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Abstract
There has been considerable debate in the literature con-
cerning bias in case-control association mapping studies
due to population stratification. In this paper, we perform
a theoretical analysis of the effects of population stratifi-
cation by measuring the inflation in the test’s type I error
(or false-positive rate). Using a model of stratified sam-
pling, we derive an exact expression for the type I error
as a function of population parameters and sample size.
We give necessary and sufficient conditions for the bias
to vanish when there is no statistical association be-
tween disease and marker genotype in each of the sub-
populations making up the total population. We also
investigate the variation of bias with increasing subpop-
ulations and show, both theoretically and by using simu-
lations, that the bias can sometimes be quite substantial
even with a very large number of subpopulations. In a
companion simulation-based paper (Heiman et al., Part I,
this issue), we have focused on the CRR (confounding
risk ratio) and its relationship to the type I error in the

case of two subpopulations, and have also quantified the
magnitude of the type I error that can occur with relative-
ly low CRR values.

Copyright © 2004 S. Karger AG, Basel

Introduction

There is now an abundance of studies conducted to
detect genetic association between marker genotypes and
complex diseases [5]. The designs usually involve case-
control samples. The essential premise of these gene map-
ping studies is that, since in affected individuals (the
cases) there are significantly more disease genes than in
the unaffected individuals (the controls), then any marker
in linkage disequilibrium a disease gene would also be
expected to show significant genotype frequency differ-
ences between the two groups.

Case-control studies, however, have been subjected to
much criticism because they can show associations be-
tween disease and marker loci even when in fact there is
no true association. This can occur in situations where
there is considerable population stratification or admix-
ture [1, 2, 5–8]. Population stratification refers to the exis-
tence of subpopulations within a population, such that
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genotype frequencies differ systematically across loci.
Population stratification confounds the association be-
tween marker genotype and disease. This is because if
either the disease or any marker genotype has higher fre-
quency in any one subpopulation, then there will be an
apparent association between the marker genotype and
the disease at the population level, even though there is no
true association at the subpopulation level. In the statisti-
cal literature, this effect has long been known under the
name of Simpson’s paradox [9]. It arises here because
case-control studies, by their very nature, give rise to non-
randomized data. Some reported examples of such false-
positive associations include the alleged associations of
non-insulin-dependent diabetes mellitus in the Pima and
Papago tribes (Native Americans) with a haplotype at the
immunoglobin G locus [10], and of prostate cancer in
African-American populations with a polymorphism in
the CYP344 gene [11].

One way to tackle the issue is to match the ethnic back-
grounds of the cases and controls, a technique often used
by epidemiologists. However, this might not altogether
get rid of all population stratification, as some ‘cryptic
stratification’ may always remain [7]. A more popular
alternative is to use family-based tests of association that
avoid the problem of population substructure altogether
[12, 13]. Undoubtedly, the most famous of these tests is
the transmission/disequilibrium test (TDT) [6, 13], which
uses the McNemar statistic.

In spite of the popularity of the TDT, some authors
have argued that case-control studies have several advan-
tages over the TDT [7, 14, 15]. For example, family-based
samples can be difficult, expensive and time-consuming
to collect, and family-based tests are often less powerful
than case-control tests. Thus, many authors have contin-
ued to use case-control studies but have tried to adjust for
population stratification. One method, the so-called ge-
nomic control method, uses unlinked markers in the
genome to quantify, and then correct for, population
stratification [see 7, 14, 16–18]. However, the power of
these methods remains unclear [19, 20].

Other authors have also argued that population strati-
fication does not cause serious bias in case-control studies
[1, 2]. For instance, Wacholder et al. [1] use the confound-
ing risk ratio (CRR) to quantify the bias resulting from
population stratification in a case-control design where
marker genotype was unrelated to disease in each subpop-
ulation. The CRR is the ratio of the crude (unadjusted for
population stratification) to the adjusted relative risk. An
important conclusion from their paper is that, as the num-
ber of subpopulations (K) increases, confounding from

each subpopulation will tend to cancel, since some sub-
populations contribute positive confounding and others
contribute negative confounding. Thus the overall bias is
expected to decrease. In both their empirical and theoreti-
cal studies, Wacholder et al. [1] use information on ‘first
ancestry’ based on the first ethnicity reported to the US
census [21] and consider K = 8 ethnicities. They conclude
that, whereas confounding due to stratification might be
important for K = 2 or 3, the CRR is close to 1 when K =
4–8, implying that the bias is very small.

