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Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve
multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various
cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from trans-
formation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational
regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling
of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes
and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated,
their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of
ribosomal activity in 5�-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal
brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive
astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining
ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-
specific translational regulation.
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Introduction
Gliomas are responsible for the majority of malignant neoplasms
in the brain. A large-scale effort by The Cancer Genome Atlas
(TCGA) characterized gene expression in glioblastoma (GBM),
an aggressive form of glioma, and identified four subtypes: pro-
neural, neural, classical, and mesenchymal (Verhaak et al., 2010).
Proneural GBM closely resembles glial progenitors, which are
capable of transforming and proliferating in the brain (Assanah
et al., 2006), resulting in tumors that recapitulate the proneural
signature in animal models (Lei et al., 2011; Liu et al., 2011).
Glioma growth is driven by pathways that converge on the pro-

tein synthesis machinery through mTOR, AKT, and other signal-
ing molecules (Rajasekhar et al., 2003; Parsa and Holland, 2004;
Takeuchi et al., 2005; Fan et al., 2007; Jiang and Liu, 2009; Helmy
et al., 2012). However, proneural glioma cells maintain a rela-
tively immature phenotype, which has been associated with tight
translational control in other systems (Signer et al., 2014; Tah-
masebi et al., 2014). Despite its potential importance to protein
expression, relatively little is known about translational regula-
tion in this disease.

Gliomas are diffusively infiltrative, presenting a challenge to
translational profiling. Previously, investigating cell-type-specific
translation would require physical separation of cells with tech-
niques that could perturb this dynamic process. Recent efforts
have overcome this problem by cell-type-specific expression of
epitope-tagged ribosomes for immunoprecipitation of ribosome-
bound RNA from homogenized tissue (Heiman et al., 2008; Sanz
et al., 2009). For example, the RiboTag system uses Cre-mediated
activation of hemagglutinin-fused Rpl22. Here, we retrovirally
deliver Cre recombinase and platelet-derived growth factor
(PDGF-B) to the adult brain (Lei et al., 2011) of a mouse harbor-
ing the RiboTag and floxed Trp53 alleles. Expression of HA-
tagged ribosomes is therefore restricted to transformed cells that
arise from the originally infected cells, allowing isolation of
tumor-specific RNA by immunoprecipitation from homoge-
nized tissue.
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Previous efforts at cell-specific translational profiling in-
volved quantification of intact, ribosome-bound RNA (Doyle et
al., 2008; Heiman et al., 2008; Sanz et al., 2009). However, these
measurements do not allow direct quantification of ribosome
density or provide ribosome positioning information, complicat-
ing accurate estimates of translation rates and efficiencies and
precluding determination of whether ribosome density origi-
nates from annotated coding or upstream sequences. In contrast,
ribosome profiling, based on deep sequencing of ribosome-
protected mRNA footprints, enables genome-wide analysis of
protein synthesis and ribosome positioning (Ingolia et al., 2009).
The approach has been applied broadly from studies of nonca-
nonical translation in yeast (Brar et al., 2012) to translational
control in cancer (Hsieh et al., 2012).

Here we describe a strategy for cell-type-specific measure-
ments of protein synthesis by combining the tissue specificity of
the RiboTag system with ribosome profiling. We measured
genome-wide ribosomal positioning and translation rates, iden-
tified genes that are selectively translated by transformed cells,
and discovered non-cell autonomous effects on translation in the
tumor microenvironment. Using computational deconvolution,
we assessed how these genes are distributed among cell types in
murine and human tumors. Finally, we found that translation
efficiency is cell-type-specific in proneural glioma, with trans-
formed glial progenitors showing a significant decrease in trans-
lation efficiency compared with other cells in the tumor
microenvironment.

Materials and Methods
RiboTag mouse glioma model. For experimental induction of murine gli-
oma, transgenic C57BL/6 mice carrying loxP recognition sites at exon 7
of Trp53 were crossed with RiboTag mice (JAX ID 011029), which carry
the HA-affinity tag adjacent to the ribosomal protein Rpl22, separated
from the natively expressed terminal exon by loxP recognition sites.
Hence, the tagged version of Rpl22 is only expressed following Cre-
mediated recombination. These mice were bred to Trp53 flox/flox and Ri-
boTag homozygosity. Proneural gliomas were induced de novo by
stereotactic injection into subcortical white matter of the right frontal
lobe of �5 � 10 4 replication incompetent, retroviral particles expressing
human PDGF-B and Cre recombinase, as described previously (Lei et al.,
2011). Two of three mice in which tumors were induced were 43-d-old
and the third mouse was 64-d-old. Age-matched control mice were in-
jected with an equal volume of serum-free media. All six of the mice were
female. Mice were monitored for tumor morbidity by behavior and
weight, and killed at 30 d according to Columbia University IACUC
protocol no. AC-AAAF1710. At this time point, all three mice exhibited
symptoms of tumor morbidity and tumors were clearly visible upon
removal of the brain. The survival curve in Figure 1 indicates a median
survival time of 47 � 7 d postinjection, and so we killed the animals at
30 d postinjection to avoid death due to tumor morbidity at an uncon-
trolled time so that we could harvest fresh polysomal RNA from the
tumor tissue. The right frontal lobe tissue (containing the injection site)
and distal tissue from the contralateral hemisphere were snap-frozen in
liquid nitrogen immediately following death. Tissue immediately adja-
cent to the experimental sample, containing tumor, was fixed in 4%
paraformaldehyde (PFA) for 48 h before immunofluorescence. The sur-
vival curves depicted in Figure 1C were generated by injecting nine
Trp53 flox/flox mice and 11 wild-type C57BL/6 mice of either sex (all 6- to
8-weeks-old) with 5 � 10 4 viral particles expressing PDGF-B and Cre
recombinase (Lei et al., 2011). We note that we have previously reported
the use of this specific initiating alteration in conjunction with PDGF-B
overexpression (Sonabend et al., 2014).

Immunofluorescence of mouse brain tissue sections. Gliomas were in-
duced in three 9-week-old male RiboTag mice harboring Trp53 flox/flox by
retroviral delivery of Cre recombinase and human PDGF-B as described
above. At 28 d postinjection, mouse brains were fixed in 4% PFA for 48 h.

Brains were then cryoprotected in 30% sucrose for 4 d, and then stored in
OCT at �80°C. Cryosections (10 �m) were fixed in 4% PFA for 10 min
at room temperature, washed in PBS, blocked with 5% horse serum
(Sigma-Aldrich) for 30 min, and then labeled with primary antibodies
overnight at 4°C. Sections were then washed three times with PBS and
incubated with AlexaFluor-conjugated secondary antibodies (1:1000, In-
vitrogen) for 1 h at room temperature and counter-stained with DAPI.

Antibodies. The following primary antibodies were used: mouse
anti-HA (1:1000, Covance), rabbit anti-PDGFR� (1:500, Cell Signaling
Technology), rabbit anti-OLIG2 (1:100, Millipore), rabbit anti-GFAP
(1:500, Dako), rabbit anti-RBFOX3 (1:1000, Millipore), rat anti-CD44
(1:150, Calbiochem), and rabbit anti-AIF1 (1:1000, Wako).

