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 Introduction 

 Recently, case-control association studies have come 
back into favor as a means to uncover the genetic basis of 
common complex diseases  [1–3] . However, such studies 
may be undermined by population stratification (PS), re-
sulting in an excess of false-positives. PS is a form of con-
founding that arises when cases and controls are sampled 
from genetically distinct populations  [4] . PS can still oc-
cur if cases and controls are sampled from the same pop-
ulation when the latter is made up of genetically distinct 
subpopulations  [5, 6] . In both situations, the result is that 
diseased and non-diseased individuals have inherent ge-
netic differences because of the inherent genetic distance 
between the subpopulations  [7] .

  PS is potentially a serious problem in association stud-
ies  [4, 8]  and is perhaps the most often cited reason for 
their non-replicability  [9, 10] . Three questions are in or-
der: How can PS in association studies (a) be quantified? 
(b) be tested for? (c) be corrected for?

  In this paper, we provide the first unified approach 
that is able to answer all three questions within the same 
statistical framework. In an earlier paper  [11] , we derived 
a quantity  �  to address the problem of correcting for PS 
in considerable detail, but there we investigated only Type 
I errors. Therefore, correcting for PS (issue c) will be men-
tioned only briefly here for the sake of completeness, al-
though we do describe new simulations for investigating 
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 Abstract 
 The HapMap project has given case-control association 
studies a unique opportunity to uncover the genetic basis of 
complex diseases. However, persistent issues in such studies 
remain the proper quantification of, testing for, and correc-
tion for population stratification (PS). In this paper, we pres-
ent the first unified paradigm that addresses all three funda-
mental issues within one statistical framework. Our unified 
approach makes use of an omnibus quantity ( � ), which can 
be estimated in a case-control study from suitable null loci. 
We show how this estimated value can be used to quantify 
PS, to statistically test for PS, and to correct for PS, all in the 
context of case-control studies. Moreover, we provide guide-
lines for interpreting values of  �  in association studies (e.g., 
at  �  = 0.05, a  �  of size 0.416 is small, a  �  of size 0.653 is me-
dium, and a  �  of size 1.115 is large). A novel feature of our 
testing procedure is its ability to test for either strictly any PS 
or only ‘practically important’ PS. We also performed simula-
tions to compare our correction procedure with Genomic 
Control (GC). Our results show that, unlike GC, it maintains 
good Type I error rates and power across all levels of PS. 
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power. In that same paper, we also addressed the issue of 
quantification of PS through  �  (issue a). However, our 
treatment of this issue was incomplete because we had not 
yet appreciated the full potential of  � . Therefore, we will 
spend some time here further elaborating on the useful-
ness of  �  as an ideal measure of PS in case-control as-
sociation studies, and we will refine some of our con-
clusions in that paper. New in this paper will also be 
guidelines for interpreting values of  �  in case-control as-
sociation studies. Finally, we will show how PS can be 
tested for (issue b) by using the estimated value of  � , thus 
providing the missing component in the ‘quantifying-
testing-correcting paradigm’. We will describe how to 
test either for strictly any PS or only PS that is deemed to 
be practically important. This distinction is important 
inasmuch as it lies at the heart of one of the conundrums 
in classical hypothesis testing, namely the inability to de-
marcate biologically important (or meaningful) results 
from statistically significant ones (e.g.  [12, 13] ). We pro-
vide a resolution of this issue here through a method that 
enables one to a priori decide which values of parameters 
would be important and then to test only for these.  We 
stress that a full appreciation of the usefulness of   �   as a 
unifying, omnibus quantity can be gleaned only by look-
ing at all three problems concomitantly. 

  Summary of Previous Approaches 

 Regarding quantifying PS and the extent of its impor-
tance in association studies, two quantities have been of-
ten used. The first is Wright’s  F  ST   [14]  which measures the 
proportionate reduction in heterozygosity in a total pop-
ulation due to subdivision alone [ 15 , p. 319]. Intuitively, 
the greater the variation in allele frequencies across sub-
populations, the more ‘population structure’ there is, and 
the larger the value of  F  ST . For a more thorough discus-
sion of  F  ST  and related  ‘F -statistics ’ , see  [15, 16] . The im-
portant point to note, however, is that  F  ST  is a function of 
allele frequencies and subpopulation sampling fractions 
only, and not of   disease prevalences and sample size. The 
relevance of this observation will become clear in the 
next paragraph. The second quantity is the confounding 
risk ratio [CRR;  17 ], which represents the ratio of the un-
adjusted (for PS) relative risk of disease to the adjusted 
relative risk. The larger the confounding effects of PS, the 
larger the CRR. An excellent treatment of this quantity 
can be found in  [18] . It is useful to note that CRR depends 
on allele frequencies, disease prevalences and subpopula-
tion sampling fractions, but not on the sample size.

  Wacholder et al.  [19]  used the confounding risk ratio 
(CRR) to measure the effects of PS, and found that CRR 
was biased by less than 10% in US studies involving non-
Hispanic US Causasians of European origin. On the oth-
er hand, Heiman et al.  [20]  correlated CRR with the ele-
vation in false positive rate (FPR), and found that CRR 
can be a poor predictor of FPR. They also used a stan-
dardized measure of the difference of marker allele fre-
quencies which they showed to be highly predictive of 
FPR. Khlat et al.  [21]  used both CRR and FPR to gauge 
the effects of PS, and found PS to be of relatively small 
concern. Finally and more recently, Xu and Shete  [22]  
quantified the degree of PS through Wright’s  F  ST , and 
found that PS could be a major problem. However, while 
CRR does increase with PS, and  F  ST  is an often-used mea-
sure of PS, these two measures are inadequate for captur-
ing all the parameters that determine PS in association 
studies, namely subpopulation marker frequencies, sub-
population disease prevalences, subpopulation sampling 
fractions, and the case-control sample size  [8, 11, 20, 23] . 
A natural way of quantifying PS in association studies 
would be in terms of a quantity which would contain all 
these parameters, and which would predict by how much 
such PS elevates the FPR in an association study. In what 
follows, we present such a quantity.

