

fixed, orthogonal questions, but that analytic-center estimation does better when matched with 

polyhedral questions.5 

Adaptive choice-based analytic-center estimation.  THS compare choice-based analytic-

center estimation to HB on four metrics – root mean square error, hit rate, correlation among 

partworths, and the percent of respondents for whom a method predicts best.  Analytic-center es-

timation performs well when matched with polyhedral question design in domains were there is 

high heterogeneity.  Otherwise, HB does well in all domains.  However, if one takes a convex 

combination of the population mean and the individual-level analytic center estimates, the result-

                                                 
5 We caution the reader that the HB method used as a benchmark in this paper was such that no external constraints 
were imposed. Subsequent research suggests that HB does much better if the partworths are constrained to be posi-
tive (Evgeniou, Boussios and Zacharia 2005).  This caveat also applies to the simulation tests in THS. 
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ing “shrinkage” estimates outperform HB.6   

THG test the probabilistic interpretation of adaptive choice-based analytic-center estima-

tion.  Based on Evgeniou, Boussios and Zacharia (EBZ, 2005), their HB benchmark includes 

constraints that all partworths be positive.  Such constraints improve predictive ability and are 

easily implemented with rejection sampling. To distinguish this method from standard HB, we 

label it HBP (P for positivity).  THG find that taking response errors into account and using in-

formative priors improve analytic-center estimation.  At least one of the two improvements out-

performs deterministic analytic-center estimation in all tests.  Informative priors appear to pro-

vide the greater improvement.  HBP is significantly better in most cases.  We suspect that had 

HBP been applied in the earlier tests, it would have been best in most comparisons. 

As a summary, analytic-center estimation is better than HB in some domains, but not as 

good as HBP.  On the other hand, shrinkage-based analytic-center estimation shows considerable 

promise.  We hypothesize that the dominant effect is the ability to use population-level informa-

tion to improve individual-level estimates.  If population-level information is used, analytic-

center estimation may ultimately improve to be as accurate or more accurate than HBP. 

Support vector machines.  EBZ show that their method based on Support Vector Ma-

chines is more robust to response error compared to other individual-level methods. While their 

method does not perform as well as HBP in situations in which there is no interaction between 

attributes, it consistently outperforms HBP when interactions are present.  

Heterogeneous partworth estimation with complexity control (HPECC).  EPT show that 

their methods perform consistently better than HB (with relatively diffuse second-stage priors), 

both with choice and metric data, and both on simulated as well as field data.7 In the case of met-

ric data, they report simulations in which they vary heterogeneity, response error, and the num-

ber of questions per respondent. They find that their method significantly outperforms standard 

HB in 7 out of their 8 experimental conditions (2 levels per experimental factor). They further 

compare these two metric estimation methods using a metric-full-profile data set on the features 

of computers (from Lenk et al. 1996). Heterogeneous partworth estimation with complexity con-

trol (HPECC) significantly outperforms HB on holdout prediction, using both all 16 questions as 

                                                 
6 THS do not estimate a γ through cross-validation but rather choose a γ based on out-of-sample performance. Their 
results are, thus, only suggestive. 
7 EPT do not consider positivity constraints on the partworths, neither for their methods nor for HB. 
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well as a random subset of 8 questions per respondent (14 parameters are estimated per respon-

dent). For choice data, they find that HPECC outperforms HB in 6 out of 8 experimental condi-

tions. Empirically, HPECC outperforms HB with 16 questions per respondent for data on car-

bonated soft drinks, and does not perform significantly differently when 8 questions are used per 

respondent (17 parameters are estimated per respondent).  

EPT’s simulation and empirical validity tests reinforce the dominating effect of shrink-

age/complexity-control.  Population means clearly improve predictive performance by making 

the partworth estimates more robust.  Their results also suggest that prediction is improved when 

γ is chosen endogenously rather than based on prior beliefs. Finally, EPT show that their ap-

proach allows modeling and estimating models with large numbers of attribute interactions. Es-

timates remain robust and significantly better than that of HB even if the total number of parame-

ters becomes substantially larger than the number of observations per respondent. This result 

confirms earlier findings reported by EBZ for individual-level partworth estimation. 

