
Genetic Epidemiology 30: 277–289 (2006)

Centralizing the Non-Central Chi-Square: A New Method
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We present a new method, the d-centralization (DC) method, to correct for population stratification (PS) in case-control
association studies. DC works well even when there is a lot of confounding due to PS. The latter causes overdispersion in
the usual chi-square statistics which then have non-central chi-square distributions. Other methods approach the non-
centrality indirectly, but we deal with it directly, by estimating the non-centrality parameter t itself. Specifically: (1) We
define a quantity d, a function of the relevant subpopulation parameters. We show that, for relatively large samples,
d exactly predicts the elevation of the false positive rate due to PS, when there is no true association between marker
genotype and disease. (This quantity d is quite different from Wright’s FST and can be large even when FST is small.) (2) We
show how to estimate d, using a panel of unlinked ‘‘neutral’’ loci. (3) We then show that d2 corresponds to t the non-
centrality parameter of the chi-square distribution. Thus, we can centralize the chi-square using our estimate of d; this is the
DC method. (4) We demonstrate, via computer simulations, that DC works well with as few as 25–30 unlinked markers, where
the markers are chosen to have allele frequencies reasonably close (within 7.1) to those at the test locus. (5) We compare DC
with genomic control and show that where as the latter becomes overconservative when there is considerable confounding
due to PS (i.e. when d is large), DC performs well for all values of d. Genet. Epidemiol. 30:277–289, 2006. r 2006 Wiley-Liss, Inc.

Key words: genomic control; structured association; non-centrality parameter; false positive rate; admixture

Contract grant sponsor: NIH; Contract grant numbers: R01 AA013654; DK-31813; NS27941; DK31775.
�Correspondence to: P. Gorroochurn, Department of Biostatistics, Columbia University, R620 (6th floor), 722 W 168th Street, New York,
NY 10032. E-mail: pg2113@columbia.edu
Received 30 September 2005; Accepted 7 January 2006
Published online 24 February 2006 in Wiley InterScience (www.interscience.wiley.com).
DOI: 10.1002/gepi.20143

INTRODUCTION

Recently, several authors have investigated the
use of genomic information in an attempt to
eliminate confounding due to population stratifi-
cation (PS) in case-control association studies
[Devlin and Roeder, 1999; Devlin et al., 2001;
Bacanu et al., 2000; Pritchard et al., 2000a,b; Satten
et al., 2001; Reich and Goldstein, 2001]. Two
general methods have been proposed: structured
association (SA) [Pritchard et al., 2000a,b; Satten
et al., 2001] and genomic control (GC) [Devlin and
Roeder, 1999; Devlin et al., 2001].

STRUCTURED ASSOCIATION

In SA [Pritchard et al., 2000a,b], the first part
of the method consists of a Bayesian clustering

program. This is used to infer the number
of subpopulations (K) within the sample and the
subpopulation membership for each individual,
using unlinked or ‘‘neutral’’ markers (i.e. markers
not associated with the disease) to identify
subpopulations. This first part is performed by
the program STRUCTURE. In the second part
of the method, the inferred membership of
each individual in the ith subpopulation is
used to perform a test of association for that
subpopulation. This is done by the program
STRATA. A modification of the method of
Pritchard et al. [2000a,b] has been implemented
by Satten et al. [2001], who use latent class
models, instead of Bayesian clustering, to infer
subpopulation membership. Simulations have
shown that SA performs well when the subpopu-
lations are discrete.
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GENOMIC CONTROL

Confounding due to PS causes both overdisper-
sion (i.e. excess variance) and bias in the usual
chi-square test statistic (X2

test, see Eq. (18) below)
for the null hypothesis of no (true) association
between disease and marker. Devlin et al. [2001]
have argued that the effect of overdispersion is
more important than that of bias. Confounding
due to PS leads to elevated false positive rates
(FPRs) [see Heiman et al., 2004; Gorroochurn et al.,
2004]. GC uses a panel of unlinked markers from
the same individuals to scale X2

test down. One
advantage of GC is that it successfully deals with
admixture.

At a more technical level, in the presence of PS,
X2

test has a non-central chi-square distribution,
w2

1ðtÞ, with non-centrality parameter t and one
degree of freedom (d.f.). Devlin et al. [2001, p. 161]
assume a hierarchical model in which the non-
centrality parameter itself has a normal distribu-
tion across loci. By appealing to the Central Limit
Theorem, they argue that the expectation of the
non-centrality parameter is zero when the number
of subpopulations is large. Based on that assump-
tion, finally they argue that the marginal distribu-
tion of X2

test is a multiple of the central chi-square
distribution. Thus, GC attempts to find a l such
that, approximately,

X2
test

l
� w2

1ð0Þ ð1Þ

where w2
1ð0Þ is the central chi-square distribution

with 1 d.f. The factor l allows for the excess
variance in X2

test and is called the variance inflation
factor. Devlin and Roeder [1999, Eq. (5)] give a
theoretically derived expression for l. The appeal
of GC lies in the use of the above-mentioned
unlinked markers to obtain estimates of l. Devlin
and Roeder [1999] propose the robust estimator

l̂1 ¼
median X2

ð1Þ;X
2
ð2Þ; . . . ;X

2
ðLÞ

n o
:456

ð2Þ

where X2
ð1Þ;X

2
ð2Þ; . . . ;X

2
ðLÞ denote the calculated

values of the chi-square statistic at the unlinked
loci 1,2,y,L, and .456 is the median of the X2

1ð0Þ
distribution. On the other hand, Reich and
Goldstein [2001] use the sample mean:

l̂2 ¼
1

L

XL

i¼1

X2
ðiÞ: ð3Þ

An important assumption made by GC is that l
is constant across the unlinked loci. Devlin and

Roeder [1999] point out that this condition implies
that Wright’s FST (1951), which measures the
degree of genetic differentiation between subpo-
pulations, should be approximately constant
across loci.

