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 In a recent issue of  Human Heredity , Dadd et al.  [1]  
questioned the appropriateness of the simulation meth-
ods we employed in our two previous publications  [2, 3] , 
concerning our delta-centralization (DC) method of 
dealing with population stratification (PS). Based on the 
results of their simulations, the authors concluded that 
DC does not control for PS. The aim of this paper is to 
show that a small adjustment to the original DC method 
remedies the situation, giving DC reasonable type I error 
rates in realistic situations. We also investigate the power 
of this adjusted method.

  Dadd et al.  [1]  noted that the simulations we performed 
did not follow the Balding-Nichols (BN) model  [4] , a 
widely used method (especially in forensics) for generat-
ing allele frequencies at loci in structured populations. 
The major difference between the BN model and our sim-
ulations, as correctly explained by Dadd et al., is that the 
BN model assumes that the subpopulation allele frequen-
cies at both the test locus and the null loci are distributed 
according to a

1 1
beta , 1ST ST

ref ref
ST ST

F F
p pF F

 Key Words 
 Balding-Nichols model  �  Subpopulation allele frequency 
matching  �  Population-level allele frequency matching 

 Abstract 
 Dadd et al. [Hum Hered 2010;   69:   285–294] recently criticized 
our delta-centralization (DC) method of controlling for pop-
ulation stratification (PS) and concluded that DC does not 
work. To explore our method, the authors simulated data un-
der the Balding-Nichols (BN) model, which is more general 
than the model we had used in our simulations. They deter-
mined that the DC method underestimated the PS parame-
ter ( � ) and inflated the type I error rates when applied to BN-
simulated data, and from this they concluded that the DC 
method is invalid. However, we argue that this conclusion is 
premature. In this paper, we (1) show  why   �  is underestimat-
ed and type I error rates are inflated when BN-simulated data 
are used, and (2) present a simple adjustment to DC that 
works reasonably well for data from both kinds of simula-
tions. We also show that the adjusted DC method has appro-
priate power under a range of scenarios. 
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  distribution, where  F  ST  is Wright’s coefficient of genetic 
differentiation and  p  ref  is a reference allele frequency that 
Dadd et al. equated to our population-average allele fre-
quency at the test locus [in ref.  3 ]. In contrast, for the mod-
el we used [in ref.  3 ]: (i) the subpopulation allele frequen-
cies at the test locus were pre-specified, and (ii)  p  ref  is 
equated to  our subpopulation-allele frequency at the test 
locus . The practical consequence of this difference is that, 
under our original model, the allele frequency at a null 
locus in a given subpopulation is closer on average to the 
allele frequency at the test locus for that subpopulation, 
compared to the BN model. Because of the different beta 
distributions, Dadd et al.  [1]  used the terms ‘subpopula-
tion allele frequency matching’ for the matching we per-
formed [in our studies,  2, 3 ], and ‘population-level allele 
frequency matching’ for the matching they performed. 

 The reason we pre-specified subpopulation allele fre-
quencies at the test locus in (i) above is so that we could 
fix different values of our PS parameter ( � ) and then be 
able to compare the performances of DC and genomic 
control (GC) under different levels of PS. It is the PS at the 
test locus that needs to be corrected, and only by fixing 
allele frequencies at the test locus were we able to investi-
gate the performance of these methods under different 
levels of PS. Our original aim was to show that GC fails 
to control for PS under high levels of PS. Irrespective of 
the simulations used, this statement remains true and 
was proved in our earlier paper  [2]  by using distribution 
theory. Regarding the second difference in (ii) above, in 
all of our simulations (see below), we let  p  ref  be the popu-
lation-average allele frequency at the test locus. We per-
formed two types of simulations. First, we allowed the 
subpopulation allele frequencies at both the test and null 
loci to vary according to a beta distribution, with  p  ref  as 
the population-average allele frequency at the test locus, 
as in the BN model used by Dadd et al.  [1] . Second, we 
implemented a modified BN model, which shares all the 
features of the first type of simulations, except that it pre-
specifies the subpopulation allele frequencies at the test 
locus. This is done so as to be able to compare the perfor-
mance of the different procedures under different levels 
of PS. Both of these simulation procedures allow for extra 
variability in allele frequencies at the null loci, and cor-
recting for PS under these models requires an  adjusted 
DC method . Before we describe this adjustment, we make 
an important observation about the simulation results of 
Dadd et al., as shown in their table 3.