Human brain tumor and non-neoplastic brain tissue specimens. The five
adult patients included in this study presented for surgical resection of
either malignant glioma or of non-neoplastic brain tissue to relieve epi-
lepsy symptoms. The three epilepsy patients have no oncological history.
Resected tissue specimens were snap-frozen with liquid nitrogen in the
operating room to maximize RNA preservation.

Microscopy. Stained tissue sections were imaged using a Nikon TE2000
epifluorescence microscope equipped with MetaMorph software (Mo-
lecular Devices). Micrographs were merged using MetaMorph and
ImageJ. Immunofluorescence images of the RiboTag cell line were ob-
tained using a Nikon Ti-U epifluorescence microscope equipped with an
EM-CCD camera (Andor iXon) and a 532 nm diode-pumped solid-state
laser.

Extraction and preparation of total RNA. Tissue samples were homog-
enized in 1 ml of polysome lysis buffer (20 mM Tris-HCl pH 7.3, 250 mM

NaCl, 15 mM MgCl2, 1 mM DTT, 0.5% Triton X-100, 0.024 U/ml Tur-
boDNase, and 0.1 mg/ml cycloheximide) at 4°C using a glass Dounce
homogenizer. Homogenates were centrifuged for 10 min at 14,000 � g,
and the supernatant was snap frozen in liquid nitrogen. Total RNA from
homogenates was purified using the RNeasy Mini Kit (Qiagen), and RNA
integrity was assessed using a Bioanalyzer (Agilent).

Ribosomal footprint isolation. Mouse tissue lysates were digested for 45
min at room temperature with RNase I. Monosomes were isolated using
sucrose density gradient fractionation. The monosome fraction was split
into two samples. RNA from the first sample was extracted with phenol
chloroform and used for further purification of ribosomal footprints.
HA-tagged monosomes were immunoprecipitated from the second sam-
ple to obtain cell-type-specific ribosomal footprints (Fig. 1A).

For ribosomal immunoprecipitation, we coupled 30 �l of mouse
monoclonal anti-HA antibody (HA.11, ascites fluid, Covance) to 300 �l
of protein G-coated Dynabeads (30 mg/ml, Life Technologies) for 1 h in
citrate-phosphate buffer (24 mM citric acid, 52 mM dibasic sodium phos-
phate, pH 5.0). Beads were washed once in citrate-phosphate buffer and
three times in polysome lysis buffer. Beads were added to the lysates and
incubated with rotation at 4°C overnight. Beads were then washed four
times with 500 �l of polysome lysis buffer. Ribosomes and footprints
were released from the beads using EDTA. Beads were incubated with
140 �l of ribosome release buffer (20 mM Tris-HCl pH 7.3, 250 mM NaCl,
0.5% Triton X-100, 50 mM EDTA) for 5 min and the supernatant was set
aside on ice. This was repeated three more times. The pooled superna-
tants were then extracted with phenol-chloroform to yield footprints and
digested rRNA fragments.

Ribosome footprint isolation of human glioma and non-neoplastic
brain tissue was accomplished as described above for the murine speci-
mens without immunoprecipitation.

Ribosome profiling and RNA sequencing libraries. Ribosomal footprints
were size selected as described previously (Ingolia et al., 2012) and se-
quencing libraries constructed. We note that, although the exact adapter
scheme reported previously was used to construct ribosome profiling
libraries for Tumor Mouse A and Normal Mouse A (Ingolia et al., 2012),
a different reverse primer was used for amplification of all other ribo-
some profiling libraries. In particular, we used the following reverse
primer that places the barcode sequence for demultiplexing at the 3� end
of the linker sequence appended to each RNA footprint during single-
stranded ligation:

5�-CAAGCAGAAGACGGCATACGAGATNNNNNNATTGATG-
GTGCCTACAG-3�.
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where NNNNNN represents the barcode sequences used previously
(Ingolia et al., 2012). Ribosome profiling libraries were sequenced using
the Illumina HiSeq 2000 system at the Columbia Sulzberger Genome
Center. Total RNA for each sample was also provided to the Columbia
Sulzberger Geneome Center for poly(A)-selection and RNA-Seq using
the Illumina TruSeq kit. We note that a total of 10 RNA expression
profiles were obtained for deconvolution analysis from 10 different mice
with PDGF-driven, end-stage tumors. All 10 of these mice were female.
Five of these mice were homozygous for both the RiboTag and Trp53 flox/flox.
The other five mice were homozygous for Trp53 flox/flox and did not harbor
the RiboTag allele. Sequencing of ribosome profiling and RNA-Seq libraries
for the five human tissue specimens was accomplished using the same
procedure.

Bioinformatic analysis of ribosome profiling data. Following Illumina
sequencing of our ribosome profiling libraries, we first demultiplexed
our raw data using a barcode that was attached to the sequencing tem-
plate during PCR amplification. The 3�-adapter sequence (CTGTAG-
GCACCAT) was clipped from each read using fastx_clipper. We
discarded all reads that did not contain the adapter sequence or that were
shorter than 25 bases after adapter clipping. We then used Bowtie 2 to
map the clipped reads to a mouse rRNA reference and discarded any
reads that mapped to rRNA (Langmead and Salzberg, 2012). The re-

maining reads were then mapped to either the mouse (Illumina iG-
enomes mm10 reference) or human (Illumina iGenomes hg19 reference)
transcriptomes using Tophat 2 (Kim et al., 2013). We did not attempt to
detect novel junctions and obtained �0.5–11 M uniquely mapped reads
per mouse sample and �4 –24 M uniquely mapped reads per human
sample. We used HTSeq to compute read counts for reads that mapped
uniquely to the mouse or human transcriptome in the coding sequence
(CDS), 5� leader (5�-UTR), 3�-UTR, and complete exonic sequence of
each gene.

Bioinformatic analysis of RNA-Seq data. For RNA-Seq, we received
fastq files containing demultiplexed, single-end 100 base reads for each
sample from the Columbia Sulzberger Genome Center. We used Tophat
2 to map the reads to the mouse (Illumina iGenomes mm10 reference) or
human (Illumina iGenomes hg19 reference) transcriptomes and did not
attempt to detect novel junctions, obtaining �30 million reads per sam-
ple. We used HTSeq to compute read counts for reads that uniquely
mapped to the transcriptome for each gene.