In this paper, we theoretically investigate the extent of
bias due to population stratification by using the type I
error. In a companion paper (part I, this issue), Heiman et
al. [4] have performed a related simulation-based study in
the case of two subpopulations. There we argue that the
type I error is more appropriate than the CRR in a signifi-
cance-testing framework and, like the CRR, is also dis-
torted by bias. Substantial bias will usually result in an
inflated type I error compared to the nominal value of the
statistical test. The type I error is a function of both popu-
lation parameters and the sample (the number of cases
and controls). Given necessary population parameters
and the number of cases and controls, we obtain an exact
expression for the type I error, and we give mathematical
criteria that determine the extent of bias in association
studies. We also show that, under certain conditions, bias
can be substantial even with a large number of subpopula-
tions. Finally, when bias does decrease considerably with
increasing subpopulations, we investigate the rate of de-
crease under different distributions of disease and marker
genotypes.

The Statistical Model

We base our mathematical model on the same princi-
ples as Pritchard and Rosenberg’s model of stratified sam-
pling [22]. Consider a sample of m cases (disease) and n
controls (non-disease or unaffected) sampled from a pop-
ulation consisting of K subpopulations (or ethnicities) of
relative sizes i (i = 1,2, ..., K), where

K

™
i = 1

i = 1.

We define the following events for i = 1, 2, ..., K : Ci : a
person belongs to subpopulation i; D : a person has the
disease; M: a person has the marker genotype (i.e. has a
genotype containing the marker allele).
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Table 1. Contingency table for the number of marker genotypes in
cases and controls

M (marker
genotype)

MP(other
genotype(s))

D (case) X m – X m
DP (control) Y n – Y n

X + Y (m + n ) – (X + Y ) m + n

Within the ith subpopulation, we denote the disease
prevalence by di and the marker genotype frequency by ri.
Then

i = Pr �Ci � , di = Pr �D ACi � , ri = Pr �M ACi � , i = 1, 2, ..., K . (1)

In each subpopulation, we assume that D is independent
of M, i.e.

Pr �D ∩ M ACi � = Pr �D ACi �Pr �M ACi � = diri.

The Type I Error

Given the numbers of cases (m) and controls (n), the
subpopulation relative sizes  = �i�, the disease preva-
lences d = �di � and the marker genotype frequencies r =
�ri� , an exact expression for the expected type I error can
be obtained. Consider the following contingency table (ta-
ble 1) for cases and controls.

Let X and Y denote the number of marker genotypes in
the cases and controls, respectively. Conditional on the
row totals (m and n ), we see that X and Y are independent
binomial variates:

Pr �X = x, Y = y � = Pr �X = x �Pr �Y = y � (2)

and

X F Bin (m, s ) , Y F Bin (n, t ) , (3)

where, by using Bayes’ Theorem,

s o Pr �M AD � = 

K

™
i = 1

i di ri

K

™
i = 1

i di

, t o Pr �M ADP � = 

K

™
i = 1

i (1 – di )ri

1 – 
K

™
i = 1

i di

. (4)

Thus, s and t represent the proportions of diseased and
non-diseased individuals, respectively, in the total popu-
lation carrying the marker genotype.

Suppose we did not know the actual values of s and t,
but we had only an observed contingency table (with real-

ized values x and y of X and Y, respectively). A test of no
association between D (disease) and M (marker genotype)
is really a test of the hypothesis:

H0 : s = t vs. Ha : s 0 t . (5)

Let the nominal type I error of the statistical test T (such
as the Fisher’s exact test or the chi-squared test) be set to
·. The test’s actual type I error, as a function s, t, m and n,
is then the sum of Pr�X = x, Y = y� over all possible values
of x and y such that the realized contingency table is sig-
nificant at ·, i.e. has a significance level (or p value) given
by pval ^ ·. Writing the type I error as p(s,t; m,n), we
thus have

p (s, t; m,n ) = 
n

™
y = 0

m

™
x = 0

I (pval ̂  · Ax,y,m,n )Pr �X = x �Pr �Y = y �

= 
n

™
y = 0

m

™
x = 0

I (pval ̂  · Ax,y,m,n ) !