  Dadd et al.  [1]  used the BN model to compare the true 
values of  �  against their estimated values,    �  ̂   2006  and    �  ̂   2007 .
However, as we explained above, the BN model assumes 

that the allele frequencies at the test locus are generated 
according to a beta distribution. Since the value of  �  can-
not be fixed under this type of simulation, the computa-
tion of     �  ̂   2006  and    �  ̂  2007    becomes meaningless. In other 
words, under each replication of the simulation proce-
dure, a different value of  �  is generated at the test locus, 
yielding an estimate of this quantity from the null loci. 
Being an average of these estimates across all replications, 
neither     �  ̂   2006  nor    �  ̂  2007    therefore estimates any given  �  val-
ue, making the  �    comparisons in table 3 of Dadd et al.  [1]  
misleading.

  We now explain why the original DC method we used 
[in our studies,  2, 3 ], does not work under the BN model, 
and how the method can be made to work through a sim-
ple adjustment of the DC test statistic. This adjusted 
method performs reasonably well under both simulation 
models. Consider the hypothetical scenario shown in  ta-
ble 1 .

  Both null loci 1 and 2 in  table 1  match the test locus in 
genotype frequencies (in the controls) to within a window 
of  8 0.15, but only the estimated  �  at null locus 1 has the 
same sign as the  �  to be estimated at the test locus. There-
fore,  �  should be estimated by using the estimated  �  at the 
first locus only,  not  by simply averaging the two estimat-
ed values. Thus, if one simply selects all null loci that 
match without taking into account the sign of the corre-
sponding  � , the overall  �  is always considerably underes-
timated since, at many of the null loci, the estimated  � s 
are negative. In our original simulations, the sign ‘mis-
match’ hardly ever arose because the subpopulation allele 
frequencies at all the null loci were fairly close to those at 
the test locus (as we explained above). The strategy of 
simply averaging at matched loci performed well for the 
type of simulations we performed, but is inadequate for 
more general simulations, such as those Dadd et al. per-
formed. Thus, the adjusted DC statistic is

2
20 0signadj test adj

a c ˆT m n �* �

  where  a  0 ,  c  0  are the number of cases and controls out of a 
total of  m, n , respectively, with at least one marker geno-
type,  �  2  test  is the (uncorrected)  �  2  test statistic for associa-
tion at the test locus, and    �  ̂     adj  is the  �    estimate obtained 
by averaging across only those matched loci whose  �    es-
timates have the same sign as the  �  at the test locus. The 
adjusted statistic looks the same as the original DC sta-
tistic  [2, 3] , except that, in the latter,  �  was estimated by 
averaging across all matched loci. 
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 We used two types of simulation procedures: a full 
BN simulation (the same as Dadd et al. used), and a 
modified BN simulation, which we will describe below. 
With these, we show that when null loci are selected that 
both match (say, to within  8 0.15 and    8 0.10) and whose 
 �    estimates have the correct sign (i.e. have the same sign 
as the  �  at the test locus), DC does maintain reasonable 
type I error rates compared to GC. In all of our simula-
tions, we performed matching at the population level, as 
in Dadd et al.  [1] . All scenarios we used are listed in the 
Appendix.

