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Some of the methods of estimation of allele frequencies and inbreeding coefficients
in a K-allele model are examined. A result that has long been assumed to be true is
proved. That is, in the presence of inbreeding, the maximum likelihood estimators
of the allele frequencies and of the inbreeding coefficient f do not in general equal
their observed (or sample) values (except when K ¼ 2). A least-squares way of
looking at the estimation problem is presented, and simulations are used to
compare the three types of estimators (sample, maximum likelihood, and least-
squares) in a 3-allele model. Probability generating functions are used to derive
exact expressions for the bias of the sample estimator of f in a 2-allele model for
any sample size, and those biases are calculated for a number of situations.
Finally, an approximately unbiased estimator of the inbreeding coefficient when
an allele is rare or common is proposed, and its bias is compared with that of
the sample estimator and with that of an estimator proposed by Weir (1996).

Keywords: Hardy-Weinberg equilibrium; maximum likelihood; least-squares; prob-
ability generating function

INTRODUCTION

Inbreeding coefficients have played a prominent role in the population
genetics literature. These coefficients were first put forward by Wright
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(1922) as measures of ‘‘relatedness’’ between individuals in a reference
population. Usually, inbreeding arises from nonrandom mating between
closely related individuals and results in an excess of homozygotes over
heterozygotes, relative to proportions under Hardy-Weinberg equilib-
rium (HWE); however, allele frequencies are not changed. Moreover,
mating between close relatives is not the only cause for inbreeding.
In fact, any small population has some degree of inbreeding associated
with it, due to the sharing of common ancestors.

Wright (1922) originally defined the inbreeding coefficient with
respect to a single locus as the correlation between two genes in a unit-
ing gamete by assigning numerical values to the genes. An alternative
definition was given by Haldane and Moshinsky (1939), Cotterman
(1940), and Malécot (1948), who used the concept of identity by descent
(IBD). Two homologous alleles at a locus are said to be IBD if they are
both derived from the same allele copy in a common ancestor (assuming
that the common ancestor is so recent in the past that there are no
intervening mutations). The inbreeding coefficient f is then defined
as the probability that two homologous alleles are IBD. We shall define
f as the proportionate reduction in heterozygozity relative to HWE:

f ¼ 1�
P
ði;jÞ:i<j Pij

1�
P

i p2
i

; ð1Þ

where pi is the proportion of allele i, and Pij is the frequency of genotype
AiAj, such that

P
ði;jÞ:i�j Pij ¼

P
i pi ¼ 1. For two alleles, A1 and A2 hav-

ing respective frequencies p and qð¼ 1� pÞ, Eq. (1) is equivalent to:

P11 ¼ p2 þ pqf ;

P12 ¼ 2pq� 2pqf ;

P22 ¼ q2 þ pqf ;

ð2Þ

where P11 þ P12 þ P22 ¼ 1. Eq. (2) suggests that we can also view f as a
standardized measure of the deviation from HWE proportions (Nagylaki,
1998). For a general K-allele with inbreeding coefficient f, we thus have

Pij ¼
p2

i þ pið1� piÞf ; i ¼ j;

2pipj � 2pipjf ; i 6¼ j;

(
ð3Þ

From Eq. (3), we see that �pi=ð1� piÞ � f � 1 for i ¼ 1; 2; . . . ;K .
Another approach is to view f as genotype-specific (i.e., there are as
many fij’s as there are genotypes), but it is often reasonable to use (as
we do here) a single inbreeding coefficient as the loci are unlikely to
be under the influence of selection (Weir, 2001). Both here and in what
follows, we assume that the alleles are co-dominant.
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In general, any deviation from HWE (whether due to inbreeding or
not) is measured by the fixation index (F ), a term first introduced by
Wright (1951, 1965). Even more generally, Wright’s three fixation
indices (FIS;FIT and FST), or F- statistics, have been used to quantify
deviations from HWE when populations are hierarchically structured
(e.g., Excoffier (2001)). In such a framework, FIS corresponds to the
inbreeding coefficient f considered here.

Early authors have done much work involving estimation, including
Li and Horvitz (1953), Yasuda (1968), and Robertson and Hill (1984),
and Rousset and Raymond (1995). For example, Li and Horvitz pro-
pose five methods for estimating f. They show that, in a 2-allele model
with inbreeding, the maximum likelihood estimates (MLEs) of p and f
are equal to their sample (or observed) values; however, they do not
provide explicit expressions for the pi’s and f when K � 3. They also
conjecture that the MLEs of the pi’s do not equal their sample values.
The same conjecture has been made by other Curie-Cohen (1982),
Robertson and Hill (1984), and others, but has not to our knowledge
been proven.

We prove that the MLEs of the pi’s do not equal their sample values
in the section Maximum Likelihood Estimation. We also examine some
of the methods of estimation of the pi’s and f . In the section, A Least-
Squares Approach to the Estimation Problem, we evaluate a least-
squares method of estimation of the pi’s and f , and we use simulations
in the next section to compare the three estimators (sample, MLE and
LSE) in a 3-allele model. In the section on exact bias, we use prob-
ability generating functions to derive exact expressions for the bias
of the sample estimator of f in a two-allele model for any sample size.
In the final section, we derive an approximately unbiased estimator of
f when p is very small (or very large) and compare its performance
with other estimators.

STATISTICAL MODEL AND ESTIMATION

In general, for a K-allele model, suppose the genotype AiAj has
observed count xij and true proportion Pij in the population, where
1 � i � j � K . Then the joint distribution of the vector x ¼ xij; 1 �

�
i � j � Kg is given by the multinomial distribution:

pðxÞ ¼ n!Q
ði;jÞ:i�j xij!