�m
x
� �n

y
� sx ty (1 – s )m – x (1 – t )n – y. (6)

In the above, I( W) is the indicator variable defined by con-
ditioning on x, y, m, n:

I (pval ̂  · ) = � 1

0

if pval ̂  ·,

otherwise.
(7)

Eq. (6) shows that the type I error depends on the popula-
tion parameters (through , d and r) and on the sample
(only through m and n). We expect: (i) An inflated type I
error (i.e. p(s,t; m,n) 11 ·) when there is substantial bias
due to population stratification; (ii) an increase in the type
I error when the sample size increases (see Discussion);
(iii) a correct type I error (i.e. p(s, t; m,n) = ·) when all di ’s
or all ri ’s are the same because then there is no bias due to
population stratification.

Choice of the Statistical Test T

Which statistical test T for categorical (or count) data
should we use to evaluate p(s,t; m,n) in Eq. (6)? We need
to determine p(s,t; m,n) quite accurately because we are
measuring the extent of bias due to population stratifica-
tion from the false positive rate. An accurate determina-
tion of p(s,t; m,n) is made even harder because the cell
frequencies in table 1 are small when x, y are very small or
very large in the summation in Eq. (6). In such situations,
it is usually recommended to use Fisher’s exact test [23,
24]. There are several ways in which a two-sided p value
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Table 2. The type I error using four
different tests (· = 0.05) Type I error

Fisher’s
two-sided
p value (i)

Fisher’s two-
sided mid-
p value (ii)

chi-squared
p value with
Yates’
correction

uncorrected
chi-squared
p value

 = (0.5, 0.5), m = n = 25
d = (0.6, 0.5), r = (0.3, 0.3)

0.0229 0.4480 0.0224 0.0537

 = (0.05, 0.5), m = n = 50
d = (0.1, 0.9), r = (0.5, 0.5)

0.0352 0.0569 0.0352 0.0569

 = (0.2, 0.8), m = 25, n = 50
d = (0.1, 0.5), r = (0.9, 0.9)

0.0132 0.0347 0.0121 0.0451

 = (0.4, 0.6), m = n = 100
d = (0.2, 0.6), r = (0.2, 0.2)

0.0328 0.0477 0.0322 0.0513

for the latter test can be calculated, but two of the most
recommended ones are [25]: (i) calculate the probability
of the given table, add this probability to the probabilities
of all tables more extreme (i.e. less likely) than the given
table, then multiply by 2 to give the two-sided p value;
(ii) calculate the probability of the given table, add half of
this probability to the probabilities of all tables more
extreme than the given table, then multiply by 2 to give
the two-sided mid-p value. Procedure (i) gives p values
very close to those of the corrected (Yates’) chi-squared
test, whereas procedure (ii) gives p values very close to
that of the uncorrected chi-squared test. However, (i) is
over-conservative and leads to type I errors consistently
much less than the nominal value · of the test. Some sim-
ple calculations can illustrate this. We take two subpopu-
lations (K = 2) and let the marker genotype frequencies be
the same in both (alternatively, we could have let the dis-
ease prevalences to be the same). In such a situation, there
can be no bias due to population stratification, so the type
I error (as calculated from Eq. (6)) should very close to ·.

Table 2 shows that Fisher’s two-sided p value and the
corrected chi-squared p value are close to each other and
are both quite conservative in the sense that the tests con-
sistently reject at a rate much less than the nominal alpha
(i.e. p(s,t; m,n) consistently !0.05). On the other hand,
Fisher’s two-sided mid-p value and the uncorrected chi-
squared p value are also close to each other and perform
quite well (i.e. p(s,t; m,n) " 0.05). Since Fisher’s two-
sided mid-p value is slightly more conservative of these
two, we shall use it in our future calculations (as recom-
mended in [25] and [24]).