Analysis of translational activity, enrichment, and differential translation
rate. For each gene, we divided the CDS read counts determined above by
CDS length and total number of uniquely mapped reads in the sample to
determine the CDS ribosome footprint density which we refer to as the
translation rate. Similarly, we computed the 5�-leader ribosome foot-

Figure 1. RiboTag mouse glioma model and cell-type-specific ribosome profiling. A, Schematic of the RiboTag glioma mouse model and experimental workflow. Cells infected by a retrovirus that
expresses Cre recombinase and PDGF-B express the RiboTag (Rpl22-HA) and harbor a transforming genetic lesion- loss of Trp53. Polysomes are extracted from homogenate tumor tissue. Poly(A) RNA
is selected from a portion of this for RNA-Seq. The remaining polysomes are digested to monosomes and purified on a sucrose gradient. The purified monosome sample is split in half. One-half is
converted into a ribosome-profiling library. HA-tagged (RiboTag) monosomes originating from the transformed cells are immunoprecipitated from the other half and converted into a ribosome-
profiling library. Translation rates from the homogenate and RiboTag ribosome profiles are compared in order to identify genes that are enriched or depleted in the transformed population. B,
Immunofluorescence staining of tissue sections from an end-stage RiboTag glioma mouse showing the diversity of cell types present in the tumor. Cells expressing HA (the RiboTag epitope) overlap
significantly with OLIG2- and PDGFRA-expressing cells. However, there is essentially no overlap between cells expressing HA and cells expressing GFAP (astrocytes), RBFOX3 (neurons), AIF1
(microglia), or CD44 (reactive astrocytes). C, Survival curves for Trp53flox/flox and wild-type mice after injection with PDGF-B-IRES-Cre virus indicating a median survival time of 47 � 7 d postinjection
for our mouse glioma model. D, Power spectrum of the 5�-end read positions along CDSs for the first 500 bases of the CDS for all genes with a CDS length of at least 500 bases. This power spectrum
was computed from the RiboTag profile of Mouse A, demonstrating that RiboTag immunoprecipitation preserves the expected three-base periodicity arising from codons as indicated by the clear
peak at a frequency of �0.33 nt �1. E, Heat map displaying the translation rate enrichment scores (plotted as score �1 where a score �1 indicates enrichment in the RiboTag profile and a score
�1 indicates depletion) for several canonical markers of different cell types across three mice. The enrichment score is calculated by dividing the translation rate in the RiboTag profile by that in the
homogenate profile.
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print density by dividing the 5�-leader read counts determined above by
5�-leader length and total number of uniquely mapped reads in each
sample.

To calculate the enrichment scores for each gene, we divided the trans-
lation rate measured from each RiboTag ribosome profile by the trans-
lation rate measured from the corresponding homogenate ribosome
profile. An enrichment score greater than one indicates that the gene is
biased toward translation in the transformed cells. We generated a con-
sensus list of enriched genes based on the criteria that the enrichment
score is greater than one in all three biological replicates and that the
number of uniquely mapped CDS reads in each mouse is �10 in the
RiboTag ribosome profile. Similarly, we placed genes with enrichment
scores �1 and with �10 CDS reads in the homogenate ribosome profile
in all three biological replicates in the consensus list of depleted genes.

We calculated translation efficiency for a given gene by dividing its
translation rate by the RNA read density (number of reads uniquely
mapping to the complete exonic sequence for each gene divided by tran-
script length and total number of uniquely mapped reads from a sample).
Both the differential translation rate and RNA expression analyses were
performed using DESeq (Anders and Huber, 2010) based on the
uniquely mapped, CDS ribosome footprint counts and the uniquely
mapped exonic RNA counts for each gene computed using HTSeq.

For the human ribosome profiling translation rate analysis depicted in
Figure 4D, we show genes for which we measured at least a twofold
increase in translation rate in the tumor tissue compared with normal
brain for all possible pairwise comparisons of tumor and normal brain
specimens.

Gene ontology analysis. Mutual information-based gene ontology anal-
ysis was performed using the differential translation rate analysis be-
tween RiboTag and normal brain profiles with iPAGE (Goodarzi et al.,
2009). Gene identification names from the mm10 reference transcrip-
tome annotation were converted to RefSeq identifiers using Babelomics
and filtered based on the annotation provided by iPAGE. We then used
log2-transformed fold-change obtained from DESeq for each statistically
significant differentially expressed gene ( p � 0.05) between the RiboTag
profiles and the normal brain profiles as input for iPAGE to obtain over-
and under-represented gene ontologies across nine bins of translation
rate fold-change.

We identified �100 genes from our differential translation rate anal-
ysis between the homogenate and normal brain profiles with both a
significantly higher translation rate in the tumor compared with normal
brain and on the consensus list of RiboTag-depleted genes. This list was
too short to allow iPAGE analysis, and so we identified enriched gene
ontologies using Fisher’s exact test as implemented in FuncAssociate 2.0
(Berriz et al., 2009).

Cell-type-specific deconvolution of RNA-Seq. We implemented a mod-
ified version of the Population Specific Expression Analysis (PSEA) al-
gorithm for deconvolution of RNA-Seq expression profiles from human
and murine proneural glioma tissue specimens (Kuhn et al., 2011).
Briefly, we used the relative expression levels of a series of cell-type-
specific marker genes (described in the main text) measured by RNA-Seq
as a proxy for the fractional composition of each cell type in the tissue.
We deconvolved the expression of a given gene by least-squares regres-
sion of a system of linear equations (1 equation for each sample) in which
the contribution of each cell type to the expression of a gene in a sample
was represented as the product of its composition obtained from marker
gene expression and the average expression level of the gene in that cell
type across all samples. We also included a background (y-intercept)
term. We then used least-squares regression to solve for the average
expression level of the gene in each cell type given the equations from
each sample. The least-squares problem was constrained by the require-
ment that the resulting expression values be non-negative, a quadratic
programming problem that we solved using the “lsqnonneg” function in
MATLAB (MathWorks). Our implementation was distinct from PSEA in
that we allowed iterative improvement of the marker gene set used to
estimate the cellular composition of each sample. In particular, we in-
cluded all genes with an R 2 � 0.9 in the previous iteration for estimation
of cellular composition.

Results
RiboTag glioma mouse model enables tumor-specific
ribosome profiling
Previous implementations of tagged ribosomes have relied on
cell-type-specific promoters to drive expression of either Cre re-
combinase or the tagged ribosomal protein itself. Although these
strategies can be highly effective in normal tissue, it is nearly
impossible to find a promoter used exclusively by transformed
cells in a primary, solid tumor. Previous attempts at cell-type-
specific profiling in glioma have used the Olig2-driven bacTRAP
system (Helmy et al., 2012). However, we and others have shown
that Olig2 is highly expressed by untransformed glial progenitors
in the brain and in reactive cells recruited to the tumor (Assanah
et al., 2006). To address this issue, we deliver Cre recombinase by
stereotactic injection of retrovirus to activate RiboTag expres-
sion. The RiboTag system uses a conditional knock-in allele such
that the tagged ribosomal protein is expressed from its endoge-
nous promoter. This strategy is uniquely synergistic with ribo-
some profiling because, upon Cre-mediated recombination, the
native Rpl22 locus is deleted and replaced by the tagged version.
Thereafter, infected cells will express only the HA-tagged version
of Rpl22.

In the RiboTag mouse, exon 4 of the Rpl22 is flanked by loxP
sites followed by an identical exon tagged with three hemagglu-
tinin epitope-coding sequences or HA-tag (Fig. 1; Sanz et al.,
2009). We crossed the RiboTag mouse with a Trp53flox/flox (Chen
et al., 2005) mouse to generate mice that were homozygous for
both alleles. Delivery of Cre recombinase and PDGF-B with a
replication-incompetent retrovirus simultaneously deletes
Trp53, activates expression of HA-tagged ribosomes, and drives
cellular proliferation (Lei et al., 2011; Sonabend et al., 2014).
Upon retrovirus injection, a small number of glial progenitors in
subcortical white matter are selectively infected, resulting in a
fatal brain tumor within 30 d.