  Concerning testing for PS, Pritchard and Rosenberg 
 [24]  proposed the use of a panel of biallelic ‘null’ marker 
loci (i.e. marker loci not associated with the trait and not 
in LD with the test locus). A usual �2 test statistic for the 
cases and controls is calculated for each null marker. Un-
der the null hypothesis of no PS, the sum of the �2 at  N  null 
loci has a  �  2  N  distribution. This sum can thus be used as a 
test statistic for PS. In this paper, we propose an alternative 
test for PS, when the importance of the latter is gauged by 
how much it elevates the FPR of the association test relative 
to its nominal  � . Our test has the distinctive property that 
it can test for either strictly any PS or only PS that is prac-
tically important (we explain these two concepts later).

  Finally, regarding correcting for PS while performing 
an association test, two main methods have been pro-
posed. In the first major method, Genomic Control (GC) 
 [25, 26] , the assumption is that, in the presence of PS, the  
�2 test statistic for association has a standard  �  1 

 2  distribu-
tion when divided by an appropriate constant  � . The util-
ity of the method lies in the fact that  �  can be estimated 
from the empirical distribution of the null loci, usually 
either as the average of the test statistics at the null loci 
 [27]  or as their median divided by 0.456  [25] . To counter-
act possible anti-conservativeness of GC, Devlin et al.  [28]  
also proposed GCF, which assumes an  F  1,  L *   distribution, 
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instead of  �  1 
 2  , where  L *   is the total number of null loci used. 

In the second method, Pritchard et al.  [29, 30]  applied a 
Bayesian clustering method to a panel of null loci to infer 
the number of subpopulations and also the subpopulation 
membership of subjects. This information is then used to 
perform a test of association. This method is called struc-
tured association (SA). Although these methods can per-
form well, they also have drawbacks. For example, GC 
assumes that the distribution of the original test statistic 
can be transformed from a non-central �2 to a central one. 
However, we showed  [11]  this assumption is approximate-
ly true only for low levels of PS. The second method, SA, 
is very computationally intensive and can be problematic 
if the number of subpopulations is misspecified, although 
improvements have been made by Hoggart et al.  [31] . Oth-
er recently proposed methods that correct for PS include 
the use of logistic regression  [32–34]  and principal com-
ponent analysis  [35, 36] .

  The Unified Approach 

 Quantifying PS 
 There exists a single quantity that completely captures 

the confounding effects of PS in a case-control study, 
when measured by the resulting elevation in FPR of the 
association test used. Consider any population which is 
made up of discrete subpopulations. Assume there is no 

true association between marker genotype (i.e. a geno-
type containing at least one marker allele) and disease in 
any subpopulation (we later in this section relax this as-
sumption). For a case-control study with  m  cases and  n 
 controls sampled from the population, suppose we use 
the standard �2 test (without continuity correction) for 
association in 2  !  2 tables:

( ) ( )
( ) ( )

�
+ �

=
+ +

2
0 0 0 02

test
0 0 0 0

,  
m n a d b c

mn a c b d
                                                        (1)

  where, at the test locus,  a  0  and  b  0  are the number of cases 
with and without the marker genotype, and  c  0  and  d  0  are the 
number of controls with these respective genotypes. Let  s  be 
the proportion of diseased individuals in the total popula-
tion with a marker genotype, and  t  the proportion of non-
diseased individuals with a marker genotype. Define  [11]

� � � �
.  

1 1
s t

s s t t
m n

� ��
� ��

                                                          (2)

 Then, for a test with nominal  �  and reasonably large sam-
ples, the inflated FPR due to PS of the �2 test is given by 
 [11]  

   FPR = 1 –  � ( z  �  /2  –  � ) +  � (– z  �  /2  –  � ), (3)

  where  � (.) is the standard normal distribution function 
and  z   � /2  is the ( � /2)th upper percentile of the normal dis-
tribution. This relationship is correct to the extent that the 
use of the �2 test in Equation (1) can be justified, i.e. for 
reasonably large sample sizes (e.g. no expected frequency 
in the 2  !  2 table should be less than 5  [37] ). When there 
is no PS,  �  = 0 and FPR =  � . In the presence of  any  PS, 
 �   0  0 and FPR  1   � . The quantity � thus quantifies PS in a 
case-control association study because it predicts exactly 
by how much such PS will inflate the FPR of the associa-
tion test. In this paper therefore, we equate the existence 
of PS in association studies to the condition that  �    0   0. 
 Figure 1  shows some graphs for various test sizes  �  = 0.01, 
0.05 and 0.1. Equation 3 can be used to obtain guidelines 
for interpreting values of  � , at given values of  � . Some ex-
amples are given in  table 1  below for  �  = 0.001, 0.01, and 
0.05. In Appendix A, we also include a Maple program 
that can be used to estimate  �  for a given  �  and FPR. 