Comparisons of question design methods 

The overall summary of the comparisons of adaptive question design methods is that 

adapting questionnaires at the individual level can improve performance.  

Adaptive metric paired-comparison polyhedral question design.  TDSH compare polyhe-

dral question design to ACA as well as fixed designs and random designs.  Monte Carlo simula-

tions suggest that, when there are a small number of questions, polyhedral question design 

method outperforms the other three benchmarks.  However, the performance may be due, in part, 

to endogeneity bias in ACA – prior, self-explicated questions are used in question design but 

standard HB estimation uses these only as constraints in estimation (Hauser and Toubia 2005; 

Liu, Otter, and Allenby 2006).  When more questions are asked such that the questions cover the 

range of features more completely, fixed designs emerge as viable alternatives for some domains.  

In empirical tests, adaptive polyhedral questions outperform both fixed and ACA benchmarks. 

Adaptive choice-based polyhedral question design.  THS simulations suggest that, when 

response error is low, choice-based polyhedral questions outperform random questions, fixed or-

thogonal questions, and questions chosen by aggregate customization (Arora and Huber 2001, 

Huber and Zwerina 1996).  Furthermore, high heterogeneity tends to favor individual-level adap-

tation. When response error is high, the best method depends on the tradeoffs between response 
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error and heterogeneity.  THS apply their method empirically, but were not able to obtain valida-

tion data.  However, they do show that the method achieves choice balance throughout the ques-

tioning sequence. 

THG attempt to improve adaptive choice-based polyhedral methods so that they might 

handle high-response error domains.  Their simulations suggest that taking response errors into 

account and using informative priors improve polyhedral question design.  Compared to the 

THS’s deterministic algorithm, random questions, fixed questions, and aggregate customization, 

at least one of the two probabilistic modifications is best or tied for best in all experimental cells.  

Their empirical tests (wine consumers) suggest that probabilistic polyhedral question design per-

forms better than aggregate customization question design in three of the four panels and never 

significantly worse.   

Hessian-based adaptive choice-based conjoint analysis. The Monte Carlo simulations 

and the field test reported by AETV confirm that individual-level adaptation outperforms random 

and non-adaptive benchmarks when response error is low and/or when respondent heterogeneity 

is high. Moreover, the use of complexity control in the loss function improves robustness to re-

sponse error, hence largely overcoming possible endogeneity biases inherent to adaptive ques-

tionnaires(Hauser and Toubia 2005). 

In summary, optimization-based adaptive question design for conjoint analysis shows 

considerable promise.  In many cases, the tested methods outperform non-adaptive methods.  

Adaptation shows the most promise when response errors are low, when heterogeneity is high, 

and/or when relatively few questions are to be asked.  However, the potential of individual-level 

adaptation is not limited to these domains.  With application and incremental improvements we 

expect that the performance of these methods will improve further. 

5. Conclusions and opportunities for future research 
This chapter reviews some recent developments in the application of optimization meth-

ods and machine learning in conjoint estimation and question design. Although the many meth-

ods are disparate, they can be linked through a statistical learning framework and philosophy. 

This framework suggests that specific methods may be described by the choice of a measure of 

fit, a measure of complexity, and an approach for determining the trade off between fit and com-

plexity. Adaptive questionnaire design is achieved by combining optimization and machine 
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learning with principles of experimental design to select questions that minimize the uncertainty 

around the estimates. 

We hope that this chapter will motivate future applications and research in this area.  In 

particular, we hope that researchers will build upon the many successful methods in conjoint 

analysis that have been developed either to estimate partworths or to design questions.  Com-

plexity control, shrinkage, and adaptive optimization of questions all show considerable potential 

to improve extant methods and to develop new methods.   
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