  First, we used the full BN simulation procedure as 
Dadd et al.  [1]  did, with exactly the same parameters. 
Complete simulation details can be found in that paper. 
We evaluated the DC test using two procedures for esti-
mating  � : (i) as in Dadd et al.  [1] , simply by averaging 
across matched loci (the original DC method, using 
  �  ̂   2007    ), and (ii) as we explained above, by averaging across 
matched loci ‘that have the correct sign’ (the adjusted DC 
method, using    �  ̂     adj ). We also evaluated the uncorrected  �  2  
test (UN), GC using a mean correction (GC mu ), and  F-
 based GC (GCF). (Further details on the latter two meth-
ods can be found in Gorroochurn et al.  [2]  and Dadd et 
al.  [1] .) We tested exactly the same scenarios as Dadd et 
al. used in their tables 2 and 3, as shown in our  table 2 . 
The only difference is that we used 5,000 simulations 
 instead of 10,000. We also varied the number of null loci 
( L =  100, 150, 200), and we tried two different matching 
criteria ( 8 0.15 and  8 0.10), as opposed to Dadd et al. who 
used 100 null loci and  8 0.15 matching.

   Table 2  confirms Dadd et al.’s claim that, for the orig-
inal DC method (i.e. using    �  ̂   2007   ), the type I errors (Type 
I (       �  ̂  2007 ) ) are substantially larger than the nominal  � , for 
BN-simulated data. However, the adjusted DC method 
(i.e. using    �  ̂     adj ) yields improved error rates, although the 
results are somewhat mixed. Although the adjusted DC 

method no longer has the overly anti-conservative error 
rates of the original DC method, it is very conservative 
for extremely small  � s ( ; 0.5, i.e. when there is very little 
PS). On the other hand, GC does not become very con-
servative for small  � s.

  Similar results were obtained when the alleles at null 
loci are generated according to a fairly broad range of dis-
tributions (results not shown). Some of the distributions 
we examined include: (i) a uniform (0.1, 0.9) distribution, 
and (ii) a BN model with  p  ref  generated from a uniform 
(0.1, 0.9) distribution. We also investigated simulations 
where those discarded markers that matched but whose 
 �  gave the incorrect sign had their  �  signs changed (re-
sults not shown). Overall, this did not change our main 
conclusions. Note also that  table 2  contains neither the 
true  �  values nor their estimates. Again, since the allele 
frequencies at the test locus vary under each replication 
of the simulation procedure under the BN model, calcula-
tion of these values is meaningless. Moreover, we note 
that, overall, there are no significant changes in the per-
formance of the adjusted method either when the number 
of null markers is increased or when the window is made 
narrower.

  We also investigated the power of the adjusted DC 
method when applied to BN-simulated data. This uses 
the same parameters as for the type I errors, except that, 
within each subpopulation, the marker genotype in the 
cases was assumed to have a frequency 1.4 times that in 
the controls.  Table 3  shows that all three correction meth-
ods (GC mu , GCF and adjusted DC) have comparable 
power values, although GC mu  and GCF have slightly 
higher power.

  Secondly, we performed modified BN simulations. 
These were the same as the first, except that we pre-spec-
ified the allele frequencies at the test locus. Again, this 
allows us to fix the amount of PS at the test loci, and en-

Table 1. T he 2 ! 2 tables at the candidate locus and two unlinked loci

Candidate locus Null locus 1 N ull locus 2

M M M M M M
D 30 10 40 D 33  7 40 D 15 25 40
D 20 20 40 D 19 21 40 D 19 21 40

t = 20/40 = 0.5, � > 0 t̂1 = 19/40 = 0.475, �̂1 > 0 t̂2 = 19/40 = 0.475, �̂2 < 0

D  and D denote cases and controls, respectively. M and M denote genotypes containing at least one mark-
er allele and no marker allele, respectively. Both null loci match the candidate locus in genotype frequencies 
to within 80.15 but only null locus 1 should be included in the estimation of � since only �̂1 has the same sign 
as the candidate �.
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ables correction procedures to be compared under differ-
ent levels of PS.  Tables 4  and  5  give type I error rates and 
power values, respectively. Note that here, as opposed to 
previously, there is a true  �    value and it is meaningful to 
compare it with its estimated values. Both tables show 
that the strategy of matching and keeping the correct sign 
results in much better  �    estimates and type I errors than 