Population Stratification and the Magnitude As – t A

The magnitude As – t A measures the average difference
in marker genotype frequencies between affected and
unaffected people in the total population. The larger this
magnitude, the greater the bias due to population stratifi-
cation (for given m and n). When s = t there is no bias due
to population stratification, no matter what the values of
m and n, and we expect p(s,t; m,n) = ·. This then means
that independence between D and M at the subpopulation
level translates into independence between D and M at the
population level. Using Eq. (4), we see that

As – t A = A
K

™
i = 1

i di ri – 
K

™
i = 1

i di 

K

™
i = 1

i ri

� K

™
I = 1

i di� �1 – 
K

™
i = 1

i di�A . (8)

We see that s = t if and only if
K

™
i = 1

i diri – 
K

™
i = 1

i di 

K

™
i = 1

i ri = 0. (9)

If all K subpopulations are of the same size (i = 1/K for i =
1, 2, ..., K), then Eq. (9) becomes

K 
K

™
i = 1

di ri – 
K

™
i = 1

di 

K

™
i = 1

ri = 0, (10)

which means that the correlation coefficient of the data
points (di, ri ), i = 1, 2, ..., K (viewed as realizations of the
random variables d and r), is zero. Eq. (10) gives the nec-
essary and sufficient condition for no bias due to popula-
tion stratification in a population divided into subpopula-
tions of the same size as long as there is no association in
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any of the subpopulations. More generally, from Eq. (9),
the necessary and sufficient condition for no bias due to
population stratification in subpopulations of arbitrary
size i (i = 1, 2, ..., K) is that the weighted correlation coef-
ficient of (di, ri) is zero, where the i ’s are the weights.

There are some special cases of Eq. (9). For example, if
di = d or ri = r for i = 1, 2, ..., K then s = t and there is no
bias due to population stratification. As another example,
with two subpopulations of the same size (i.e. K = 2, i =
2 = 1/2), then

As – t A = A (d2 – d1 ) (r2 – r1 )
(d1 + d2 ) (d1 + d2 –2)

A . (11)

A feature of Eq. (11) is that, whereas the extent of bias
depends on the marker allele frequencies only through
their differences, the dependence on disease prevalences
is somewhat more complex. This asymmetry in the type
of dependence results from the fact that our contingency
table is conditional on the rows (cases and controls) rather
than on the columns (marker genotype and other geno-
type(s)). Another feature of Eq. (11) is that As – t A, and
hence the bias, is more sensitive to marker genotype fre-
quency differences than to disease prevalence differences.
Finally, we have shown a standardized version of Eq. (11)
to be highly predictive of the type I error [4] in the case of
two subpopulations of the same size.

Bias when the Number of Subpopulations
Increases

What is the effect of increasing the number of subpop-
ulations on the magnitude of the bias due to population
stratification? We are here interested in the limit

lim
K → ∞

(s – t ) = lim
K → ∞

™i idi ri – ™i i di ™i i ri

™i idi (1 – ™i i di )
. (12)

Let us assume that di , ri re realizations of the random vari-
ables d, r in the interval (0, 1), respectively, according to
some density functions. By assumption in the Section
‘The Statistical Model’, d and r are independent. Also, let
 i* be realizations of the random variable * in the inter-
val (0, 1), such that i =  i*/™j i*. Then, for large K,

™i i di ri = 
™i  i*di ri

™j  j*
" 

E(* dr )
E*

,

™i i di = 
™i  i*di

™j  j*
" 

E(* d )
E*

,

™i i ri = 
™i  i*ri

™j  j*
" 

E(* r )
E*

.

The limit in Eq. (12) then becomes

lim
K → ∞

(s – t ) = 
E*E(*dr ) – E(*d ) E (*r )

E(*d ) �E* – E(*d )�
. (13)

We see that

lim
K → ∞

(s – t ) = 0

if and only if

E* E(*dr ) – E(*d ) E(*r ) = 0, (14)

which is true when d, r and * are mutually independent.
The latter is the sufficient condition for no bias due to
population stratification in a population divided into ‘in-
finitely-many’ subpopulations. For example, d, r and *
could be mutually independent uniform variates on (ld,
ud), (lr, ur) and (0, 1), respectively, for convenient values
of ld, ud, lr, ur such that 0 ! ld, ud, lr, ur ! 1.