 Based on the derivation of Equation (3) in  [11] , we stat-
ed there that  �  can be used as a measure of PS only when 
there is no true association between disease and marker 
genotype. In point of fact, this is not completely true be-
cause of the way in which  �  is estimated in a case-control 
study. We now explain the latter by allowing for the pos-
sibility of true associations between marker genotype and 
disease. Suppose subjects in our case-control study are 
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  Fig. 1.  Quantification of PS: Variation of the inflated FPR due to 
PS of the association test as a function of  �  for  �  = 0.01 (bottom 
curve), 0.05 (middle curve) and 0.1 (top curve) (see Equation 3). 
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genotyped at a set of null loci. Recall that, at the test locus, 
the number of cases and controls with the marker geno-
type are  a  0  and  c  0 , respectively. First, estimate  t  at the test 
locus by  c  0 / n . Next select those null loci whose estimates 
of  t  are within, for example,  8  0.15 of  c  0 / n . Suppose there 
are  L  such loci, and that the number of cases and controls 
who have been genotyped at the  j -th locus are  m  j  and  n  j , 
respectively. For the  j -th ( j =  1, 2, …,  L ) such locus, the 
estimate of  s  j  is  a  i / m  j  ,  that of  t  j  is  c  j / n  j  ,  and that of  �  j  is

                                                                                                        (4)� � � �
� � � �� � � � � �� �

/ /

/ 1 / / 1 /

j j j j
j

j j j j j j j j

j j

a m c nˆ .
a m a m c n c n

m n

�
�

�
� �

�

  Combining all  L  matched loci, the overall estimate of  �  
and that of the inflated FPR due to PS are 

                                                                                                        (5)� ( ) ( )� �
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 This shows that, by matching the genotype frequencies of 
null loci approximately to that of the test locus in the con-
trols, the above method for estimating  �  ensures that the 
latter captures only the effect of PS and not that of any 
true association. Thus,  �  can be used as a measure of PS 
when true association between disease and marker geno-
type is either absent or present, as will be seen later in our 
simulations of power when correcting for PS. 

 Testing for PS 
 Is there a simple way to statistically test for PS in a 

case-control study? We now propose an alternative test to 

that of Pritchard and Rosenberg  [24] , when the impor-
tance of PS is gauged by how much it elevates the FPR of 
the association test relative to its nominal  � . Our test is 
based on the estimated value of  � , and has the distinctive 
feature that it can test for either strictly any PS or only PS 
that is practically important. We now explain these two 
concepts.

  Strictly Any PS and Practically Important PS 
 Any  �   0  0 implies the presence of PS, so that the two-

sided test H 0 :  �  = 0 versus H a :  �   0  0 is a test for strictly any 
PS. However, when performing such a test, we could face 
a classical dilemma in hypothesis testing [e.g.  12 ,  13 ], 
where our test could be highly significant, yet hardly 
practically important. To illustrate, the true value of  �  
could be only 0.01, and statistically significant in a ‘large 
sample,’ but of no scientific or practical importance. For 
example, if  �  = 0.05, Equation 3 shows that  �  = 0.01 cor-
responds to PS that inflates FPR to only 0.0512.

  Since, for a given nominal  � , we have an explicit rela-
tionship (Equation 3) between  �  and the inflated FPR due 
to PS of the association test to be used, we can avoid the 
above-mentioned problem. Depending on how large we 
allow FPR due to PS to be (relative to the nominal  � ), with-
out being practically important, we can determine the 
magnitude of  �  (say,  �  p ) from Equation 3. The test we 
should then perform is an equivalence test  [38]  H 0 :  �  �  �   6  
 �  p  vs. H a : 0  ̂    �  �  �   !   �  p . This is a test for only PS that is prac-
tically important. The choice for  �  p  depends on the nom-
inal  �  of the association test to be used, on the actual FPR 
of this association test when there is no PS and no true 
disease-marker association, and on the perceptions of the 
investigator. For example, if  �  = 0.05, the investigator 
might regard an inflated FPR due to PS of up to 0.07 to be 
practically unimportant and therefore use  �  p  = 0.416 (ob-
tained from Equation 3) in the test for PS. On the other 
hand, if  �  = 0.01, and only FPR  1 0.014 is to be regarded as 
practically important, then  �  p  = 0.323 should be used.

  Statistical Tests 
 Let us assume that the  L  selected matched loci are in 

linkage equilibrium with each other. (This is likely to be 
true if, for example, SNPs at a distance  � 1 cM from each 
other are chosen as the null markers). The test for strict-
ly no PS is two-sided. Under H 0 :  �  = 0,

1   
/ L

ˆ
T t

SD L
�

�� �                                                                         (6a)

  approximately, where  SD  2  = { �  L  j    = 1   �  ̂    2  j   – ( �  L  j    = 1  � ̂  j ) 2 / L }/( L  – 
1) and  t  L   – 1  is the Student’s  t- distribution with  L  – 1 de-

Table 1. Guidelines for interpreting the magnitude of �, at a given 
nominal � of the association test, and the corresponding inflated 
FPR of the association test due to PS

Size of effect Magnitude
of �

Approx. FPR
due to PS

� = 0.001 small 0.256 0.0014
medium 0.394 0.002
large 0.635 0.004

� = 0.01 small 0.323 0.014
medium 0.500 0.02
large 0.821 0.04

� = 0.05 small 0.416 0.07
medium 0.653 0.1
large 1.115 0.2
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grees of freedom (the rationale for the use of the  t- distri-
bution stems from the fact that  �  ̂   is approximately nor-
mally distributed). Based on Equation 6a, for a test of size 
 �   �  , reject H 0 :  �  = 0 if  �   T   �   6   t  L   – 1,  �  � /2 , where  t  L   – 1,  �  � /2 , is 
the ( �   �      /2)th upper percentile of  t  L   – 1 . Note that  �   �   here is 
the level of significance of the test for  PS  and must not be 
confused with the nominal  �  in Equation 3, the latter be-
ing the level of significance of the test for association and 
is used to obtain  �  p . 