Previous work demonstrated that brain tumors initiated as
described arise locally around the injection site from expansion of
retrovirus-infected cells (Lei et al., 2011). In the RiboTag glioma
model, tagged ribosomes are expressed exclusively in the trans-
formed cells that arise from the retrovirally infected cells. How-
ever, these cells can diffusively infiltrate and intermingle with
surrounding brain tissue, and therefore the tumor microenviron-
ment contains a complex mixture of cell types including neurons,
astrocytes, microglia, and recruited OLIG2-expressing progeni-
tors. To demonstrate the compositional heterogeneity of these
tumors and cell-type specificity of RiboTag expression, we used
immunofluorescence to stain tissue sections for canonical
marker proteins (Fig. 1B). Tumor markers, such as OLIG2 and
PDGFRA, colocalize with HA-staining. As expected, there are
also OLIG2-expressing cells that do not express the HA-tag, rep-
resenting a population of recruited oligodendrocyte progenitors
that did not arise from the retrovirus-infected cells. In contrast,
we do not observe HA in cells expressing GFAP, CD44, RBFOX3,
and AIF1, which mark astrocytes, reactive astrocytes, neurons,
and microglia, respectively.

After isolating tumor tissue from three end-stage mice, we
homogenized frozen tumors, extracted total RNA from a portion
of the lysate, and digested the remainder with RNase I for mono-
some purification on a sucrose gradient. Instead of purifying cell-
type-specific polysomal RNA as in previous studies (Heiman et
al., 2008; Sanz et al., 2009), we used immunoprecipitated HA-
tagged monosomes directly from half of the appropriate sucrose
fraction to generate a tumor cell-specific ribosome footprint li-
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brary (Fig. 1A, the RiboTag sample). We used the other half of the
monosome fraction to generate a ribosome footprint library
from the combination of tagged and untagged monosomes (Fig.
1A, the homogenate sample).

We generated ribosome profiling libraries as described previ-
ously (Ingolia et al., 2012) with a few modifications and poly(A)	

libraries for RNA-Seq using standard protocols. To demonstrate
that the RiboTag immunoprecipitation procedure results in an
actual ribosome profile, we computed the power spectrum of the
5�-end mapping positions along the gene body for CDS reads

relative to the annotated start codon (Fig. 1D). As expected, the
power spectrum shows a clear peak at �0.33/nucleotide, consis-
tent with the expected three-base periodicity of codons reflected
in the ribosome footprints.

To validate the RiboTag specificity, we computed enrichment
scores across all three tumor samples for various tumor and neu-
ral lineage markers (Bédard et al., 2007; Cahoy et al., 2008; Ver-
haak et al., 2010; Lei et al., 2011). We defined the enrichment
score for each gene as the ratio of the CDS translation rate in the
RiboTag profile to the CDS translation rate in the homogenate.

Figure 2. Differential translation rate analysis. A, Information theory-based iPAGE analysis of over- and under-represented gene ontologies in genes with statistically significant ( p � 0.05) high-
and low-translation rate fold-changes indicating high translational output in the RiboTag sample and normal brain, respectively. Chromatin, DNA replication, cell division, and ribosomal pathways
are over-represented among genes highly translated in the RiboTag sample, whereas coated pit, synapse, and cation-channel activity pathways are over-represented in the normal brain profile. B,
Heat map displaying the translation rate fold-change and translation efficiency fold-change from differential translation rate analysis between the tumor homogenate and normal brain ribosome
profiles. The genes in this heat map show statistically significant increased translation in the tumor homogenate relative to normal brain but are consistently depleted in the RiboTag profile,
indicating expression in tumor associated cells. A subset of these genes, all but one of which exhibited higher translation efficiency in tumor tissue, was not found to have a statistically significant
change in RNA abundance. C, Gene ontology analysis of upregulated, depleted genes from B with heat map of the odds ratio. Pathways in red and blue indicate overlap with mesenchymal and
classical glioblastoma pathways, respectively. Pathways in purple indicate overlap with both mesenchymal and classical pathways.
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As expected, markers of transformed oligodendrocyte progenitor
cells (OPCs) and proneural glioma cells were consistently en-
riched in libraries generated from affinity-purified footprints,
whereas markers associated with other neural cell types were de-
pleted (Fig. 1E).

RiboTag enrichment and differential translation rate analyses
reveal dysregulated pathways in tumor and tumor-associated
cells
We next sought to determine which biological pathways are over-
represented in the transformed cells on the basis of differential
translation rate (ribosome density per gene). Using our three
biological replicate RiboTag immunoprecipitation and three
normal brain profiles, we generated a list of genes with statisti-
cally significant differential translation rates (p � 0.05). We then
used iPAGE, an information theory-based algorithm, to deter-
mine which pathways are enriched in different ranges of fold-
change (Fig. 2A; Goodarzi et al., 2009). Several factors contribute
to the differential translation rate of a particular gene, including
cellular composition, transcriptional regulation, and transla-
tional regulation. Our analysis associates “synapse” and “cation
channel activity” with higher translation rates in normal brain,
which contains many neurons, compared with the RiboTag pro-
file, which should not express neuronal genes. The “DNA repli-
cation” and “cell division” ontologies were enriched among
highly translated genes in the RiboTag profile. Interestingly, we
also found significant enrichment in “structural components of
the ribosome”, indicating global upregulation of protein synthe-
sis in the transformed cells.

Cell-type-specific ribosome profiling also allowed us to probe
the translational status of transcripts in cells within the tumor
microenvironment that did not arise from retroviral infection.
We first performed a differential translation rate analysis between
the tumor homogenate ribosome profile (which reflects both
transformed and untransformed cells) and that of normal brain
(Table 1). We obtained a set of genes with statistically significant
translation rate fold-changes (p � 0.05). We then queried this list
for genes that were depleted by RiboTag immunoprecipitation.
We reasoned that these genes would be predominantly upregu-
lated in tumor-associated cells that did not arise from the
retrovirus-infected cells. Interestingly, we found 100 genes (Table
2) that have a higher translation rate in the tumor homogenate,
but appear to be expressed mainly in tumor-associated cells.
These genes exhibited a broad range of translation efficiencies
with both positive and negative fold-changes. Fourteen of these
genes did not exhibit a statistically significant change in RNA
abundance, which may be explained by upregulation primarily at
the level of translation. Indeed, all but one of these 14 genes had a
positive fold-change in translation efficiency (p 
 8 � 10�4,
Fisher’s exact test).