Y
ði;jÞ:i�j

P
xij

ij ; ð4Þ

where n ¼
P
ði;jÞ:i�j xij is the sample size (or total number of genotypes),

the Pij’s are given in Eq. (3) and
P
ði;jÞ:i�j Pij ¼ 1. The distribution in
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Eq. (4) is strictly valid only for an infinitely large population. From stan-
dard statistical theory, marginally each xij has a binomial distribution:

xij � bino n;Pij

� �
: ð5Þ

Moreover, the population proportion of allele i is

pi ¼ Pii þ
1

2

X
j:j 6¼i

Pij;

where we define
P

j:j6¼i ð�Þij �
P

j:j<i ð�Þji þ
P

j:j>i ð�Þij. The estimation of
the parameters pi and f has been a central and natural problem in the
literature. The pi’s are usually estimated by using the sample (i.e.,
observed) proportions:

p
ðsÞ
i ¼

2xii þ
P

j:j6¼i xij

2n
: ð6Þ

The estimator p
ðsÞ
i is actually a moment estimator and is unbiased:

Ep
ðsÞ
i ¼ pi:

This comes from Eq. (3), (5) and (6). The estimation of f is more diffi-
cult since it is a function of a ratio of parameters. A simple estimator of f
could be obtained by replacing sample values in Eq. (1), resulting in
what we denote as the sample estimator:

f ðsÞ ¼ 1�
P
ði;jÞ:i<j xij=n

1�
P

i p
ðsÞ
i

� �2

8><>:
9>=>;: ð7Þ

The latter estimator is biased. An alternative approach is to obtain
unbiased estimators for both the numerator and denominator of f (Weir,
1996), resulting in the estimator:

f ðweirÞ ¼

X
i

xii

n
� p

ðsÞ
i

� �2
� �

þ 1

2n
1�

X
i

xii

n

� �
1�

X
i

p
ðsÞ
i

� �2
� �

� 1

2n
1�

X
i

xii

n

� � ð8Þ

Both estimators in Eqs. (7) and (8) are consistent, meaning that both
their bias and variance decrease with increasing sample size.

MAXIMUM LIKELIHOOD ESTIMATION

The method of maximum likelihood has been the most popular method of
estimation in statistical theory. Maximum likelihood estimators (MLEs)
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enjoy many optimal properties, such as consistency and large-sample
efficiency (Silvey, 1971: 73). To obtain the MLEs of the pi’s and f in the
multinomial model in Eq. (4), we start by writing the log-likelihood as:

lðp; f Þ �
X
ði;jÞ:i�j

xij ln Pij þ C1

¼
XK
i¼1

xii ln p2
i þ pi 1� pið Þf

� �
þ
X
ði;jÞ:i<j

xij ln 2pipjð1� f Þ
� �

þ C1;

ð9aÞ
where C1 ¼ lnðn!=

Q
ði;jÞ:i�j xij!Þ is a constant, the vector p ¼ pi; i ¼f

1; . . . ;K � 1g and pK � 1�
PK�1

i¼1 pi. Eq. (9a) can be simplified to:

lðp; f Þ ¼
XK
i¼1

xi ln pi þ
XK
i¼1

xii ln pi þ 1� pið Þff g

þ
X
ði;jÞ:i<j

xij lnð1� f Þ þ C2; ð9bÞ

where xi � xii þ
P

j:j6¼i xij and C2 is a constant. The next step is to set the
first partial derivatives of Eq. (9b) with respect to p1; . . . ;pK�1 and f (the
so-called score functions) to zero and solve for the K parameters.

Considerable simplification occurs in one special case, when the
number of independent parameters equals the number of independent
counts (or the number of degrees of the freedom (d.f.) in the model).
This happens when K ¼ 2 and yields a saturated model in which the
MLEs of the parameters can be obtained by simply equating the
observed cell counts with the expected ones; that is, the MLEs are then
equal to the sample estimators, Bailey’s Rule (Bailey, 1951). Although
the condition of equality in the number of d.f. and the number of para-
meters is sufficient, it is not necessary. To illustrate this, we take the
2-allele model with inbreeding (see Eq. (2)). This has 2 d.f. and 2 inde-
pendent parameters (p and f ) so that Bailey’s Rule gives the MLEs:

pðmleÞ ¼ pðsÞ ¼ 2x11 þ x12

2n
;

f ðmleÞ ¼ f ðsÞ ¼ 1� x12=n

2pðsÞqðsÞ
;

where qðsÞ � 1� pðsÞ. However, for any K-allele model under HWE ( f � 0
in Eq. (3)), the MLEs are still equal to the sample estimators, even
though the number of d.f. exceeds the number of independent parameters:

p
ðmleÞ
i ¼ p

ðsÞ
i ¼

2xii þ
P

j:j 6¼i xij

2n
; i ¼ 1;2; . . . ;K : ð10Þ
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There exist two sufficient conditions for the sample estimators to equal
the MLEs. One condition is that the population must be in HWE (f � 0),
and the other is that there should be only two alleles (K ¼ 2). However,
when neither condition holds, the sample estimators do not in general
maximize the likelihood (except in the rare case of a ‘‘perfect fit’’; see Con-
clusion), as we now show:

Theorem 1: For the K-allele model with inbreeding coefficient f
(where f 6¼ 0), having multinomial distribution given in Eq. (4) and cell
probabilities Pij’s defined in Eq. (3), the MLEs of the parameters
piði ¼ 1; . . . ;KÞ and f do not in general equal the sample estimators
p
ðsÞ
i and f ðsÞ (given in Eqs. (6) and (7)) for K � 3.