It is interesting to note the difference between Eqs. (9)
and (14). They both give conditions for no bias due to
population stratification. However, Eq. (9) is a ‘sample
result’, expressed in terms of realizations of the random
variables d, r and *. (Note that d, r and * are values in
the subpopulations, which are biological populations
rather than statistical populations, so they are random
variables rather than parameters [see 26]. On the other
hand, Eq. (14) is a ‘(statistical) population result’, ex-
pressed in terms of the expectations of the above-men-
tioned random variables, i.e. averaged over randomly
selected subpopulations. Therefore, in Eq. (9), we are con-
cerned with the data points ( i*, di , ri), whereas, in Eq.
(14) we are concerned with the statistical distribution of
*, d and r. If the latter are mutually independent, Eq. (14)
holds exactly but Eq. (9) holds approximately, the approx-
imation getting better as K increases.

We demonstrated the variation in bias with increasing
number of subpopulations numerically by performing
four sets of simulations1, based on the following mutually
independent distributions: (i) d F U(0, 1), r F U(0,1),
* F U(0, 1); (ii) d F U(0, 0.1), r F U(0, 1), * F U(0, 1);
(iii) d F U(0, 0.1), r F U(0.4, 0.7), * F U(0, 1); (iv) d F
beta(2, 20), r F U(0, 1), * F U(0, 1). For example, in (i),
for a given value of K, we simulated K values for each of
the variates d, r and * from their respective uniform dis-
tributions. We took m = n = 100 and we calculated the
type I error from Eq. (6), using · = 0.05. We repeated the
simulation 100 times and averaged out the 100 values of
type I error that we obtained. We then did the same for

1 Using Maple V release 4.00a.
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Fig. 1. The variation of average type I error
with number of subpopulations (K). (i) d F
U(0, 1), r F U(0, 1), * F U(0, 1); (ii) d F
U(0, 0.1), r F U(0, 1), * F U(0, 1); (iii) d F
U(0, 0.1), r F U(0.4, 0.7), * F U(0, 1); (iv)
d F beta(2, 20), r F U(0, 1), * F U(0, 1). In
all cases, test size · = 0.05.

different values of K. The same procedure was used in (ii)
and (iii) except for the changes in the range of the distribu-
tions. In (iv) we used a beta(2, 20) distribution for d (this
distribution is highly concentrated around its mean
2/22 = 0.09). Figure 1 shows the variation of the average
type I error with K in each of the four cases.

From figure 1, we see that, in all four cases, the type I
error decreases with increasing number of subpopulations
(though at different rates), since disease, marker genotype
and subpopulation size have been assumed to be indepen-
dent. The type I error decays most quickly in case (iii)
when both the ranges of the distributions of d and r are
quite narrow. On the other hand, in cases (i) and (iv),
when the ranges are as wide as possible, a very large num-
ber of subpopulations are required before the type I error
gets even close to 0.05. For example, even with 50 sub-
populations, the type I error remains over 10%.

The simulations above assume that d, r and * are
mutually independent. However, it is also possible for dis-
ease prevalences to depend on the sizes of subpopulations,
so that

lim
K → ∞

(s – t ) 0 0,

and the bias can stay large with increasing number of sub-
populations. For instance, consider the so-called founder
effect [27, 28]: very small population sizes create bottle-
necks, resulting in a serious loss of heterozygozity and ele-
vated disease prevalence. The effect is more pronounced

for rare diseases. Well-documented examples include
Tay-Sachs disease in Ashkenazi Jews, Ellis-van Creveld
syndrome in the old-order Amish in Pennsylvania, and
variegate porphyria among the Afrikaners in South Africa
[29, 30].