Gene ontology analysis revealed that the highly translated
genes attributed to tumor-associated cells are predominantly as-
sociated with the extracellular matrix, cell motility, cell adhesion,
and regulation of angiogenesis (Fig. 2C). To place this in the
context of human disease, we examined the large-scale analysis of
gene expression in human GBM by TCGA, where hierarchical
clustering delineated four transcriptional subtypes based on 840
classifier genes (Verhaak et al., 2010). We measured expression
profiles for 10 mouse gliomas by RNA-Seq and computed the
median Spearman correlation coefficient between each of these
profiles and each of the subtyped TCGA human microarray pro-
files for the classifier genes (Sonabend et al., 2013). As expected
and shown previously for other PDGF-driven glioma mouse
models, our model correlates best with the proneural subtype for
all 10 replicates (Lei et al., 2011; Sonabend et al., 2013). Despite
this, none of the pathways found in the upregulated, depleted
genes expressed by tumor-associated cells are present in the
TCGA gene ontology analysis of proneural classifier genes. How-
ever, 9 of 23 gene ontologies listed here occur in the mesenchymal

Table 1. RiboTag-enriched genes with higher translation rates in tumor versus
normal

Adam9 Frmd8 Myo9b Rpl7a
Aebp1 Gng5 Nasp Rps12
Afap1l2 Gsx1 Nav2 Rps2
Aldh1a3 H2afy2 Nhsl1 Rps29
Arfgap3 Igf2bp2 Notch1 Rps9
Atp5g2 Igfbp3 Pde8a Rrm2
Bag3 Incenp Pdlim4 Sall3
Birc5 Jam3 Pdlim5 Sapcd2
Ccnd1 Kdm6b Plk1 Scrg1
Cd276 Kif20a Plxnb3 Socs3
Cdkn2a Kif2c Pnlip Spc24
Ckap2l Klf3 Ppfibp1 Spry2
Col11a1 Knstrn Ppp1r18 Spry4
Creb5 Lima1 Prdx4 Sulf2
Cspg4 Lix1l Qpct Tagln2
Dcps Lmnb1 Rbmx Tk1
Dnmt1 Lnx1 Rcc1 Tmpo
Epn2 Matn4 Rhoc Trib2
Ezh2 Mcm10 Rpl18 Trim25
Fam101a Mcm2 Rpl18a Tubb2b
Fam64a Metrn Rpl19 Tubb6
Fam83d Midn Rpl21 Vim
Fbl Morc4 Rpl27a Ybx1
Fbn2 Moxd1 Rpl28 Zfp488
Fgfrl1 Mpzl1 Rpl35a

List of differentially translated genes found to have a statistically significant ( p�0.05) higher translation rate in the
tumor homogenate compared with normal brain, and that are enriched in the RiboTag profile relative to tumor
homogenate.

Table 2. RiboTag-depleted genes with higher translation rates in tumor versus
normal

Abca1 Col6a3 Itgam Postn
Abcc1 Cpne3 Itgb2 Prc1
Abcg2 Ctsc Kdr Psmb8
Acan Ctss Klhl5 Ptpn12
Aldh1a2 Dcn Lama4 Ptprb
Anxa2 Dock1 Lamb1 Rrbp1
Aspm Ecm1 Lgals3bp S100a6
B2m Ednrb Lig1 Scpep1
C1qtnf6 Eltd1 Lmf2 Sec61a1
Cad Emp1 Lrg1 Serpine1
Cd248 Enpp1 Lum Serpinf1
Cd74 Ercc6l Lyn Slc16a3
Cd93 Esam Lyz2 Smc4
Cd97 Fancd2 Mmp2 Snx9
Cdca8 Fat1 Mmp9 Spp1
Cdh5 Flna Mpeg1 Stab1
Chst11 Fn1 Mtap Syde1
Clic1 Gene Ncapd3 Thbs1
Col15a1 Gnb2l1 Nid2 Thbs2
Col19a1 Gnb4 Nup188 Tm4sf1
Col3a1 Gpr56 Nup205 Tnc
Col4a1 Grn Nup93 Top2a
Col4a2 Igfbp7 Pdgfrb Usp24
Col5a2 Itga1 Pglyrp1 Vwf
Col5a3 Itga7 Plau Zfp191

List of differentially translated genes found to have a statistically significant ( p�0.05) higher translation rate in the
tumor homogenate compared with normal brain, and that are depleted in the RiboTag profile relative to tumor
homogenate.
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signature (indicated in red or purple) and four of the 23 occur in
the classical signature (indicated by blue or purple). Remarkably,
13 of 216 mesenchymal classifier genes appear in our list of 100
upregulated, RiboTag-depleted genes (p 
 1.5 � 10�10, hy-
pergeometric test). Mesenchymal was the only subtype with sig-
nificant overlap between its classifier genes and the upregulated,
depleted genes, and the overlap was particularly enriched in path-
ways related to extracellular matrix and cell adhesion.

Computational deconvolution of murine and human tumors
reveals the cellular origin of differentially translated genes
To further assess the cellular origin of the signatures described
above in both human and mouse, we applied an algorithm for
computational deconvolution of expression profiles into cell-
type-specific profiles. We used a modified version of the PSEA
algorithm to deconvolve 10 RNA-Seq profiles from our murine
tumors and 39 RNA-Seq profiles from human proneural GBM.
The algorithm, which has been applied previously to brain tissue,
uses expression of cell-type-specific marker genes as a proxy for
the fractional composition of each cell type in each sample and
linear regression to estimate a single, average expression profile
for each cell type based on all input samples. Our implementation
of PSEA differs somewhat from the previous report in that we
iteratively improve our cellular composition estimate for each
sample using the best-fit genes from previous iterations and cal-
culate the absolute expression of each gene in each cell type rather
than expression relative to a marker.

We deconvolved the mouse and human expression profiles
using six cell types: OPCs, mature oligodendrocytes, neurons,
microglia, and two different types of astrocytes. We seeded the
algorithm with markers of each population: Olig2 for OPCs,
Mog/Mal for oligodendrocytes, Rbfox3/Neurod6 for neurons,
Aif1/Cd68 for microglia, Aqp4 for the first astrocyte population
(Astro1), and Cd44 for the second (Astro2). These markers are
based largely on previous attempts to deconvolve brain tissue
expression and the large-scale study of cell-type-specific expres-
sion in the mouse brain (Cahoy et al., 2008). We included a
Cd44	 cells commonly associated with gliomas that resemble the
cultured astrocytes from Cahoy et al. (2008) and the expression
signature of mesenchymal glioblastoma (Cahoy et al., 2008; Ver-
haak et al., 2010; Katz et al., 2012). We note that, although Olig2
is expressed in both OPCs and some mature oligodendrocytes in
normal brain tissue, the expression level of Olig2 in proneural
glioma cells and proliferating OPCs is considerably higher than in
mature oligodendrocytes, making it essentially cell-type-specific.
The expression of Olig2 across the 10 murine tumors profiled for
deconvolution is strongly correlated other OPC and proneural
glioma markers (r 
 0.6 for Mki67; r 
 0.7 for Pdgfra, Sox2,
Sox11, and Sox10; r 
 0.8 for Cspg4) and anticorrelated with that
of canonical oligodendrocyte markers (r 
 �0.6 for Mog, Mal,
Mobp, and Mbp; r 
 �0.5 for Plp1). We found that deconvolu-
tion of the mouse tumor expression profiles correctly predicts the
cellular distribution of gene expression for most canonical
marker genes in mouse tumor tissue (Fig. 3A). For further vali-