Proof. Differentiating the log-likelihood in Eq. (9b) with respect to
piði ¼ 1; . . . ;K � 1Þ and f, and setting to zero, we obtain

@l

@pi
¼ xi

pi
þ xiið1� f Þ

pi þ ð1� piÞf
� xK

pK
� xKKð1� f Þ

pK þ ð1� pKÞf
¼ 0; ð11Þ

@l

@f
¼
XK
i¼1

xii 1� pið Þ
pi þ ð1� piÞf

� �
�
P
ði;jÞ:i<j xij

1� f
¼ 0: ð12Þ

For Eq. (11) to be valid, we need, for i ¼ 1; . . . ;K � 1,

xi

pi
þ xiið1� f Þ

pi þ ð1� piÞf
¼ xK

pK
þ xKKð1� f Þ

pK þ ð1� pKÞf
:

It follows from the above that, for all i ¼ 1; . . . ;K;

xi

pi
þ xiið1� f Þ

pi þ ð1� piÞf
¼ C3; ð13Þ

where C3 is a constant. We now replace pi and f by their sample values
in Eqs. (6) and (7), and show that Eq. (13) cannot in general be satis-
fied when K � 3. Let pi ¼ p

ðsÞ
i ¼ 2xii þ

P
j:j 6¼i xij

� �
=ð2nÞ and f ¼ f ðsÞ so

that Eq. (13) becomes, for i ¼ 1; . . . ;K,

xii

p
ðsÞ
i

� �2
þp
ðsÞ
i 1� p

ðsÞ
i

� �
f ðsÞ
¼ C4; ð14Þ

where C4 is a constant. If the sample estimators did equal the MLEs,
then Eq. (14) would be valid for all possible xij’s and the corresponding
p
ðsÞ
i ’s and f ðsÞ. However, this is not the case, in general. We construct a
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simple counterexample: For K � 3, let x11=n ¼ 1=K ; let xii=n ¼ 1=ð2KÞ
for i ¼ 2; . . . ;K ; let x1j ¼ 0 for j ¼ 2; . . . ;K ; and let xij=n ¼ 1=fKðK � 2Þg
for 2 � i < j � K. Then from Eq. (6), p

ðsÞ
i ¼ 1=K for all i ¼ 1; . . . ;K . This

example shows that it is possible to have all p
ðsÞ
i ’s the same even

though not all the xii’s are the same. Therefore, no one value of f ðsÞ

can possibly satisfy Eq. (14) for all i. Thus the sample estimators do
not in general equal the MLEs when K � 3 and f 6¼ 0. On the other
hand, when K ¼ 2, p

ðsÞ
1 ¼ p

ðsÞ
2 implies x11 ¼ x22 and vice-versa, so that

Eq. (14) is always valid. This completes the proof.

Remarks:

(i) For a model assuming HWE (i.e. f � 0), Eq. (13) is valid for any
K-allele model when pi is replaced by p

ðsÞ
i , showing that the sample

estimators are indeed the MLEs, as previously stated (Li and
Horvitz, 1953).

(ii) If the value of f is fixed, then Eq. (11) can be solved for the MLEs
of the pi’s. Similarly, the values of pi’s could be fixed at their sam-
ple values p

ðsÞ
i , and Eq. (12) could be solved for the MLE of f

(Curie-Cohen, 1982). However, the MLEs would still not equal
the sample values of the respective parameters, in general.

For a K � 3 allele model with inbreeding, we must obtain the MLEs
by a numerical technique such as the method of scoring, or Newton’s
method with numerical or analytical derivatives (Monahan, 2001)
(see section 5 for some numerical experiments).

In the next section, we evaluate a method of estimating the para-
meters pi and f that has been popular in regression problems and goes
back to the times of Legendre (1752–1833) and Gauss (1777–1855) (for
example, Stigler (1986)).

A LEAST-SQUARES APPROACH TO THE ESTIMATION
PROBLEM

The method of least-squares has the advantage over the method of
maximum likelihood in that it does not require any distributional (or
statistical) assumptions for the estimation itself and, in many cases,
is more computationally tractable (especially with the use of matrix
algebra) than the method of maximum likelihood. However, in gen-
eral, MLEs have more attractive properties than least-squares estima-
tors (LSEs) and are more widely used. For large samples, MLEs are
nearly unbiased and have variances nearly equal to the Cramer-Rao
lower bound (Silvey, 1971:77).
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To obtain the LSEs of the pi’s and f for a general K-allele model,
we need only the observed genotype counts x ¼ fxij; 1 � i � j � Kg
and the expected genotype counts nPij, where Pij is given in Eq. (3).
The function that needs to be minimized here is called the error sum
of squares and is given by:

SSE �
X
ði;jÞ:i�j

xij � nPij

� �2 ¼
XK
i¼1

xii � np2
i � npið1� piÞf

� �2

þ
X
ði;jÞ:i<j

xij � 2npipjð1� f Þ
�

g2; ð15Þ

where pK � 1�
PK�1

i¼1 pi, as before. Eq. (15) is non-linear and the
corresponding LSEs do not, in general, have the attractive properties
of the linear case, namely unbiasedness and minimum variance (of all
linear unbiased estimators). However, the LSEs of Eq. (15) are asymp-
totically unbiased and have minimum variance (Myers, 1990: 426).

To obtain the LSEs in Eq. (15), the usual approach is to set the first
partial derivatives of SSE to zero, as in the MLE case. If the pi’s are
fixed (say to their sample values), then f can be obtained analytically
since the score equations for Eq. (15) are linear in f. Again, there is a
simplification in the 2-allele case: The LSEs are simply the sample
estimators, since the number of independent parameters is equal to
the number of d.f. (i.e., there is no d.f. for the error and the model is
saturated). So for K ¼ 2, we have:

pðlseÞ ¼ pðmleÞ ¼ pðsÞ ¼ 2x11 þ x12

2n
;

f ðlseÞ ¼ f ðmleÞ ¼ f ðsÞ ¼ 1� x12=n

2pðsÞqðsÞ
;

Substituting these LSEs into Eq. (15) yields a sum of zero terms, thus
minimizing SSE.