We demonstrated numerically that bias can be quite
substantial with increasing number of subpopulations
with three sets of simulations, based on the following
distributions: (i) d F U(0, 1), r F U(0, 1), * FU(0, 1);
(iii) d F U(0, 0.1), r F U(0.4, 0.7), * F U(0, 1); (v) d F
U(0, 1), r F U(0, 1),  i* = 1/di ; (vi) d F U(0, 0.1), r F
U(0.4, 0.7),  i* = 1/di . Cases (i) and (iii) are the same as
before, but cases (5) and (6) have d and * dependent. The
results for the four sets of experiments are shown in fig-
ures 2a and b.

We see that, in cases (i) and (iii), when we assume
mutual independence of d, r and *, the type I error
decays fairly rapidly close to the nominal · (= 0.05) with
increasing number of subpopulations. However, in cases
(v) and (vi), when mutual independence no longer holds,
the type I error remains substantial even when K is large.
The situation is very drastic for case (v), where the ranges
are as wide as possible and the disease prevalence is
inversely related to the subpopulation size: the type I error
decreases erratically but always remains high (nearly 40%
with 30 subpopulations and almost 30% with 400 subpop-
ulations!).
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Fig. 2. a The variation of average type I
error with number of subpopulations (K) for
K = 2, 6, 10, ..., 50. (i) d F U(0, 1), r F U(0,
1), * F U(0, 1); (iii) d F U(0, 0.1), r F
U(0.4, 0.7), * F U(0, 1); (v) d F U(0, 1),
r F U(0, 1), * 1/di; (vi) d F U(0, 0.1), r F
U(0.4, 0.7), * = 1/di (i.e. all random vari-
ables not mutually independent). In all cases,
test size · = 0.05. b The variation of average
type I error with number of subpopulations
(K) for K = 100, 150, ..., 200. (i) d F U(0, 1),
r F U(0, 1), * F U(0, 1); (iii) d F U(0, 0.1),
r F U(0.4, 0.7), * F U(0, 1); (v) d F U(0,
1), r F U(0, 1), * = 1/di; (vi) d F U(0, 0.1),
r F U(0.4, 0.7), * = 1/di (i.e. all random
variables not mutually independent). In all
cases, test size · = 0.05.

Discussion

Our analysis shows that population stratification in
case-control association mapping studies may pose a
more serious problem than argued by Wacholder et al. [1,
2]. In the absence of any statistical association between
disease and marker genotype within the individual sub-
populations, population stratification does not give rise to
any bias when the subpopulation size-weighted correla-

tion coefficient between disease prevalences and marker
allele frequencies is zero (Eq. (9)). The subpopulation
size-weighted correlation coefficient is normally approxi-
mately zero either when (a) the ranges over which the dis-
tributions of marker genotype frequency and disease
prevalence are defined become narrower (fig. 1), or when
(b) the distributions of disease prevalence, marker geno-
type frequency and subpopulation size are mutually inde-
pendent (fig. 2a). Note in particular that we can still have
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negligible bias when condition (a) holds but condition (b)
does not hold. That is, we can have disease prevalence,
marker genotype frequency and subpopulation size not
mutually independent (as in fig. 2a); however, by strongly
restricting the ranges of these random variables any corre-
lation can be made to vanish so that Eq. (9) is approxi-
mately true. When either condition (a) or (b) holds, then
the bias is negligible when the number of subpopulations
is even as small as 4–8, as claimed by Wacholder et al. [1,
2]. However, when either (or both) of the ranges becomes
wider, the bias increases and can become substantial. For
example, when the ranges are as wide as possible, we have
an type I error above 30% even with 10 subpopulations
(fig. 1, case (i)). The same happens when disease preva-
lence, marker genotype frequency and subpopulation size
become more and more pairwise correlated. For example,
with disease prevalence inversely related to subpopula-
tion size, we have an type I error of almost 40% with 30
subpopulations (fig. 2a, case (v)).

We note another way to view the null hypothesis in Eq.
(5): Imagine a situation in which we knew or assumed that
the disease and marker are not associated, but what we
wanted to test is whether there is population stratifica-
tion. Then H0: s = t would represent a hypothesis of ‘no
spurious association,’ i.e., ‘no bias due to population strat-
ification’; and now the test statistical test T (whether Fish-
er’s exact test or the chi-squared test) would represent the
correct test for this hypothesis. Thus, the sum of probabili-
ties in Eq. (6) would represent power, rather than a false
positive rate. It is well known that power increases with
increasing sample size. Looking at Eq. (6) this way
explains why that sum of probabilities, and hence the type
I error in our study, has to increase as sample size
increases.