Before moving on any further, let us mention
that the model we will use differs from that of
Devlin et al. [2001] in that we will treat the non-
centrality parameter t solely as a parameter
(which can be estimated from the neutral loci),
instead of assigning a distribution to it. Neither
model is superior, though they are based on
different assumptions.

A major limitation of GC lies in the approxima-
tion made in Eq. (1), the accuracy of which
depends heavily on the magnitude of the non-
centrality parameter t [Chen et al., 2003; see also
Reich and Goldstein, 2001]. As Marchini et al.
[2004b] have warned, dividing the inflated chi-
square by a constant may not always produce a
central chi-square. We can prove this solely by
using distribution theory: recall that, by equating
the first two cumulants of a w2

v� ðtÞ distribution to
those of a w2

vð0Þ distribution, w2
v� ðtÞ=r has an

approximate w2
vð0Þ distribution, where

v ¼ v� þ
t2

v� þ 2t
ð4Þ

r ¼ 1þ
t

v� þ t
ð5Þ

[Stuart et al., 1999, pp. 243–244]. GC uses v ¼
v� ¼ 1 [Devlin et al., 2001], and from Eq. (4), we
see that the approximation is good as long as
t � 0, but not otherwise [see also Chen et al.,
2003]. Devlin et al. [2001, p. 161] try to circumvent
the assumption t � 0 (the non-centrality para-
meter t here not to be confused with Devlin et al.’s
t, which represents variance inflation due to
correlated alleles) by assigning a normal distribu-
tion to t with mean zero. However, for a reason-
able number of subpopulations and especially in
the presence of high levels of PS, it is doubtful that
t will be centered on zero.

Since dividing by a constant does not necessa-
rily work well, we decided to estimate the non-
centrality parameter t itself, and develop a
method that does not depend on the approxima-
tion in (1) and therefore does not require the
assumption t � 0. We will also show in Section
‘‘Discussion’’ that when t is large, GC becomes
very conservative [see also Shmulewitz et al.,
2004]. (As we shall see in Section ‘‘The Quantity d’’
below, t is a measure of the extent of confounding
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due to PS, assuming no true association between
marker genotype and disease.)

Another issue with GC is its dependence on the
number of unlinked loci (L) that need to be
genotyped in the cases and controls. In a
genome-wide study, Marchini et al. [2004a] used
very small values for the test size a (�10�4–10�8)
and tested the performance of GC. Their results
suggest that using too few markers (Lo100) leads
to undercorrection (anti-conservativeness) and
using too many (LZ500) leads to overcorrection
(conservativeness).

In this paper, we shall develop a method (which
we call d-centralization, DC) to correct for PS by
centralizing X2

test. The validity of our method does
not depend on the approximation in Eq. (1), and is
therefore independent of the magnitude of t, and
hence of the level of stratification. We shall see
that it is possible to centralize any w2

1ðtÞ distribu-
tion to a w2

1ð0Þ by relying only on asymptotic
arguments rather than on the magnitude of the
non-centrality parameter t as well. Our DC
method makes use of a quantity d, related to the
non-centrality parameter, which is of prime
importance in case-control association studies.
Not only does d completely determine the extent
of confounding (as measured by the elevation in
the FPR) due to stratification in case-control
studies when there is no true association between
disease and marker genotype, but d is also critical
to our method to centralize X2

test.

THE QUANTITY d

We use the same notation as in Gorroochurn
et al. [2004]. Consider a sample of m cases and
n controls from a population consisting of K
subpopulations of relative sizes pi (where K and
pi are unknown) such that

XK

i¼1

pi ¼ 1: ð6Þ

We define the following events for i 5 1,2,y,K; Ci:
a person belongs to subpopulation i; D: a person
has the disease; M: a person has the marker
genotype (i.e. a genotype containing one or two
marker alleles). Within the ith subpopulation, we
denote the (unknown) disease prevalence by di

and the (unknown) marker genotype frequency
by ri. Then

pi �PrfCig; di � PrfDjCig; ri � PrfMjCig;

i ¼1; 2; . . . ;K:
ð7Þ

Let the probabilities of marker genotype in
diseased and non-diseased individuals in the total
population be s and t, respectively, i.e.

s � PrfMjDg; t � PrfMj �Dg: ð8Þ

If, in each subpopulation, we further assume that
disease is truly independent of marker genotype,
i.e. PrfD \MjCig ¼ PrfDjCigPrfMjCig ¼ diri, then,
by using Bayes’ Theorem,

s ¼

PK
i¼1 pidiriPK
i¼1 pidi

; t ¼

PK
i¼1 pið1� diÞri

1�
PK

i¼1 pidi

: ð9Þ

Under this assumption of independence within
the subpopulations, any perceived association
between disease and marker genotype is spurious
(i.e. a consequence of PS).

In general, a test of any association (whether true
or spurious) between disease and marker geno-
type in the total population is really a test of the
hypothesis:

H0 : s ¼ t versus Ha: s 6¼ t: ð10Þ

We now define the quantity d as follows:

d �
s� tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð1�sÞ
m þ

tð1�tÞ
n

q ð11Þ

(where m and n are the number of cases and
controls, respectively; we will see how d naturally
arises in Eq. (14) later) and show that, for
reasonably large sample sizes, d completely
determines the inflation in the (FPR) when there
is no true association, i.e. as a result of confound-
ing due to PS. We have

FPR ¼ lim
N!1

1

N

XN

i¼1

I p � a
� �

ð12Þ

where p is the P-value of a test of size a for the
null hypothesis in (10), N is the total number of
simulations performed, and I is the indicator
variable defined by