For a K � 3 allele model, the LSEs are biased. They should be
obtained using numerical techniques such as the Gauss-Newton
procedure (Monahan, 2001).

NUMERICAL RESULTS

Using the delta method (Casella and Berger, 2001), Curie-Cohen
(1982) shows that the expected value of f ðsÞ is

Ef ðsÞ ¼ f þO
1

n

	 

;
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and its variance is

var f ðsÞ ¼
ð1� f Þ 1� 2pq 1� fð Þ � p� qð Þ2 1� fð Þ2

n o
2pqn

þO
1

n2

	 

:

Moments of several other related estimators have also been given in
Robertson and Hill (1984). We use simulations to numerically compare
the three types of estimators (sample, MLE and LSE) for a 3-allele
model with p1 ¼ :2, p2 ¼ :5, f ¼ :05 for various sample sizes n, and
we investigate their biases and standard deviations (see Table 1).
We observe that the biases of both the MLEs and LSEs of f are quite
small in magnitude, decreasing as n gets larger. Theoretically, the
biases of the sample estimators of the pi’s are zero, but since our simu-
lations are based on a finite number of simulations the biases are not
exactly zero. Moreover, in most cases, the MLEs outperform the LSEs
both in terms of bias and standard deviation. Finally, as n gets larger,
the standard deviations of the MLEs become slightly smaller than
those of the sample estimators. In many cases, the sample estimators
are better than both the MLEs and LSEs both in terms of bias and
standard deviation. Table 2 shows more results with different allele-
and f-combinations, with similar results to those of Table 1.

THE EXACT BIAS OF f (s) IN A 2-ALLELE MODEL

In this section, we investigate the bias of f ðsÞ, as defined in Eq. (7), for
the 2-allele model and an arbitrary sample size n. We start by obtain-
ing an algebraic expression for the expectation E � E x12=nð Þ=f
2pðsÞqðsÞ
� �

g.

Theorem 2: For the 2-allele model with inbreeding coefficient f, and
x11; x12; x22 as the number of genotypes A1A1; A1A2; A2A2, respect-
ively, such that x11 þ x12 þ x22 ¼ n, we have

E ¼ 2� 2n

Z 1

z¼0

h
p�z
�

p�z2 þ ð1� p� � q�Þzþ q�
�n�1

þ q�z
�

q�z2þð1� p� � q�Þzþ p�gn�1
i
dz; ð16Þ

where p� ¼ p2ð1� f Þ þ pf , q� ¼ q2ð1� f Þ þ qf , pðsÞ ¼ 2x11 þ x12ð Þ=ð2nÞ
and qðsÞ ¼ 1� pðsÞ.

Proof: Substituting pðsÞ ¼ ð2x11 þ x12Þ=ð2nÞ and x12 ¼ n� x11 � x22,
we have

x12=n

2pðsÞqðsÞ
¼ 2 1� x11

nþ x11 � x22
� x22

n� x11 þ x22

	 

; ð17Þ
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by partial fractions. Now ðx11; x22Þ has a multinomial distribution:

ðx11; x22Þ � multiðn;p�; q�Þ ) E zx11

1 zx22

2

� �
¼ p�z1 þ q�z2 þ 1� p� � q�ð Þn:

E zx11

1 zx22

2

� �
is the joint probability generating function of x11; x22ð Þ.

Differentiating it partially with respect to z1,

E x11zx11�1
1 zx22

2

� �
¼ np� p�z1 þ q�z2 þ 1� p� � q�ð Þn�1;

so that

E x11znþx11�1
1 zx22

2

� �
¼ np�zn

1 p�z1 þ q�z2 þ 1� p� � q�ð Þn�1:

Setting z2 ¼ 1=z1 and integrating with respect to z1,

E
x11znþx11�x22

1

nþ x11 � x22

	 

¼ np�

Z
z1 p�z2

1 þ q� þ 1� p� � q�ð Þz1

� �n�1
dz1:

Therefore,

E
x11

nþ x11 � x22

	 

¼ np�

Z 1

z1¼0

z1 p�z2
1 þ q� þ 1� p� � q�ð Þz1

� �n�1
dz1:

ð18Þ

Similarly,

E
x22

n� x11 þ x22

	 

¼ nq�

Z 1

z2¼0

z2 p� þ q�z2
2 þ 1� p� � q�ð Þz2

� �n�1
dz2:

ð19Þ

Using Eq. (17), (18) and (19), we get the required expression in
Eq. (16). This completes the proof.

From Eq. (16), we have

Ef ðsÞ ¼ 1� E:

Thus, the bias of f ðsÞ is given by

bias f ðsÞ
n o

¼ Ef ðsÞ � f ¼ 1� E � f : ð20Þ

Remembering that, for the 2-allele case, f ðsÞ ¼ f ðmleÞ ¼ f ðlseÞ, Eq. (20)
also gives the bias for both the MLE and LSE of f.