 On the other hand, to test for only practically unim-
portant PS:

  (i) Depending on the nominal  �  of the association test, 
decide how large the inflated FPR due to PS can be.

  (ii) Determine the corresponding  �  p  from Equation 3 
by using the program in Appendix A or contacting the 
first author (P.G.).

  (iii) For a test of size  �   �  , reject the null hypothesis of 
practically important PS if the (1–2 �   �  ) confidence inter-
val for the true  �  falls completely within the ‘zone of in-
difference’ (– �  p ,  �  p )  [38] , i.e. if

1 1and . p pL , L ,
SD SDˆ ˆt t

L L� �� � � �� �� �� �� � �                        (6b)

  Note: (a) because this is an equivalence test, the null 
and alternative hypotheses have been switched: the alter-
native hypothesis is that of equivalence (i.e. PS is practi-
cally unimportant); (b) the equivalence test based on 
Equation 6b above has significance level  �  � , as required, 
rather than 2 �  �  [see  39 , p 172].

  Correcting for PS 
 Is there a simple way  �  can be used to correct for PS 

while testing for association? Let  �  2  test  in Equation 1 de-
note the value of the �2 test-statistic for the 2  !  2 table of 
marker genotype versus disease status at the test locus. 
Using the estimated value of  �  from the null loci as in 
Equation 5, we showed  [11]  that the test statistic

( ){ }� �� � � × �
2

2
0 0 testsign / /  DC

ˆT a m c n                                   (7)

  has the standard  �  2  1  distribution, where:
1 if x 0,

sign (x) 0 if x 0
1 if x 0

,
.

	
 >


� =�


� �


 T   *  DC  is therefore the association test statistic that corrects 
for PS. We have called this method  � -centralization (DC). 
It is computationally simpler that SA and, unlike GC, its 
validity does not depend on the degree of confounding 
due to PS (i.e. on the value of  � ). 

 Simulations 

 We performed computer simulations in order to inves-
tigate Type I errors and power. We first describe how the 
candidate locus and null loci were generated in a discrete 
population substructure model. We assume there is no 
true association between marker genotype and disease in 
each subpopulation. Using a given value of  p  k  as the mark-
er allele frequency at the test locus in both cases and con-
trols in subpopulation  k  ( k  = 1, 2, …,  K ) ,  the allele fre-
quency ( p  jk ) of the  j -th null locus in subpopulation  k  was 
generated from a  

1 1
Beta k k

k k
k k

F F
p , q

F F

� �� � �� �� �� ��� �

  distribution for both cases and controls, where  q  k  = 1 –  p  k  
and  F  k    is Wright’s coefficient of inbreeding in subpopula-
tion  k.  The values of  F  k    chosen were in the range 0.01–
0.05, which is typical of most human populations [see  7 , 
table 2.3.1A]. Using the values of these allele frequencies, 
we calculated  s  j    and  t  j  for the  j -th null locus, as follows: 

                                                                                                        (8)
� �1 1

1 1

1
, . 

1

K K
k k k jk k k k jk

j jK K
k k k k k k

d r d r
s t

d d

� �

� �
� �

� �

� � �
� �

� ��

 Here  �  k  , d  k  ,  and  r  jk  are the subpopulation sampling 
fraction, disease prevalence and marker genotype fre-
quency at the  j -th null locus (calculated from  p  jk  by as-
suming Hardy-Weinberg equilibrium) of the  k- th sub-
population. Let  a  j    and  c  j  be the number of cases and con-
trols, respectively, having the marker genotype at the  j -th 
locus. The values  s  j    and  t  j  for the  j -th null locus were used 
to generate a 2  !  2 table at that locus, since  a  j   � Bin( m  j  , 
s  j ) and  c  j   � Bin( n  j  , t  j ). Once these tables were generated, 
confounding due to PS was quantified, tested and cor-
rected for, using the methods as we described above. If we 
assume there is true association between marker geno-
type and disease in each subpopulation, we then use a 
different marker genotype frequency between diseased 
and non-diseased subjects in each subpopulation. For 
comparison purposes, we applied DC, GC and GCF (see 
 tables 4  and  5 ). Comparisons were done for increasing 
values of  � . 

 We performed the above simulations to compare the 
operating characteristics of the  t  test for strictly no PS in 
Equation 6a ( table 2 ) and for practically unimportant PS 
in Equation 6b ( table 3 ). In the latter case, we allowed an 
FPR of up to 0.07 to be practically unimportant (at  �  = 
0.05) and therefore used  �  p  = 0.416.  Table 2  shows that 
matching to within  8 0.15, rather than  8 0.1, gives the  t  
test better operating characteristics. Thus the  T- statistic 
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in Equation 6a fails to have the nominal Student’s  t- dis-
tribution when matching is too narrow.  Table 3    shows 
that power is relatively high for very small  �  ( ;  0 to 0.1), 
but starts decreasing for 0.2  ̂    �   !  0.416.