Iðp � aÞ �
1 if p � a
0 otherwise

�
ð13Þ

We use the usual Z statistic (Ztest) to test for the two
proportions in (10). Then, in the presence of PS (i.e.
under Ha in (10)), Ztest will be inflated just as X2

test is.
In particular, its asymptotic distribution is

Ztest ¼
ða0=m� c0=nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0=mð1�a0=mÞ
m þ

c0=nð1�c0=nÞ
n

q � N d; 1ð Þ ð14Þ

where d is defined in Eq. (11), and a0 and c0

are the number of cases and controls with
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the marker genotype, respectively. Then Eq. (12)
becomes

FPR ¼ E IðjZtestj � za=2Þ

¼

Z 1
z¼�1

Iðjzj � za=2Þ
1ffiffiffiffiffiffi
2p
p e�ðz�dÞ

2=2 dz

where the area under the standard normal
distribution to the right of za=2 is a/2. Simplifying
the above equation, we get

FPR ¼ 1� Fðza=2 � dÞ þ Fð�za=2 � dÞ ð15Þ

where

FðuÞ �
1ffiffiffiffiffiffi
2p
p

Z u

y¼�1
e�y2=2 dy

is the standard normal distribution function.
Previously [Gorroochurn et al., 2004], we obtained
an exact expression for FPR based on two
binomial distributions. In that instance, FPR was
shown to be a function of the various pi,di,ri, and
of m and n, but here we have shown that, for
reasonably large sample sizes, FPR actually
depends on all those quantities only through d.
We have also used related forms of d in Heiman
et al. [2004].

Note that, when (10) is viewed as a test for any
association, then Eq. (15) gives the Type I error of
the test; on the other hand, when no true
association is assumed and (10) is viewed as a

test for no spurious association, then Eq. (15) gives
the power of the test [see Gorroochurn et al.,
2004]. Figure 1 shows a graph of FPR as a function
of d for a5 .01 and .01.

From Figure 1, we see that a d of magnitude E.6
doubles FPR from .05 and a d of magnitude E1
more than triples it. The graph for a5 .05 is also
above that for a5 .01 because of the higher power
of the test.

From Eq. (11), we see that, in fact, the extent of
confounding due to PS (as determined by the
value of d and the elevation in FPR) increases not
only with the amount of difference in genotype
(hence allele) frequencies between the subpopula-
tions (which measures the extent of PS), but also
with the sample size of the study (m and n), the
relative sizes of the subpopulations, and the
amount of difference in disease prevalences
among the subpopulations. Thus it is possible to
have a reasonably low level of PS (i.e. a small FST),
and yet a reasonably large amount of confounding
due to PS (i.e. a large d) (see Table 1 for some
typical values). Table 1 also illustrates how d
increases with increasing sample size (m and n)
and d is maximized when the subpopulations are
of the same size. In Section ‘‘Centralizing Non-
Central chi-square distributions for 2� 2 Tables’’
below, we show that d is also the (signed) square
root of the non-centrality parameter t. Note that if
we were doing an association study using marker

Fig. 1. Variation of uncorrected false positive rate (FPR) as a function of d (see Eq. (15)) for a 5 .05 (top curve) and a 5 .01 (bottom curve).
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alleles (instead of marker genotypes), then d
would be defined in the same way as in Eq. (11),
except that ri would then be the frequency of the
marker allele in the ith subpopulation, s and t
would be the probabilities of the marker allele in,
respectively, diseased and non-diseased indivi-
duals in the population, and m and n would
be twice the number of cases and controls,
respectively.

Thus, if we knew the value of d, Eq. (15) would
enable us to know exactly how much the FPR is
elevated due to PS, assuming no true association.
This leads to the question: ‘‘Can we estimate d
from a case-control association study?’’ The
answer is fortunately yes. We can estimate d by
using the unlinked marker loci. Ideally (i.e. for
maximum efficiency), we would choose all
unlinked marker loci whose genotype (hence
allele) frequencies matched those at the test locus
in the controls. However, this condition is not
necessary for the method to work. Suppose that
the 2� 2 tables at each of L such unlinked loci are
as shown in Table 2(a).

Then, natural estimators of s and t are

ŝ ¼
1

mL

XL

i¼1

ai; t̂ ¼
1

nL

XL

i¼1

ci ð16Þ

where m 5 ai1bi and n 5 ci1di for i 5 1,2,y,L.
Hence, d can be estimated by

d̂ ¼
ŝ� t̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝð1�ŝÞ
m þ

t̂ð1�t̂Þ
n

q : ð17Þ

If one matches marker loci exactly to the test locus,
one will require only a relatively small number of
marker loci L in order to estimate d accurately.
However, that approach might require scanning
many unlinked loci before the suitable ones were
found (although use of SNPs might reduce this
difficulty). On the other hand, since the estimation
in Eq. (17) is based on averages, an exact matching
is by no means necessary: we could choose
any marker loci within a reasonable geno-
type frequency window (of, say, 7.1) to that at
the test locus (see Sections ‘‘Simulation Studies’’
and ‘‘Discussion’’ for further discussions on this).

CENTRALIZING NON-CENTRAL
CHI-SQUARE DISTRIBUTIONS

FOR 2� 2 TABLES

We now show how DC can be used to correct for
PS. Let us assume the model in Section ‘‘The
Quantity d’’ above and, in particular, that there is
no true association between disease and marker
genotype in each of the constituent subpopula-
tions. As we saw in Section ‘‘Introduction’’, when
there is PS, the usual chi-square test of association
between disease and marker genotype at a test
locus is inflated and has a non-central chi-square
distribution with non-centrality parameter t and 1
d.f., i.e. approximately (see Table 2b),

X2
test ¼

ðmþ nÞða0d0 � b0c0Þ
2

mnða0 þ c0Þðb0 þ d0Þ
� w2

1ðtÞ: ð18Þ

TABLE 1. Comparison of some values of FST and d for
K 5 2 subpopulations

(a) Values of d for varying values of d and r when p5 [.5, .5] and
m 5 n 5 100

r 5 [.10, .15], FST 5 .003 r 5 [.10, .20], FST 5 .010

d 5 [.01, .05] �.195 �.365
d 5 [.10, .10] (0) (0)
d 5 [.10, .15] .121 .224
d 5 [.10, .20] .207 .381
d 5 [.10, .50] .501 .922
d 5 [.10, .75] .706 1.305

(b) Values of d for varying values of p, m, and n when d 5 [.10, .15]
and r 5 [.10, .15]

p5 [.5, .5], FST 5 .003 p5 [.25, .75], FST 5 .002

m 5 n 5 100 .121 .104
M 5 n 5 150 .148 .128
M 5 n 5 200 .172 .148

To calculate FST, we calculated the Hardy-Weinberg (HW) allele
frequency corresponding to each genotype frequency, then used
FST 5 1-HS/HT, where HS 5 weighted average of heterozygosities
expected under HW in the subpopulations, HT 5 heterozygosity
expected under HW in the total population.