In Table 3, we compute the bias of f ðsÞ for various sample sizes n in
the 2-allele case with p ¼ .1, .25 and .5, f ¼ �:30;�:10; 0; :10; :30 and
.75, and n ¼ 20 and 40. In all cases, f ðsÞ underestimates the inbreeding
coefficient f.
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AN UNBIASED ESTIMATOR OF f FOR p SMALL OR p LARGE

Let us consider the case when p is very small such that p >> p2 � 0.
Then p� � pf and q� � 1� 2pþ pf . Then, by using Taylor’s series
expansions, Eq. (18) can be simplified to

E
x12=n

2p sð Þq sð Þ �
2n� 1þ 2np

2n� 1
� np 2nþ 1ð Þf

2n� 1
:

An approximately unbiased estimator of f for small p can thus be
obtained:

f ðunbÞ � 2n� 1þ 2np

npð2nþ 1Þ �
2n� 1

npð2nþ 1Þ
x12=n

2pðsÞqðsÞ

� �
: ð21Þ

Eq. (21) involves p, which can be estimated from the sample by pðsÞ.
The corresponding approximate estimator in Eq. (21) then becomes

eff ðunbÞ
� 2n� 1þ 2npðsÞ

npðsÞð2nþ 1Þ �
2n� 1

npðsÞð2nþ 1Þ
x12=n

2pðsÞqðsÞ

� �
: ð22Þ

Analogous estimators when p is large are be obtained by interchan-
ging p and q in Eq. (22).

Table 4 compares the three estimators f ðsÞ; f ðweirÞ and eff ðunbÞ
for

p ¼ .001, f ¼ .05, and for various sample sizes n. From n ¼ 20 through
n ¼ 50, the bias of eff ðunbÞ

is almost the same as that of f ðweirÞ, and are
slightly less than that f ðsÞ. All three standard deviations are very close.
Table 5 again compares the same three estimators for n ¼ 25 and 75,
f ¼ .05, and p ¼ .001, .005, . . . , .025. For n ¼ 25, eff ðunbÞ

outperforms f ðsÞ

TABLE 3 Exact Bias of fðsÞfor Sample Sizes n ¼ 20, 40 in a 2-Allele Model
with p ¼ :1; :25; :5; and f ¼ �.30, �.10, 0, .10, .30, .75

f

p n �.30 �.10 0 .10 .30 .75

.1 20 n=a �.00513 �.02526 �.04386 �.07607 �.11940
40 n=a �.00258 �.01265 �.02135 �.03421 �.03585

.25 20 �.00977 �.02125 �.02564 �.02904 �.03271 �.02271
40 �.00488 �.01058 �.01265 �.01418 �.01554 �.00952

.50 20 �.02278 �.02518 �.02564 �.02559 �.02392 �.01198
40 �.01138 �.01248 �.01265 �.01258 �.01165 �.00570

Note that the bias of fðsÞ at p is the same as the bias at 1� p. Two cell combinations
were impossible (n=a) because �p=ð1� pÞ � f � 1. for each sample size, with the given
values of p and f, the bias was calculated using Eq. (20).

96 P. Gorroochurn and S. E. Hodge



T
A

B
L

E
4

B
ia

s
a
n

d
S

ta
n

d
a
rd

D
ev

ia
ti

on
(S

D
)

of
fð

sÞ
(s

a
m

),
fð

w
ei

rÞ
(w

ei
r)

a
n

d
e ffðunb

Þ
(u

n
b
)