the strategy of matching only. However, the overall re-
sults are again somewhat mixed. The adjusted DC meth-
od maintains reasonable type I error rates except for very 
high levels of PS ( �  = 2.00) when it becomes anti-conser-
vative. On the other hand, GC maintains reasonable type 
I error rates except for moderate to high levels of PS ( �  
 6 1.0) when it becomes even more anti-conservative than 
the adjusted DC method. We previously proved GC per-
forms well only for small  � s (i.e. small levels of PS)  [2] . 
Again, there are no significant changes in the perfor-
mance of the adjusted method either when the number of 
null markers is increased or when the window is made 
narrower.

  We have shown that, when  �  is estimated by matching 
at null loci and by selecting only those null loci whose  �  
estimates have the same sign as  �  at the test locus, the 
problem recognized by Dadd et al.  [1]  is resolved to a rea-
sonable extent. We are grateful to Dadd et al. for pointing 
this problem out.

  The other important issue concerns the value of the 
GC method. Dadd et al.  [1]  state that GC is computation-
ally simple and should be favored. However, as several 
authors  [5–7]  have pointed out, GC applies a uniform cor-
rection factor for all test loci, despite the fact that these 
loci may have different allele frequencies and thus may 
require locus-specific correction factors. In contrast, DC, 
though computationally more intensive, provides a lo-
cus-specific correction method.

Table 2.  Type I error rates under the full BN model at � = 0.05 and for number of null loci L = (100, 150, 200)

S cenario

17� 15� 13� 8�

(a) Window = 80.15
Type I (UN) (0.228, 0.220, 0.234) (0.152, 0.169, 0.172) (0.107, 0.104, 0.120) (0.057, 0.062, 0.058)
Type I (GCmu) (0.049, 0.054, 0.048) (0.049, 0.056, 0.054) (0.050, 0.048, 0.060) (0.051, 0.056, 0.050)
Type I (GCF) (0.046, 0.052, 0.046) (0.046, 0.054, 0.053) (0.046, 0.046, 0.057) (0.048, 0.055, 0.048)
Type I (�̂2007) (0.187, 0.182, 0.196) (0.120, 0.130, 0.138) (0.102, 0.106, 0.108) (0.060, 0.064, 0.062)
Type I (�̂adj) (0.041, 0.032, 0.034) (0.020, 0.019, 0.021) (0.016, 0.013, 0.013) (0.008, 0.006, 0.008)

(b) Window = 80.10
Type I (UN) (0.222, 0.239, 0.226) (0.176, 0.150, 0.154) (0.110, 0.121, 0.104) (0.059, 0.056, 0.052)
Type I (GCmu) (0.038, 0.045, 0.054) (0.065, 0.045, 0.056) (0.052, 0.058, 0.048) (0.056, 0.048, 0.046)
Type I (GCF) (0.034, 0.042, 0.052) (0.061, 0.044, 0.056) (0.050, 0.057, 0.046) (0.052, 0.048, 0.045)
Type I (�̂2007) (0.168, 0.174, 0.164) (0.124, 0.098, 0.108) (0.112, 0.118, 0.098) (0.065, 0.059, 0.051)
Type I (�̂adj) (0.038, 0.036, 0.038) (0.026, 0.020, 0.019) (0.012, 0.012, 0.013) (0.009, 0.006, 0.006)

Typ e I (�̂2007) and Type I (�̂adj) are the type I error rates using �̂2007 and �̂adj, respectively, where �̂adj is the estimated � by matching 
(at the population level) and making sure all matched loci have the correct sign. The four scenarios represent situations with no true 
association (but with PS) and are listed in the Appendix.