TABLE 2. 2� 2 tables

(a) Unlinked loci

locus 1 locus 2 y locus L

M M M M M M
D a1 b1 m D a2 b2 m y D aL bL m
D c1 d1 n D c2 d2 n D cL dL n

(b) Test locus

M M total
D a0 b0 m
D c0 d0 n
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Now, we have X2
test ¼ Z2

test almost exactly, where
Ztest�N(d,1) is given in Eq. (14). We see that the
non-centrality parameter t is equal to d2. Then
signða0d0 � b0c0Þ �

ffiffiffiffiffiffiffiffiffi
X2

test

p
� Nðd; 1Þ. We define our

d-centralized test statistic, TDC as

TDC � signða0d0 � b0c0Þ �

ffiffiffiffiffiffiffiffiffi
X2

test

q
� d

� �2

� w2
1ð0Þ

ð19aÞ

where

signðxÞ �
1 if x40;
0 if x ¼ 0;
�1 if xo0:

8<
:

Asymptotically, TDC is valid for all values of d2,
and hence valid whatever the extent of stratifica-
tion. Of course, d is unknown and should be
estimated from the panel of unlinked markers
as in Eq. (17). (Again, to estimate d quite
accurately, we do not need to exactly match the
marker genotype frequencies; if the marker
loci are chosen so that their genotype frequencies
are within, say, a7.1 window of that at the test
locus, then d can be estimated quite accurately).
For any 2� 2 table in which there is potentially
a component of true association between
marker genotype and disease, and potentially a
component of false association due to PS,
we therefore propose the following statistic to
test for the true association while correcting for
the false one:

T�DC ¼ signða0d0 � b0c0Þ �

ffiffiffiffiffiffiffiffiffi
X2

test

q
� d̂

� �2

� w2
1ð0Þ

under H0 : no true association ð19bÞ

where X2
test is calculated as in Eq. (18). T�DC is thus

the statistic that does the d-centralization, based
on the estimated (signed) square root of the non-
centrality parameter. T�DC adjusts X2

test so that the
latter has both the proper mean and variance, i.e.
it gets rid of both the bias and overdispersion
caused by PS in X2

test.

CENTRALIZING NON-CENTRAL
CHI-SQUARE DISTRIBUTIONS FOR

TREND TESTS IN 2� 3 TABLES

Sasieni [1997] recommends the use of 2� 2
tables (the so-called ‘‘serological tables’’) of
disease status versus marker genotype when
the marker allele is dominant, and 2� 3 tables

of disease status versus actual genotype when
the marker allele is codominant. In the latter
case, the table for the test locus looks as in
Table 3.

In this case, the usual chi-square test for no
association between disease and genotype is
Armitage’s trend test [1955], calculated under an
additive genetic model:

X2
trend �

NfNðr1 þ 2r2Þ � Rðn1 þ 2n2Þg
2

RðN � RÞfNðn1 þ 4n2Þ � ðn1 þ 2n2Þ
2
g
:

ð20Þ

Again, in the presence of stratification, X2
trend is

inflated and has a non-central X2
1ðtÞ distribution.

To correct for PS, we need to obtain the non-
centrality parameter t ¼ d2

trend. To calculate this,
note that Eq. (20) can be written as

X2
trend ¼

NR r1þ2r2

R

� �
� n1þ2n2

N

� �� �2

ðN � RÞ n1þ4n2

N

� �
� n1þ2n2

N

� �2
n o :

This shows that the non-centrality parameter is

d2
trend �

NRfðP1 þ 2P2Þ � ðQ1 þ 2Q2Þg
2

ðN � RÞfðQ1 þ 4Q2Þ � ðQ1 þ 2Q2Þ
2
g
ð21Þ

where P1,P2 are the proportions of Aa,AA geno-
types within diseased individuals, respectively,
and Q1,Q2 are the proportions of these genotypes
in the total population, respectively. We again use
the unlinked markers 1,2,y,L to estimate dtrend,
because the P

0

is and Q
0

is can be estimated from the
2� 3 table at each locus. In particular, if the values
of Pi and Qi (i 5 1,2) for the jth table are written as

P̂
ðjÞ
i and Q̂

ðjÞ
i , then

P̂i ¼
1

L

XL

j¼1

P̂
ðjÞ
i ;

bQi ¼
1

L

XL

j¼1

Q̂
ðjÞ
i i ¼ 1; 2: ð22Þ

Thus,

d̂trend ¼
ðP̂1 þ 2P̂2Þ � ðQ̂1 þ 2Q̂2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R�

1
N

� �
fðQ̂1 þ 4Q̂2Þ � ðQ̂1 þ 2Q̂2Þg

2
q :

ð23Þ

TABLE 3. The 2� 3 table for the trend test

AA Aa aa Total

D r2 r1 R�r1�r2 R
D n2�r2 n1�r1 N�R�n1�n21r11r2 N�R

Total n2 n1 N�n1�n2 N
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Therefore, the statistic that tests for the true
association while correcting for the false one is

T�DC;trend � signfNðr1 þ 2r2Þ � Rðn1 þ 2n2Þg
�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
X2

trend

q
� d̂trend

	2

� w2
1ð0Þ under H0

ð24Þ

since the denominator in Eq. (20) is always
positive.