  Simulation results comparing DC, GC and GCF are 
shown in  tables 4  and  5 . The performance of GC depends 
very much on the degree of confounding, i.e. on the value 
of  � . With increasing  � , GC becomes more and more con-
servative. At  �  = 0.5, GC performs well, but at  �  = 1.0 it 
becomes over-conservative, rejecting at an average rate of 
about 2.5% for a nominal  �  = 0.05. The situation is worse 
for larger  �  [see also  40 ]. Concerning power, GC seems to 
lose considerable power only for  �   1  2.0. In all these situa-
tions, DC performs well with respect to both Type I and 
Type II errors. GCF always has a smaller rejection rate than 
GC since it is based on an  F  1,   L*    distribution, instead of  �  

2
1 

  , 
and  F  1,   L *    1   �  

2
1 

   for all  L  * . Therefore when GC is either over-
conservative or ‘low-powered’, GCF is even more so.

  Discussion 

 PS in association studies cannot be disregarded outright 
and may be a major reason why many positive findings fail 
to replicate. In this paper, we have provided, for the first 
time, one statistical framework that is able to address all 
aspects of PS in case-control association studies: we have 

shown that, through an omnibus quantity ( � ), PS can be 
(a) quantified, (b) tested for, and (c) corrected for. We sum-
marize our findings for these three issues in turn.

  Summary of Results for the Three Issues 
 The quantity  �  is ideally suited as a measure of PS (is-

sue a) in case-control association studies. This is because, 
by estimating  � , one is able to exactly predict by how much 
PS in a case-control study inflates the FPR of an associa-
tion test relative to its nominal  �  (see Equation 3 and 
 fig. 1 ). In general, for a given  � , FPR (and hence the extent 
of PS) increases with the magnitude of  � . Moreover, we 
can use Equation 3 to better interpret values of  �  (see  ta-
ble 1 ): for example, at  �  = 0.05, a  �  of size 0.416 (or less) is 
small because it corresponds to an inflated FPR of the as-
sociation test of only 0.07, a  �  of size about 0.653 is medi-
um (the FPR is twice the nominal  � ), and a  �  of size 1.115 
(or more) is large (the FPR is four times the nominal  � ). 
We stress that  �    is not a global measure of stratification 
between subpopulations; rather, it is a locus-specific mea-
sure. A global measure of PS cannot correctly indicate the 
extent to which a test for association will be affected by PS 
at a particular locus because the ‘global’ difference be-
tween allele frequencies at several markers will often be 

Table 3. Testing for practically important PS: Type I error and 
power of t-test (to detect practically important PS) when geno-
types are matched to within 80.15

Configuration
numbers

Approx.
value of �

Type I error
of t-test

Practically 9 0.5 0.01100
important PS 10 0.6 0.00780

11 0.7 0.00020
12 0.8 0.00000
14 1.0 0.00000
18 2.0 0.00000

Power of t-test

Practically 1 0.0 0.98040
unimportant PS 4 0.1 0.91940

5 0.2 0.67420
6 0.3 0.23880
7 0.4 0.05120

L* = 100, m = n = 200, �� = 0.05, K = 2 subpopulations, F1 = 
0.05, F2 = 0.01. Matching was done to within 80.15. We have here 
defined practically unimportant PS as PS that inflates the FPR of 
an association test up to 0.07 (at a nominal � = 0.05), and therefore 
used �p = 0.416. See configuration numbers from Table A1 in 
 Appendix B for description of actual values of �, d, and r used.

Table 2. Testing for strictly any PS: Type I error and power of t-
test (to detect any PS) when genotypes are matched to within 
80.1, 80.125, and 80.15

Config-
uration
numbers

Value
of �

Type I error of t-test

80.1
matching

80.125
matching

80.15
matching

No PS 1 0 0.10690 0.07360 0.05300
2 0 0.11900 0.07380 0.06440
3 0 0.10090 0.07100 0.05300

Approx. 
value
of �

Power of t-test

80.1
matching

80.125
matching

80.15
matching

PS 9 0.5 0.95340 0.98160 0.98980
14 1.0 1.0000 1.0000 1.0000
18 2.0 1.0000 1.0000 1.0000

L* = 100, m = n = 200, �� = 0.05, K = 2 subpopulations, F1 = 
0.05, F2 = 0.01. See configuration numbers from table A1 in 
 Appendix B for description of actual values of �, d, and r used.
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significantly different from a ‘locus-specific’ difference. 
Therefore, our argument is, since we are considering as-
sociation tests performed on a locus-to-locus basis, a cor-
rect measure of PS for an association study should be a 
local measure, specific to the locus being tested for asso-
ciation. Thus,  �  is not intended as a replacement of global 
measures of population structure such as  F  ST .

  We make three additional observations: (i) From 
Equation 3, we note that the value of  �  must be used in 
conjunction with the nominal  �  of the association test 
when gauging the extent of PS. For example,  �  = 0.4 is 
‘huge’ when  �  = 10 –5 , because the FPR (= 3  !  10 –5 ) is 
tripled relative to the nominal  �  (a relative increase of 
200%); however, the same  �  = 0.4 is ‘very small’ when  
�  = 0.05 because the FPR is only 0.0685 (a relative in-
crease of only 37%). (ii) A second point regards a statisti-
cal connection of  � : in    [11]  we showed that, in the pres-
ence of PS and in the absence of any true association,  �  2  test  
in Equation 1 has a non-central �2 distribution with 1 de-
gree of freedom and approximate non-centrality param-
eter  �  2 . (iii) The third observation concerns a desirable 

relationship between  �  and sample size: from Equation 2, 
we see that, for a fixed value of the numerator  s – t  (which 
can be thought of as a measure of the inherent genetic 
distance between diseased and non-diseased individuals 
due to subpopulations),  �  and hence the confounding ef-
fect of PS can be made arbitrarily large by increasing the 
number of cases and controls. This is a classic case where-
by bias is made even worse by increasing the sample size 
 [5, 20, 41, 42] . This is because, in essence, the biased pro-
cedure is actually testing a different null hypothesis, so 
increasing the sample size raises the ‘power’ to reject that 
null hypothesis.