Figure 3. Computational deconvolution of cell-type-specific gene expression. A, Cell-type distribution heat map of canonical neural marker genes based on computational deconvolution of 10
RNA-Seq profiles from 10 murine proneural gliomas. The columns are the cell types used for deconvolution and the values are normalized across rows. Genes used to seed the deconvolution algorithm
are underlined. B, Cell-type distribution heat map of RiboTag-enriched genes based on deconvolution of the profiles in A showing a strong enrichment in the OPC lineage, consistent with the glial
progenitor origin of the tumor. C, Cell-type distribution heat map of RiboTag-depleted genes based on deconvolution of the profiles in A showing the expected, significant representation of all six
cell types for genes that are not tumor-specific.
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dation, we examined the deconvolved profiles of genes that were
enriched (Fig. 3B) or depleted (Fig. 3C) by RiboTag immunopre-
cipitation. Deconvolution predicts that �87% of the RiboTag-
enriched genes are expressed predominantly in the OPC-like,
Olig2	 lineage (p 
 1.3 � 10�111, hypergeometric test) and
�94% of these genes have at least some predicted expression in
this lineage (Fig. 3B). Conversely, there is considerable represen-
tation from all six cellular lineages as predominant cell types in
deconvolution of the RiboTag-depleted genes (Fig. 3C). Here,
only 44% of genes are predicted to be predominantly expressed in
the OPC-like lineage, which is not a statistically significant en-
richment (p 
 0.28, hypergeometric test). Hence, our computa-
tional deconvolution algorithm recapitulates the cell type
specificity of the RiboTag system.

We repeated this analysis on RNA-Seq profiles from 39 indi-
vidual proneural human tumor samples (TCGA). Figure 4A
shows the deconvolved human profiles across the same 33 canon-
ical CNS-lineage marker genes used in Figure 3A, demonstrating
the efficacy of the algorithm in human samples. We used decon-
volution to assess the cellular distribution underlying expression
of the upregulated, RiboTag-depleted genes from the tumor mi-
croenvironment. Figure 4B,C shows the deconvolved profiles of
these genes in the mouse and human tumors, respectively. Al-
though there are differences between the two distributions, in
both cases we see that neurons and oligodendrocytes are under-
represented compared with the more reactive OPC-like, astro-
cytic, and microglial lineages.

Cell-type-specific translation rates in human
proneural glioma
To further our cross-species comparison, we generated ribosome
profiling libraries from two human proneural glioma specimens
and three human non-neoplastic brain tissue specimens pro-
cured during surgical resection for epilepsy. Figure 4D shows the
deconvolution of genes with consistently higher translation rates
in the glioma tissue samples compared with the non-neoplastic
brain samples. As expected, the Olig2	 OPC-like lineage pre-
dominates along with astrocytes and microglia, whereas there is
little contribution for the mature oligodendrocytic and neuronal
lineages.

We then asked which cell types are most enriched in the pro-
neural and mesenchymal classifier genes with high translation
rates, as measured by ribosome profiling of the human glioma
samples (Fig. 4D). Although the Olig2	 OPC-like lineage is sig-
nificantly enriched in the proneural classifier genes (p 
 2.4 �
10�12, hypergeometric test), only the Cd44	 reactive astrocyte
(p 
 0.03, hypergeometric test) and microglial (p 
 8 � 10�13,
hypergeometric test) lineages are significantly enriched for mes-
enchymal classifier genes. Furthermore, the genes that are up-
regulated and RiboTag-depleted in the mouse proneural gliomas,
and also have a high translation rate in the human proneural
gliomas are predominately distributed in astrocytes, Olig2	 cells,
and microglia in our human tumor specimens, however, they are
only statistically enriched in the Cd44	 reactive astrocyte lineage.

Unlike the RiboTag glioma mouse model, where we can
clearly delineate which cells received the initiating genetic lesion,

Figure 4. Computational deconvolution in human and murine glioma. A, Cell-type distribution heat map of canonical lineage marker genes based on computational deconvolution of 39 RNA-Seq
profiles from 39 human proneural gliomas from TCGA. The columns are the cell types used for deconvolution and the values are normalized across rows. Genes used to seed the deconvolution
algorithm are underlined. B, Cell-type distribution heat map of the upregulated, RiboTag-depleted genes from Figure 2B based on computational deconvolution of the murine RNA-Seq profiles from
Figure 3A. C, Cell-type distribution heat map of these same genes, as determined by deconvolution of the human RNA-Seq profiles. D, Cell-type distribution heat map of genes with high-translation
rates (�2-fold across both specimens) in human proneural gliomas relative to non-neoplastic human brain tissue based on ribosome profiling. Cell type assignments for each gene are based on
computational deconvolution of the proneural TCGA profiles (as in C). Below this heat map, we show three small heat maps showing the cell-type distribution of proneural classifier genes,
mesenchymal classifier genes, and upregulated, RiboTag-depleted genes that also exhibit increased translation rates in human proneural glioma based on ribosome profiling. These small heat maps
were constructed by summing the number of genes in each category with increased translation rate in the human glioma tissue that are predominantly deconvolved in each cell type.
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we cannot make this distinction in human tumors. However,
given the overall resemblance of proneural glioma to glial pro-
genitors and the characteristic expansion of Olig2	 cells, the
Cd44	 reactive astrocyte lineage and the microglial lineage most
likely represents non-neoplastic or reactive cells in the tumor
microenvironment. Hence, we draw an analogy between our
finding that mesenchymal, RiboTag-depleted genes are upregu-
lated primary in reactive astrocytes and microglia in our mouse
glioma model and these results showing upregulation of mesen-
chymal classifier genes in Olig2�, reactive astrocytes and micro-
glia in human proneural tumors.

Translation efficiency is reduced in transformed cells in
proneural glioma
We computed the mean homogenate translation efficiency for
genes that were enriched or depleted by the RiboTag across all
three mice (Fig. 5A). As observed in other mammalian cell types,
this distribution is broad, highlighting the role of translational
regulation in determining protein output (Ingolia et al., 2011).
Notably, we found that the median translation efficiency of de-
pleted genes was �25% higher than that of the enriched genes,
and that there was a significant difference in their translation
efficiency distributions (p 
 2 � 10�7, two-sample Kolmogorov–