With a large number of subpopulations, there is negli-
gible bias due to population stratification when the dis-
ease prevalence, marker genotype frequency and subpop-
ulation size are independently distributed (Eq. 14). How-
ever the decrease in bias is substantial only when the
ranges of marker genotype frequency and disease preva-
lence are narrow (fig. 2b). When the ranges are wide, there
is a decrease in bias but a large number of subpopulations
(F150) are necessary before the bias is substantially
reduced. When disease prevalence, marker genotype fre-
quency and subpopulation size are not independent, bias
stays large even with a large number of subpopulations.
For example, with the disease prevalence inversely related
to the subpopulation size, we have an type I error of
almost 30% with 400 subpopulations (fig. 2b, case (v))!
Moreover, when the disease prevalence and subpopula-

tion size are inversely related, the bias remains relatively
large even though the ranges over which marker genotype
frequency and disease prevalence are defined are narrow,
and the number of subpopulations is extremely large. For
example, with disease prevalence inversely related to sub-
population size and with the ranges of disease and marker
quite restricted, we have an type I error of about 8% even
with 500 subpopulations (fig. 2b, case (vi)).

Why do the results of Wacholder et al. [1, 2] suggest
‘bias from population stratification is unlikely to be sub-
stantial’? In the light of the previous paragraphs, there are
at least three reasons for this. First, the genotype frequen-
cy ranges considered by these authors are quite narrow,
but in real data those frequency ranges are not always nar-
row. For example, from the ALelle FREquency Database
[31], genotype frequencies ranges can be quite wide (e.g.
for ACE Alu insertion of the ACE locus and the TPA25
Alu insertion of the PLAT locus, the genotype frequency
range was 0–1; for the PV92 Alu insertion of the CDH13
locus and the APO Alu insertion of the APOA1 locus, the
range was 0.02–1). Further references are given in Tho-
mas and Witte [3]. Second, the authors have not consid-
ered the possibility that disease prevalences can depend
on the size of subpopulations. Even Thomas and Witte
[3], who warn that population stratification ‘is of suffi-
ciently serious concern’ in case-controls studies, seem to
concede that the resulting bias becomes negligible with a
large number of subpopulations. However, it is very plau-
sible for disease prevalences to be negatively correlated to
subpopulation sizes. For example, three founder muta-
tions have been observed in Ashkenazi Jewish breast and
ovarian cancer patients [32]: the BRCA2 6174delT muta-
tion (with a frequency of 0.9–1.5%); the BRCA1 185de-
lAG mutation (in both Ashkenazi and Sephardic Jews,
with a frequency of 0.8–1.1%); and the BRCA1 5382insC
mutation (with a frequency of 0.13–0.3%). The popula-
tion prevalences for these three mutations combined is 2–
2.5%, which is approximately 10–50 times higher than
the allele frequency in the general population. A third pos-
sible reason is that Wacholder et al. [1, 2] focus on the
CRR instead of the type I error and, as demonstrated by
Heiman et al. [4] (part I, this issue), the CRR is somewhat
insensitive to bias due to population stratification. Note,
however, that when the first two conditions are relaxed,
our results do indeed agree with those of Wacholder et al.
[1, 2] (fig. 1, 2a, b, case (iii)). Thus, in essence, our results
do not really contradict those of the authors, but, if any-
thing, further extends them by exploring different distri-
butions of and dependencies between marker genotype,
disease frequency and subpopulation size.
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Our method assumes no a priori association between
marker genotype and disease in each subpopulation, and
then investigates the false association arising in the total
population due to population stratification. It would be
interesting to see whether the conclusions we reached in
this paper would hold even when there existed some a
priori real association between genotype and disease with-
in each subpopulation, i.e. whether the effects of popula-
tion stratification are additive on association studies. This
remains an important component of our current re-
search.
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