  Our second use of  �  relates to the testing for PS (issue 
b). We have shown how to test for either strictly any PS 
or only PS that is practically important PS. By practically 
important PS, we mean PS that inflates the FPR of an as-
sociation test beyond a certain amount, relative to its 
nominal  � . By deciding how big an FPR is large enough, 
relative to the nominal  � , one can use Equation 3 to esti-
mate the corresponding  �  p  and perform an equivalence 
test for practically important PS. Our guidelines are to 

Approximate
value of �

CONFIG
#

Type I
error

CONFIG
#

Power

0.5 uncorrected FPR 8 0.07900 9
FPR using GC with median 0.04700 0.99880
FPR using GC with mean 0.04820 0.99980
FPR with GCF with mean 0.04540 0.99980
FPR using DC 0.04700 0.99900

1.0 uncorrected FPR 13 0.16920 14
FPR using GC with median 0.02520 0.88740
FPR using GC with mean 0.03200 0.92940
FPR with GCF with mean 0.03020 0.92540
FPR using DC 0.05260 0.92060

1.5 uncorrected FPR 15 0.33480 16
FPR using GC with median 0.00420 0.81520
FPR using GC with mean 0.00480 0.90680
FPR with GCF with mean 0.00400 0.89740
FPR using DC 0.04460 0.98500

2.0 uncorrected FPR 17 0.51920 18
FPR using GC with median 0.00080 0.64800
FPR using GC with mean 0.00100 0.84580
FPR with GCF with mean 0.00080 0.82760
FPR using DC 0.04820 0.99400

L* = 100, m = n = 200, � = 0.05, K = 2 subpopulations, F1 = 0.05, F2 = 0.01. Matching 
was done to within 80.15. See configuration numbers from Table A1 in Appendix A for 
description of actual values of �, d, and r used. (Note that, unlike Type I errors, power 
values cannot be compared across values of � because the effect size, i.e. ‘strength of true 
association’, is different for each value of �).

Table 4. Correcting for PS: Type I error 
and power of GC, GCF and DC (to 
detect any true association) with 2 
 subpopulations
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use  �  p  = 0.416 when  �  = 0.05, corresponding to an inflat-
ed FPR of 0.07 due to PS, and  �  p  = 0.323 when  �  = 0.01, 
corresponding to an inflated FPR of 0.014 due to PS. Of 
course, all of this assumes that the association test used 
has an FPR close to the nominal  �  when there is no PS 
and no true association  [43] , and to this end we recom-
mend using a �2 without continuity correction. This is 
because the latter has an FPR close to the nominal  � , as 
opposed to the �2 with continuity correction whose FPR 
is much less than  �  [e.g., see  44 , p. 137]. Since both quan-
tifying PS and testing for practically important PS de-
pend on the nominal  �  of the association test to be sub-
sequently performed, it is also natural to ask how to do 
either of these if the aim is only to quantify or test, and 
not correct later. Here, we suggest assuming the most 
widely used value of  � , namely 0.05, for both quantifying, 
and testing by calibrating  �  p  accordingly.

  Our third use of  �  concerns correcting for PS (issue c) 
while performing an association test (see Equation 8). 
The method we have proposed (DC) works by directly 
centralizing the test statistic  �  2  test  in Equation 1, which has 

a non-central �2 distribution in the presence of PS, 
through its non-centrality parameter ( �  2 ). The estimate 
 � ̂  in essence ‘distills’  �  2  test  by removing the effect of PS and 
giving out only the genetic effect. The reason why  �  2  test  
can be centralized is because, in the presence of PS, its 
distribution is non-central with only 1 degree of freedom. 
The test in Equation 7 is two-sided. For one-sided alter-
natives, the test statistic to use is 

( ) � �� × �2
0 0 testsign / / ,ˆa m c n

  which has a standard normal distribution. DC is similar 
to GC in that both use null loci as ‘genomic controls’. 
However, unlike GC, DC is valid for all levels of PS (i.e. 
all values of  � ) and is also computationally simpler than 
SA. Finally, if narrow frequency matching is performed, 
as few as 25 matched null loci are enough for DC to per-
form well  [11] . 

 Concluding Remarks 
 Since our unified approach depends on  � , it is crucial 

that this quantity be accurately estimated in any case-

Approximate 
value of �

Type I
error

Power

0.5 uncorrected FPR 19 0.07720 20
FPR using GC with median 0.03360 0.45380
FPR using GC with mean 0.03260 0.46620
FPR with GCF with mean 0.03040 0.45340
FPR using DC 0.04720 0.43520

1.0 uncorrected FPR 21 0.16800 22
FPR using GC with median 0.01920 0.92600
FPR using GC with mean 0.02480 0.95900
FPR with GCF with mean 0.02320 0.95660
FPR using DC 0.04560 0.96120

1.5 uncorrected FPR 23 0.33280 24
FPR using GC with median 0.00200 0.33000
FPR using GC with mean 0.01380 0.62860
FPR with GCF with mean 0.01260 0.61080
FPR using DC 0.04240 0.71400

2.0 uncorrected FPR 25 0.52700 26
FPR using GC with median 0.00000 0.34580
FPR using GC with mean 0.00600 0.82920
FPR with GCF with mean 0.00520 0.81500
FPR using DC 0.04500 0.93480

L* = 100, m = n = 200, � = 0.05, K = 3 subpopulations, F1 = 0.05, F2 = 0.01, F3 = 0.02. 
Matching was done to within 80.15. See configuration numbers from Table A2 in Ap-
pendix C for description of actual values of �, d, and r used. (Note that, unlike Type I 
errors, power values cannot be compared across values of � because the effect size, i.e. 
‘strength of true association’, is different for each value of �).