Figure 5. Translation efficiency analysis from mouse and human ribosome profiling. A, Histograms of the mean translation efficiency for genes that are either enriched (red) or depleted (green)
computed from ribosome profiles and RNA-Seq of the homogenate murine tumor samples. The tumor-specific, RiboTag-enriched genes show a statistically significant tendency toward lower
translation efficiency. B, Histograms of the mean translation efficiency for genes that are either enriched (red) or depleted (green) computed from the ribosome profiles and RNA-Seq of the murine
normal brain samples. There is no statistically significant difference between the two gene sets in normal brain. C, Histogram of the translation efficiency fold-change between tumor homogenate
and normal brain for the RiboTag-enriched and RiboTag-depleted genes showing that �90% of RiboTag-enriched genes are translationally downregulated in the murine tumors. D, Histograms of
the mean translation efficiency for genes that are predominantly expressed in Olig2	 (red) or Olig2� (green) cells (based on proneural TCGA deconvolution) computed from ribosome profiles and
RNA-Seq of the human proneural tumor samples. Genes deconvolved in Olig2	 cells show a statistically significant tendency toward lower translation efficiency, similar to the RiboTag-enriched
genes in the mouse model. E, Histograms of the mean translation efficiency for genes that are predominantly expressed in Olig2	 (red) or Olig2� (green) cells (same genes as in D) computed from
the ribosome profiles and RNA-Seq of the human non-neoplastic brain tissue. There is a significantly smaller shift in translation efficiency compared with the tumor tissue in D. F, Histogram of the
translation efficiency fold-change between tumor and non-neoplastic brain tissue for genes deconvolved in the Olig2	 (red) or Olig2� (green) cells showing that �70% of genes associated with
Olig2	 cells are translationally downregulated in the human proneural tumors.
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Smirnov, KS, test). To determine whether this difference was specific
to the tumor tissue, we performed ribosome profiling on three nor-
mal brain samples. We found no significant difference between
the translation efficiency distributions of these two gene sets in
normal brain (Fig. 5B). Furthermore, we found that the transla-
tion efficiency was lower in tumor homogenate than in normal
brain for �88% of RiboTag-enriched genes (Fig. 5C), implying a
global difference in the translational status of transformed cells.

We repeated this analysis in our human proneural glioma
ribosome profiles where Olig2	 cells comprise the majority of the
transformed population. We used computational deconvolution
to compare translation efficiency in the Olig2	 lineage to the
other CNS lineages in the tumor. Like the RiboTag-enriched
genes in the mouse model, we found that genes associated with
the Olig2	 lineage exhibited �40% lower translation efficiencies
than genes expressed predominantly by other CNS lineages (Fig.
5D). Although still statistically significant, this difference was re-
duced upon examination of the same genes in non-neoplastic
brain tissue (Fig. 5E). Finally, we found that �70% of genes
associated with the Olig2	 lineage were translated with lower
efficiency in human glioma tissue than in non-neoplastic human
brain tissue (Fig. 5F). Hence, the qualitative aspects of our trans-
lation efficiency phenotype described in the RiboTag mouse
model are also present in the human disease.

The RiboTag system allows us to clearly separate cells that
received the tumor-initiating genetic alteration from tumor-
associated cells, which would be a more complex task in human
tumors. The deconvolution suggests that, in the mouse tumors,
the OPC, microglial, and Cd44	 astrocytes recruited to the tu-
mor microenvironment are responsible for the mesenchymal-
like signature observed among RiboTag-depleted genes. Given
the reactive nature of these cell types, we next asked whether the
translational status of these cells is globally altered as we observed
for transformed cells. We used the RNA-Seq deconvolution to
assign a predominant cell type for each RiboTag-depleted gene.
We then calculated the translation efficiency distributions from
the homogenate ribosome profiling data for genes assigned to
each cell type (Fig. 6A). Here, we see a clear shift toward lower
translation efficiency for genes expressed by OPCs, microglia,
and Cd44	 astrocytes compared with Cd44� astrocytes, oligo-
dendrocytes, and neurons. Figure 6B shows the same distribution
after grouping genes into reactive (OPC, microglial, Astro2) and
unreactive (Astro1, neuronal, oligodendrocytic) lineages and a
significant shift (p 
 8.5 � 10�9, two-sample KS test). Hence, the
low-efficiency translation phenotype seen in the transformed

cells (Fig. 5A–C) is also seen in the recruited or reactive cell types
in the microenvironment.

Sequence-dependent differential regulation of 5�-leader
ribosomal occupancy
We detected ribosomal density in the 5�-leader sequences of hun-
dreds of genes in the profiles obtained from RiboTag immuno-
precipitation. Ribosomal density in 5�-leader sequences, which
are typically annotated as noncoding 5�-UTRs, has been impli-
cated in translational control in multiple contexts (Barbosa et al.,
2013; Somers et al., 2013), and our results suggest that it could
play a role for specific genes expressed by transformed cells in the
tumor. Previous genome-wide studies of translation in yeast have
implied that the presence of upstream AUG start codons
(uAUGs) can interfere with translation initiation at the down-
stream coding sequence by recruiting ribosomes to the 5� leader
(Brar et al., 2012; Arribere and Gilbert, 2013). To explore the
potential implications of 5�-leader density on protein synthesis,
we investigated the sequence content of 5�-leader sequences in
the mouse transcriptome. Figure 7A shows the CDS translation
efficiency distributions from the tumor homogenate for genes
with 5�-leader density in the RiboTag profile that either contain
or lack uAUG. Despite ribosomal density in the 5�-leader se-
quence, genes without uAUG are translated nearly twofold more
efficiently on average than genes with uAUG in the tumor (p 

4.1 � 10�13, two-sample KS test). We observed a similar trend in
normal brain tissue (Fig. 7B). Hence, the phenomenon is general
to healthy and neoplastic tissue.

The observed 5�-leader activity and the significant difference
in translation efficiency between transcripts containing and lack-
ing uAUG led us to investigate whether 5�-leader ribosomal
occupancy is differentially regulated. We first calculated the 5�-
leader efficiency based on the tumor homogenate profiles for
genes with 5�-leader ribosomal density in the RiboTag profiles.
Unlike the translation efficiency of the CDS, which we found to
be broadly reduced in the tumor relative to normal brain for
RiboTag-enriched genes (and for �90% of RiboTag-enriched
genes with 5�-leader density), the 5�-leader efficiency was not
affected to the same extent (only �60% showed reduced 5�-
leader efficiency). Figure 7C shows histograms of the ratio of the
5�-leader efficiency fold-change relative to the CDS translation
efficiency fold-change for transcripts containing or lacking
uAUGs for RiboTag-enriched genes with 5�-leader density. For
uAUG-containing transcripts, the 5�-leader and CDS translation
efficiency fold-changes relative to normal brain are similar, and

Figure 6. Translation efficiency in reactive cell types in the mouse model. A, Cell-type-specific translation efficiency histograms for all RiboTag-depleted genes based on the homogenate
ribosome profiling and deconvolution. B, Grouping the cell types into reactive (astro2, OPC, microglia) and unreactive (astro1, oligodendrocyte, neuron) reveals a significant shift toward lower
translation efficiency for reactive cells.
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the log-scale histogram peaks at zero. However, for transcripts
lacking uAUG, the 5�-leader and CDS translation efficiencies ap-
pear differentially regulated to a larger extent, and the ratio of
their fold-changes is greater than one for �73% of these genes.
The difference in these two distributions is statistically significant
(p 
 0.01, two-sample KS test). This can be improved to p 

4.5 � 10�16 by including genes with 5�-leader density in any of
the three RiboTag mice in the analysis. This result raises the pos-
sibility that translation initiation on non-AUG start codons and
canonical initiation are regulated by different factors and that
those factors are differentially regulated in the transformed cells
compared with normal brain.