SIMULATION STUDIES

IMPLEMENTATION OF DC

The usual method for generating loci has been
based on the beta-binomial distribution [see for
example, Devlin and Roeder, 1999; Marchini et al.,
2004]. Since the DC method depends on frequency
matching, instead of using the beta-binomial for
the loci and then selecting those loci that match,
we shall simply use the uniform distribution for
the distribution of those loci that match the
candidate locus. By using the uniform distribu-
tion, therefore we are not assuming that this is the
distribution of loci, but rather this is the approx-
imate distribution of those loci that closely match
the candidate locus. (Our initial simulations using
the beta-binomial and then matching gives us
essentially the same FPRs as when using a
uniform generating mechanism for the matching
loci. We also initially tried a beta-binomial gen-
erating mechanism, then selected matching loci
for DC but used all loci for GC; this also resulted
in essentially the same FPRs (results not shown)).

Table 4 shows five sets of simulations for two
subpopulations. For each set, values of
p�1; p

�
2; r1; r2; d1 and d2 were chosen randomly from

a U(0,1) distribution (we assumed no true associa-
tion between marker and disease within each

subpopulation). We then standardized p�1; p
�
2 to

p1; p2 so that p1 þ p2 ¼ 1. Using the value of d
obtained, we calculated the inflated FPR as given
in Eq. (15). To estimate the corrected FPR (cFPR
(d)) for TDC in Eq. (19a), we note that if X and Y
denote the number of individuals with the marker
genotype in the cases and controls, respectively,
then X�Bin (m,s) and Y�Bin (n,t), where we used
m 5 n 5 100. By using these distributions, we
generated 5,000 2� 2 tables. We then applied the
test statistic TDC in Eq. (19a) to each of these tables
and were thus able to estimate cFPR (d), using
a test of size a5 .05. To estimate the corrected
FPR (cFPR ðd̂Þ) for T�DC in Eq. (19b), we simulated
5,000 sets of 25 2� 2 tables (one for the test locus,
one for each of the 24 unlinked loci used). For each
one of the 5,000 simulations, a different d̂ was
estimated from the unlinked loci. (The same
binomial distribution was used to generate the
2� 2 tables at each of the unlinked loci as that at
the test locus, i.e. exact matching of marker
genotype frequencies at the unlinked loci was
assumed.) Table 5 shows the same, but this time
with three subpopulations, p�i � Uð0; 1Þ, ri �

Uð:4; :7Þ and di � Uð:0; :1Þ for i 5 1,2,3.
As these two tables show, the DC-corrected

FPRs based on the true value of d (i.e. cFPR(d))
were quite close to the nominal a5 .05, and the
ones based on the estimated d (i.e. cFPR(d̂)) also
performed quite well.

HOW MANY UNLINKED MARKERS
DOES DC NEED?

It is especially important for practical and cost-
related reasons to have an idea of the number of
unlinked markers required for our method to
work reasonably well. We expect good perfor-
mance as long as d̂ estimates d with little bias. As
long as the frequencies of the markers at the

TABLE 4. Uncorrected false postive rates (FPR), d-corrected false positive rates, d-corrected false positive rates for five
values of d

p d r d FPRa cFPR(d)b cFPR (d̂)c (71.96SE)

[.571, .429] [.344, .474] [.558, .747] .370 .066 .052 .0547.006 5 (.048, .006)
[.507, .493] [.544, .169] [.500, .355] .847 .135 .051 .0527.006 5 (.046, .058)
[.414, .586] [.160, .182] [.893, .624] �.165 .053 .043 .0527.006 5 (.046, .058)
[.212, .788] [.444, .311] [.111, .731] �.887 .144 .048 .0507.006 5 (.044, .056)
[.633, .367] [.266, .147] [.937, .398] 1.451 .306 .050 .0547.006 5 (.048, .006)

Values of pi, di, ri were all chosen from a U (0, 1) distribution. d was estimated from a panel of 24 unlinked markers. (a5 .05, m 5 n 5 100,
K 5 2 subpopulations).
aFPR 5 uncorrected false positive rate; see Eq. (15).
bcFPR(d) 5 d-corrected false positive rate using computer simulations; see Eq. (19a).
ccFPR(d̂) d-corrected false positive rate using computer simulations; see Eq. (19b).
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unlinked loci are reasonably similar, this bias
should be small for a reasonably small number
L of unlinked loci.

To verify the above claim, we chose 10 combina-
tions of values p�i ; ri and di (i 5 1,2) at random from
U (0,1), U (.1,.6) and U (.02,.2) distributions,
respectively. Each combination represents para-
meter values at the test locus. For a given
combination, the marker genotype frequency

was chosen from a U (ri�.1, ri1.1) distribution
for each marker locus (i.e. the genotype frequency
of each marker locus was matched to within 7.1
of that at the test locus). We then calculated cFPR
ðd̂Þ by estimating d from Eq. (17) by using L 5 10,
20, and 30 unlinked markers (thus, in all,
10� 3 5 30 combinations were used). The results
are displayed in Fig. 2 (using SPSS 12.0 for
Windows), and in Table 6. These show that as

TABLE 5. Uncorrected false positive rates (FPR), d-corrected false positive rates, d-corrected false positive rates for five
values of d

p d r d FPRa cFPR(d)b cFPR (d)c (71.96SE)

[.375, .436, .189] [.071, .061, .094] [.542, .652, .454] �.182 .054 .051 .0607.006 5 (.054,.066)
[.123, .405, .472] [.019, .036, .068] [.455, .497, .694] .595 .091 .049 .0557.006 5 (.049,.061)
[.262, .313, .424] [.041, .056, .074] [.659, .663, .545] �.180 .054 .049 .0567.006 5 (.050,.062)
[.066, .043, .891] [.068, .048, .098] [.434, .623, .537] .001 .050 .054 .0547.006 5 (.048,.060)
[.241, .325, .434] [.010, .006, .061] [.689, .629, .538] �.718 .111 .049 .0517.006 5 (.045,.057)

Values of pi, di, ri were chosen from a U(0, 1), U(0, .1) and U(.4, .7) distribution, respectively. d was estimated from a panel of 24 unlinked
markers. (a5 .05, m 5 n 5 100, K 5 3 subpopulations).
aFPR 5 uncorrected false positive rate; see Eq. (15).
bcFPR(d) 5 d-corrected false positive rate using computer simulations; see Eq. (19a).
ccFPR(d) 5 d-corrected false positive rate using computer simulations; see Eq. (19b).