in
a

2
-A

ll
el

e
M

od
el

w
it

h
n
¼

2
0
,
2
5
,
3
0
,

4
0
,

5
0
,

7
5
,

1
0
0
,

1
2
5
,

1
5
0
,

f
¼

.0
5
,

a
n

d
p
¼

.0
0
1

fr
om

C
om

p
u

te
r

S
im

u
la

ti
on

s

n
¼

2
0

n
¼

2
5

n
¼

3
0

B
ia

s
S

D
b
ia

s
S

D
b
ia

s
S

D

sa
m
¼
�
:0

4
9
7
4

sa
m
¼
:0

3
5
6
5

sa
m
¼
�
:0

4
9
5
2

sa
m
¼
:0

3
7
5
8

sa
m
¼
�
:0

5
0
0
1

sa
m
¼
:0

3
0
9
9

w
ei

r
¼
�
:0

4
8
7
6

w
ei

r
¼
:0

3
5
2
4

w
ei

r
¼
�
:0

4
8
6
3

w
ei

r
¼
:0

3
7
4
0

w
ei

r
¼
�
:0

4
8
6
6

w
ei

r
¼
:0

3
0
7
1

u
n

b
¼
�
:0

4
8
7
6

u
n

b
¼
:0

3
4
9
2

u
n

b
¼
�
:0

4
8
6
0

u
n

b
¼
:0

3
7
3
9

u
n

b
¼
�
:0

4
8
6
6

u
n

b
¼
:0

3
0
3
2

n
¼

3
5

n
¼

4
0

n
¼

5
0

B
ia

s
S

D
b
ia

s
S

D
b
ia

s
S

D

sa
m
¼
�
:0

4
9
6
4

sa
m
¼
:0

3
6
8
0

sa
m
¼
�
:0

4
8
9
0

sa
m
¼
:0

4
5
9
3

sa
m
¼
�
:0

4
8
5
5

sa
m
¼
:0

4
8
3
0

w
ei

r
¼
�
:0

4
8
6
6

w
ei

r
¼
:0

3
6
6
4

w
ei

r
¼
�
:0

4
7
9
5

w
ei

r
¼
:0

4
5
7
8

w
ei

r
¼
�
:0

4
7
6
6

w
ei

r
¼
:0

4
8
2
3

u
n

b
¼
�
:0

4
8
6
6

u
n

b
¼
:0

3
6
3
1

u
n

b
¼
�
:0

4
7
9
0

u
n

b
¼
:0

4
5
7
8

u
n

b
¼
�
:0

4
7
6
7

u
n

b
¼
:0

4
7
4
9

n
¼

7
5

n
¼

1
0
0

n
¼

1
2
5

B
ia

s
S

D
b
ia

s
S

D
b
ia

s
S

D

sa
m
¼
�
:0

4
7
8
9

sa
m
¼
:0

5
5
1
4

sa
m
¼
�
:0

4
6
2
5

sa
m
¼
:0

6
7
2
1

sa
m
¼
�
:0

4
5
5
7

sa
m
¼
:0

7
0
3
7

w
ei

r
¼
�
:0

4
7
0
0

w
ei

r
¼
:0

5
5
0
9

w
ei

r
¼
�
:0

4
5
3
7

w
ei

r
¼
:0

6
7
1
7

w
ei

r
¼
�
:0

4
4
7
2

w
ei

r
¼
:0

7
0
3
5

u
n

b
¼
�
:0

4
6
9
6

u
n

b
¼
:0

5
4
8
7

u
n

b
¼
�
:0

4
5
4
7

u
n

b
¼
:0

6
5
7
7

u
n

b
¼
�
:0

4
5
0
2

u
n

b
¼
:0

6
7
2
3

F
or

ea
ch

sa
m

p
le

si
ze

,
w

it
h

th
e

g
iv

en
v
a
lu

es
of

p
1
,

p
2

a
n

d
f,

m
u

lt
in

om
ia

l
ob

se
rv

a
ti

on
s

w
er

e
g
en

er
a
te

d
a
cc

or
d

in
g

to
E

q
.

(4
),

u
si

n
g

M
a
p

le
V

R
el

ea
se

4
.0

0
a
.
T

h
e

th
re

e
es

ti
m

a
te

s
w

er
e

ca
lc

u
la

te
d

u
si

n
g

E
q
s.

(7
),

(8
)

a
n

d
(2

2
),

re
sp

ec
ti

v
el

y
.
A

ll
th

re
e

es
ti

m
a
to

rs
of

f
w

er
e

a
ss

ig
n

ed
th

e
v
a
lu

e
ze

ro
w

h
en

th
e

sa
m

p
le

s
w

er
e

m
on

om
or

p
h

ic
.

B
ia

se
s

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

on
s

w
er

e
ca

lc
u

la
te

d
ov

er
1
0
,0

0
0

si
m

u
la

ti
on

s
fo

r
ea

ch
sa

m
p

le
si

ze
.

97



and f ðweirÞ both in terms of bias and standard deviation. However, for

n ¼ 75, f ðweirÞ is the best in terms with respect to bias, while eff ðunbÞ
still

remains the best with respect to standard deviation.

CONCLUSION

We have investigated some of the methods of estimation of allele fre-
quencies and inbreeding coefficients in a K-allele model. We have
proved that in a K � 3 allele model with inbreeding, the sample values
of the allele frequencies and inbreeding coefficient differ from their

TABLE 5 Bias and Standard Deviation (SD) of fðsÞ (sam), fðweirÞ (weir) andeff ðunbÞ

(unb) in a 2-Allele Model with p ¼ .001, .005, .009, .013, .017, .021, .025, f ¼ :05,
and n ¼ 25, 75 from Computer Simulations

n ¼ 25 n ¼ 75

Bias SD Bias SD

p ¼ .001 sam ¼ �:04924 sam ¼ :04121 sam ¼ �:04787 sam ¼ :05502
weir ¼ �:04831 weir ¼ :04104 weir ¼ �:04698 weir ¼ :05498
unb ¼ �:04831 unb ¼ :04048 unb ¼ �:04697 unb ¼ :05432

p ¼ .005 sam ¼ �:04948 sam ¼ :07159 sam ¼ �:04041 sam ¼ :10937
weir ¼ �:04521 weir ¼ :07112 weir ¼ �:03700 weir ¼ :10919
unb ¼ �:04493 unb ¼ :06928 unb ¼ �:03789 unb ¼ :09868

p ¼ .009 sam ¼ �:04759 sam ¼ :10173 sam ¼ �:03124 sam ¼ :14257
weir ¼ �:04044 weir ¼ :10093 weir ¼ �:02645 weir ¼ :14216
unb ¼ �:03972 unb ¼ :09640 unb ¼ �:02929 unb ¼ :11977

p ¼ .013 sam ¼ �:04540 sam ¼ :12313 sam ¼ �:02854 sam ¼ :14770
weir ¼ �:03606 weir ¼ :12218 weir ¼ �:02309 weir ¼ :14731
unb ¼ �:03490 unb ¼ :11386 unb ¼ �:02763 unb ¼ :11328

p ¼ .017 sam ¼ �:04326 sam ¼ :13681 sam ¼ �:02434 sam ¼ :15324
weir ¼ �:03226 weir ¼ :13570 weir ¼ �:01862 weir ¼ :15301
unb ¼ �:03108 unb ¼ :12258 unb ¼ �:02526 unb ¼ :11067

p ¼ .021 sam ¼ �:04245 sam ¼ :15081 sam ¼ �:02133 sam ¼ :15435
weir ¼ �:02940 weir ¼ :14950 weir ¼ �:01537 weir ¼ :15445
unb ¼ �:02737 unb ¼ :13168 unb ¼ �:02491 unb ¼ :09985

p ¼ .025 sam ¼ �:04299 sam ¼ :15335 sam ¼ �:01915 sam ¼ :15614
weir ¼ �:02877 weir ¼ :15189 weir ¼ �:01285 weir ¼ :15653
unb ¼ �:02621 unb ¼ :12924 unb ¼ �:02413 unb ¼ :09593