Table 5. Correcting for PS: Type I error 
and power of GC, GCF and DC (to 
detect any true association) with 3 
 subpopulations
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control study. We have shown how this can be done by 
genotyping both cases and controls at a set of null mark-
er loci (preferably SNPs), and then selecting those null 
loci whose marker genotype (hence allele) frequencies in 
the controls closely match those of the test locus in the 
controls. A value of  �  can be estimated from each matched 
null locus, and by averaging, an overall estimate of  �  can 
be obtained. It is thus important that there is a sufficient-
ly large number of controls so that genotype (or allele) 
frequencies can be accurately estimated at both the test 
and null loci. Moreover, since  �  is obtained by matching, 
the methods in our unified approach (quantifying, test-
ing, and correcting) are independent of the probability 
distribution used for generating loci across the genome. 
Finally, the method of frequency matching by using con-
trols ensures that  �  is a measure of PS either in the pres-
ence or absence of any true association between disease 
and marker genotype.

  Although the distribution of the estimated  �  values at 
all null loci is approximately normal, that of the matched 
null loci is roughly uniform. This has an important impli-
cation regarding the tests for PS in Equations 6a and 6b, 
being both based on the Student’s  t -distribution. These 
tests essentially rely on the Central Limit Theorem (CLT) 
and, as such, their validity depends on the number of 
matched loci ( L ) being large enough. Moreover, our simu-
lations ( table 1 ) show that if the matching is too strict 
( 8 0.1) the CLT does not hold and the  t- test in Equation 6a 
becomes over anti-conservative. When matching is done 
to within  8 0.15, the CLT is more applicable and the  t  test 
has correct error rates. As far as correcting for PS is con-
cerned, the narrower the matching window, the more ac-
curate the estimation of  � . However, this also means more 
null loci will have to be genotyped before the suitable ones 
are found. In general, we recommend a matching window 
of  8 0.15, since both the test for the PS and the correction 
for PS then have good operating characteristics.

  Should we always test for PS first and then decide 
whether to apply the DC method or use an uncorrected 
test-statistic based on the result of the first test? There are 
at least three problems with such an approach: (i) if a Type 
I error is made in the test for strictly no PS, then using the 
DC method for association will result in loss of power; (ii) 
if a Type II error is made in the test for strictly no PS, then 
using an uncorrected test for association will result in an 
increased FPR; (iii) finally, if PS is declared practically 
unimportant and an association test is performed with-
out correcting for it, the FPR of the association test will 
increase. Another fact is that most practitioners will feel 
safer to estimate  �    and then directly move to correct for 

PS, without necessarily going through the testing phase. 
We therefore advocate flexibility in using the unified ap-
proach: testing and correcting could best be thought as 
independent tasks, and there is no need to do one before 
the other, once  �  is estimated.

  An important topic concerns the issue of multiple-
tests performed in genome-wide association studies  [45–
48] . Here the danger is that of a rapid rise in the experi-
mentwise error-rate because of the large number of test 
loci. On the other hand, a Bonferroni-correction ap-
proach results in the opposite problem: substantial loss in 
power because the typical test size is  � 10 –6   [2] . A reason-
able compromise can be achieved through: (i) Benjamini 
and Hochberg’s FDR procedure  [49]  if no correlation be-
tween loci is allowed for, (ii) variants of the FDR proce-
dure [e.g.  50 ] if possible correlation between loci is al-
lowed for. We therefore recommend applying the FDR or 
its variants when either testing or correcting for PS for a 
large number of loci.

  It is also important to note the genetic model we have 
used here. We have assumed a dominant genetic model 
(in the sense that the genotypic relative risk for disease is 
the same if the genotype at the test locus has one or two 
marker alleles), and both the definition of  �  in Equation 
2 and the DC test statistic in Equation 7 are particular to 
such a model. DC can still be applied if a recessive model 
is assumed, by changing the definition of a marker geno-
type to include both marker alleles only. For an additive 
model, both Equation 2 and Equation 7 change drasti-
cally [see  11 ]: things are more complicated, but can still 
be done.
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  Appendix 

 A. Maple program that uses the Newton-Raphson procedure 
to estimate  �  for a given  �  and FPR

  raphson := proc(fpr, alpha, delta_start)
  local z_alpha, delta, i, f, f_dash;

  with(stats);
  z_alpha := statevalf[icdf, normald[0, 1]](1 - .5 * alpha);
  delta[1] := delta_start;
  for i to 25 do
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  f[i] := 1
  – statevalf[cdf, normald[0, 1]](z_alpha – delta[i])
  + statevalf[cdf, normald[0, 1]](-z_alpha – delta[i])
  – fpr;

  f_dash[i] :=
  statevalf[pdf, normald[0, 1]](z_alpha – delta[i])
  – statevalf[pdf, normald[0, 1]](z_alpha + delta[i]);

  delta[i + 1] := delta[i] - f[i]/f_dash[i];
  if abs(delta[i + 1] – delta[i])  !  .0001 then