Fig. 2. Ten combination of values pI, ri, and di were chosen from a U(0,1) distribution. For each combination, cFPR (d̂) was calculated as
described in Section ‘‘Simulation Studies’’ from simulations by successively using L 5 10, 20 and 30 unlinked markers to estimate d
(These were markers with allele frequencies within 7.1 of the allele frequencies at the test locus.) The ten values of cFPR(d̂) were

then plotted for each value of L (a 5 .05, m 5 n 5 100, K 5 2 subpopulations).
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few as about 30 unlinked markers are sufficient
for cFPR ðd̂Þ to be very close to the nominal value
of a5 .05, when the marker genotype frequencies
are within 7.1 of that at the test locus. Of course,
the greater the number of unlinked markers, the
closer will d̂ be to d and the better the correction.

COMPARISON WITH GENOMIC CONTROL

In Table 7, we look at two matching scenarios in
which the matching of marker genotype frequen-
cies at the unlinked loci to that at the test locus is,
in turns, exact and to within 7.1 (we also matched
to within 7.15 and the results were very similar
to 7.1 case). We show simulations for different
values of d (d5 .1,.5,1,2 and 4 approximately) and
L 5 25. We compare the four correction methods:
GC using the median (see Eq. (2)), GC using the
mean (see Eq. (3)), DC using T�DC (see Eq. (19b)),

and DC using T�DC where, however, ŝ and t̂ in Eq.
(16) are the 5% trimmed means instead of the
regular means (i.e. 5% of the lowest and 5% of the
highest values of the a

0

is and c
0

is are discarded; the
corresponding estimated d is denoted by d̂tr).

Table 8 is similar to Table 7 but looks at exact
matching for four subpopulations with different
values of d (d5 .1, .5, 1, 2 and 4 approximately)
and different values of L (L 5 25, 50, 100, 300). We
do not expect the results to be very different if a
matching to within 7.10 was done, as for Table 7
above. Both tables show that GC using the median
is quite anti-conservative for d less than .5, but
becomes very conservative for d close to 1 and
overly conservative for d greater than about 2. GC
using the mean performs better than GC using the
median for d less than 1.0, but is also excessively
conservative for d greater than about 2. (These
results are in accordance with those of Shmule-
witz et al., 2004). On the other hand, DC performs
quite well in all these situations, and even very
well when there are very high levels of confound-
ing due to PS (d close to 4). Moreover, there does
not seem to be any advantage in using the 5%
trimmed means over the regular means.

DISCUSSION

In the presence of PS, case-control association
studies between marker and disease can reveal
evidence of association which might be an artifact
of PS rather than a consequence of any true
association. Mathematically, this is because PS
causes the usual chi-square test statistic to become
inflated. More precisely, the chi-square statistic no
longer has a central distribution, but instead is
non-centrally distributed.

GC attempts to correct the confounding due to
PS by dividing the inflated chi–square by a scale
factor so that it approximately has a central

TABLE 6. Summary statistics for simulations in Figure 2

No. of
markers(L)

Mean
cFPR(d̂)

5% trimmed
mean

SE of
mean

10 .060 .060 .008
20 .058 .057 .006
30 .052 .052 .007

TABLE 7. For each value of d, the numbers are the
various simulated FPRs under exact matching and
matching to within 7.1

Approx. d

False
positive rates
under exact

matching

False positive
rates under
matching to
within 7.1a

.1b Uncorrected FPR .051 .051
FPR using GC with median .073 .071
FPR using GC with mean .063 .063
FPR using T�DC with d̂ .058 .053
FPR using T�DC with d̂tr .059 .053

.5c Uncorrected FPR .079 .079
FPR using GC with median .065 .061
FPR using GC with mean .057 .057
FPR using T�DC with d̂ .060 .053
FPR using T�DC with d̂tr .060 .054

1.0d Uncorrected FPR .172 .172
FPR using GC with median .039 .038
FPR using GC with mean .052 .048
FPR using T�DC with d̂ .059 .051
FPR using T�DC with d̂tr .059 .052

2.0e Uncorrected FPR .513 .513
FPR using GC with median .001 .001
FPR using GC with mean .010 .010
FPR using T�DC with d̂ .051 .051
FPR using T�DC with d̂tr .054 .054

4.0f Uncorrected FPR .980 .980
FPR using GC with median .000 .000
FPR using GC with mean .000 .000
FPR using T�DC with d̂ .048 .044
FPR using T�DC with d̂tr .048 .045

To obtain the values of p,d,r for a value of d, we fixed all but one of
the values of pi, di, ri, and then solved Eq. (11) for the unknown.
L 5 25, a5 .05, m 5 n 5 100, K 5 2 subpopulations.
aExcept for d5 4.0,where we used 7.081.
bd5 .112, p5 [.453, .547], d 5 [.219, .204], r 5 [.679, .322].
cd5 .449, p5 [.450, .550], d 5 [.325, .176], r 5 [.496, .323].
dd5 1.006, p5 [.541, .459], d 5 [.116, .206], r 5 [.226, .644].
ed5 1.992, p5 [.447, .553], d 5 [.371, .149], r 5 [.618, .154].
fd5 4.005, p5 [.609, .391], d 5 [.501, .180], r 5 [.919, .115].
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distribution. However, the scaling works reason-
ably well only when the non-centrality parameter
is small. Real studies may have moderate to high
values of this parameter.