Table 3.  Power under the full BN model at � = 0.05

S cenario

18� 16� 14� 9�

Power (UN) 0.681 0.704 0.361 0.490
Power (GCmu) 0.418 0.512 0.253 0.471
Power (GCF) 0.412 0.504 0.244 0.463
Power (�̂2007) 0.680 0.705 0.362 0.491
Power (�̂adj) 0.396 0.426 0.128 0.243

Pow er (�̂2007) and Power (�̂adj) are the power using �̂2007 and 
�̂adj, respectively, where �̂adj is the estimated � by matching (at the 
population level) and making sure all matched loci have the cor-
rect sign. The four scenarios represent situations with true asso-
ciations (and with PS) and are listed in the Appendix. They use 
the same parameters as in table 2, except that within each sub-
population, marker genotype in cases is assumed to have a fre-
quency 1.4 times that in controls.
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Table 4.  True value of � and type I error rates under a modified BN model at � = 0.05 and for number of null loci L = (100, 150, 200)

S cenario

17 15 13 8

(a) Window = 80.15
True � 2.00 1.50 1.00 0.500
�̂2007 (0.055, 0.066, 0.064) (0.050, 0.042, 0.049) (0.029, 0.030, 0.029) (0.004, 0.001, –0.001)
�̂adj (1.31, 1.31, 1.31) (1.12, 1.12, 1.13) (0.992, 1.00, 0.998) (0.850, 0.854, 0.850)
Type I (UN) (0.506, 0.530,0.522) (0.336, 0.326, 0.322) (0.161, 0.174, 0.168) (0.082, 0.074, 0.076)
Type I (GCmu) (0.111, 0.121, 0.125) (0.120, 0.116, 0.110) (0.087, 0.090, 0.088) (0.071, 0.066, 0.066)
Type I (GCF) (0.104, 0.117, 0.120) (0.114, 0.110, 0.106) (0.082, 0.084, 0.084) (0.065, 0.064, 0.066)
Type I (�̂2007) (0.484, 0.494, 0.495) (0.312, 0.305, 0.299) (0.151, 0.160, 0.156) (0.079, 0.071, 0.072)
Type I (�̂adj) (0.090, 0.104, 0.099) (0.048, 0.057, 0.058) (0.024, 0.032, 0.030) (0.014, 0.011, 0.026)

(b) Window = 80.10
True � 2.00 1.50 1.00 0.500
�̂2007 (0.091, 0.099, 0.097) (0.082, 0.084, 0.068) (0.032, 0.033, 0.037) (0.003, –0.002, –0.002)
�̂adj (1.28, 1.27, 1.27) (1.09, 1.09, 1.09) (1.01, 1.01, 1.01) (0.859, 0.854, 0.857)
Type I (UN) (0.496, 0.504, 0.510) (0.320, 0.330, 0.334) (0.163, 0.177, 0.178) (0.070, 0.085, 0.088)
Type I (GCmu) (0.118, 0.126, 0.116) (0.120, 0.110, 0.104) (0.088, 0.089, 0.087) (0.062, 0.074, 0.078)
Type I (GCF) (0.111, 0.120, 0.110) (0.116, 0.105, 0.100) (0.084, 0.087, 0.084) (0.056, 0.070, 0.077)
Type I (�̂2007) (0.470, 0.465, 0.470) (0.280, 0.281, 0.270) (0.146, 0.165, 0.158) (0.074, 0.082, 0.088)
Type I (�̂adj) (0.102, 0.101, 0.099) (0.066, 0.047, 0.053) (0.031, 0.022, 0.023) (0.014, 0.019, 0.017)

Thi s model shares all features of the usual BN model, except that it pre-specifies the subpopulation allele frequencies at the test 
locus; however, matching is at the population level, as in Dadd et al. [1].

Type I (�̂2007) and Type I (�̂adj) are the type I error rates using �̂2007 and �̂adj, respectively, where �̂adj is the estimated � by matching 
and making sure all matched loci have the correct sign. The four scenarios represent situations with no true association (but with PS) 
and are listed in the Appendix.