For each sample size, with the given values of p1, p2 and f, multinomial observations
were generated according to Eq. (4), using Maple V Release 4.00a. The three estimates
were calculated using Eqs. (7), (8) and (22), respectively. All three estimators of f were
assigned the value zero when the samples were monomorphic. Biases and standard
deviations were calculated over 10,000 simulations.
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maximum likelihood estimates. We have introduced and evaluated a
least-squares way of looking at the estimation problem. For the
K ¼ 3 allele case, we have numerically compared the sample,
maximum likelihood, and least-squares estimates of the parameters
in our model. We have shown that, while the biases are relatively
small for all three estimators, the standard deviations are slightly
smaller for the MLEs than for the sample estimators with increasing
sample size. We have used probability generating functions to calcu-
late the exact bias of the sample estimator of the inbreeding coefficient
in a K ¼ 2 allele model for any sample size n. Finally, we have derived
an approximately unbiased estimator of f when p is very small (or very
large) and have shown that it outperforms f ðsÞ and f ðweirÞ both in terms
of bias and standard deviation when p is very small (� .001) and n is
moderate (�25).

Is it surprising that the sample estimators of the parameters do not
equal their MLEs, when K � 3? This fact is perhaps less surprising for
the inbreeding coefficient f, but it seems counterintuitive for the allele
frequencies. After all, the actual count of Ai alleles in the sample is
indeed given by Eq. (10), the sample estimator. On the other hand,
one can realize that in the presence of inbreeding, homozygotes with
alleles IBD yield only half the information of homozygotes whose
alleles are not autozygous. In any case, the sample estimators do not
maximize the likelihood for any of the parameters when K � 3 and
f 6¼ 0. The only exception occurs when there is a ‘‘perfect fit,’’ that is,
if and only if the KðK þ 1Þ=2 equations nPij ¼ xij (where Pij is defined
in Eq. (3)) yield a unique solution for p and f. Li and Horvitz (1953) did
state this result, which they regarded as reasonable; however, they did
not prove it. What we provide here is a rigorous mathematical proof.

Additionally, three observations can be made from the proof of The-
orem 1. First, no one value of f ðsÞ satisfies Eqs. (14) for all i ¼ 1, 2,. . .,
K; thus, no matter what the value of f, p ¼ pðsÞ does not maximize the
likelihood in general. Second, the proof does not involve the actual
value of f ðsÞ; thus even if the true value of f were known, so that f
did not need to be estimated, it would still follow from Eqs. (14) that
the sample estimators of the pi’s would not maximize the likelihood.
Third, even if the true value of the pi’s were known, so that they did
not need to be estimated, it would still follow from Eqs. (14) that the
sample estimates of f would not maximize the likelihood.

The least-squares approach shows an interesting way of looking at
the estimation problem, that of fitting the KðK þ 1Þ=2 genotype
counts, or data points, xij to their expected values. The least-squares
solutions thus obtained represent the estimates that best fit the sys-
tem of equations nPij ¼ xij. When K � 3 and f 6¼ 0, these estimates
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are also different from both the sample values and the MLEs (except in
the case of a perfect fit). Since least-squares are not as widely used as
maximum likelihood, we did not dwell too much on the theoretical
properties of the former.

The numerical calculations in the section, Numerical Results, show
that, at least for the cases we have considered, the biases of both the
MLEs and LSEs are quite small in magnitude, decreasing as n gets
larger. The MLEs are slightly better than the LSEs both in terms of
bias and standard deviation. For larger n, the standard deviations of
the MLEs become slightly smaller than those of the sample estimates.

In the subsequent section, we give an exact algebraic expression for
E ðx12=nÞ= 2pðsÞqðsÞ

� �� �
in integral form for any sample size n in a K ¼ 2

allele model with inbreeding. This enables not only the exact bias of
f ðsÞ to be calculated, but also the exact bias of any estimator of f which
is of the form 1� jðx12=nÞ=ð2pðsÞqðsÞÞ, where j is a constant.

We use the results from that section to derive an approximately
unbiased estimator of f when p is very small (or very large), and we
compare its performance with other estimators. We show that this
estimator outperforms f ðsÞ and f ðweirÞ both in terms of bias and stan-
dard deviation when p is very small (� .001) and n is moderate (�25).

Our primary aim in this paper was to investigate the performances
of various estimators (SAM, MLE, LSE). Therefore, we have refrained
from giving clear-cut guidelines on the ‘‘best’’ estimator based on bias
and standard deviation, but rather have left it to the reader to make
that choice. Moreover, we would like to point out that, although most
of the biases seem to be small, they are on average only one order of
magnitude smaller than the corresponding standard deviations, and
therefore unlikely to be insignificant.

A final interesting point arises serendipitously from the expression
for Ef ðsÞ derived in Theorem 2. Consider the extreme situation in
which either x11 ¼ n or x22 ¼ n (i.e., all observed genotypes are homo-
zygous for one particular allele). What value should one assign to f ðsÞ

in that case? One cannot simply use the usual expression for f ðsÞ (see
Eq. 17) because that expression, viewed as a function of x11 and x22,
gðx11; x22Þ, has a singularity at the points (n, 0) and (0, n). Moreover,
applying L’Hôpital’s rule does not resolve the indeterminacy because
the value of gðx11; x22Þ near each singularity differs, depending on
how one approaches the singularity.

The question of what value to assign to f ðsÞ when x11 ¼ n or x22 ¼ n
becomes relevant if, for example, one wishes to calculate the exact
Ef ðsÞ in some finite sample. Hartl and Clark (1997:112), imply that
f ðsÞ equals zero in this situation, based on the reasoning that, ‘‘the
genotype frequencies, though extreme, still satisfy the Hardy-Weinberg
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principle.’’ We can derive the same value (0), based on a mathematical
argument, namely that the PGF implicitly assigns that value to f ðsÞ in
that situation. See the Appendix for details.