Finally, we repeated all three analyses of 5�-leader ribosomal
occupancy on our human proneural and non-neoplastic ribo-
some profiles. Just as in the mouse, we find a distinctive shift
toward higher CDS translation efficiency for genes with 5�-leader
density that lack uAUG in their 5�-leader sequence in both tumor
and non-neoplastic tissue (Figs. 7D,E). We also find that differ-
ential regulation of 5�-leader density and CDS translation effi-
ciency in comparing tumor and non-neoplastic ribosome
profiles (Fig. 7F). The median fold-change ratio between 5�-
leader and CDS efficiency is close to one for genes with ribosomal
density in uAUG-containing 5�-leaders and shifted to higher
values for genes without uAUG (p 
 1.7 � 10�4). Hence, differ-

Figure 7. Analysis of noncanonical translation in murine and human glioma. A, Histograms of the translation efficiency of genes with 5�-leader density across all three RiboTag profiles that either
contain (red) or lack (green) uAUG. B, Histograms of the translation efficiency of genes with 5�-leader density across all three normal brain profiles that either contain (red) or lack (green) uAUG. C,
Histogram of the ratio of 5�-leader efficiency fold-change to CDS translation efficiency fold-change for genes with 5�-leader density in all three RiboTag mice and either contain (red) or lack (green)
uAUG. Fold-change in 5�-leader and CDS translation efficiencies are calculated between the tumor homogenate and normal brain samples. D, Histograms of the translation efficiency of genes with
5�-leader density across both human proneural glioma ribosome profiles that either contain (red) or lack (green) uAUG. E, Histograms of the translation efficiency of genes with 5�-leader density
across all three human non-neoplastic brain ribosome profiles that either contain (red) or lack (green) uAUG. F, Histogram of the ratio of 5�-leader efficiency fold-change to CDS translation efficiency
fold-change for genes with 5�-leader density in both human proneural glioma ribosome profiles and either contain (red) or lack (green) uAUG. Fold-change in 5�-leader and CDS translation
efficiencies are calculated between the human tumor and non-neoplastic brain samples.
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ential regulation of translation between neoplastic and non-
neoplastic tissue is dependent on 5�-leader sequence content for
proneural glioma in both human and mouse.

Discussion
The brain is compositionally heterogeneous and uniquely inter-
connected, while the translational machinery is highly dynamic.
Together, these features demand a minimally perturbative, cell-
type-specific approach to quantifying translation. Our strategy
combines the RiboTag system for cell-type specificity with ribo-
some profiling to achieve a comprehensive, quantitative picture
of translation in glioma. Dysregulation of protein synthesis plays
a role in many diseases of the CNS, and we have made several key
observations about translation in glioma.

Our results reveal a program of non-cell autonomous upregu-
lation of cell adhesion and extracellular matrix-related genes in
tumor-associated cells. These pathways are known to be upregu-
lated in gliomas and play an important role in tumor cell inva-
sion. Despite the fact that our glioma mouse model globally
recapitulates the proneural subtype of human glioblastoma (Lei
et al., 2011; Sonabend et al., 2014), the upregulated pathways
found in tumor-associated cells are most closely associated with
the mesenchymal subtype. Deconvolution of the upregulated
subset of RiboTag-depleted genes in both mouse and human
showed little contribution from oligodendrocytes and neurons.
Instead, these genes were found in more reactive cell types such as
the OPC-like, astrocytic, and microglial lineages. Hence, despite
the resemblance of our animal model to the proneural subtype
and the glial progenitor origin of these tumors, multiple cell types
in the tumor microenvironment contribute a mesenchymal
signature.

We found that the translation efficiency of the RiboTag-
depleted genes is cell-type dependent. First, genes expressed in
cells that arise from the retrovirus-infected lineage tend to have
lower translation efficiencies than genes predominantly ex-
pressed in other CNS lineages. Although the total translational
output of these genes is higher in the tumor than in normal brain
and ribosomal components comprise an enriched ontology in the
RiboTag profile, they are almost universally translated more effi-
ciently in normal brain. Thus, glial transformation is associated
with a significant reduction in global translation efficiency. Sim-
ilarly, in human proneural gliomas, we find that genes expressed
by Olig2	 cells exhibit significantly lower translation efficiency
than genes expressed in other CNS lineages. There are multiple
potential explanations for this phenomenon. Although gene-
specific mechanisms of translational regulation could be respon-
sible, it is also possible that the translational machinery is globally
saturated with mRNA in the transformed cells. Another possibil-
ity is that tight translational control is essential to maintenance of
an immature cell state and avoiding differentiation as demon-
strated in other contexts (Signer et al., 2014; Tahmasebi et al.,
2014).

We used deconvolution to divide the RiboTag-depleted genes
into reactive (Cd44	 astrocytes, microglia, and OPCs) and unre-
active (Cd44� astrocytes, neurons, and oligodendrocytes) cells
and found that reactive cells share the low translation efficiency
phenotype with the transformed cells. Hence, protein expression
in the reactive and transformed cell types may be driven through
common, potentially dysregulated signaling pathways.

Finally, we detected ribosome footprint density in the 5�-
leader sequences of many genes in the RiboTag profile and in
human proneural glioma ribosome profiles. Although specific
cases have been described, the precise role of 5�-leader density is

poorly understood on a gene-by-gene basis. For example, 5�-
leader-bound ribosomes could be translationally inactive and
mainly affect RNA stability or translation of the downstream
CDS. Alternatively, these ribosomes could be actively translating
upstream open reading frames (uORFs) to generate short pep-
tides, fusion proteins, or full-length proteins from an unanno-
tated ORF.

The downstream effects of 5�-leader ribosomal density on
translation efficiency are strongly sequence-dependent. In nor-
mal brain, transcripts lacking the conventional start codon up-
stream of the annotated start of the CDS (uAUG) exhibit higher
CDS translation efficiencies than those containing uAUG. We see
that this regulatory framework is intact in the tumor, and the
5�-leader sequence dependence leads to differential regulation of
translation relative to normal brain. For most genes expressed in
the RiboTag cells, the CDS translation efficiency is lower in the
tumor than in normal brain, but the same is not true for the
5�-leader efficiency. In particular, we discovered that the fold-
changes in 5�-leader and CDS translation efficiencies for a given
transcript relative to normal brain diverge for transcripts lacking
uAUG. For these genes, translation initiation in a uORF and the
annotated ORF must initiate from different start codons, and
these two processes may be regulated by distinct factors or path-
ways that are differentially regulated in the tumor.

Both the RiboTag glioma mouse model and computational
deconvolution are powerful tools for studying transcriptional
and translational regulation in brain tumors, which are com-
posed of a complex mixture of different cell types. Previous stud-
ies have shown that paracrine signaling between different cell
types play an important role in glioma growth and induces non-
cell autonomous alterations (Assanah et al., 2006; Hoelzinger et
al., 2007; Bonavia et al., 2011; Pong and Gutmann, 2011). The
proneural subtype of human glioblastoma, which is effectively
modeled here, is driven by growth factor signaling, particularly
through the PI3K/AKT pathway, which directly impacts transla-
tion through mTOR and other downstream signaling molecules.
Our detailed characterization of glioma’s altered translational
landscape raises the possibility that the translational machinery is
selectively vulnerable in transformed and reactive cells. The ana-
lytical tools described here will be essential to assessing and pre-
dicting the effects of therapeutic strategies that target protein
synthesis.
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