  RETURN(delta[i])
  fi

  od
  end   

B. Table A1. Configuration numbers (#) as indicated in tables 2, 3, and 4, and corresponding values of �, �, d, and r for K = 2 subpop-
ulations with m = n = 200

# Approx. � Actual values

� � d r (cases) r (controls)

1 0 0.0000 (0.2620, 0.7380) (0.2, 0.2) (0.85, 0.50) (0.4, 0.2)
2 0 0.0000 (0.2620, 0.7380) (0.1, 0.2) (0.85, 0.50) (0.2, 0.2)
3 0 0.0000 (0.45, 0.55) (0.034, 0.034) (0.18, 0.42) (0.12, 0.32)
4 0.1 0.1001 (0.3447, 0.6553) (0.2396, 0.1992) (0.6, 0.4) (0.4154, 0.3272)
5 0.2 0.2002 (0.5537, 0.4463) (0.2352, 0.1430) (0.6, 0.5) (0.4382, 0.3706)
6 0.3 0.3000 (0.2872, 0.7128) (0.1050, 0.1634) (0.3, 0.5) (0.1779, 0.3194)
7 0.4 0.3998 (0.2872, 0.7128) (0.1050, 0.1915) (0.2, 0.4) (0.1779, 0.3194)
8 0.5 0.4979 (0.7648, 0.2352) (0.1908, 0.1416) (0.5614, 0.1484) (0.5614, 0.1484)
9 0.5 0.4979 (0.7648, 0.2352) (0.1908, 0.1416) (0.8421, 0.2226) (0.5614, 0.1484)

10 0.6 0.5995 (0.7894, 0.2016) (0.1634, 0.0131) (0.6, 0.4) (0.4760, 0.3336)
11 0.7 0.6999 (0.5458, 0.4542) (0.2713, 0.1603) (0.6, 0.4) (0.4592, 0.2477)
12 0.8 0.7990 (0.4789, 0.5211) (0.1145, 0.2429) (0.3, 0.5) (0.1688, 0.3323)
13 1.0 1.0027 (0.5241, 0.4759) (0.2818, 0.1654) (0.4298, 0.1505) (0.4298, 0.1505)
14 1.0 1.0027 (0.5241, 0.4759) (0.2818, 0.1654) (0.6447, 0.2258) (0.4298, 0.1505)
15 1.5 1.5026 (0.2620, 0.7380) (0.2502, 0.05855) (0.4770, 0.2882) (0.4770, 0.2882) 
16 1.5 1.5026 (0.2620, 0.7380) (0.2502, 0.05855) (0.7, 0.45) (0.4770, 0.2882) 
17 2.0 2.0030 (0.2620, 0.7380) (0.2502, 0.03326) (0.4770, 0.2882) (0.4770, 0.2882)
18 2.0 2.0030 (0.2620, 0.7380) (0.2502, 0.03326) (0.7155, 0.4323) (0.4770, 0.2882)

To obtain the values of �, d, r (controls) for a value of �, we fixed all but one of the values of �i, di, ri (controls), and then solved for 
the unknown using Equations 2 and 8. The values of r (cases) were made to equal those of r (controls) for the Type I errors in Tables 
4 and 5, but were otherwise chosen arbitrarily.

C. Table A2. Configuration numbers (#) as indicated in table 5, and corresponding values of �, �, d, and r for K = 3 subpopulations 
with m = n = 200

# ; � Actual values

� � d r (cases) r (controls)

19 0.5 0.4984 (0.2036, 0.5375, 0.2589) (0.2474, 0.2043, 0.0064) (0.4343, 0.2492, 0.2298) (0.4343, 0.2492, 0.2298)
20 0.5 0.4984 (0.2036, 0.5375, 0.2589) (0.2474, 0.2043, 0.0064) (0.6, 0.3, 0.3) (0.4343, 0.2492, 0.2298)
21 1.0 1.0028 (0.3242, 0.2027, 0.4730) (0.1594, 0.1070, 0.3000) (0.1130, 0.1165, 0.2859) (0.1130, 0.1165, 0.2859)
22 1.0 1.0028 (0.3242, 0.2027, 0.4730) (0.1594, 0.1070, 0.3000) (0.2, 0.2, 0.5) (0.1130, 0.1165, 0.2859)
23 1.5 1.4979 (0.0858, 0.1566, 0.7576) (0.1114, 0.1392, 0.05012) (0.3382, 0.4228, 0.1280) (0.3382, 0.4228, 0.1280)
24 1.5 1.4979 (0.0858, 0.1566, 0.7576) (0.1114, 0.1392, 0.05012) (0.5, 0.6, 0.2) (0.3382, 0.4228, 0.1280)
25 2.0 2.0001 (0.0559, 0.5979, 0.3462) (0.2719, 0.2023, 0.03193) (0.4403, 0.4182, 0.1233) (0.4403, 0.4182, 0.1233)
26 2.0 2.0001 (0.0559, 0.5979, 0.3462) (0.2719, 0.2023, 0.03193) (0.6, 0.6, 0.2) (0.4403, 0.4182, 0.1233)

To obtain the values of �, d, r (controls) for a value of �, we fixed all but one of the values of pi, di, ri (controls) and then solved for 
the unknown using Equations 2 and 8. The values of r (cases) were made to equal those of r (controls) for the Type I errors in Tables 
4 and 5, but were otherwise chosen arbitrarily.
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