In this paper, we have developed a quantity (d)
(see Eq. (11)) which, in the presence of no true
association between disease and marker genotype,
completely determines the elevation in FPR due to
confounding by PS in reasonably large samples
(see Eq. (15)). Note that |d| and FPR both increase
when (a) the sample size of the case-control study
increases, or (b) the subpopulations are of similar
size, or (c) the differences between the genotype
frequencies in the subpopulations increase (i.e.
there is more PS), or (d) the differences between
the disease prevalences in the subpopulations
increase. Thus, it is possible to have low PS (small
FST) and at the same time a relatively large
amount of confounding due to PS (large d). Our
formula indicates that, with a test size of a5 .05,
a value of |d| 5 1 leads to an elevation of FPR
to about 17%; a value of |d| 5 2 leads to an
elevation of FPR to about 50%. Moreover, d can be
estimated from a panel of unlinked markers
(Eq. (17)) whose genotype (and hence allele)
frequencies are within a reasonable window
to that at the test locus. Finally, we have shown
(see ‘‘Centralizing Non-Central chi-square distribu-
tions for 2� 2 Tables’’) that d is also the (signed)
square root of the non-centrality parameter of the
inflated chi-square statistic. Thus, rather than
deal with the non-centrality issue indirectly, as
GC does, we directly estimate the non-centrality
parameter itself.

Other authors have used various ‘‘deltas’’ as
measures of confounding due to PS [e.g. Pritchard
and Rosenberg, 1999; Devlin et al., 2001; Heiman
et al., 2004; Gorroochurn et al., 2004]. For example,
Devlin et al. [2001] used d5 s�t. In earlier work
[Heiman et al., 2004], we used d ¼ s� tj j=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n=fðsþ tÞð2� s� tÞg
p

, where the number of
cases and controls are both equal to n. However,
our current d in Eq. (11), because of its statistical
properties, exactly predicts the extent of con-
founding in relatively large samples and is thus
ideally suited to the task.

We have shown that (see ‘‘Centralizing chi-square
distributions for 2� 2 Tables) d̂ can be used to
correct for PS by centralizing the inflated chi-
quare statistic through a procedure whose valid-
ity, unlike GC, does not depend on the magnitude
of the non-centrality parameter (and therefore on
d). Thus, d̂ partitions the true effects of a gene
from the effects due to PS. Our DC method is very

much in the spirit of GC, because it too uses a
panel of unlinked markers to correct for PS.
However, since it is based only on large-sample
theory, it is asymptotically exact (and its validity
does not depend on the magnitude of the non-
centrality parameter). We therefore expect our
method to be superior to GC especially with
moderate to high values of d. This is substantiated
by our simulation results (see Tables 7 and 8).
When d is close to 1, GC using the median
correction in Eq. (2) is quite conservative, while
GC using the mean correction in Eq. (3) is only
slightly conservative. With d close to 2, both
corrections become very conservative, and with
d close to 4, both almost never reject. In all these
situations, DC performs quite well.

A second difference has to do with the issue of
genotype (and allele) frequency matching.
Although GC assumes strict matching, Reich and
Goldstein [2001] report that, unless the degree of
stratification is very large or the allele frequency
at the test locus is very small, GC requires little or
no matching. (However, as we demonstrated in
Section ‘‘The Quantity d’’, even when the amount
of stratification is small, d can be reasonably large
and GC will become conservative). On the other
hand, if DC is applied with no matching, then,
whatever the underlying distribution of the
genotypes at the unlinked marker loci in each
subpopulation, it is very unlikely that d̂ will be
close to d. For example, assuming a U (0,1)
distribution for genotypes at the unlinked marker
loci in each subpopulation, d̂ will converge to zero
as L increases, and our method will not correct for
PS at all. Thus, GC has the advantage of
robustness over DC with respect to genotype (or
allele) frequency matching. DC will correct for any
level of PS as long as the genotype frequencies are
matched, if not exactly, at least approximately to
within a reasonable window. On the other hand,
GC remains inaccurate even if matched exactly,
when d is moderate to large (see Tables 7 and 8).
For DC, we recommend the choice of marker loci
whose genotype frequencies are within a7.1
window to that of the test locus. The narrower
the window, the more accurate the estimator of d
will be; however, the more loci will have to be
genotyped before the appropriate ones are found.
We are currently testing various window sizes to
determine the greatest window size while still
controlling the Type I error and maintaining
adequate power.

A third difference between GC and DC lies in
the model used. For GC, Devlin et al. [2001]
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assume that the non-centrality parameter t itself
has a distribution across loci. For DC, we treat t
solely as a parameter. This is why t can be
estimated in DC, whereas it makes no sense to
estimate t in GC.

Recently, Devlin et al. [2004] have proposed a
modification of their GC method, which they call
GCF, to handle very small test sizes a and
uncertainty in the values of l. Devlin et al.’s
proposal was motivated by the anti-conservative-
ness of GC when a is small. The only difference
between GC and GCF is that, whereas the former
uses a cut-off based on a w2

1 distribution, the latter
uses a slightly larger value, based on an F1,L

distribution, where L is the number of neutral loci.
This makes GCF a more conservative procedure
than GC, i.e. GCF will always result is smaller
FPRs than GC. Since GC is already very con-
servative for large value of d (see Tables 7 and 8),

applying GCF in those cases will yield even
smaller rejection rates. Thus GCF cannot correct
the deficiencies of GC when d is large.