APPENDIX

Proof that the probability generating function, as formulated in The-
orem 2, implicitly assigns the value 0 to f ðsÞ when ðx11; x22Þ ¼ ð0;nÞ or
when ðx11; x22Þ ¼ ðn; 0Þ.

We write Eq. (17) as

1� f ðsÞ ¼ x12=n

2pðsÞqðsÞ
¼ 2� 2U1ðx11; x22Þ � 2U2ðx11; x22Þ;

where

U1ðx11; x22Þ �
x11

nþ x11 � x22
; U2ðx11; x22Þ �

x22

n� x11 þ x22
:

Let us consider the case when ðx11; x22Þ ¼ ð0;nÞ. Then U2ð0;nÞ ¼
1=2, so

1� f ðsÞ ¼ 1� 2U1ð0;nÞ ) f ðsÞ ¼ 2U1ð0;nÞ: ð23Þ

Now U1ð0;nÞ is indeterminate and cannot be evaluated even by
applying L’Hôpital’s rule. For example, if we approach U1ð0;nÞ along
the line x11þ x22 ¼ n, then lim

x22!n
U1ð0;nÞ ¼ 1=2; if along the line

2x11þ x22 ¼ n, then lim
x22!n

U1ð0;nÞ ¼ 1=3; if along the line x11 ¼ 0, then

lim
x22!n

U1ð0;nÞ ¼ 0; etc. Thus, the value of U1ðx11; x22Þ at (0, n) represents

a true singularity. However, we can write

EU1 x11; x22ð Þ ¼
Xn

x11¼0

Xn�x11

x22¼0

U1 x11; x22ð Þ n!

x11 ! x22 ! n� x11 � x22ð Þ!

	 

	 p�ð Þx11 q�ð Þx22 1� p� � q�ð Þn�x11�x22

¼ U1 0;nð Þ þ
Xn

x11¼1

Xn�x11

x22¼0

x11

nþ x11 � x22

	 


	 n!

x11 ! x22 ! n� x11 � x22ð Þ!

	 

p�ð Þx11 q�ð Þx22

	 1� p� � q�ð Þn�x11�x22 ; ð24Þ
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since ðx11; x22Þ � multiðn;p�; q�Þ. But also, using the PGF to find
expected values, as in Eq. (18), we know

EU1 x11;x22ð Þ ¼ np�
Z 1

z¼0

z p�z2þ q� þ 1� p� � q�ð Þz
� �n�1

dz

¼ np�
Z 1

z¼0

z
Xn�1

i¼0

Xn�1�i

j¼0

n� 1ð Þ!
i! j! n� 1� i� jð Þ! p�z2

� �i
q�ð Þj

	 1� p� � q�ð Þzf gn�1�i�jdz

¼ np�
Z 1

z¼0

z
Xn

i¼1

Xn�i

j¼0

n� 1ð Þ!
i� 1ð Þ!j! n� i� jð Þ! p�z2

� �i�1
q�ð Þj

	 1� p� � q�ð Þzf gn�i�jdz

¼ np�
Xn

i¼1

Xn�i

j¼0

n� 1ð Þ!
i� 1ð Þ!j! n� i� jð Þ! p�ð Þi�1 q�ð Þj

	 1� p� � q�ð Þn�i�j
Z 1

z¼0

zn�1þi�jdz

¼
Xn

i¼1

Xn�i

j¼0

n!i

i!j! n� i� jð Þ! p�ð Þi q�ð Þj 1� p� � q�ð Þn�i�j
Z 1

z¼0

zn�1þi�jdz

¼
Xn

i¼1

Xn�i

j¼0

i

nþ i� j

	 

n!

i!j! n� i� jð Þ!

	 

p�ð Þi q�ð Þj 1� p� � q�ð Þn�i�j: ð25Þ

Clearly Eq. (24) is equal to Eq. (25) if and only if

U1ð0;nÞ � 0:

That is, if we accept that the PGF does yield the expected value of
U1ðx11;x22Þ, then perforce U1ð0;nÞ must be set to zero. Eq. (23) means
that when ðx11;x22Þ ¼ ð0;nÞ, then f ðsÞ � 0. Similarly, when
ðx11;x22Þ ¼ ð _nn;0Þ, then f ðsÞ � 0.

102 P. Gorroochurn and S. E. Hodge



ACKNOWLEDGEMENTS

We acknowledge helpful comments from two reviewers that led to a
much-improved manuscript. This work was supported in part by
grants DK31813, AA13654, MH48858, DK31775, NS27941.

REFERENCES

Bailey, N.T.J. (1951). Testing the solubility of maximum likelihood equations in the rou-
tine application of scoring methods. Biometrics 7(3): 268–274.

Casella, G. and Berger, R.L. (2001). Statistical Inference (2nd Edition). Brooks: Cole.
Cotterman, C.W. (1940). A Calculus for Statistico-Genetics. PhD Dissertation Ohio

University, Columbus, Ohio.
Curie-Cohen, M. (1982). Estimates of inbreeding in a natural population: a comparison

of sampling properties. Genetics 100(2): 339–358.
Excoffier, L. (2001). Analysis of population subdivision. In D.J. Balding, M. Bishop, and

C. Cannings (Eds.), Handbook of Statistical Genetics. Chichester: Wiley.
Haldane, J.B.S. and Moshinsky, P. (1939). Inbreeding in Mendelian populations with

special reference to human cousin marriage. Annals of Eugenics 9: 321–340.
Li, C.C. and Horvitz, D.G. (1953). Some methods of estimating the inbreeding coefficient.

American Journal of Human Genetics 5(2): 107–117.
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