S cenario

18 16 14 9

True � 2.00 1.50 1.00 0.500
�̂2007 0.058 0.044 0.029 0.000
�̂adj 1.31 1.12 0.997 0.852
Power (UN) 1.00 1.00 0.993 1.00
Power (GCmu) 0.999 0.996 0.976 1.00
Power (GCF) 0.999 0.997 0.974 1.00
Power (�̂2007) 1.00 1.00 0.993 1.00
Power (�̂adj) 0.992 0.992 0.920 0.997

Thi s model shares all features of the usual BN model, except that it pre-specifies the 
subpopulation allele frequencies at the test locus; however, matching is at the population 
level, as in Dadd et al. [1].

Power (�̂2007) and Power (�̂adj) are the power using  �̂2007 and �̂adj, respectively, where 
�̂adj is the estimated � by matching and making sure all matched loci have the correct sign. 
The four scenarios represent situations with true associations (and with PS) and are listed 
in the Appendix. They use the same parameters as in table 4, except that within each sub-
population, marker genotype in cases is assumed to have a frequency 1.4 times that in 
controls.

Table 5.  True value of � and power under 
the modified BN model at � = 0.05
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  In conclusion, we strongly recommend the strategy of 
matching at null loci and keeping the correct sign in all 
future applications of the adjusted DC method. GC does 
not control for PS under a broad range of PS levels (from 
moderate to high) under the modified BN simulation 
model, whereas the adjusted DC method we introduce 

here does not control for PS for very high levels of PS. In 
the latter case, the adjusted DC method is anti-conser-
vative but less so than GC. For very small levels of PS,
the adjusted DC method is much more conservative
than GC.

# � d r (cases) r (controls)

8� (0.7648, 0.2352) (0.1908, 0.1416) NA NA
9� (0.7648, 0.2352) (0.1908, 0.1416) NA NA

13� (0.5241, 0.4759) (0.2818, 0.1654) NA NA
14� (0.5241, 0.4759) (0.2818, 0.1654) NA NA
15� (0.2620, 0.7380) (0.2502, 0.05855) NA NA
16� (0.2620, 0.7380) (0.2502, 0.05855) NA NA
17� (0.2620, 0.7380) (0.2502, 0.03326) NA NA
18� (0.2620, 0.7380) (0.2502, 0.03326) NA NA

8 (0.7648, 0.2352) (0.1908, 0.1416) (0.5614, 0.1484) (0.5614, 0.1484)
9 (0.7648, 0.2352) (0.1908, 0.1416) (0.8421, 0.2226) (0.5614, 0.1484)

13 (0.5241, 0.4759) (0.2818, 0.1654) (0.4298, 0.1505) (0.4298, 0.1505)
14 (0.5241, 0.4759) (0.2818, 0.1654) (0.6447, 0.2258) (0.4298, 0.1505)
15 (0.2620, 0.7380) (0.2502, 0.05855) (0.4770, 0.2882) (0.4770, 0.2882) 
16 (0.2620, 0.7380) (0.2502, 0.05855) (0.7, 0.45) (0.4770, 0.2882) 
17 (0.2620, 0.7380) (0.2502, 0.03326) (0.4770, 0.2882) (0.4770, 0.2882)
18 (0.2620, 0.7380) (0.2502, 0.03326) (0.7155, 0.4323) (0.4770, 0.2882)

NA = Not applicable, because under the full BN model, allele frequencies at the test locus are not fixed.
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  Appendix 

 Configuration numbers (#) are as indicated in  tables 2–5 , and corresponding values of  �  (subpopulation size), d (subpopulation 
disease prevalence), and r (subpopulation genotype frequenciesat test locus) for  K =  2 subpopulations with  m  (cases) =  n  (controls) = 
200. The first set (8 � –18 � ) represents simulations under the full BN model, the second set (8–18) under the modified BN model.
For each pair of simulations (e.g. 8 �  and 9 � , 13 �  and 14 � , 17 �  and 18 � , etc.) the first represents simulations for type I error, the second
for power.   