Regarding the lack of robustness of GC when
the value of d (and therefore the amount of
confounding due to PS) is moderate to high, we
should mention that Devlin and Roeder [1999,
2004] do point out the need for careful matching of
cases and controls for ethnicity and other potential
confounders before applying GC. They recom-
mend matching not so as to make the approxima-
tion in Eq. (1) better, but rather to reduce
heterogeneity in FST across the unlinked loci, so
that the inflation factor l is constant for each
unlinked locus. This has pay-offs in terms of
power. However, the extent to which such match-
ing can decrease the value of d remains to be seen
(see comments above). With DC, there is no need
for matching of cases and controls, as the method

TABLE 8. For each L-d combination, the numbers are the simulated FPRs under exact matching

Approx. d L 5 25 L 5 50 L 5 100 L 5 300

.1a Uncorrected FPR .051 .051 .051 .051
FPR using GC with median .071 .059 .058 .055
FPR using GC with mean .059 .050 .053 .054
FPR using T�DC with d̂ .054 .052 .050 .054
FPR using T�DC with d̂tr .053 .053 .049 .054

.5b Uncorrected FPR .080 .080 .080 .080
FPR using GC with median .065 .053 .050 .046
FPR using GC with mean .058 .050 .052 .044
FPR using T�DC with d̂ .055 .051 .046 .045
FPR using T�DC with d̂tr .056 .051 .046 .045

1.0c Uncorrected FPR .168 .168 .168 .168
FPR using GC with median .034 .032 .026 .021
FPR using GC with mean .041 .048 .045 .034
FPR using T�DC with d̂ .051 .057 .053 .044
FPR using T�DC with d̂tr .053 .057 .052 .044

2.0d Uncorrected FPR .514 .514 .514 .514
FPR using GC with median .001 .000 .000 .000
FPR using GC with mean .015 .010 .010 .000
FPR using T�DC with d̂ .049 .055 .055 .044
FPR using T�DC with d̂tr .050 .056 .056 .044

4.0e Uncorrected FPR .979 .979 .979 .979
FPR using GC with median .000 .000 .000 .000
FPR using GC with mean .000 .000 .000 .000
FPR using T�DC with d̂ .046 .044 .041 .040
FPR using T�DC with d̂tr .046 .043 .044 .040

To obtain the values of p, d, r for a value of d, we fixed all but one of the values of pi, di, ri, and then solved Eq. (11) for the unknown.
a5 .05, m 5 n 5 100, K 5 4 subpopulations.
ad5 .102, p5 [.135, .305, .215, .345], d 5 [.212, .197, .260, .171], r 5 [.333, .578, .314, .169].
bd5 .507, p5 [.305, .260, .186, .249], d 5 [.194, .205, .123, .158], r 5 [.610, .493, .170, .186].
cd5 .991, p5 [.336, .334, .175, .155], d 5 [.391, .389, .199, .187], r 5 [.632, .669, .215, .385].
dd5 1.996, p5 [.116, .082, .461, .341], d 5 [.269, .271, .118, .367], r 5 [.323, .254, .169, .686].
ed5 3.990, p5 [.100, .021, .021, .858], d 5 [.412, .195, .146, .011], r 5 [.530, .452, .683, .181].
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will work, whatever the value of the non-centrality
parameter (and the level of stratification). More-
over, the very fact that DC requires matching the
genotype frequencies of the null loci within a
suitable window to that of the candidate locus
guarantees that FST remains (almost) constant.

Few authors have found the FPRs under GC to
be off-target because none of them have investi-
gated the performance of GC with respect to the
magnitude of the non-centrality parameter (d2),
although many have speculated that GC might
not perform well if the magnitude of d2 is large.
For example, Chen et al. [2003] point out (p. 250):
‘‘However, if d (Note: Chen et al. use d, not t, to
represent the non-centrality parameter) is large,
using a w2 adjusted by a constant as an approx-
imation of a non-central chi-square w2ðdÞ will
either lead to false positives or lose power’’. We
have proved this on pp. 5–6 of our paper.
Shmulewitz et al. [2004], using a different simu-
lation system, did find GC to be off-target in
certain situations. Although they were not
aware of d, they did find GC to be conservative
‘‘with increasing subpopulation prevalence and
marker differences’’ (this corresponds to large
values of delta).

As far as the number of unlinked markers
required is concerned, DC requires a moderate
number (�25–30) to perform reasonably well,
because the correction is based on averages. As
we mentioned above, if the markers are chosen
such that their genotype frequencies are within a
considerably narrow window to that at the test
locus, we would expect a better performance of
our method, at the expense of having to genotype
a larger number of marker loci before the
appropriate ones are found.

Will DC be necessary when K is large (say 10 or
more)? For whatever value of K, if d turns out to
be large, GC will have the same problem of
extreme conservativeness whilst DC will fare well.
However, as K becomes large, it becomes less
likely that d will be large (unless there is a possible
correlation between subpopulation size and mar-
ker prevalence due to a founder effect in which
case d could remain large: see Gorroochurn et al.
[2004] and Heiman et al. [2004]).

In this paper, we have looked only at the
problem of pointwise significance, i.e. testing
association at a single particular test locus. Our
method can also be used in a genome-wide scan,
where several candidate loci are tested, and for
each test locus, several marker loci are then used.
Because of multiple testing, the genome-wide test

size [Strachan and Read, 2004] is then very small
(typically a�10�4–10�8). In such cases, we recom-
mend using DC together with Benjamini and
Hochberg’s FDR procedure [1995].

The results of Marchini et al. [2004a] suggest
that GC is very anti-conservative when a is small.
Devlin et al. [2004] argue that this is because of
significant variability in l (see Eq. (1)). Since our
T�DC statistic in Eq. (19b) is really a w2

1ð0Þ statistic
under the null hypothesis of no true association,
elementary statistical theory would point to a
decrease in power with decreasing a, and a more
conservative test. However, we will investigate
more rigorously how DC behaves in such situa-
tions in the future, and also more generally
investigate the issue of power. Other aspects
of DC that we plan to investigate in the future
are its behavior under admixture and comparison
with SA.
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